

This	edition	first	published	2015

©	2015	John	Wiley	and	Sons,	Ltd.

Registered	office

John	Wiley	&	Sons	Ltd,	The	Atrium,	Southern	Gate,	Chichester,	West
Sussex,	PO19	8SQ,	United	Kingdom	For	details	of	our	global	editorial
offices,	for	customer	services	and	for	information	about	how	to	apply	for
permission	to	reuse	the	copyright	material	in	this	book	please	see	our	website
at	www.wiley.com.

The	right	of	the	author	to	be	identified	as	the	author	of	this	work	has	been
asserted	in	accordance	with	the	Copyright,	Designs	and	Patents	Act	1988.

All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted,	in	any	form	or	by	any	means,	electronic,
mechanical,	photocopying,	recording	or	otherwise,	except	as	permitted	by	the
UK	Copyright,	Designs	and	Patents	Act	1988,	without	the	prior	permission	of
the	publisher.

Wiley	also	publishes	its	books	in	a	variety	of	electronic	formats.	Some
content	that	appears	in	print	may	not	be	available	in	electronic	books.

Designations	used	by	companies	to	distinguish	their	products	are	often
claimed	as	trademarks.	All	brand	names	and	product	names	used	in	this	book
are	trade	names,	service	marks,	trademarks	or	registered	trademarks	of	their
respective	owners.	The	publisher	is	not	associated	with	any	product	or	vendor
mentioned	in	this	book.	This	publication	is	designed	to	provide	accurate	and
authoritative	information	in	regard	to	the	subject	matter	covered.	It	is	sold	on
the	understanding	that	the	publisher	is	not	engaged	in	rendering	professional
services.	If	professional	advice	or	other	expert	assistance	is	required,	the
services	of	a	competent	professional	should	be	sought.

Trademarks:	Wiley	and	the	Wiley	logo	are	trademarks	or	registered
trademarks	of	John	Wiley	&	Sons,	Inc.	and/	or	its	affiliates	in	the	United
States	and/or	other	countries,	and	may	not	be	used	without	written
permission.	All	other	trademarks	are	the	property	of	their	respective	owners.
John	Wiley	&	Sons,	Ltd.	is	not	associated	with	any	product	or	vendor
mentioned	in	the	book.

A	catalogue	record	for	this	book	is	available	from	the	British	Library.

http://www.wiley.com

ISBN	978-1-118-94847-7	(paperback);	ISBN	978-1-118-94846-0	(ePub);
978-1-118-94845-3	(ePDF)

To	every	student	ever	told	they	had	to	choose	between	the	arts	and
sciences.

About	the	Author
BECKY	STEWART	is	an	engineer	and	educator.	She	works	with	artists	and
designers	to	bring	to	life	often	crazy	ideas—from	shoes	that	show	you	how	to
get	home	to	suspension	bridges	that	can	be	played	like	giant	harps.	After
completing	a	PhD	in	Electronic	Engineering	at	Queen	Mary	University	of
London,	Becky	helped	found	Codasign,	an	education	company	that	creates
technology	workshops	for	art	galleries	and	museums.	At	Codasign	she	teaches
artists	and	designers	how	to	use	electronics	and	code	as	creative	tools.	She
documents	her	projects	at	http://theleadingzero.com.

Acknowledgments
My	first	thanks	go	to	Alexandra	Deschamps-Sonsino,	without	whom	I	would
have	never	started	this	book.	I	also	offer	my	sincere	gratitude	to	Alex	for	her
work	with	Tinker	that	jumpstarted	the	Arduino	community	in	London.

None	of	this	would	have	been	possible	without	the	support	of	the	amazing
educators	that	form	Codasign.	I	have	learned	much	from	Melissa	Coleman	and
Pollie	Barden	about	how	to	improve	my	Arduino	teaching,	and	I	am	constantly
learning	from	Adam	Stark	about	how	to	better	teach	programming	concepts.	I
can’t	stop	thanking	Emilie	Giles—Codasign	would	grind	to	a	halt	without	you;
thank	you	for	everything	you	do.	I	give	a	particularly	huge	thank-you	to	Liat

http://theleadingzero.com/

Wassershtrom	for	all	your	feedback	and	expertise.

I’d	like	to	also	thank	the	artistic	and	editorial	staff	that	helped	shape	this	book.	It
has	been	greatly	improved	by	your	guidance.

Lastly,	thank	you	to	my	family	who	have	supported	me	in	everything	I	do.
Thank	you	to	my	parents,	who	provided	a	quiet	place	to	sit	and	write,	and	to
Ben,	who	has	patiently	tolerated	our	wedding	planning	and	vacations	being
punctuated	by	writing.

Publisher’s	Acknowledgements
Some	of	the	people	who	helped	bring	this	book	to	market	include	the	following:

Editorial

Series	Creator:	Carrie	Anne	Philbin

VP	Consumer	and	Technology	Publishing	Director:	Michelle	Leet	Associate
Director—Book	Content	Management:	Martin	Tribe	Professional	Technology	&
Strategy	Director:	Barry	Pruett	Acquisitions	Editor:	Aaron	Black

Project	Editor:	Charlotte	Kughen

Copy	Editor:	Grace	Fairley

Technical	Editor:	Russell	Barnes

Editorial	Manager:	Mary	Beth	Wakefield

Editorial	Assistant:	Jessie	Phelps

Marketing

Marketing	Manager:	Lorna	Mein

Marketing	Assistant:	Polly	Thomas

Adventures	in	Arduino®
Contents

Cover
Title	Page
About	the	Author
Introduction

What	Is	an	Arduino?
What	You	Will	Learn
Parts	You	Will	Need
Tools	You	Will	Need
Software	You	Will	Need
Other	Useful	Materials
What	I	Assume	You	Already	Know
How	This	Book	Is	Organised
Conventions
The	Companion	Website
Reaching	Out

Adventure	1:	Setting	Up	Your	Arduino
What	You	Need
Downloading	and	Installing	the	Arduino	Software	on	Your	Computer
Using	Blink	to	Test	That	Everything	Is	Set	Up	Correctly
Building	an	LED	Circuit
Further	Adventures	with	Arduino

Adventure	2:	Reading	from	Sensors
What	You	Need
Adding	More	LEDs

Printing	Messages	to	the	Computer
Reading	Data	from	a	Potentiometer
Making	Decisions	in	Code
Building	a	Status	Message	Sign
Further	Adventures	with	Arduino

Adventure	3:	Working	with	Servos
What	You	Need
Understanding	Different	Types	of	Motors
Controlling	a	Servo	with	Arduino
Repeating	the	Same	Thing	Over	and	Over
Digital	Input	with	a	Push	Button
Building	a	Combination	Safe
Further	Adventures	with	Arduino

Adventure	4:	Using	Shift	Registers
What	You	Need
Organising	Your	Code
Getting	More	Outputs	with	Shift	Registers
Building	Your	Name	in	Lights
Further	Adventures	with	Shift	Registers

Adventure	5:	Playing	Sounds
What	You	Need
Making	a	List
Making	Noise
Building	an	Augmented	Wind	Chime
Further	Adventures	with	Sound

Adventure	6:	Adding	Libraries
What	You	Need
Analogue	Out
Capacitive	Sensing
Building	a	Crystal	Ball

Further	Adventures	with	Libraries
Adventure	7:	Working	with	the	Arduino	Leonardo

What	You	Need
Introducing	the	Arduino	Leonardo
Sensing	Light
Building	a	Game	Controller
Further	Adventures	with	the	Leonardo

Adventure	8:	Working	with	the	Lilypad	Arduino	USB
What	You	Need
Introducing	the	Lilypad	Arduino	USB
Getting	Clever	with	Arrays
Passing	Data	Between	Functions
Building	a	POV	Hoodie
Further	Adventures	with	the	Lilypad

Adventure	9:	The	Big	Adventure:	Building	a	Marble	Maze
Game

What	You	Need
Part	One:	Scoring	Points
Part	Two:	Designing	Your	Maze	Game
Part	Three:	Writing	the	Code
Part	Four:	Building	the	Maze	Game
Further	Adventures:	Continuing	Your	Adventures	with	Arduino

Adventure	A:	Where	to	Go	From	Here
More	Boards,	Shields,	Sensors	and	Actuators
On	the	Web
Books

Adventure	B:	Where	to	Get	Tools	and	Components
Starter	Kits
Brick-and-Mortar	Stores
Online	Stores

Glossary
End	User	License	Agreement

List	of	Illustrations

Introduction
FIGURE	I-1	Arduino	Uno	(top	left),	Arduino	Leonardo	(bottom	left)
and	Lilypad	Arduino	USB	(right)
FIGURE	I-2	A	USB	and	USB	Micro	cable
FIGURE	I-3	Breadboards	in	different	sizes	and	colours
FIGURE	I-4	Jumper	wires
FIGURE	I-5	Different	types	of	LED,	with	a	colour-changing	LED	on
the	right	and	below	it	a	Lilypad	LED
FIGURE	I-6	Resistors	needed	for	the	projects	in	this	book:	100Ω	(top
left),	220Ω	(top	right),	10kΩ	(bottom	left),	1MΩ	(bottom	middle)	and
10MΩ	(bottom	right)
FIGURE	I-7	Three	different	types	of	potentiometer
FIGURE	I-8	A	servo	motor
FIGURE	I-9	A	tactile	push	button	(left)	and	three	different	panel
mount	buttons	(right)
FIGURE	I-10	A	shift	register
FIGURE	I-11	A	piezo
FIGURE	I-12	A	light-dependent	resistor
FIGURE	I-13	Male	header	pins
FIGURE	I-14	Solid	core	wire	(left)	and	stranded	wire	(right)
FIGURE	I-15	Enamelled	(left)	and	plastic	coated	(right)	wire
FIGURE	I-16	Solder	on	spools
FIGURE	I-17	A	9V	battery-to-DC-barrel	connector	(left)	and	a	UK
plug	for	a	USB	cable	(right)
FIGURE	I-18	Alligator	clips
FIGURE	I-19	Conductive	thread

FIGURE	I-20	A	soldering	iron
FIGURE	I-21	Different	kinds	of	wire	stripper
FIGURE	I-22	Wire	cutters
FIGURE	I-23	Pairs	of	pliers
FIGURE	I-24	A	multimeter
FIGURE	I-25	A	pair	of	scissors	and	a	utility	knife

Chapter	1
FIGURE	1-1	An	Arduino	Uno	and	USB	cable
FIGURE	1-2	You	can	download	the	Arduino	IDE	for	your	computer
from	the	Arduino	website.
FIGURE	1-3	Plug	the	USB	cable	into	the	Arduino	Uno	and	then
connect	it	to	your	computer.
FIGURE	1-4	The	Arduino	program	icon
FIGURE	1-5	The	important	parts	of	the	Arduino	IDE
FIGURE	1-6	The	built-in	LED	on	the	Arduino	board	is	near	the
number	13.
FIGURE	1-7	Opening	the	Blink	sketch,	which	is	located	in	the
examples	that	are	included	with	the	Arduino	IDE
FIGURE	1-8	Selecting	the	board	you	are	using
FIGURE	1-9	Selecting	the	port	your	Arduino	board	is	plugged	into
FIGURE	1-10	Message	in	the	Arduino	IDE	after	successfully
uploading	your	code
FIGURE	1-11	A	common	error	when	the	computer	can’t	talk	with	the
Arduino
FIGURE	1-12	The	electronic	components	you	need	to	build	the	circuit
FIGURE	1-13	The	circuit	schematic	for	the	LED	circuit
FIGURE	1-14	A	breadboard	has	a	series	of	holes	that	are	connected	in
rows	with	two	pairs	of	long	rows	on	the	outside	and	shorter,
perpendicular	rows	in	the	centre	of	the	board.
FIGURE	1-15	Basic	layout	of	a	breadboard
FIGURE	1-16	The	LED	circuit	on	the	breadboard
FIGURE	1-17	The	digital	pins	on	the	Arduino	board.	Digital	Pins	0

and	1	are	special	pins	that	you	learn	about	later.
Chapter	2

FIGURE	2-1	The	electronic	components	you	need	for	the	first	part	of
this	adventure
FIGURE	2-2	Building	a	circuit	to	control	three	LEDs
FIGURE	2-3	The	Serial	Monitor	button
FIGURE	2-4	The	Serial	Monitor	in	the	Arduino	IDE
FIGURE	2-5	Different	potentiometers
FIGURE	2-6	Analogue	pins	on	the	Arduino	Uno
FIGURE	2-7	Circuit	for	connecting	a	potentiometer
FIGURE	2-8	A	status	message	sign
FIGURE	2-9	The	electronic	components	you	need	to	make	a	status
message	sign
FIGURE	2-10	Circuit	schematic	for	the	sign
FIGURE	2-11	Prototype	circuit	on	the	breadboard	for	the	sign
FIGURE	2-12	Cutting	holes	for	the	LEDs	and	knob
FIGURE	2-13	The	LED	portion	of	the	circuit
FIGURE	2-14	Soldered	potentiometer
FIGURE	2-15	Power	supply	that	you	can	use	with	an	Arduino	board
FIGURE	2-16	Completed	status	message	sign

Chapter	3
FIGURE	3-1	The	electronic	components	you	need	for	the	first	part	of
Chapter	3
FIGURE	3-2	A	servo	motor	and	toy	DC	motor
FIGURE	3-3	Opening	the	Sweep	example	sketch
FIGURE	3-4	Circuit	to	connect	a	servo	to	the	Arduino	board
FIGURE	3-5	How	a	tactile	push	button	works
FIGURE	3-6	Circuit	with	a	tactile	push	button
FIGURE	3-7	Circuit	with	a	pull-up	resistor
FIGURE	3-8	Circuit	with	a	push	button	and	internal	pull-up	resistor	on
the	Arduino	board

FIGURE	3-9	Combination	safe
FIGURE	3-10	The	electronic	components	you	need	to	build	your
combination	safe
FIGURE	3-11	Circuit	schematic	for	the	combination	safe
FIGURE	3-12	Circuit	for	the	combination	safe
FIGURE	3-13	If	the	lid	is	not	already	attached	to	your	box,	add	a
paper	hinge.
FIGURE	3-14	Extend	the	servo’s	arm	by	attaching	an	object	like	a
paperclip	or	bamboo	skewer.
FIGURE	3-15	Paper	loop	so	the	servo	can	close	the	safe
FIGURE	3-16	Soldered	components
FIGURE	3-17	Completed	combination	safe

Chapter	4
FIGURE	4-1	What	you	need	for	the	first	part	of	this	adventure
FIGURE	4-2	The	anatomy	of	a	function
FIGURE	4-3	The	anatomy	of	a	for	loop
FIGURE	4-4	The	CLOCK	signal
FIGURE	4-5	How	a	shift	register	works
FIGURE	4-6	Pin-out	diagram	for	the	shift	register
FIGURE	4-7	First	connections	for	the	shift	register
FIGURE	4-8	The	full	circuit	for	the	shift	register
FIGURE	4-9	How	to	convert	from	a	binary	number	to	a	decimal
number
FIGURE	4-10	How	would	this	binary	pattern	be	represented	by	a
decimal	number?
FIGURE	4-11	Adding	a	second	shift	register
FIGURE	4-12	Your	name	(or	any	other	word)	in	lights!
FIGURE	4-13	The	electronic	components	you	need	to	build	your	name
in	lights
FIGURE	4-14	Circuit	schematic	for	three	shift	registers
FIGURE	4-16	Cardboard	letters	with	holes	for	LEDs
FIGURE	4-17	Soldered	LEDs	and	resistors

FIGURE	4-18	Back	of	lights
Chapter	5

FIGURE	5-1	The	electronic	components	you	need	for	the	first	part	of
this	adventure
FIGURE	5-2	Two	example	arrays
FIGURE	5-3	The	circuit	for	an	array	of	LEDs
FIGURE	5-4	How	sound	is	made
FIGURE	5-5	The	circuit	for	a	using	a	piezo	as	a	speaker
FIGURE	5-6	An	augmented	wind	chime
FIGURE	5-7	The	electronic	components	you	need	to	make	the	wind
chime
FIGURE	5-8	Circuit	schematic	for	the	augmented	wind	chime
FIGURE	5-9	Breadboard	prototype	circuit
FIGURE	5-10	Conductivity	test
FIGURE	5-11	A	chime
Figure	5-12	A	chime	attached	to	the	base
FIGURE	5-13	Top	of	base

Chapter	6
FIGURE	6-1	The	electronic	components	you	need	for	the	first	part	of
this	adventure
FIGURE	6-2	Analogue	and	digital	signals
FIGURE	6-3	The	pins	that	support	analogWrite()
FIGURE	6-4	LED	circuit	for	fading	an	LED
FIGURE	6-5	Pulse	width	modulation	examples
FIGURE	6-6	RGB	LEDs
FIGURE	6-7	Circuit	connecting	an	RGB	LED	to	an	Arduino	board
FIGURE	6-8	Mixing	light	versus	mixing	paint
FIGURE	6-9	Place	the	downloaded	and	unzipped	folder	in	the	libraries
folder	of	the	Arduino	sketchbook.
FIGURE	6-10	Check	for	the	library	and	example	in	the	menus.
FIGURE	6-11	Capacitive	sensing	circuit

FIGURE	6-12	A	touch-sensitive	crystal	ball
FIGURE	6-13	The	electronic	components	you	need	to	make	the	crystal
ball
FIGURE	6-14	Circuit	schematic	for	the	crystal	ball
FIGURE	6-15	Breadboard	prototype	circuit
FIGURE	6-16	Mapping	a	value	to	a	new	range
FIGURE	6-17	Papier	maché	crystal	ball
FIGURE	6-18	Aluminium	foil–covered	base
FIGURE	6-19	Soldered	LED	circuit
FIGURE	6-20	Soldered	sensor	circuit
FIGURE	6-21	Completed	crystal	ball	circuit

Chapter	7
FIGURE	7-1	The	electronic	components	you	need	for	the	first	part	of
this	adventure
FIGURE	7-2	Selecting	the	Arduino	Leonardo	from	Tools⇒Board	in
the	Arduino	IDE
FIGURE	7-3	USB	connectors
FIGURE	7-4	The	Leonardo	typing	in	a	word	processing	program
FIGURE	7-5	Analogue	and	digital	signals
FIGURE	7-6	Ohm’s	Law	defines	how	voltage,	current	and	resistance
are	related.
FIGURE	7-7	Two	voltage	divider	circuits,	one	with	an	LDR	as	the	top
resistance	and	the	other	with	an	LDR	as	the	bottom	resistance
FIGURE	7-8	The	equation	to	calculate	how	different	resistor	values	in
a	voltage	divider	change	the	output	voltage
FIGURE	7-9	Arduino	Leonardo	game	controller
FIGURE	7-10	The	electronic	components	you	need	to	make	the	game
controller
FIGURE	7-11	Circuit	schematic	for	the	game	controller
FIGURE	7-12	The	game	controller	circuit
FIGURE	7-13	Cover	without	any	circuitry

Chapter	8

FIGURE	8-1	The	electronic	components	you	need	for	the	first	part	of
this	adventure
FIGURE	8-2	The	Lilypad	Arduino	USB
FIGURE	8-3	An	FTDI	programming	board,	which	you	need	if	you	are
using	a	type	of	Lilypad	Arduino	other	than	a	Lilypad	Arduino	USB
FIGURE	8-4	The	Arduino	Lilypad	Arduino	USB	ON	switch
FIGURE	8-5	Select	Lilypad	Arduino	USB	from	the	list	of	boards
FIGURE	8-6	Instead	of	jumper	wires	to	connect	components,	use
alligator	clips	when	prototyping	soft	circuits.
FIGURE	8-7	Lilypad	LEDs	are	sewable	LEDs	that	already	have
current-limiting	resistors.
FIGURE	8-8	A	list	of	integers,	also	called	a	one-dimensional	array
FIGURE	8-9	A	two-dimensional	array	of	integers	stored	in	rows	and
columns
FIGURE	8-10	Circuit	for	an	array	of	LEDs
FIGURE	8-11	Iterating	over	frames	of	an	animation	stored	in	a	two-
dimensional	array
FIGURE	8-12	Persistence-of-vision	hoodie
FIGURE	8-13	The	electronic	components	you	need	for	the	POV
hoodie
FIGURE	8-14	Circuit	schematic	for	the	POV	hoodie
FIGURE	8-15	Prototyping	the	circuit	with	alligator	clips
FIGURE	8-16	Persistence	of	vision	message	captured	with	a	long-
exposure	photograph
FIGURE	8-17	Bending	the	legs	of	components	to	make	them	sewable
FIGURE	8-18	First	connections	for	sewing	the	Lilypad	circuit
FIGURE	8-19	Continuing	to	sew	the	LEDs	into	the	circuit
FIGURE	8-20	The	sewn	POV	circuit

Chapter	9
FIGURE	9-1	A	completed	big	adventure	marble	maze	game
FIGURE	9-2	The	electronic	components	you	need	to	build	your	maze
game

FIGURE	9-3	Circuit	to	use	a	piezo	as	a	sensor
FIGURE	9-4	Circuit	for	five	piezos	as	sensors	and	one	piezo	as	a
speaker
FIGURE	9-5	Guidelines	for	designing	your	maze
FIGURE	9-6	How	the	code	works	when	a	game	is	played
FIGURE	9-7	Circuit	schematic	of	the	maze	game
FIGURE	9-8	Maze	game	prototype	circuit	on	a	breadboard
FIGURE	9-9	How	a	loop()	works
FIGURE	9-0	Glue	strips	of	card	to	guide	the	marble	after	it	drops
through	a	hole.
FIGURE	9-1	Lid	of	the	maze	game	fitted	to	bottom
FIGURE	9-3	Wiring	layout	for	piezos
FIGURE	9-4	Solder	the	negative	legs	of	the	LEDs	and	one	contact	of
the	button	together.

Introduction
ARE	YOU	AN	adventurer?	Do	you	boldly	embark	on	new	endeavours,	tackling
new	skills	and	mastering	new	tools?	Do	you	want	to	learn	how	to	use	technology
to	make	your	ideas	burst	into	life?	Are	you	curious	about	how	you	can	combine
computer	code	and	electrical	circuits	with	scissors	and	paper—or	even	needle
and	thread?	If	the	answer	is	an	emphatic	“yes”	then	this	is	the	book	for	you!

What	Is	an	Arduino?
The	Arduino	is	a	tool	for	building	computers	that	can	interact	with	the	physical
world	around	you.	You	can	use	it	to	connect	sensors	that	detect	sound,	light	or
vibration,	then	turn	on	a	light,	change	its	colour,	move	a	motor	and	much	more.
The	Arduino	is	the	magical	device	that	sits	in	the	midst	of	all	of	these	things.	It
reads	in	from	sensors	measuring	the	real	world,	makes	decisions	based	on	that
data	and	then	makes	something	happen	in	the	real	world,	whether	light,	sound	or
movement.

The	Arduino	is	usually	a	blue	board	about	the	size	of	your	hand.	It	has	white
writing	on	it	labelling	its	different	sections	and	has	all	its	chips	and	circuits
exposed.	There	are	different	types	of	Arduino	boards,	and	they	aren’t	all	blue,
but	you	will	learn	more	about	that	later	in	the	“Parts	You	Will	Need”	section	and
also	in	Adventures	7	and	8.

The	Arduino	is	a	microcontroller.	A	microcontroller	is	a	simple	computer.	It
can’t	do	many	things	at	the	same	time	but	it	does	what	it	is	told	to	do	really	well.
You	already	interact	with	lots	of	microcontrollers	every	day	because	they	control
things	like	microwaves	and	washing	machines.

There	are	a	lot	of	different	types	of	microcontroller,	but	the	special	thing	about
Arduino	is	that	it	is	designed	for	people	who	are	just	starting	out.	So,	if	you	are
new	to	code	or	electronics,	that’s	okay	because	the	Arduino	is	great	for
beginners.	But	don’t	underestimate	it—it	can	still	take	on	big	projects.

What	You	Will	Learn
After	completing	these	adventures,	you	will	have	learned	how	to	set	up	the

Arduino	programming	environment	on	your	computer	and	how	to	write	and
upload	code	to	your	Arduino	board.	You	will	find	out	how	to	work	with	three
different	Arduino	boards:	the	Uno,	Leonardo	and	the	Lilypad	USB.

You	will	learn	basic	programming	concepts	that	you	can	use	beyond	working
with	the	Arduino.	The	Arduino	language	is	based	on	the	C/C++	language.	This
means	that	as	you	learn	how	to	code	Arduinos,	you	are	also	learning	about	how
programming	works	on	computers	like	a	laptop	or	a	Raspberry	Pi.

Alongside	programming,	you	will	be	introduced	to	circuits	and	electronics.	You
will	learn	how	to	use	sensors	to	detect	real-world	signals	like	light	or	movement,
and	you	will	learn	how	to	generate	actions	in	the	real	world,	such	as	playing	a
sound	or	turning	on	a	light.

By	the	end	of	this	book,	you	will	have	a	broad	understanding	of	what	you	can	do
with	an	Arduino	and	be	ready	to	start	designing	and	building	project	ideas	of
your	own!

Parts	You	Will	Need
It’s	becoming	easier	to	buy	Arduino	boards	in	stores.	Popular	retail	chains	like
Maplin	in	the	UK	now	stock	Arduinos.	Both	of	those	stores	also	sell	the
electronic	components	that	you	need	for	the	projects	in	this	book.	If	it’s	not
convenient	for	you	to	get	to	a	store	there	are	also	many	online	retailers	to	choose
from,	and	some	of	these	are	listed	in	Appendix	B.

This	section	explains	all	the	parts	you	need	to	make	all	the	projects	in	this	book.
Many	of	the	projects	use	the	same	core	parts.

Of	course,	the	most	important	thing	you	need	is	an	Arduino	board.	There	are
many	different	kinds	of	Arduino	boards,	but	the	Arduino	Uno	is	the	most
common	one	and	the	one	you	use	the	most	in	this	book.	You	also	need	an
Arduino	Leonardo	for	Adventure	7	and	a	Lilypad	Arduino	USB	for	Adventure	8.
All	three	boards	are	shown	in	Figure	I-1.

FIGURE	I-1	Arduino	Uno	(top	left),	Arduino	Leonardo	(bottom	left)	and
Lilypad	Arduino	USB	(right)

You	will	need	a	USB	cable	to	connect	your	Arduino	board	to	your	computer.	For
the	Arduino	Uno	you	need	a	“normal”	USB	cable,	but	for	the	Arduino	Leonardo
and	Lilypad	Arduino	USB	you	need	a	USB	Micro	cable.	Both	are	pictured	in
Figure	I-2.

FIGURE	I-2	A	USB	and	USB	Micro	cable

You	use	breadboards	to	build	circuits.	Breadboards	let	you	connect	components
easily	without	having	to	use	solder.	They	come	in	different	colours	and	sizes.
The	larger	ones	are	useful	for	more	complicated	projects	with	lots	of	parts,
whereas	the	smaller	ones	are	good	for	projects	that	you	want	to	fit	inside	a	small
space.	Two	different	sizes	of	breadboards	made	from	two	different	types	of
plastic	are	shown	in	Figure	I-3.	Adventure	3	is	the	only	project	that	uses	a
breadboard	in	the	completed	project;	the	other	adventures	use	a	breadboard	only
to	test	a	circuit.	A	larger	breadboard	will	be	easier	to	work	with,	but	if	you	can
only	find	smaller	ones,	that’s	perfectly	okay.

FIGURE	I-3	Breadboards	in	different	sizes	and	colours

Jumper	wires	are	wires	you	use	when	you	build	prototype	circuits	to	try	out	new
concepts.	They	may	be	short	pieces	of	stiff	wire	like	those	shown	on	the	right	in
Figure	I-4,	or	they	may	be	more	flexible	wire	with	pins	on	either	end	like	the
ones	on	the	left.

FIGURE	I-4	Jumper	wires

LEDs	are	a	particular	sort	of	light	(LEDs	stands	for	light-emitting	diodes)	that
come	in	a	big	selection	of	sizes	and	colours.	For	most	of	the	projects	in	this	book
you	can	use	whatever	size	and	colour	of	LEDs	you	like.	The	most	common	size
is	5	mm,	but	the	larger	10	mm	LEDs	can	be	great	fun	to	use	too.	Most	LEDs	are
single-colour,	but	you	use	an	LED	in	Adventure	6	that	has	four	legs	instead	of
only	two	and	can	change	colour.	In	Adventure	8	you	use	something	called	a
Lilypad	LED,	which	is	made	especially	for	sewing	circuits.	All	the	different
types	of	LED	used	in	the	projects	are	shown	in	Figure	I-5.

FIGURE	I-5	Different	types	of	LED,	with	a	colour-changing	LED	on	the	right
and	below	it	a	Lilypad	LED

Resistors	are	a	component	you	read	more	about	in	the	adventures.	They	come	in
different	values	of	resistance,	which	is	measured	in	ohms	(Ω).	You	don’t	need
many	different	resistances	for	the	projects	in	the	book	but	as	resistors	are	small
and	quite	cheap	it’s	a	good	idea	to	buy	extra.	You	need	resistors	of	68	or	100	Ω,
220	Ω,	10k	(10,000)	Ω,	1M	(1,000,000)	Ω	and	10M	(10,000,000)	Ω.	Figure	I-6
shows	the	different	resistors.

FIGURE	I-6	Resistors	needed	for	the	projects	in	this	book:	100Ω	(top	left),
220Ω	(top	right),	10kΩ	(bottom	left),	1MΩ	(bottom	middle)	and	10MΩ	(bottom
right)

Potentiometers	are	the	electronic	components	behind	volume	knobs	or	dials	on	a
stereo.	They	come	in	many	different	sizes	and	shapes.	Some	fit	into	a	breadboard
on	their	own,	like	the	blue	one	in	Figure	I-7,	whereas	others	need	wires	soldered
to	them	that	can	connect	to	a	breadboard,	like	the	one	in	the	middle	in	Figure	I-7.
Larger	ones	are	easier	to	mount	in	a	project	and	may	be	called	panel-mount
potentiometers.

FIGURE	I-7	Three	different	types	of	potentiometer

A	servo,	shown	in	Figure	I-8,	is	a	motor	that	you	use	in	Adventure	3.

FIGURE	I-8	A	servo	motor

Buttons	are	another	component	that	come	in	many	shapes	and	sizes.	You	might
have	never	noticed	this	before,	but	there	are	many	different	kinds	of	button!	All
the	projects	in	this	book	use	push-to-make	(the	opposite	of	push-to-break)
buttons	so	those	are	the	ones	to	buy;	as	long	as	they	are	push-to-make,	you	can
use	any	kind	of	button	you	would	like.	Tactile	push	buttons	are	very	little	buttons
that	fit	in	a	breadboard,	so	they	are	good	to	have	when	you	are	testing	your
circuit.	For	your	actual	projects,	panel	mount	push	buttons	are	better.	Both	are
shown	in	Figure	I-9.

FIGURE	I-9	A	tactile	push	button	(left)	and	three	different	panel	mount	buttons
(right)

In	Adventure	4	you	discover	how	to	use	shift	registers,	which	are	small	black
chips	you	can	use	to	control	a	lot	of	LEDs.	You	want	a	chip	that	is	a	74HC595
shift	register—you	find	out	what	that	means	in	the	adventure.	You	need	to	buy	a
chip	with	16	legs	on	it,	as	shown	in	Figure	I-10.

FIGURE	I-10	A	shift	register

Piezos	are	used	to	detect	vibrations	and	can	also	make	sound,	like	a	speaker.	You
need	one	piezo	for	Adventure	5	and	six	for	Adventure	9.	They	sometimes	come
inside	black	plastic	housing,	which	is	okay	for	the	one	in	Adventure	5	but	you
need	at	least	five	without	housing	(like	the	one	in	Figure	I-11)	for	Adventure	9.

FIGURE	I-11	A	piezo

A	light-dependent	resistor	can	tell	an	Arduino	board	how	bright	or	dark	it	is.
These	look	like	the	one	in	Figure	I-12	or	can	be	a	little	bigger.

FIGURE	I-12	A	light-dependent	resistor

Header	pins	are	small	strips	of	metal	that	are	separated	by	plastic	so	that	they	fit
perfectly	into	the	holes	on	the	Arduino	Uno.	They	come	in	different	spacings
(called	pitches),	so	you	should	make	sure	you	get	2.54	mm	male	header	pins,
like	the	ones	in	Figure	I-13.	You	need	a	strip	of	five	for	Adventure	5,	but	you
can	buy	them	in	longer	strips	and	easily	break	them	apart	into	smaller	sections
with	pliers.

FIGURE	I-13	Male	header	pins

When	you	think	about	circuits	and	electricity,	one	of	the	first	things	you	picture
is	probably	wire.	But	wire	isn’t	a	single	item;	there	are	many	different	kinds.
Wire	can	be	made	of	a	single	piece	of	metal	(called	solid	core)	or	a	lot	of	smaller
pieces	of	metal	twisted	together	(called	stranded).	Figure	I-14	shows	solid	core
and	stranded	wire.	Solid	core	can	be	useful	for	breadboards	but	it’s	very	stiff.
Stranded	is	easier	to	bend,	but	you	need	to	solder	the	end	of	it	in	order	to	get	it	to
fit	in	a	breadboard.	You	can	decide	for	each	project	which	sort	you	want	to	work
with—there	isn’t	a	right	or	wrong	type	to	use.

FIGURE	I-14	Solid	core	wire	(left)	and	stranded	wire	(right)

Wire	usually	comes	with	some	kind	of	coating	that	doesn’t	conduct	electricity.	It
may	be	coloured	plastic	like	the	wire	on	the	right	in	Figure	I-15,	or	it	may	be
enamelled	like	the	wire	on	the	left.	You	can	decide	which	wire	works	best	in
your	projects.	The	enamelled	wire	works	well	in	the	augmented	wind	chime	in
Adventure	5	because	it’s	very	thin	and	lets	the	chimes	swing	easily.	However,
you	could	build	the	wind	chime	using	a	different	thin	wire.

FIGURE	I-15	Enamelled	(left)	and	plastic	coated	(right)	wire

Solder	is	like	a	conductive	glue	for	electronics.	It	sometimes	comes	on	spools	in
different	thicknesses	like	in	Figure	I-16.	The	projects	in	this	book	don’t	require
very	sophisticated	soldering,	so	you	don’t	have	to	worry	about	which	thickness
to	buy.	Just	about	any	thickness	will	work	okay.	The	only	important	thing	to
watch	out	for	is	to	make	sure	you	buy	solder	for	electronics—don’t	buy	solder
that’s	used	for	plumbing!

FIGURE	I-16	Solder	on	spools

After	you	build	your	projects,	you	might	want	to	run	them	without	having	to
connect	them	to	your	computer	for	power.	If	so,	you	can	either	power	your
project	from	a	power	supply	or	from	a	battery.	If	you	use	a	power	supply,	it’s
easiest	to	buy	a	USB	wall	adapter—a	power	supply	that	lets	you	connect	a	USB
cable	to	a	wall	socket,	with	the	other	end	of	the	USB	cable	plugged	into	your
Arduino	board.	If	you’d	like	to	use	a	battery,	the	best	option	is	to	get	a	9V
battery	connector	with	a	DC	barrel	on	the	end.	There	is	a	black	plug	socket	on
your	Arduino	board	where	you	can	plug	in	the	connector.	Both	options	are
shown	in	Figure	I-17.	For	the	Lilypad	Arduino	USB,	you	can	use	a	LiPo	battery,
but	you	read	more	about	that	in	Adventure	8.

FIGURE	I-17	A	9V	battery-to-DC-barrel	connector	(left)	and	a	UK	plug	for	a
USB	cable	(right)

When	you	work	with	soft	circuits	in	Adventure	8,	you	need	alligator	clips	like
the	ones	in	Figure	I-18,	which	you	use	instead	of	jumper	wires.

FIGURE	I-18	Alligator	clips

In	Adventure	8,	you	also	use	conductive	thread,	which	is	thread	spun	with
conductive	fibres.	There	are	different	kinds	available	from	different
manufacturers,	but	all	the	options	are	a	silver	colour	as	shown	in	Figure	I-19.

FIGURE	I-19	Conductive	thread

Tools	You	Will	Need
Just	as	you	need	hammers	and	saws	to	build	something	with	wood,	you	need
special	tools	to	work	with	electronics.

When	you	test	your	circuits	you	use	a	breadboard,	but	you	eventually	need	to	go
beyond	the	breadboard.	For	example,	you	might	need	to	add	longer	wires	to	a
component	so	it	fits	inside	your	housing,	or	you	might	want	to	connect
components	together	in	a	more	permanent	way	that	won’t	fall	apart.

The	first	thing	you	need	is	a	soldering	iron.	Solder	is	like	glue	for	electronics,
but	it	only	works	at	high	temperatures	(think	of	it	as	a	hot	glue	for	electronics).
A	soldering	iron	is	a	tool	that	gets	very	hot	(much	hotter	than	an	oven)	so	that	it
can	melt	solder.	Only	use	a	soldering	iron	when	an	adult	is	nearby	to	help	you.

A	soldering	iron	may	be	a	single	hand-held	tool	that	plugs	into	the	wall,	like	the
one	in	Figure	I-20.	Or	it	may	plug	into	a	box	with	a	temperature	dial	that	plugs
into	the	wall.	Either	kind	is	okay.	The	important	thing	is	to	buy	one	that	is	meant

for	small	electronics	and	not	plumbing	or	any	other	activity.

FIGURE	I-20	A	soldering	iron

Wire	often	comes	with	a	plastic	coating	that	is	an	insulator	that	doesn’t	conduct
electricity.	You	sometimes	need	to	remove	this	plastic	coating	from	the	ends	of
the	wire	so	you	can	fit	it	into	a	breadboard	or	solder	a	component	to	it.	You
could	always	carefully	use	a	knife	or	cutters	to	try	and	remove	the	plastic,	but
that	can	be	a	very	frustrating	method.	It	is	well	worth	buying	the	right	tool	for
the	job.	Enter	the	wire	stripper!

Wire	strippers	come	in	lots	of	shapes	and	sizes,	as	you	can	see	in	Figure	I-21.
Choose	whichever	one	you	like	best.

FIGURE	I-21	Different	kinds	of	wire	stripper

Wire	cutters	do	what	you	expect—they	cut	wires.	Be	sure	to	get	smaller	ones
that	easily	fit	in	your	hand	as	you	will	be	working	with	small	components	and
thin	wires.	Figure	I-22	shows	the	kind	of	wire	cutters	you	could	get.

FIGURE	I-22	Wire	cutters

Pliers	help	you	shape	and	bend	wires.	They	come	in	different	sizes	and	shapes,
but	a	smaller	general	purpose	pair	of	pliers	is	all	you	need	for	the	projects	in	this
book.	Either	of	the	pairs	in	Figure	I-23	would	work	well.

FIGURE	I-23	Pairs	of	pliers

The	next	tool	may	seem	a	bit	daunting,	but	it	can	be	your	best	friend	when
working	with	electronics.	It’s	the	multimeter!	It	measures	multiple	things	(that’s
how	it	got	its	name),	with	resistance	and	voltage	being	the	most	useful	to	the
beginner.	They	range	from	very	cheap	to	extremely	expensive.	When	you	are
choosing	one	for	yourself,	you	don’t	need	to	spend	a	lot	of	money,	especially	if	it
is	your	first	multimeter.	You	probably	want	one	that	auto-ranges,	though	that’s
not	essential,	but	you	definitely	need	one	with	a	continuity	test.	(When	you	look
at	multimeters	in	a	store,	auto-ranging	and	continuity	testing	will	be	listed	in
their	features.)	Auto-ranging	means	that	you	don’t	need	to	know	the	approximate
value	of	whatever	you	are	testing	before	you	test	it.	A	continuity	test	is	when	the
multimeter	beeps	when	an	electrical	connection	is	made	between	the	probes.
Figure	I-24	shows	a	less	expensive	multimeter,	which	isn’t	auto-ranging	but	does
have	a	continuity	test.

FIGURE	I-24	A	multimeter

The	final	tools	are	not	specifically	used	with	electronics	but	are	be	essential	for
constructing	the	housing	for	your	projects:	scissors	and	a	utility	knife	(Figure	I-
25).	Always	take	care	when	using	either!

FIGURE	I-25	A	pair	of	scissors	and	a	utility	knife

Software	You	Will	Need
When	we	talk	about	Arduino,	it	is	easy	to	think	about	the	board	and	nothing	else.
After	all,	that’s	the	part	you	physically	place	into	your	project.	However,	the
Arduino	needs	code	in	order	to	do	anything.	You	write	that	code	on	another
computer	first	and	then	upload	the	code	to	the	Arduino	board.

The	company	that	makes	the	Arduino	board	also	makes	the	software	that	helps
you	write	and	upload	the	code.	It’s	free	to	download	from
http://arduino.cc/en/Main/Software.

Adventure	1	takes	you	through	the	steps	to	setting	up	the	software	on	your
computer.

The	circuit	schematics	and	diagrams	of	circuits	on	breadboards	in	this	book	are
made	with	a	program	called	Fritzing,	which	is	also	free	online	at
http://fritzing.org/download.	You	can	even	use	Fritzing	to	start	designing

http://arduino.cc/en/Main/Software
http://fritzing.org/download/

your	own	projects!

Other	Useful	Materials
Writing	code	and	building	a	circuit	is	only	one	half	of	completing	a	project.	Your
project	doesn’t	come	alive	until	it	is	surrounded	by	some	kind	of	housing.
Whether	it’s	a	game	or	an	interactive	light,	when	it	is	just	a	circuit	on	a
breadboard	it	hasn’t	yet	reached	its	full	potential.

So,	to	make	the	projects	in	this	book,	you	use	many	low-tech	techniques
alongside	your	newly	acquired	high-tech	skills.	Scissors,	paper	and	glue	form
the	basis	of	many	of	your	projects.	It’s	good	to	have	the	following	items	to	hand,
but	it’s	never	a	bad	decision	to	add	decorative	items	like	glitter	that	allow	you	to
let	your	imagination	run	riot!	In	particular,	you	need	the	following	things:

Small	cardboard	boxes	or	shoeboxes
Card,	cardboard	and	paper
Paint	for	decorating
String	or	yarn
White	craft	glue,	glue-stick	or	a	hot	glue	gun
Paintbrush
A	balloon	(for	Adventure	6)
A	marble	(for	Adventure	9)

What	I	Assume	You	Already	Know
Because	you’ve	started	reading	this	book,	I’m	going	to	assume	you’re	already
interested	in	technology!	You	don’t	need	to	have	done	any	computer
programming	previously	or	built	any	circuits	(that’s	what	this	book	is
explaining!),	but	I	do	assume	that	you	have	used	a	computer	before.

You	need	a	computer	to	work	with	the	Arduino	but	it	doesn’t	really	matter	what
operating	system	your	computer	uses—Mac	OS	X,	Windows	or	many	different
Linux	distributions	(see	http://playground.arduino.cc/Learning/Linux	for
guidance	on	which	Linux	distributions	you	can	use).	I	assume	that	you	are
comfortable	going	online	and	downloading	files	and	that	you	know	how	to	find

http://playground.arduino.cc/Learning/Linux

and	open	applications	on	your	computer.

You	may	need	an	administrator	password	to	install	some	of	the	software,	so	if
you	don’t	know	the	password	for	your	computer	it	will	help	if	someone	who
does	know	the	password	is	nearby	when	you	install	it.

How	This	Book	Is	Organised
This	book	guides	you	through	programming	your	Arduino	board	and
constructing	circuits	in	nine	adventures.	Each	adventure	starts	by	introducing	the
new	skill	you	need	in	order	to	complete	the	standalone	project	at	the	end	of	the
adventure.	The	new	skill	might	be	learning	how	to	use	a	new	component	such	as
a	motor,	for	example,	or	how	to	do	something	clever	in	code.

The	most	important	adventure	for	you	to	start	with	is	Adventure	1.	It	helps	you
install	the	software	needed	to	upload	your	code	onto	your	Arduino	board.	After
all,	if	you	don’t	do	that,	the	rest	of	the	adventures	won’t	be	much	fun!

Adventures	2	to	9	build	on	previous	adventures,	so	I	recommend	that	you	follow
the	adventures	in	order.	Of	course,	if	you	prefer	you	can	throw	caution	to	the
wind	and	do	them	in	any	order	you	want.	You	can	always	look	up	more	guidance
on	a	particular	topic	from	an	earlier	adventure	if	you	come	across	something	you
don’t	know.

As	well	as	helping	you	set	up	your	computer	so	you	can	program	your	Arduino
board,	Adventure	1	also	guides	you	through	your	first	Arduino	program,	called	a
sketch.	You	even	build	your	first	circuit	on	a	breadboard	and	control	an	LED.

In	Adventure	2	you	learn	how	to	control	more	than	one	LED,	how	to	print
messages	from	your	Arduino	board	to	your	computer	and	how	to	use	your	first
sensor—a	potentiometer.	You	get	to	put	your	new	skills	into	practice	by	building
a	status	message	sign	that	lights	up	to	show	that	you	don’t	want	to	be	disturbed.

In	Adventure	3	you	are	introduced	to	your	second	sensor:	a	push	button.	You
combine	it	with	potentiometers	to	control	a	motor.	You	also	learn	how	to	use	for
loops	in	computer	code	to	repeat	the	same	thing	over	and	over	again.	Putting	it
all	together,	you	build	a	combination	safe	that	opens	only	when	the	correct
combination	is	dialed.	The	“safe”	is	only	a	cardboard	box,	so	it’s	probably	not	fit
for	storing	the	family	jewels,	but	it’s	good	enough	to	protect	your	favourite
sweets.

Adventure	4	shows	you	how	to	break	up	your	code	into	bite-sized	pieces	using
functions.	You	then	use	functions	to	control	multiple	LEDs	using	special	chips
called	shift	registers.	In	the	final	project	of	the	adventure,	you	make	letters	with
embedded	LEDs	in	the	style	of	old	carnival	signs.

Adventure	5	adds	sound	to	the	growing	list	of	actions	you	can	control	with	your
Arduino.	You	find	out	how	to	make	lists	in	code	to	play	short	tunes	over	a	new
component—a	piezo.	You	then	make	an	augmented	wind	chime	that	puts	an
electronic	twist	on	a	traditional	instrument.

Adventure	6	introduces	more	subtle	controls	by	showing	how	you	can	fade	an
LED	and	not	just	turn	it	on	and	off.	You	also	expand	the	abilities	of	your
Arduino	by	installing	new	libraries	that	don’t	come	with	the	Arduino	software.
You	then	combine	your	new	skills	with	a	three-colour	LED	to	create	a	crystal
ball	that	magically	changes	colour!

In	Adventure	7	you	are	introduced	to	a	new	Arduino	board,	the	Arduino
Leonardo.	You	master	one	of	the	exciting	features	of	the	Leonardo:	making	a
computer	think	the	Arduino	is	a	keyboard.	You	add	a	new	sensor	that	detects
light	and	make	a	computer	game	controller	that	lets	you	play	a	game	with	a
wave	of	your	hand.

In	Adventure	8	you	get	to	work	with	another	Arduino	board	and	build	circuits
using	a	needle	and	thread	instead	of	wire	and	a	soldering	iron.	This	adventure
helps	you	become	a	master	of	arrays	and	create	a	hoodie	that	displays	a	secret
message.

And	finally,	Adventure	9	is	the	big	adventure!	You	have	to	chance	to	put
together	all	the	skills	you’ve	gained	over	the	earlier	adventures	to	create	a
marble	maze	game	that	automatically	keeps	track	of	your	score,	counts	down	the
remaining	time	and	plays	sound	effects.	You	use	a	familiar	component	in	a	new
way,	using	a	piezo	to	detect	vibrations	as	well	as	play	sound	effects.

Appendices	A	and	B	prepare	you	for	further	adventures	beyond	this	book.
Appendix	A	points	you	toward	other	Arduino	resources	in	print	and	online,	and
Appendix	B	shows	you	where	to	buy	tools	and	components	for	your	projects.

Conventions
Throughout	this	book	there	are	boxes	to	help	you	out:

	These	boxes	explain	concepts	or	terms	you	might	not	be	familiar	with.

	These	boxes	give	you	hints	to	make	your	coding	and	building	easier.

	These	boxes	contain	important	warnings	to	keep	you	and	your	computer	safe	when
completing	a	step	or	project.

	These	boxes	feature	quick	quizzes	for	you	to	test	your	understanding	or	make	you	think
more	about	a	topic.

	In	these	boxes	I	explain	things	or	give	you	extra	information	I	think	you’ll	find	useful.

	These	boxes	point	you	to	videos	on	the	companion	website	that	take	you	through	the	steps.

You	will	also	find	two	types	of	sidebar	in	the	book.	The	Challenge	sidebars	ask
you	how	might	expand	on	the	new	skills	you	are	learning	or	add	new	features	to
your	projects.	The	Digging	into	the	Code	sidebars	go	deeper	into	the
programming	concepts	used	in	Arduino	programming.

When	you	are	following	the	instructions	in	the	book,	you	should	type	in	the	code
exactly	as	you	see	it—every	;	is	very	important!	However,	the	spaces	between
words	don’t	matter.	Spaces	are	used	to	make	the	code	easier	to	read,	but	it
doesn’t	matter	to	the	Arduino.

For	example,	both	of	the	following	lines	mean	the	same	thing:

if(i<4)

if	(i	<	4)

Your	sketch	could	be	written	as	a	single	very	long	line	of	text	and	it	would	still
run	on	the	Arduino!	But	it	would	be	very	difficult	for	another	programmer	to
understand	what	is	happening.	Adding	spaces	and	notes	to	explain	what	is
happening	in	the	code	is	the	best	way	to	program.

Sometimes	a	line	of	code	is	too	long	to	fit	on	one	line	of	this	book.	If	you	see	the
symbol	 	at	the	end	of	a	line	of	code,	that	means	that	line	and	the	next	line
should	be	typed	as	a	single	line	of	code	in	your	Arduino	software.

For	example,	the	following	line	should	be	typed	on	one	line,	not	two:

Serial.println("Hello,	from	the	setup()	function	in	

your	Arduino	Uno!");

To	help	you	keep	track	of	the	new	coding	concepts	you	learn,	there	is	a	Quick
Reference	Table	at	the	end	of	each	adventure,	which	lists	any	new	functions,
data	types	or	other	programming	commands	that	have	been	introduced	in	that
adventure.

When	you	complete	an	adventure,	you	unlock	an	achievement	and	collect	a	new
badge.	You	can	collect	badges	to	represent	these	achievements	from	the
Adventures	in	Arduino	website	(www.wiley.com/go/adventuresinarduino).

The	Companion	Website
Throughout	the	book,	you’ll	find	references	to	the	Adventures	in	Arduino
companion	website,	www.wiley.com/go/adventuresinarduino.	Here,	you’ll
find	tutorial	videos	to	help	you	through	the	physical	making	of	your	projects
along	with	the	code	used.	It	can	be	very	frustrating	to	track	down	a	mistake	after
you’ve	typed	in	code	from	a	book	by	hand.	The	important	thing	is	understanding
what	the	code	is	doing	and	not	just	how	to	type	it	all	out	yourself	(or	at	least	not
when	you	are	first	starting	out)!

Reaching	Out

http://wiley.com/go/adventuresinarduino
http://www.wiley.com/go/adventuresinarduino

You’ll	find	a	lot	of	tips	in	Appendix	A	about	where	to	go	for	help	but	the	first
place	you	should	always	look	is	the	Arduino	website	(www.arduino.cc).	It	has
lots	of	useful	information	in	the	Learning	section,	and	you	can	always	ask
questions	in	the	Forum.

You	can	also	contact	me	by	sending	me	a	message	through	the	website
www.adventuresinarduinobook.com.

Time	to	start	your	adventures!

http://www.arduino.cc/
http://www.adventuresinarduinobook.com/

YOU	WILL	SOON	be	creating	exciting	projects	that	bridge	the	physical	and
digital	worlds!	You’ll	learn	how	to	write	code	that	triggers	sound,	controls
motors	and	flashes	lights.	The	Arduino	is	the	perfect	tool	for	combining	circuits
and	code!

You	will	use	the	same	three	steps	for	each	project	you	build	with	your	Arduino:

1.	 Write	the	code	that	tells	the	Arduino	Uno	what	to	do	on	your	computer
using	the	Arduino	software.

2.	 Connect	your	Arduino	Uno	to	your	computer,	and	upload	your	code	onto
the	board.

3.	 Build	and	connect	your	circuit	to	your	Arduino	Uno.

But	first	things	first.	Before	you	can	do	anything	else,	you	need	to	download	and
install	the	Arduino	software	and	set	up	your	computer	to	program	your	Arduino
Uno.	That’s	what	you	will	be	doing	in	your	first	adventure.	Then,	when	you’ve
got	everything	working	as	it	should,	you’re	going	to	start	your	first	Arduino
project—controlling	when	a	light	turns	on	and	off.

What	You	Need
To	get	started,	you	need	the	following	things.	Figure	1-1	shows	the	electronic

components	you	will	need.

A	computer
An	Arduino	Uno
A	USB	cable
An	Internet	connection	so	you	can	download	the	Arduino	software

FIGURE	1-1	An	Arduino	Uno	and	USB	cable

Downloading	and	Installing	the	Arduino
Software	on	Your	Computer
In	order	to	run	Arduino	programs,	in	addition	to	an	Arduino	Uno	you	need	a
computer	and	some	special	software	to	make	the	Arduino	work.	You	will	be
writing	the	code	that	runs	on	the	Arduino	Uno	on	another	computer	first,	and
will	then	upload	it	to	the	board.	Sounds	complicated,	doesn’t	it?	Don’t	worry;
you’ll	be	guided	through	the	process	step	by	step.	And	it’s	not	as	difficult	as	it
sounds.

You’re	going	to	use	a	piece	of	software	to	write	the	code	and	then	upload	it.	This
piece	of	software	is	called	the	Arduino	environment,	or	integrated	development
environment	(IDE).	It	is	available	for	free	from	the	Arduino	website	at

http://arduino.cc/en/Main/Software	(see	Figure	1-2).

FIGURE	1-2	You	can	download	the	Arduino	IDE	for	your	computer	from	the
Arduino	website.

	An	integrated	development	environment	(IDE)	is	a	software	application	that	is	used	to
write	computer	code	in	a	particular	language;	it’s	also	referred	to	as	a	programming
environment.	The	application	can	create	and	edit	code,	as	well	as	run	(or	execute)	the	code.
Many	IDEs	also	provide	features	to	help	programmers	debug	their	programs—in	other
words,	check	their	programs	for	errors.

You	are	now	going	to	download	and	install	the	latest	version	of	the	Arduino
software	designed	for	your	particular	computer’s	operating	system,	using	the
steps	outlined	here.	When	this	book	was	written,	1.0.6	was	the	current	version	of
the	software.	You	can	see	what	the	current	version	is	by	visiting
http://arduino.cc/en/Main/Software.	You	can	find	the	current	version
towards	the	top	of	the	page.	After	you	have	installed	the	software,	you	can	see
what	version	you	are	using	by	reading	the	title	bar	of	the	window	that	appears

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

when	you	launch	the	Arduino	IDE.

The	software	can	run	on	Windows,	Mac	or	Linux	computers,	but	depending	on
your	computer’s	operating	system	(OS),	you	may	need	to	install	both	the	IDE
and	another	piece	of	software,	called	a	driver.	This	adventure	describes	what
you	need	to	do,	but	you	can	also	visit	http://arduino.cc/en/Guide/HomePage,
which	has	lots	of	guidance	on	how	to	get	the	software	installed.

	Have	your	Arduino	Uno	and	USB	cable	to	hand	as	you	install	the	software,	because	you
might	need	them	for	some	of	the	installation	steps,	depending	on	your	computer’s	operating
system.

	A	driver	is	a	piece	of	software	that	lets	your	computer	communicate	with	an	external
device,	such	as	a	printer	or	a	keyboard.

Installing	Arduino	Software	on	a	Mac
It	is	quite	simple	to	install	the	software	on	a	Mac.	You	don’t	need	to	install	a
driver,	only	the	Arduino	IDE.	Just	follow	these	steps:

1.	 In	your	Internet	browser,	open	the	Arduino	download	page	at
http://arduino.cc/en/Main/Software.

2.	 Select	the	Mac	OS	X	zip	file	from	the	list	of	current	Arduino	downloads.
3.	 Find	the	file	called	arduino-1.0.6-macosx.zip	and	unzip	it	by	double-

clicking	it.	Now	move	the	Arduino.app	file	into	your	Applications	folder.
4.	 After	you’ve	installed	the	software,	plug	one	end	of	your	USB	cable	into

your	Arduino	board	(shown	in	Figure	1-3)	and	the	other	end	into	your
computer.	A	message	about	a	new	network	device	may	appear	on	screen.	If
that	happens,	you	can	just	cancel	or	close	the	message	window.

http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Main/Software

FIGURE	1-3	Plug	the	USB	cable	into	the	Arduino	Uno	and	then	connect	it	to
your	computer.

	If	you	have	any	problems,	visit	http://arduino.cc/en/Guide/MacOSX	for	more	help.

	To	see	a	video	of	how	to	install	the	Arduino	IDE	on	a	computer	running	Mac	OS	X,	visit
the	companion	site	at	www.wiley.com/go/adventuresinarduino.

Installing	Arduino	Software	on	a	Windows	PC
You	need	to	follow	a	number	of	steps	to	install	the	Arduino	software	on
Windows	7,	Vista	and	XP	(see	the	Tips	and	Tricks	box	for	Windows	8).	You	will
be	installing	two	things:	the	software	and	the	driver.

http://arduino.cc/en/Guide/MacOSX
http://www.wiley.com/go/adventuresinarduino

1.	 In	your	Internet	browser,	open	the	Arduino	download	page	at
http://arduino.cc/en/Main/Software.

2.	 Start	by	downloading	the	file	called	Windows	ZIP	file.
3.	 Find	the	downloaded	zip	file	and	unzip	it	to	the	Program	Files	folder.	It

should	contain	multiple	folders	and	files,	including	a	folder	called	drivers
and	a	file	called	arduino.exe.	If	you	would	like,	you	can	right-click
arduino.exe	and	create	a	shortcut	to	place	on	your	Desktop.

4.	 Plug	one	end	of	the	USB	cable	into	your	Arduino	board	and	the	other	end
into	your	computer	as	shown	in	Figure	1-3.	You	should	see	lights	illuminate
on	your	Arduino	Uno.	This	just	means	it	has	power.

5.	 Your	computer	will	now	start	to	look	for	a	driver	to	use	with	the	Arduino
board.	Your	computer	may	find	the	driver	on	its	own,	but,	depending	on	the
version	of	Windows	your	computer	is	running,	you	may	need	to	follow
different	steps	to	finish	installing	the	driver.	You	may	need	to	know	an
administrator	password	for	the	computer	and	might	need	some	help	with
someone	with	more	computer	experience.	You	can	always	visit
http://arduino.cc/en/Guide/Windows	for	more	detailed	instructions.

6.	 Click	the	Start	menu	and	open	the	Control	Panel.
7.	 While	in	the	Control	Panel,	navigate	to	System	and	Security.	Click	System,

and	when	the	System	window	appears,	open	the	Device	Manager.
8.	 Inside	the	Device	Manager	look	under	Ports	(COM	&	LPT).	You	should	see

a	port	named	Arduino	UNO	(COMxx).	If	you	don’t	see	a	COM	&	LPT
section,	look	under	Other	Devices	for	Unknown	Device.

9.	 Right-click	Arduino	UNO	(COMxx)	port	and	choose	the	Update	Driver
Software	option.

10.	 If	you	are	running	Windows	XP	or	the	Hardware	Update	Wizard	appears,
go	to	http://arduino.cc/en/Guide/UnoDriversWindowsXP	and	follow	the
screenshots	to	install	the	drivers	located	in	the	folder	you	downloaded	and
unzipped.

11.	 If	the	Hardware	Update	Wizard	doesn’t	appear	and	instead	you	see	a
window	with	the	options	Search	Automatically	for	Updated	Driver
Software	and	Browse	My	Computer	for	Driver	Software	appears,	click
Browse	My	Computer	for	Driver	Software.

12.	 Navigate	to	the	folder	you	downloaded	and	unzipped.	Go	to	the	folder

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/UnoDriversWindowsXP

inside	it	called	drivers	and	select	arduino.inf.

Wow,	that	was	complicated.	Luckily,	you	don’t	have	to	do	that	again.	You	only
need	to	do	it	once.	The	steps	might	change	when	new	versions	of	the	Arduino
IDE	are	released	or	if	there	are	updates	to	your	operating	system.	You	can
always	go	to	the	Arduino	forum	board	for	installation	problems	at
http://forum.arduino.cc/index.php?board=2.0.	You	can	look	over	the
questions	asked	by	others	and	even	ask	your	own	if	you	can’t	find	a	question
similar	to	the	problems	you	are	having.

	If	you	run	into	any	problems,	first	visit	http://arduino.cc/en/Guide/Windows	for	more
help.

You	can	also	visit	https://learn.adafruit.com/lesson-0-getting-started/installing-
arduino-windows,	www.dummies.com/how-to/content/how-to-install-arduino-for-
windows.html,	or	https://learn.sparkfun.com/tutorials/installing-arduino-ide/windows
for	even	more	tips	including	extra	guidance	for	installing	on	Windows	8.

If	your	computer	runs	Windows	XP,	you	can	follow	along	with	the	screenshots	at
http://arduino.cc/en/Guide/UnoDriversWindowsXP	to	install	the	drivers.

Installing	Arduino	Software	on	a	Linux	Machine
If	your	computer	runs	Linux	(if	you	are	using	a	Raspberry	Pi,	for	example),	you
should	first	visit	the	online	documentation	for	Linux	and	Arduino	at
http://playground.arduino.cc/Learning/Linux.	There	are	many	different
types	of	Linux,	so	I	haven’t	listed	them	all	here,	and	if	your	computer	runs	a
Linux	distribution,	you	likely	already	know	how	to	install	new	software.	It	is
probably	easiest	to	install	the	Arduino	environment	by	using	a	package	manager.
Here’s	how	to	do	the	installation	on	a	Debian	variant	of	Linux,	such	as	Raspbian
on	Raspberry	Pi.	On	a	command	line,	enter	the	following	command:	sudo	apt-
get	install	arduino

This	command	downloads	and	installs	the	software.	Alternatively,	you	can
download	the	32-and	64-bit	applications	directly	from	the	Arduino	download
page	at	http://arduino.cc/en/Main/Software.	You	don’t	even	need	to	worry
about	compiling	source	code,	but	don’t	forget	to	read	the	guidelines	for	your
distribution	at	http://playground.arduino.cc/Learning/Linux.

http://forum.arduino.cc/index.php?board=2.0
http://arduino.cc/en/Guide/Windows
https://learn.adafruit.com/lesson-0-getting-started/installing-arduino-windows
http://www.dummies.com/how-to/content/how-to-install-arduino-for-windows.html
https://learn.sparkfun.com/tutorials/installing-arduino-ide/windows
http://arduino.cc/en/Guide/UnoDriversWindowsXP
http://playground.arduino.cc/Learning/Linux
http://arduino.cc/en/Main/Software
http://playground.arduino.cc/Learning/Linux

	If	you	are	using	a	Raspberry	Pi	or	other	Linux-based	system,	I	am	assuming	that	you	know
how	to	use	the	command-line	interface	to	install	software	for	whatever	version	of	Linux
you	are	running.	If	you	need	more	information	or	a	refresher	on	using	the	Raspberry	Pi,
check	out	Adventures	in	Raspberry	Pi	by	Carrie	Anne	Philbin	(John	Wiley	&	Sons,	Inc.,
2014).

Exploring	the	Arduino	IDE
Well	done!	Now	that	you	have	the	software	installed,	you’re	ready	to	start	using
the	Arduino	IDE!	It’s	time	to	launch	the	software.	If	your	computer	is	a	Mac,	go
to	Applications	and	double-click	Arduino.	If	your	computer	is	running	Windows,
either	double-click	the	shortcut	on	the	Desktop	(if	you	made	one	as	described
earlier	in	the	adventure),	or	go	to	the	folder	you	downloaded	earlier	and	double-
click	the	Arduino	application.	If	your	computer	is	running	Linux,	start	the
Arduino	IDE	either	from	the	command	line	or	by	double-clicking	the	program
icon.	The	Arduino	program	icon	(see	Figure	1-4)	looks	the	same	on	Mac,
Windows	and	Linux.

FIGURE	1-4	The	Arduino	program	icon

When	the	Arduino	IDE	has	finished	starting,	a	window	similar	to	the	one	shown
in	Figure	1-5	will	appear.

FIGURE	1-5	The	important	parts	of	the	Arduino	IDE

First,	you’re	going	to	find	out	about	some	of	the	basic	functions	of	the	Arduino
IDE.	There	are	six	buttons	at	the	top	of	the	Arduino	window	(see	Figure	1-5),
and	most	of	them	are	easy	to	figure	out.	The	middle	three	buttons	are	New,	Open
and	Save.	Clicking	the	New	button	(surprise!)	starts	a	new	Arduino	file,	the
Open	button	opens	an	existing	Arduino	file,	and	the	Save	button	saves	the
current	the	file.	You’ll	notice	there’s	a	button	on	its	own	on	the	far	right—you
will	be	finding	out	about	this	in	Adventure	2.	That	just	leaves	the	two	buttons	on
the	left.

The	button	that	looks	like	a	tick	is	the	Verify	button.	When	you	click	this	button,
the	Arduino	compiles	the	code;	in	other	words,	it	takes	the	code	you	have	given
it	and	translates	it	into	something	the	Arduino	board	can	understand.	There	is	a
second	thing	this	button	does.	If	there	are	parts	of	the	code	that	Arduino’s
compiler	doesn’t	understand—perhaps	a	semicolon	was	missed	out	or	a	typo	was
made	when	the	code	was	typed—it	prints	out	the	error	at	the	bottom	of	the
Arduino	IDE	window.	It	tries	to	be	helpful	with	what	it	prints,	but	sometimes	it
doesn’t	make	sense!	Later	this	adventure	goes	over	some	of	the	common	error
messages	and	what	they	might	mean.

	Compiling	code	is	the	process	of	taking	code	written	by	a	human	and	turning	it	into
instructions	that	can	be	understood	by	a	machine.

Don’t	worry	too	much	about	how	this	happens	yet.	All	you	need	to	know	for
now	is	that	the	Verify	button	is	used	to	turn	your	code	into	something	the
Arduino	can	understand,	and	determine	that	the	code	is	free	from	simple	errors.

After	you	have	done	that,	you	click	the	final	button,	which	is	the	Upload	button.
This	compiles	and	uploads	the	code	to	the	Arduino	Uno.	This	is	the	button	you
will	probably	use	most,	as	it	puts	your	code	onto	the	Arduino	Uno.	The	Verify
button	can	be	useful	if	you	are	writing	code	and	don’t	have	your	Arduino	Uno
nearby	because	it	means	you	can	at	least	check	if	you	have	any	simple	errors	in
your	code,	although	you	won’t	know	if	your	code	completely	works	until	you
can	upload	it	onto	a	board.

Using	Blink	to	Test	That	Everything	Is	Set	Up
Correctly
You	can	write	computer	code	for	a	device	like	a	laptop	or	Raspberry	Pi	and	then
run	it	on	the	same	computer	you’ve	written	it	on.	With	Arduino,	it’s	a	bit
different	because	an	Arduino	board	can’t	program	itself,	so	you	have	to	write	the
Arduino	code	on	a	computer	that	can	run	the	Arduino	IDE.	The	IDE	then	takes
the	code	that	humans	can	write	and	read	and	translates	(or	compiles)	it,	turning
it	into	code	that	the	Arduino	board	understands.	The	IDE	then	copies	and
uploads	the	compiled	code	onto	the	Arduino	board.

Software	developers	use	basic	programs	to	test	that	their	computer	is	working	as
they	would	expect.	These	are	called	Hello	World	programs.

A	Hello	World	program	is	very	simple.	If	you	were	learning	a	new	programming
language,	you	would	write	a	program	that	would	just	print	the	phrase	“Hello
world”	to	the	screen,	which	would	show	you	that	everything	was	set	up	properly.
But	wait—the	Arduino	doesn’t	have	a	screen!	After	you	load	the	code	on	the
Arduino	from	your	computer,	it	doesn’t	talk	to	the	computer	anymore;	all	the
USB	cable	does	is	provide	the	Arduino	with	power	(though	you	find	out	in	the
next	adventure	how	to	send	messages	to	the	computer	through	the	USB	cable).

What	the	Arduino	board	can	do	is	blink	a	light.	It	even	has	one	built	into	the
board	for	exactly	this	purpose.	There’s	a	tiny	yellow	or	orange	light-emitting
diode	(LED)	near	the	number	13	on	the	board	(see	Figure	1-6).	This	LED	is
useful	because	you	can	program	it	to	turn	on	and	off	in	order	to	quickly	check
that	the	Arduino	board	is	working.	You	don’t	need	anything	besides	your
computer,	a	USB	cable	and	your	Arduino	board.

FIGURE	1-6	The	built-in	LED	on	the	Arduino	board	is	near	the	number	13.

The	Arduino	IDE	comes	with	some	example	code	to	help	get	you	started.	One	of
these	examples	is	the	Blink	program,	or	sketch,	which	is	used	as	the	Hello
World	program	for	Arduino.	You’re	now	going	to	use	that	to	check	everything	is
working	as	it	should.

	An	LED,	or	light-emitting	diode,	is	an	electrical	component	that	lights	up	when	electrical
current	flows	through	it.	A	diode	only	lets	electricity	flow	in	one	direction,	so	an	LED	lights
up	only	when	the	long	leg	is	connected	to	the	positive	side	of	a	power	source	and	the	short
leg	is	connected	to	the	negative	side.	If	they	are	switched,	the	LED	won’t	light	up.

	Arduino	programs	are	often	referred	to	as	sketches,	like	quick	drawings	artists	make.

Uploading	Blink
To	test	that	your	Arduino	Uno	can	receive	messages	and	new	programs	from	the
computer	without	any	problems,	you	need	to	compile	and	upload	the	Blink
sketch.	Select	File ⇒ Examples ⇒ 01.Basics ⇒ Blink	(see	Figure	1-7)	to	open	a
new	window	with	the	Blink	sketch.

FIGURE	1-7	Opening	the	Blink	sketch,	which	is	located	in	the	examples	that
are	included	with	the	Arduino	IDE

Before	you	upload	your	code,	you	first	need	to	check	two	settings:	the	board	and
the	port.	You	need	to	make	sure	these	settings	are	correct	each	time	you	launch
the	IDE.	After	you	have	set	them,	you	don’t	need	to	change	them	again	until	you
quit	and	start	the	IDE	again	at	a	later	time.	To	find	the	board,	select	Tools ⇒ 

Boards	(see	Figure	1-8).	You	should	see	a	list	of	all	the	different	Arduino	boards.
Make	sure	you	select	the	board	you	are	using.	(This	will	be	an	Uno,	but	if	you’re
not	sure,	it	is	written	on	the	board	itself.)

FIGURE	1-8	Selecting	the	board	you	are	using
You’ll	find	the	port	under	Tools ⇒ Serial	Port	(see	Figure	1-9).	Select	the	port
you	are	using,	the	same	way	you	found	the	board.	Make	sure	you	have	plugged
your	board	into	your	computer	with	the	USB	cable,	or	the	port	won’t	appear	on
the	list.

FIGURE	1-9	Selecting	the	port	your	Arduino	board	is	plugged	into

	It	may	not	be	obvious	which	port	you	should	select	if	there	is	more	than	one	listed.	You	can
try	looking	at	the	list	when	the	Arduino	board	is	not	plugged	in,	then	plugging	in	the	board
and	looking	again.	If	one	appeared	that	wasn’t	there	before,	that	is	probably	what	you
should	select.

If	you	are	using	a	Mac,	look	for	the	port	that	starts	with	devtty.usbmodem.	On	a
Windows	computer,	the	port	is	just	listed	as	a	COM	port.	In	Linux,	the	port	starts
with	devttyACM.	It	won’t	hurt	anything	if	you	don’t	select	the	right	port,	so	if
you’re	not	sure,	just	select	a	port	and	click	the	Upload	button.	If	you	get	an	error
message,	try	selecting	the	next	port	in	the	list,	and	continue	down	the	list	until
you	find	the	port	that	your	Arduino	board	is	on.

	Remember	that	you	need	to	plug	your	USB	cable	connected	to	your	Arduino	board	into
your	computer.	Your	port	won’t	show	up	in	your	list	of	port	options	if	the	board	isn’t
connected	to	the	computer!

After	you	have	selected	your	board	and	port,	you	are	ready	to	upload	your	code
—this	is	the	Blink	sketch	you	have	already	opened.	To	do	this,	simply	click	the
Upload	button.	If	you	have	forgotten	to	select	the	port,	a	message	may	pop	up
asking	you	to	select	one.

If	you	have	everything	set	up	correctly,	you	will	see	a	message	towards	the
bottom	of	the	Arduino	IDE	window	that	says	Compiling	Sketch	and	then
Uploading.	If	the	sketch	has	been	uploaded	without	any	problems,	you	will	see	a
Done	Uploading	message	as	shown	in	Figure	1-10.

FIGURE	1-10	Message	in	the	Arduino	IDE	after	successfully	uploading	your
code

Look	at	the	LED	next	to	the	number	13	on	your	board.	Is	it	flashing	on	for	one
second	then	turning	off	for	one	second?	If	so,	success!	Well	done.	If	not,	or	if
any	orange	text	has	appeared	at	the	bottom	of	your	Arduino	IDE,	the	next
section	will	help	you	troubleshoot	what	might	be	going	wrong.

You	will	be	soon	making	changes	to	your	Blink	sketch	and	even	writing	new
sketches	of	your	own.	It’s	important	to	remember	that	the	code	you	write	in	the
IDE	has	to	be	uploaded	to	the	Arduino	Uno.	Every	time	you	make	a	change	to
the	code,	upload	it	again	to	your	board!

Troubleshooting	Common	Problems
When	something	goes	wrong	when	you’re	trying	to	upload	code	to	an	Arduino
board,	a	message	from	something	called	avrdude	might	be	printed	at	the	bottom
of	the	Arduino	IDE	(such	as	the	one	shown	in	Figure	1-11).

FIGURE	1-11	A	common	error	when	the	computer	can’t	talk	with	the	Arduino

The	Arduino	board	is	built	around	a	microcontroller	(computer)	chip	made	by	a
company	called	Atmel.	This	chip	is	a	type	of	microcontroller	called	an	AVR	and
the	program	that	the	Arduino	IDE	uses	to	talk	to	the	Arduino	board	is	called
avrdude.	So	when	you	get	messages	from	avrdude,	it	means	something	has	gone
wrong	with	the	communication	between	the	board	and	the	computer.	Usually	it’s
that	the	computer	is	trying	to	use	avrdude	to	send	a	new	sketch	to	the	Arduino
Uno,	but	the	computer	can’t	find	it.	Problems	could	be	caused	by	selecting	the
wrong	port,	but	if	you	have	tried	all	the	ports	there	may	be	something	else	going
wrong.

The	easiest	thing	to	try	when	you	get	an	error	from	avrdude	is	to	unplug	the
Arduino	board	from	the	USB	cable	(this	removes	the	power	and	turns	it	off).
Then	plug	it	back	in	again.	If	you	still	have	problems,	try	unplugging	the
Arduino	board	and	then	quitting	the	Arduino	IDE	like	you	would	any	other
application.	Launch	the	IDE	again	and	connect	the	Arduino	Uno	once	more	to
see	if	you	can	upload	a	new	sketch.

If	you’ve	done	all	that	and	you	still	can’t	upload	sketches	to	the	Arduino	board,
try	going	through	the	installation	process	for	the	IDE	and	drivers	again.

	The	Arduino	website	(http://arduino.cc)	is	a	great	resource	with	lots	of	tutorials.	It	also
hosts	a	forum	where	you	can	post	questions.	You	will	most	likely	find	questions	posted	by
other	people	who	are	having	the	same	problem	as	you.

DIGGING	INTO	THE	CODE

http://arduino.cc/

	Hopefully	you	now	have	your	code	uploaded	and	running	on	your	Arduino	Uno.	But	what	is
the	code	actually	doing?	You	know	that	the	Arduino	Uno	is	turning	on	and	off	the	LED	next	to
13,	but	how	does	it	know	to	do	that?

A	great	way	to	start	learning	about	code	is	by	reading	it	before	you	write	it.	After	all,	you	didn’t	learn
how	to	write	in	school	before	you	learned	how	to	read!	You	can	use	the	Blink	as	an	introduction	to	code.
Don’t	worry	about	understanding	all	the	details	right	away—it’s	a	lot	to	learn.	You	will	be	shown	a	bunch
of	new	terms,	but	you	don’t	need	to	remember	what	they	all	mean	right	away.	You	will	get	to	spend	more
time	understanding	them	in	the	other	chapters.

If	you	look	again	at	the	Blink	sketch	on	the	screen,	you’ll	see	that	the	first	section	is	all	in	grey.	The
Arduino	IDE	helps	you	understand	what	is	happening	in	the	code	by	changing	the	colour	of	the	code
according	to	what	it	does.	The	text	that	turns	grey	is	called	a	comment.	Comments	are	notes	to	the
programmer	to	help	explain	what	is	happening	in	the	code.	The	long	comment	at	the	top	of	the	sketch
explains	what	the	sketch	does:

	Comments	are	notes	within	your	code	that	explain	what	a	line	or	section	of	code	is
intended	to	do.	Each	comment	line	begins	with	//	or,	if	you	want	to	write	a	comment	that
spans	multiple	lines,	is	between	/*	and	*/.	These	special	characters	tell	the	computer
running	the	program	to	ignore	that	line	or	lines.

		/*

				Blink

				Turns	on	an	LED	on	for	one	second,	then	off	for	one	second,

repeatedly.

				Most	Arduinos	have	an	on-board	LED	you	can	control.	On	the

Uno	and

				Leonardo,	it	is	attached	to	digital	pin	13.	If	you’re	unsure

what

				pin	the	on-board	LED	is	connected	to	on	your	Arduino	model,

check

				the	documentation	at	http://arduino.cc

				This	example	code	is	in	the	public	domain.

				modified	8	May	2014

				by	Scott	Fitzgerald

		*/

The	rest	of	the	lines	that	don’t	start	with	//	are	lines	of	code	that	the	computer	will	execute.	The	lines

http://arduino.cc

starting	with	//	are	ignored	by	the	computer	and	are	notes	to	explain	what	the	code	is	doing.

Every	Arduino	sketch	has	to	have	two	functions:	setup()	and	loop().	A	function	is	a	set	of	lines	of	code
that	have	a	name.	The	next	section	of	code	is	the	setup()	function,	which	runs	only	once	and	is	for	tasks
that	need	to	happen	only	when	the	Arduino	is	first	turned	on.	Whenever	your	Arduino	Uno	first	starts	up,
it	looks	for	the	section	of	the	sketch	that	is	the	setup()	function,	and	it	runs	that	section	first.	continued
continued

	A	function	is	a	set	of	lines	of	code	that	have	a	name.	A	function	can	be	used	over	and	over
again.	It	may	take	some	information	as	an	input	and	output	more	information	when	it	is
finished,	but	not	all	functions	need	to	do	that.

				//	the	setup	function	runs	once	when	you	press	reset	or	power

@@ta

				the	board

				void	setup()	{

						//	initialize	digital	pin	13	as	an	output.

						pinMode(13,	OUTPUT);

				}

As	you	can	see,	there	is	only	one	instruction	inside	the	setup()	function—the	function	pinMode().	Every
pin	on	the	Arduino	can	read	in	information	or	output	information,	but	it	can’t	do	both	at	the	same	time.
The	pinMode()	function	sets	up	whether	the	pin	inputs	or	outputs	by	taking	two	arguments.	The	first	is
the	number	of	the	pin	you’re	using	on	the	Arduino	board.	The	LED	on	the	Arduino	Uno	is	connected	to
Pin	13.	The	second	is	a	special	keyword,	OUTPUT,	which	tells	the	Arduino	that	you	want	to	output	on	Pin
13	and	not	read	in	on	that	pin.

	An	argument	is	a	piece	of	information	given	to	a	function,	which	the	function	then	uses	to
perform	its	task.	The	argument	goes	inside	the	brackets	that	follow	the	function	name.	In
the	following	code	snippet,	for	example,	the	function	delay(1000)	has	the	argument	1000,
which	is	the	number	of	milliseconds	you	want	the	Arduino	to	wait	before	executing	the
next	line.

The	remaining	code	in	the	Blink	sketch	is	the	loop()	function.	After	the	Arduino	Uno	executes	all	the
code	in	the	setup()	function,	it	looks	for	a	function	called	loop().	It	then	executes	all	the	code	in	that
function.	When	it	is	done,	it	executes	all	the	code	in	the	loop()	function	again.	And	then	again!	And	on
and	on!	The	loop()	function	repeats	forever	(or	at	least	until	the	Arduino	Uno	no	longer	has	power).

				//	the	loop	routine	runs	over	and	over	again	forever

				void	loop()	{

						digitalWrite(led,	HIGH);						//	turn	the	LED	on	

							(HIGH	is	the	voltage	level)

						delay(1000);																		//	wait	for	a	second

						digitalWrite(led,	LOW);							//	turn	the	LED	off	

							by	making	the	voltage	LOW

						delay(1000);																		//	wait	for	a	second

				}

The	first	line	of	code	in	the	loop()	function	turns	on	the	LED	using	the	function	digitalWrite().	It
takes	two	arguments:	the	pin	number	and	whether	you	are	turning	the	electricity	on	or	off.	The	argument
for	the	pin	number	is	just	like	what	you	saw	with	pinMode().	The	second	argument	is	a	keyword:	HIGH	or
LOW.	HIGH	turns	on	the	electricity,	and	LOW	turns	it	off.

The	last	piece	of	code	that	you	haven’t	looked	at	is	the	delay()	function.	The	Arduino	board	runs	this
code	very	fast—millions	of	times	a	second.	That’s	so	fast	that	you	wouldn’t	be	able	to	see	the	LED	turn
on	and	off.	So	you	need	to	make	the	Arduino	pause	so	that	you	can	see	the	light	blink.	The	delay	function
makes	the	Arduino	wait	for	the	number	of	milliseconds	typed	as	the	argument.	In	this	example	the	delay
is	1000	milliseconds,	which	is	equal	to	1	second.	Here’s	a	review	of	what	the	whole	sketch	does:

1.	 The	setup	function	uses	the	pinMode	function	to	set	the	pin	the	LED	is	on
to	be	an	output.

2.	 In	the	loop()	function,	the	electricity	on	the	LED’s	pin	is	turned	on.
3.	 The	Arduino	is	paused	for	1000	milliseconds.
4.	 The	electricity	on	the	LED’s	pin	is	turned	off.
5.	 The	Arduino	is	paused	for	1000	milliseconds.
6.	 The	loop()	function	starts	over	again.

One	last	detail	you	might	have	noticed	is	that	code	has	some	strange	punctuation.	Most	of	the	lines	end
with	a	semicolon	(;).	This	is	like	a	full	stop	at	the	end	of	a	sentence.	A	full	stop	indicates	when	a	sentence
is	finished—it	keeps	writing	neat	and	tidy.	A	semicolon	does	the	same	thing	for	a	computer.	It	helps	the
computer	separate	different	lines	of	code.

You	may	have	also	noticed	that	the	code	has	spaces	and	indentation.	These	are	like	comments—they
make	the	code	easier	to	understand	for	the	programmer.	The	computer	just	ignores	them.	The	indentation
makes	it	easier	to	see	what	lines	of	code	belong	to	a	function.	You	might	have	noticed	that	the	lines	of
code	that	belong	to	loop()	are	all	between	{	and	}	and	are	indented.	The	{	and	}	tell	the	computer	that
those	are	the	lines	that	belong	to	loop(),	whereas	the	indentation	makes	that	more	visually	obvious	to
reader.

The	spaces	in	between	parts	of	code	are	also	only	for	the	programmer;	the	computer	ignores	them.	For
example,	delay(1000)	and	delay(1000)	are	the	same	to	the	computer,	but	the	spaces	can	make	it	a
little	easier	for	some	people	to	read	the	code.	You	can	decide	how	you	prefer	to	write	your	code	in	the
following	chapters!

CHALLENGE

	Try	changing	how	long	the	LED	turns	on	and	off	by	changing	the	arguments	in	the	delay()
functions.	Remember	you	need	to	upload	your	code	after	each	time	you	change	it	in	order	for
the	sketch	with	the	new	changes	to	be	on	the	Arduino	Uno.

Building	an	LED	Circuit
Now	that	you	have	an	LED	blinking	on	the	Arduino	Uno,	you	are	ready	to	go
beyond	the	Uno’s	board	and	build	your	first	circuit!	You	will	use	first	become
familiar	with	the	tools	you	will	use	to	build	and	test	new	circuits:	circuit
schematics	and	breadboards.	They	are	the	keys	to	creating	your	own	projects
that	you	can	share	along	with	being	able	to	build	projects	designed	by	other.	In
the	next	chapter	you	will	go	a	step	further	and	build	a	housing	for	your	circuit,
but	it’s	a	good	idea	to	first	become	comfortable	with	how	your	code	and	circuit
come	together	on	the	Arduino	Uno.

What	You	Need
You	need	the	following	things	to	build	your	LED	circuit.	Figure	1-12	shows	the
electronic	components	you	need.

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard
1	220Ω	resistor
1	LED
2	jumper	wires

FIGURE	1-12	The	electronic	components	you	need	to	build	the	circuit

Understanding	Circuit	Schematics
Electricity	is	the	flow	of	electrical	charge.	You’ve	seen	it	in	nature	through
lightning	or	static	electricity	that	occurs	when	you	walk	across	a	carpeted	floor
and	then	touch	a	door	handle.	You	also	use	circuits	every	day	to	control	how
electricity	is	allowed	to	flow.	You	turn	on	and	off	the	lights	in	a	room	with	a
light	switch.	You	can	turn	on	a	TV	and	change	the	channel.	This	is	all	done	by
using	circuits	to	control	electricity.	You’re	not	ready	yet	to	build	the	kind	of
circuits	that	are	inside	a	TV,	but	you	can	build	a	circuit	that	turns	on	and	off
lights!

Even	a	simple	circuit	can	be	built	in	many	different	ways.	For	example,	LEDs
come	in	different	sizes	and	colours.	You	could	power	an	LED	from	an	Arduino
Uno	or	with	a	battery.	A	circuit	schematic	is	simply	a	diagram	showing	the

important	information	about	a	circuit,	using	symbols.	Figure	1-13	is	a	circuit
schematic	showing	the	circuit	that	you	are	now	going	to	build.	There	are	three
symbols	in	the	schematic	each	representing	the	Arduino	Uno,	the	resistor	(more
about	what	that	is	a	little	later)	and	the	LED	(the	triangular	symbol).	You	could
build	the	circuit	using	a	large	red	LED	or	a	small	green	LED;	it’s	your	choice.
The	important	information	is	that	you	are	connecting	that	LED	to	an	Arduino
Uno	and	a	resistor.

FIGURE	1-13	The	circuit	schematic	for	the	LED	circuit

Electricity	can	be	described	and	measured	in	different	ways.	Because	it’s
invisible,	it	can	be	hard	to	imagine	how	electricity	works,	so	water	is	often	used
as	an	analogy.	The	flow	of	electricity	in	a	wire	is	like	water	in	a	pipe.	The	water
flow	moving	through	the	pipe	is	similar	to	the	electrical	current	(measured	in
amps,	which	is	abbreviated	A),	and	the	water	pressure	is	like	the	electrical
voltage	(measured	in	volts,	which	is	abbreviated	V).	The	size	of	the	pipe	in
combination	with	how	much	water	is	being	moved	through	it	affects	the	water
pressure.	A	smaller	pipe	creates	more	water	pressure	than	a	larger	pipe	when	the
same	amount	of	water	is	passed	through	both.	The	size	of	the	pipe	describes	the
third	property	used	to	describe	electricity:	resistance	(measured	in	Ohms

represented	and	represented	with	the	symbol	Ω).

That	may	seem	complicated	and	difficult	to	understand,	but	don’t	worry	about
grasping	all	the	details	now.	By	working	with	electricity	and	building	circuits,
you’ll	figure	out	how	voltage,	current	and	resistance	are	related.	Back	to	the
circuit	schematic!

	The	study	of	electricity	and	circuits	is	called	circuit	theory.	If	you	are	interested	in	learning
more	about	circuit	theory,	there	are	great	tutorials	online	to	get	you	started.	I	really	like
Sparkfun’s.	They	have	animations	to	help	illustrate	the	concepts!	Start	with
https://learn.sparkfun.com/tutorials/what-is-electricity	and
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law.

In	the	schematic	in	Figure	1-13,	the	circuit	is	connected	to	Pin	13	and	GND	on
the	Arduino.	Pin	13	is	where	the	electricity	that	lights	up	the	LED	flows	from.
GND	stands	for	ground	or	0V.	When	you	use	a	battery	to	power	a	circuit,	the
battery	has	two	terminals:	positive	and	negative.	Electricity	flows	from	the
positive	to	the	negative.	Pin	13	and	GND	on	the	Arduino	Uno	play	the	same	role
as	the	positive	and	negative	terminals	of	the	battery.	Electricity	flows	from	Pin
13	to	GND	when	they	are	connected	in	a	circuit.

The	circuit	has	two	components	besides	the	Arduino	Uno:	a	resistor	and	an	LED.
The	pins	on	the	Arduino	Uno	all	output	5V,	which	is	too	much	for	the	LED.
Remember	the	water	analogy?	Think	of	the	LED	like	a	drinking	straw.	It’s	not	as
strong	as	a	pipe,	so	forcing	too	much	water	into	it	can	cause	the	straw	to	burst.	A
resistor	helps	to	control	how	much	current	can	flow	through	the	LED.	In	this
kind	of	circuit,	the	resistor	limits	the	amount	of	current,	so	is	known	as	a	current-
limiting	resistor.

	A	resistor	is	an	electrical	component	that	resists	current	in	a	circuit.	For	example,	LEDs
can	be	damaged	by	too	much	current,	but	if	you	add	a	resistor	with	the	correct	value	to	the
LED	circuit	to	limit	the	amount	of	current,	the	LED	is	protected.	Resistance	is	measured	in
Ohms	(represented	by	Ω).	You	need	to	pick	a	resistor	with	the	correct	value	to	limit	the
current	through	a	circuit;	the	value	of	a	resistor	is	shown	by	coloured	bands	that	are	read
from	left	to	right.

https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law

Using	a	Breadboard
After	you	know	what	circuit	you	are	building,	you	need	to	use	something	called
a	breadboard	to	help	you	build	it.	A	breadboard	is	a	board	with	rows	of	holes
on	it	(see	Figure	1-14).	If	you	could	peek	inside	the	plastic	case	of	the
breadboard,	you	would	see	that	the	holes	in	each	row	touch	the	same	piece	of
metal.	Sticking	two	wires	in	the	same	row	means	they	are	touching	the	same
piece	of	metal,	and	electricity	can	flow	between	them.

	A	breadboard	is	a	reusable	device	that	allows	you	to	create	circuits	without	needing	to
solder	all	the	components.	Breadboards	have	a	number	of	holes	into	which	you	push	wires
and	components	to	create	circuits.

FIGURE	1-14	A	breadboard	has	a	series	of	holes	that	are	connected	in	rows
with	two	pairs	of	long	rows	on	the	outside	and	shorter,	perpendicular	rows	in	the
centre	of	the	board.

The	long	rows	on	the	outside	edges	of	the	board	are	where	you	can	connect	5V
and	ground	(GND	on	the	Arduino	board).	Some	boards	may	come	with	labels
like	+	or	-	or	colours	like	red	and	black	or	blue.	Red	is	a	colour	used	to	represent
the	positive	voltage,	so	with	the	Arduino	Uno	that	would	be	5V.	Black	or	blue	is
used	to	represent	ground	or	GND	on	the	Arduino	Uno.

You	can	think	of	the	long	rows	for	5V	and	ground	as	expansions	for	the	5V	and
GND	pins	on	the	Arduino	Uno.	There	is	only	one	5V	pin	on	the	Arduino	Uno,	so
what	if	you	have	more	than	one	component	that	needs	to	connect	to	5V?	By

using	a	jumper	wire,	you	can	connect	5V	to	a	row	on	the	breadboard.	You	then
have	many	holes	where	components	can	connect	to	5V.	It’s	the	same	for	ground.
There	are	more	GND	pins	on	the	Arduino	Uno	(there	are	three,	and	they	all	do
the	same	thing,	so	you	can	use	any	of	them	whenever	you	need	to	connect	to
ground),	but	you	can	also	use	a	jumper	wire	to	expand	the	number	of	ground
connections	on	the	breadboard.	Figure	1-15	shows	how	you	can	do	this.

FIGURE	1-15	Basic	layout	of	a	breadboard

The	rows	in	the	middle	of	the	breadboard,	between	the	long	outside	rows,	are
what	you	use	to	connect	your	components	to	each	other.	If	you	could	see	inside
the	plastic	case	of	the	breadboard,	you	would	see	that	these	rows	are
perpendicular	to	the	long	rows	on	the	edges.	The	holes	are	in	groups	of	five	and
don’t	connect	across	the	gap	in	the	middle	of	the	breadboard.

Building	Your	First	Circuit
You	are	now	ready	to	build	your	LED	circuit	using	your	220-Ohm	resistor	and
LED.	An	LED	is	directional—that	means	you	can	accidentally	put	it	in	a	circuit
backwards.	If	you	look	at	the	LED	closely,	you	can	see	that	the	two	legs	aren’t
the	same	length.	The	long	leg	of	the	LED	should	connect	to	the	positive	or	5V
portion	of	the	circuit,	and	the	short	leg	should	connect	to	ground.	The	resistor
isn’t	directional,	so	both	legs	are	the	same	length,	and	it	doesn’t	matter	which	leg
is	connected	to	which	part	of	the	circuit.

Go	through	the	following	steps	to	build	the	circuit	in	Figure	1-16:

1.	 Connect	one	end	of	a	jumper	wire	to	one	of	the	GND	pins	on	the	Arduino
and	the	other	end	to	a	long	row	on	the	breadboard.	This	is	the	black	wire	in
Figure	1-16,	but	your	jumper	wire	can	be	any	colour.

2.	 Put	one	leg	of	the	resistor	into	any	of	the	short	rows	in	the	middle	of	the
breadboard.

3.	 Put	the	other	leg	into	another	short	row	in	the	middle	of	the	breadboard.	It
just	can’t	be	in	the	same	group	of	five	holes	as	the	other	leg!

4.	 Put	the	long	leg	of	the	LED	into	a	hole	in	the	same	row	as	one	of	the	legs	of
the	resistor.	They	are	now	touching	the	same	piece	of	metal	inside	the
breadboard,	so	electricity	will	eventually	be	able	to	flow	through	the
resistor	and	then	the	breadboard	row	and	then	the	LED.

5.	 Connect	the	short	leg	of	the	LED	to	the	long	row	of	the	breadboard	where
the	jumper	wire	is	connected.

6.	 Use	a	second	jumper	wire	to	connect	from	Pin	13	to	the	same	short	row	as
the	leg	of	the	resistor	that	isn’t	connected	to	the	LED.

FIGURE	1-16	The	LED	circuit	on	the	breadboard

	Don’t	ever	connect	the	5V	and	GND	pins	together	without	a	component	like	a	resistor	or
LED	in	between	them.	This	creates	a	short	circuit	and	can	damage	your	Arduino	Uno.	If
you	ever	do	this	by	accident,	your	computer	will	probably	notice	that	something	is	wrong
on	your	Arduino	Uno	and	will	cut	off	the	power	from	the	computer	to	the	Uno.	If	this

happens,	just	unplug	the	Arduino	Uno	from	the	computer	and	then	plug	it	in	again.

Your	LED	should	now	blink	on	and	off	on	the	breadboard,	just	like	the	LED	did
on	the	Arduino	board.	Congratulations!	You’ve	built	your	first	Arduino	circuit!
Your	code	is	controlling	electricity	and	whether	a	light	is	on	or	off.	This	is	just
the	beginning	of	your	journey	to	build	some	exciting	Arduino	projects.

	Visit	the	companion	site	at	www.wiley.com/go/adventuresinarduino	to	see	a	video
showing	how	to	build	this	circuit.

CHALLENGE

	Change	the	pin	number	that	your	LED	circuit	is	connected	to.	You	can	use	any	of	the	pins	from
2	to	13	on	the	section	of	the	board	labeled	Digital,	shown	in	Figure	1-17.	The	other	pins	have
special	functions	that	you	learn	about	in	the	next	adventure.

Remember,	you	need	to	make	a	change	in	your	code	(and	remember	to	upload	your	change	to	your
Arduino	board),	and	you	need	to	make	a	change	to	the	circuit.

http://www.wiley.com/go/adventuresinarduino

FIGURE	1-17	The	digital	pins	on	the	Arduino	board.	Digital	Pins	0	and	1	are
special	pins	that	you	learn	about	later.

Further	Adventures	with	Arduino
Congratulations!	You	have	achieved	a	lot.	It	might	seem	like	that	was	a	lot	of
work	just	to	get	a	single	light	to	flash	on	and	off,	but	it	means	you	are	ready	for
all	kinds	of	adventures.

Check	out	projects	that	others	have	done	to	get	some	inspiration	for	what	is
possible:

http://makezine.com/category/electronics/arduino/

www.creativeapplications.net/tag/arduino/

	

Arduino	Command	Quick	Reference	Table

http://makezine.com/category/electronics/arduino/
http://www.creativeapplications.net/tag/arduino/

Command Description

setup() Function	that	runs	once	when	the	Arduino	Uno	first	starts.	See	also
http://arduino.cc/en/Reference/Setup.

loop()
Function	that	is	repeatedly	run	after	the	setup()	is	completed	and	until	the	Arduino	is	turned	off.	See
also	http://arduino.cc/en/Reference/Loop.

pinMode()
Sets	the	pin	number	entered	as	the	argument	to	either	output	electricity	or	read	it	in.	See	also
http://arduino.cc/en/Reference/PinMode.

OUTPUT
Keyword	set	in	second	argument	of	pinMode()	that	says	the	pin	will	output	electricity.	See	also
http://arduino.cc/en/Reference/Constants.

digitalWrite()
Turns	on	or	off	the	electricity	at	the	specified	pin.	See	also
http://arduino.cc/en/Reference/DigitalWrite.

HIGH
Keyword	used	to	turn	on	the	electricity	in	digitalWrite().	See	also
http://arduino.cc/en/Reference/Constants.

LOW
Keyword	sued	to	turn	off	the	electricity	in	digitalWrite().	See	also
http://arduino.cc/en/Reference/Constants.

delay()
Pauses	the	Arduino	Uno	for	a	specified	number	of	milliseconds.	See	also
http://arduino.cc/en/Reference/Delay.

Achievement	Unlocked:	You	are	making	all	the	right	connections	and	shining
bright!

In	the	Next	Adventure
In	the	next	adventure,	you	start	adding	interactivity	to	your	Arduino	code	and	control	LEDs	using	a	dial!

http://arduino.cc/en/Reference/Setup.
http://arduino.cc/en/Reference/Loop.
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Delay

YOU	NOW	HAVE	the	Arduino	software	installed	and	have	uploaded	your	first
sketch	to	make	sure	everything	is	set	up	correctly.	(If	you	haven’t	done	that,	it
would	be	best	to	go	to	Adventure	1	and	do	that	now!)	It’s	great	telling	the
Arduino	to	control	something	like	flashing	lights,	but	the	real	fun	with	Arduino
starts	when	your	projects	become	interactive.	There	are	a	couple	things	that	need
to	happen	before	a	project	can	become	interactive:	first	the	Arduino	needs	to
know	something	about	what	is	happening	in	the	real	world;	then	the	Arduino
code	needs	to	do	something	based	on	that	information.

You’re	going	to	travel	a	long	way	in	this	adventure!	You	start	by	controlling
multiple	LEDs	and	then	you	print	some	messages	from	the	Arduino	to	the
computer.	After	that,	you	read	in	information	from	a	sensor	and	print	that
information	to	the	computer.	Finally,	you	put	all	of	that	knowledge	together	to
build	a	terrific	status	message	sign,	which	will	have	multiple	messages	and	a
control	knob	you	can	turn	to	choose	what	message	you	want	to	display—perfect
for	welcoming	or	sending	away	visitors	at	your	whim.

What	You	Need
You	first	find	out	how	to	add	more	LEDs	to	your	circuit	and	then	how	to	use	a
sensor	called	a	potentiometer.	The	following	list	tells	you	what	you	need,	and
Figure	2-1	shows	the	electronic	components.	Remember,	Appendix	B	includes

suggestions	of	where	you	can	buy	everything.

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard
3	LEDs	(1	green,	1	yellow,	1	red)
3	220Ω	resistors
1	10kΩ	potentiometer
4	jumper	wires

FIGURE	2-1	The	electronic	components	you	need	for	the	first	part	of	this
adventure

Adding	More	LEDs

In	Chapter	1,	you	built	a	circuit	on	a	breadboard	so	that	the	Arduino	controlled	a
single	LED.	One	LED	is	great,	but	more	LEDs	are	even	better!	So	what	do	you
need	to	do	to	add	more	LEDs?

The	first	thing	you	need	is	more	LEDs—this	adventure	uses	three.	You	also	need
three	220Ω	resistors,	as	each	LED	needs	its	own	current-limiting	resistor.
Resistors	help	control	the	flow	of	electricity	in	a	circuit.	In	this	circuit,	the
resistors	protect	the	LEDs	from	becoming	damaged	from	too	much	current.	You
can	read	more	about	current	and	resistors	in	Adventure	1.

Start	by	building	the	circuit	shown	in	Figure	2-2:

1.	 Put	one	leg	of	one	of	the	resistors	in	a	short	row	on	the	top	half	of	the
breadboard	towards	the	left	side	of	the	board.	Put	the	other	leg	of	the
resistor	in	the	short	row	across	the	gap	in	the	middle	of	the	breadboard
directly	below	where	you’ve	inserted	the	first	resistor	leg.	The	rows	of	the
breadboard	aren’t	connected	across	the	gap,	so	each	resistor	leg	is	in	its
own	row;	they	aren’t	touching	the	same	piece	of	metal	inside	the
breadboard.

2.	 Repeat	with	the	second	and	third	resistors.	Place	one	resistor	in	the	centre
of	the	breadboard	and	the	other	towards	the	right	side	of	the	breadboard.
Each	resistor	should	reach	across	the	gap	in	the	middle	of	the	board	and
have	one	leg	in	a	short	row	above	the	gap	and	the	other	in	a	short	row
below	the	gap.

3.	 Now	add	the	LEDs.	The	long	leg	of	each	LED	connects	to	the	resistor	and
the	short	leg	connects	to	ground.	Insert	the	long	leg	of	each	LED	into	the
same	short	row	as	each	resistor.	It	should	be	placed	just	below	the	resistor.
Place	the	green	LED	on	the	left	side	of	the	breadboard,	the	yellow	in	the
middle	and	the	red	on	the	right	side.

4.	 Insert	the	short	leg	of	each	LED	into	one	of	the	long	rows	running	the	entire
length	of	the	breadboard	at	the	very	bottom.	If	your	breadboard	is	labelled
with	a	blue	or	black	line	or	a	-,	insert	the	three	short	legs	into	that	row.	If
your	breadboard	isn’t	labelled	then	you	can	use	either	row—just	make	sure
all	three	of	the	legs	are	in	the	same	row.

5.	 Your	circuit	is	now	built	on	your	breadboard.	All	that	is	left	is	to	connect	it
to	your	Arduino	Uno.	Use	one	jumper	wire	to	connect	from	a	GND	pin
(there	are	three	of	them	on	the	Arduino	Uno	and	you	can	use	whichever	you
would	like,	they	are	all	the	same)	to	the	long	row	on	the	breadboard	where

your	three	short	LED	legs	are	inserted.
6.	 Using	three	more	jumper	wires,	connect	one	wire	from	Pin	5	on	the

Arduino	Uno	(not	A5,	but	the	5	in	the	section	labelled	Digital)	to	the	top	of
the	resistor	on	the	left	side	of	the	breadboard	connected	to	the	green	LED.
Use	a	second	jumper	wire	to	connect	Pin	6	to	the	middle	resistor	connected
to	the	yellow	LED,	and	a	third	jumper	wire	to	connect	from	Pin	7	to	the	last
resistor	connected	to	the	red	LED.

FIGURE	2-2	Building	a	circuit	to	control	three	LEDs

Finished?	Now	you’re	ready	to	write	the	code.	It’s	going	to	look	a	lot	like	the
Blink	sketch	described	in	Adventure	1.	You	use	code	to	control	when	an	LED
turns	on	and	off.	The	big	difference	is	that	you	start	using	variables	to	keep	track
of	the	LEDs,	and	you	need	to	control	three	LEDs	instead	of	only	one.	You	read
more	about	variables	in	the	next	section.

First,	launch	the	Arduino	IDE.	It	opens	a	new	sketch	window	when	the	program
starts.	You	can	also	go	to	File⇒New	or	click	the	New	button	to	create	a	new
empty	sketch.	Type	in	the	following	sketch	exactly	as	it	is	written.	The	spaces
and	indentation	aren’t	important;	they	just	make	the	code	easier	to	read.
However,	don’t	accidentally	leave	off	a	;	or	your	code	won’t	run!	Don’t	forget	to
save	it	by	going	to	File⇒Save	or	clicking	the	Save	button.

//	Pins

int	greenLED	=	5;

int	yellowLED	=	6;

int	redLED	=	7;

void	setup()	{	

		//	set	to	output	to	LED	pins	

		pinMode(greenLED,	OUTPUT);	

		pinMode(yellowLED,	OUTPUT);	

		pinMode(redLED,	OUTPUT);

}

void	loop()	{

		//	turn	on	all	LEDs	

		digitalWrite(greenLED,	HIGH);	

		digitalWrite(yellowLED,	HIGH);	

		digitalWrite(redLED,	HIGH);	

		//	wait	1	second	

		delay(1000);

		//	turn	off	all	LEDs	

		digitalWrite(greenLED,	LOW);	

		digitalWrite(yellowLED,	LOW);	

		digitalWrite(redLED,	LOW);	

		//wait	1	second	

		delay(1000);

}

	Typing	the	sketches	by	hand	is	a	good	way	to	become	more	comfortable	with	all	the	new
coding	terms	you	are	learning,	but	it	can	be	frustrating	if	it’s	a	really	long	sketch	or	you’ve
made	a	typo	that	you	can’t	find.	For	those	cases,	all	the	sketches	are	available	to	download
from	companion	site	www.wiley.com/go/adventuresinarduino.

After	you	have	finished	typing	out	the	sketch	and	have	saved	it,	you	are	ready	to
upload	it	to	your	Arduino	Uno.	Select	the	board	and	port	from	the	menus	(you
can	review	how	to	do	this	in	Adventure	1).	Click	the	Upload	button	and	watch
for	messages	to	appear	at	the	bottom	of	the	window	of	the	Arduino	IDE.

If	there	aren’t	any	errors,	your	three	LEDs	should	start	flashing	on	and	off!
That’s	so	much	more	exciting	than	blinking	just	one	LED.

http://www.wiley.com/go/adventuresinarduino

If	you	see	any	errors	that	say	“Expected	initializer	before	'void'”	or	“expected	';'.
.	.”	then	you	probably	have	a	typo.	Look	carefully	over	your	code	and	make	sure
it	matches	what	you	are	supposed	to	type	in.	If	there	are	any	errors	from
avrdude,	check	that	your	Arduino	Uno	is	plugged	into	your	computer	and	that
you’ve	chosen	the	correct	options	from	the	Board	and	Port	menus.	If	you	still
have	problems,	go	back	through	Adventure	1	to	make	sure	your	software	is
installed	correctly.

DIGGING	INTO	THE	CODE

	Now	that	you	have	seen	what	the	code	does,	it’s	time	to	figure	out	how	it’s	doing	that!	The
sketch	can	be	broken	up	into	three	sections:	the	lines	before	the	functions;	the	setup()	function;
and	the	loop()	function.

First,	the	lines	of	code	before	the	functions.

//	Pins

int	greenLED	=	5;

int	yellowLED	=	6;

int	redLED	=	7;

The	first	line	beginning	with	//	is	a	comment	explaining	what	the	following	lines	mean.	The	next	three
lines	are	variables	assigned	the	pin	numbers	for	each	of	the	LEDs.	A	variable	is	like	giving	something	in
code	a	name.	Here	it’s	giving	a	name	to	the	pin	numbers	to	make	it	easier	to	remember	which	LED	is
connected	to	each	pin.	The	name	greenLED	is	much	more	obvious	that	the	number	5,	isn’t	it?

	A	variable	is	a	code	construct	that	holds	a	value	that	can	be	changed.	For	example,	the
variable	greenLED	stores	the	number	5.

In	front	of	each	of	the	variable	names	is	int.	This	is	describing	what	kind	of	data	can	be	stored	in	the
variable.	int	is	short	for	integer,	so	the	variables	can	store	only	whole	numbers.

Although	giving	something	a	name	is	convenient,	variables	become	really	powerful	when	the	variable
changes	its	value	but	keeps	the	same	name.	That	feature	of	variables	isn’t	being	used	here,	but	it	is	in	the
next	section.

	There	a	few	rules	to	keep	in	mind	when	creating	new	variable	names.	The	first	is	that	they
can’t	have	spaces	in	them,	but	you	can	use	underscores	(greenLED	and	green_LED	are	fine,
but	green	LED	is	not).	You	also	can’t	start	the	name	with	anything	besides	a	letter	(led3	is
fine,	3led	is	not).	Lastly,	it’s	not	a	requirement,	but	variables	usually	start	with	a	lowercase
letter	(greenLED	rather	than	GreenLED).

The	next	part	of	the	sketch	is	the	setup()	function.	This	function	is	what	the	Arduino	Uno	runs	right
when	it	starts	up.	It	is	only	run	that	one	time,	so	this	function	is	for	commands	that	need	to	be	done	only
once.	The	most	common	thing	done	in	the	setup()	is	to	set	the	pinMode()	of	pins	being	used.	The
pinMode()	determines	whether	the	pin	will	output	electricity	to	control	a	component	like	an	LED	or	it
will	read	in	a	signal	from	a	sensor.

This	circuit	doesn’t	have	any	sensors—only	LEDs—so	the	pinMode()	is	set	to	OUTPUT	for	each	of	the
pins.	Because	variables	are	being	used	to	represent	the	pin	numbers,	their	names	(greenLED,	yellowLED
and	redLED)	can	be	typed	instead	of	5,	6	and	7.

void	setup()	{	

		//	set	to	output	to	LED	pins	

		pinMode(greenLED,	OUTPUT);	

		pinMode(yellowLED,	OUTPUT);	

		pinMode(redLED,	OUTPUT);

}

The	final	section	of	code	is	the	loop()	function.	This	function	is	executed	repeatedly	until	the	Arduino
Uno’s	power	is	removed.

The	loop()	function	uses	only	two	other	functions:	digitalWrite()	and	delay().	The	digitalWrite()
function	turns	on	or	off	an	LED.	The	first	argument	determines	which	LED	is	being	talked	about,	and	the
second	argument	determines	what	is	to	be	done—either	turn	on	the	LED	if	the	argument	is	HIGH	or	turn	it
off	if	the	argument	is	LOW.

To	summarise	what	the	loop()	does,	it	turns	on	each	LED,	then	waits	for	1	second	so	you	can	see	them
on,	then	it	turns	off	each	LED	and	waits	for	1	second	so	you	can	see	that	they	are	off.

void	loop()	{	

		//	turn	on	all	LEDs	

		digitalWrite(greenLED,	HIGH);	

		digitalWrite(yellowLED,	HIGH);	

		digitalWrite(redLED,	HIGH);

		//	wait	1	second	

		delay(1000);	

		

		//	turn	off	all	LEDs	

		digitalWrite(greenLED,	LOW);	

		digitalWrite(yellowLED,	LOW);	

		digitalWrite(redLED,	LOW);	

		

		//wait	1	second	

		delay(1000);

}

CHALLENGE

	Now	you	have	three	LEDs	that	all	blink	together,	make	them	light	up	in	a	sequence	one	by	one.
You	won’t	need	to	change	the	circuit;	you	change	only	the	code.	Remember	to	upload	your
changes	in	your	code	to	the	Arduino	Uno.

A	few	hints:

You	don’t	have	to	write	more	digitalWrite()	functions;	you	only	need	to
move	around	the	ones	already	written.
You	need	to	add	more	delay()	functions.

Printing	Messages	to	the	Computer
After	you	upload	code	onto	the	Arduino	Uno,	the	board	doesn’t	talk	to	the
computer.	In	fact,	it	doesn’t	need	the	computer	at	all.	The	only	thing	that’s
happening	here	is	that	the	Arduino	Uno	is	getting	its	power	from	the	computer,
via	the	USB	cable	plugged	into	the	computer.	You	could	even	unplug	it	from	the
computer	and	use	a	battery.	(You	can	find	information	about	powering	the	board
with	a	battery	in	Adventure	5.)	But	your	computer	can	still	be	useful	after	you
have	uploaded	your	sketch	onto	the	Arduino	Uno.	For	example,	the	Arduino
Uno	doesn’t	have	a	screen,	but	the	computer	does.	So	if	you	are	debugging	your
code,	or	just	want	to	read	messages	to	know	what	the	board	is	doing,	the
computer	and	USB	cable	can	be	a	powerful	tool.

	Debugging	is	the	where	you	locate	the	cause	of	any	errors	in	your	computer	program	code
and	fix	them.

The	Arduino	Uno	can	talk	with	the	computer	using	serial	communication	over
the	USB	cable.	This	just	means	that	one	bit	of	data	is	sent	at	a	time.	You	can
think	of	it	as	one	letter	of	a	word	being	sent	at	a	time,	eventually	to	spell	out	a
whole	word.	To	send	data	from	the	Arduino	to	the	computer,	there	are	just	three
functions	you	need	to	know	about.

	Serial	communication	is	one	way	that	two	devices,	like	a	computer	and	an	Arduino	board,
can	send	and	receive	data	to	each	other.	One	piece	of	data	is	sent	at	a	time.

The	first	function	is	one	that	you	only	need	to	call	once	in	the	setup()	function:

Serial.begin(9600);

This	function	takes	only	one	argument:	the	speed	at	which	the	Arduino	Uno	is
sending	out	and	receiving	data.	It’s	important	that	this	number	is	the	same	as	the
speed	that	the	computer	is	sending	and	receiving	data	(you	find	out	how	to	check
that	later).	If	the	computer	and	Arduino	Uno	are	sending	and	receiving	data	at
different	speeds,	they	won’t	be	able	to	understand	each	other.	Unless	you	are
explicitly	told	to	use	a	different	number,	9600	is	a	good	number	to	use.

	Remember	that	you	can	always	look	up	terms	in	the	glossary	at	the	back	of	the	book.

The	other	two	functions	are:

Serial.print("Your	message	goes	here");

Serial.println("Your	message	goes	here");

These	are	the	functions	that	send	messages	from	the	Arduino	board	to	the
computer.	The	first	one,	Serial.print(),	doesn’t	send	a	newline	character	at
the	end	of	the	message;	in	other	words,	the	cursor	isn’t	moved	down	to	the	next
line	at	the	end	of	the	message.	The	function	Serial.println()	does	include	a
newline;	you	can	imagine	this	as	a	message	with	an	Enter	at	the	end	of	it.

	A	newline	character	is	like	pressing	the	Enter	or	Return	key	on	your	keyboard.

The	best	way	to	understand	this	is	to	try	it	out.	There’s	no	circuit	for	this;	you
just	need	the	Arduino	board	plugged	into	your	computer.	Create	a	new	sketch
with	the	following	code	and	upload	it	onto	the	board:

void	setup()	{	

		//	to	start	serial	communication	

		//	the	argument	needs	to	match	

		//	the	rate	you	choose	in	the	

		//	Serial	Monitor	

		Serial.begin(9600);	

		Serial.println("Hello,	this	is	from	setup");	

			

		//	a	delay	so	that	messages	aren’t	too	quick	to	read	

		delay(3000);

}

void	loop()	{	

		//	printing	a	message	and	then	waiting	a	second	

		Serial.print("This	is	from	loop,	with	a	print.	");	

		delay(1000);	

		Serial.println("And	this	is	from	loop	with	a	println.");	

		delay(1000);

		int	myVariable	=	27;	

		Serial.print("And	this	is	printing	a	variable:	");	

		Serial.println(myVariable);	

		delay(1000);

}

	You	may	have	noticed	that	the	messages	you	send	in	Serial.print()	and
Serial.println()	are	between	quotation	marks	("	").	This	is	how	you	write	in	code	a
piece	of	text	that	you	don’t	want	the	computer	to	interpret	as	code.	You	can	print	the	value
of	a	variable	by	replacing	the	message	and	the	"	"	with	a	variable	name,	such	as	the
variable	myVariable	in	the	sketch.

After	the	sketch	is	uploaded	onto	the	board,	open	the	Serial	Monitor	by	clicking
that	last	Arduino	IDE	button—the	one	I	didn’t	cover	in	Adventure	1.	It’s	the
button	on	its	own	on	the	right	in	Figure	2-3.	After	you	click	the	button,	a
window	opens	like	the	one	shown	in	Figure	2-4.	You	may	notice	that	the	number
9600	appears	in	the	bottom	right	of	the	window	(if	it	doesn’t	you	should	click
the	number	that	is	there	and	select	9600).	This	is	the	number	that	needs	to	match
the	argument	in	Serial.begin()	in	your	Arduino	code.

FIGURE	2-3	The	Serial	Monitor	button

FIGURE	2-4	The	Serial	Monitor	in	the	Arduino	IDE

You	will	see	the	messages	from	your	Arduino	Uno	appear	in	your	Serial
Monitor.	The	Serial	Monitor	is	a	tool	built	into	the	Arduino	IDE	that	lets	you	see
the	messages	sent	by	the	Arduino	Uno	using	serial	communication.	You	will	find
it	a	very	useful	tool	in	all	of	your	adventures!	When	you	are	done	with	the	Serial
Monitor,	you	can	just	close	the	window.	It	may	also	close	on	its	own	when	you
upload	a	new	sketch	to	your	board.	You	can	reopen	the	Serial	Monitor	to	see	any
new	messages.

DIGGING	INTO	THE	CODE

	So	what’s	going	on	in	the	code?	There	are	the	sections	that	you	are	probably	getting	used	to:
the	setup()	and	loop()	functions.	The	setup()	function	doesn’t	have	much	going	on.	The	first
four	lines	are	comments	explaining	what	is	happening.	The	serial	communication	is	then	started
and	a	message	is	sent:	Hello,	this	is	from	setup.	The	Arduino	Uno	is	then	paused	for	3
seconds,	just	so	that	messages	don’t	print	too	fast	to	read.

void	setup()	{	

		//	to	start	serial	communication	

		//	the	argument	needs	to	match	

		//	the	rate	you	choose	in	the	

		//	Serial	Monitor	

		Serial.begin(9600);	

		Serial.println("Hello,	this	is	from	setup");

		//	a	delay	so	that	messages	aren’t	too	quick	 	to	read	

		delay(3000);

}

The	loop()	function	then	prints	messages	in	three	different	ways.	It	first	uses	Serial.print()	to	print
This	is	from	loop,	with	a	print.	and	then	waits	for	1	second.	Because	the	message	used
Serial.print()	and	not	Serial.println(),	the	next	message	appears	on	the	same	line,	with	the	new
message	printing	right	after	the	previous	one.	There’s	another	1-second	delay	and	then	a	new	variable	is
created	to	hold	the	number	27.	A	Serial.print()	function	prints	a	message	and	then	the	variable	prints
at	the	end	of	the	line.	Because	the	variable	is	printed	without	the	surrounding	quotation	marks	(not
"myVariable"),	the	number	27	is	printed.

void	loop()	{	

		//	printing	a	message	and	then	waiting	a	second	

		Serial.print("This	is	from	loop,	with	a	print.	");	

		delay(1000);	

		Serial.println("And	this	is	from	loop	with	a	println.");	

		delay(1000);

		int	myVariable	=	27;	

		Serial.print("And	this	is	printing	a	variable:	");	

		Serial.println(myVariable);	

		delay(1000);

}

	The	setup()	function	is	run	once	when	the	Arduino	Uno	is	first	turned	on,	but	the	Arduino
Uno	calls	the	setup()	function	a	couple	other	times	besides	when	it	is	first	turned	on.	For
example,	there’s	a	reset	button	on	the	board	that	you	can	use	to	manually	restart	the	board,
so	the	setup()	function	is	called	before	going	on	to	the	loop()	function.	Also,	whenever	a
new	serial	connection	is	made,	the	board	restarts.	So	whenever	you	open	the	Serial	Monitor,
the	Arduino	board	restarts	and	runs	the	setup()	function	again.	You	may	notice	this
happening	when	you	open	the	Serial	Monitor.	The	message	being	printed	gets	interrupted,
and	the	message	in	the	setup()	function	starts	printing	instead.	Try	opening	the	Serial
Monitor	and	then	pressing	the	reset	button	on	the	Arduino	Uno.

Reading	Data	from	a	Potentiometer
Now	you’re	ready	to	take	a	physical	action	in	the	real	world	and	use	it	to	make

decisions	in	code.	This	is	exactly	what	the	Arduino	was	built	to	do!	You	will
soon	be	turning	a	knob	to	change	what	LED	is	on.

You’re	going	to	start	by	using	a	potentiometer.	That’s	a	big	name	for	a	simple
component!	It’s	simply	a	resistor	that	adjusts	how	much	resistance	it	has	as	you
turn	a	control	knob—for	example,	the	knob	you	use	on	a	stereo	to	turn	up	the
volume.	Potentiometers	come	in	lots	of	shapes	and	sizes.	Figure	2-5	shows	a	few
potentiometers	that	change	their	resistance	through	a	rotating	motion.	The	two
bigger	ones	can	have	knobs	or	dials	that	fit	over	the	end	of	the	shafts.	The	little
one	is	sometimes	called	a	trimpot,	and	it	already	has	a	small	knob	attached	that
you	turn.	Trimpots	like	the	one	shown	in	Figure	2-5	work	well	when	building
circuits	on	breadboards	as	they	fit	into	the	breadboard	holes.	Larger
potentiometers	like	the	one	on	the	right	in	Figure	2-5	can	also	fit	into
breadboards.	Potentiometers	like	the	one	in	the	middle	are	easier	for	soldering
wires	to.

	A	potentiometer	is	a	type	of	resistor	with	an	adjustable	knob	to	vary	the	resistance	of
current.

FIGURE	2-5	Different	potentiometers

	Visit	the	companion	site	at	www.wiley/go/adventuresinarduino	to	watch	a	video
showing	different	types	of	potentiometers.

The	circuit	to	connect	the	potentiometer	to	the	Arduino	involves	three
connections.	You	can	think	of	the	potentiometer	as	having	two	kinds	of	pins:	a
pair	of	outside	pins	and	an	inside	pin.	The	inside	pin	is	what	is	connected	to	an
Analogue	Pin	on	the	Arduino.	The	Analogue	Pins	are	the	section	of	pins	you
haven’t	yet	used	(see	Figure	2-6).	There	are	six	pins	in	total	and	they	each	start
with	the	letter	A	(A0,	A1,	A2,	A3,	A4	and	A5).

http://www.wiley/go/adventuresinarduino

FIGURE	2-6	Analogue	pins	on	the	Arduino	Uno

It’s	time	to	build	your	first	circuit	with	a	potentiometer!	Go	through	the
following	steps	to	build	the	circuit	in	Figure	2-7:

1.	 Use	a	jumper	wire	to	connect	5V	on	the	Arduino	Uno	to	one	of	the	long
rows	running	along	the	bottom	of	the	breadboard.	If	the	breadboard	is
labelled	with	a	red	line	or	+,	connect	5V	to	that	row;	otherwise,	choose
either	row.

2.	 Use	another	jumper	wire	to	connect	GND	on	the	Arduino	Uno	to	the	other
long	row	on	the	breadboard.

3.	 Insert	the	legs	of	the	potentiometer	into	any	of	the	short	rows	in	the	middle
of	the	breadboard.

4.	 Use	a	jumper	wire	to	connect	one	of	the	outside	legs	of	the	potentiometer	to
the	long	row	connected	to	GND	on	the	Arduino	Uno.

5.	 Use	another	jumper	wire	to	connect	the	other	outside	legs	of	the
potentiometer	to	the	long	row	connected	to	5V	on	the	Arduino	Uno.

6.	 Connect	the	middle	leg	of	the	potentiometer	to	pin	A0	on	the	Arduino	Uno.

FIGURE	2-7	Circuit	for	connecting	a	potentiometer

You	can	read	in	a	value	coming	from	the	potentiometer	that	corresponds	to	the
position	of	the	shaft	or	knob	on	the	potentiometer	and	print	it	to	the	Serial
Monitor.	To	do	this,	go	to	File⇒	Examples⇒01.Basics	and	open	the	sketch
AnalogReadSerial.	Then	upload	the	sketch	to	your	Arduino	Uno	(remembering
to	set	the	board	and	port	as	you	did	in	Adventure	1	and	earlier	in	this	adventure).

When	you’ve	finished,	click	the	Serial	Monitor	button	to	open	the	Serial
Monitor.	Rotate	the	potentiometer	all	the	way	to	the	left	and	then	all	the	way	to
the	right.	You	should	see	numbers	displayed	in	the	Serial	Monitor,	ranging	from
0	at	one	end	to	1023	at	the	other.	These	are	the	minimum	and	maximum	numbers
that	the	Arduino	can	read	in	from	an	analog	input.	When	the	number	is	0,	the	pin
is	reading	in	ground	(0V).	When	it’s	1023,	it	means	that	the	pin	is	reading	in	5V.
Any	number	in	between	means	that	it	is	reading	in	a	voltage	that’s	somewhere
between	ground	and	5V.	5V	is	the	maximum	voltage	that	the	Arduino	Uno
outputs	and	0V	is	the	minimum,	so	this	circuit	measures	whether	the
potentiometer	is	all	the	way	to	the	left	or	right	by	measuring	whether	the	voltage
the	potentiometer	is	outputting	is	the	maximum,	minimum	or	something	in
between.

DIGGING	INTO	THE	CODE

	So	what	is	happening	in	the	code?	There’s	one	line	of	code	in	the	AnalogReadSerial	sketch	that
you	haven’t	seen	before:

int	sensorValue	=	analogRead(A0);

This	line	reads	in	the	value	(or	voltage)	being	output	by	the	potentiometer	circuit	to	Pin	A0	using	the
function	analogRead().	This	function	gives	you	number	between	0	and	1023.	You	need	to	save	this	value
into	a	variable	so	that	you	can	do	something	with	this	number	later.	A	new	variable,	sensorValue,	is
created,	and	the	number	that	analogRead()	reads	in	is	saved	in	that	variable.	That	variable	is	then	printed
to	the	Serial	Monitor.

	You	might	have	already	noticed	that	Arduino	uses	American	spellings	for	words	like
“analog.”	It’s	important	to	remember	this	as	an	Arduino	Uno	doesn’t	know	what
analogueRead()	means,	only	analogRead().

CHALLENGE

	Switch	the	outside	pins	on	the	potentiometer	so	that	the	one	that	was	connected	to	5V	is	now
connected	to	ground,	and	the	one	that	was	connected	to	ground	is	now	connected	to	5V.	You
don’t	need	to	change	any	of	the	Arduino	code.

What	changes	when	you	have	the	circuit	set	up	this	way	as	opposed	to	how	it’s	wired	in	Figure	2-7?

Making	Decisions	in	Code
To	build	interactive	projects,	you	need	to	be	able	to	take	input	from	the	real
world	and	then	have	the	Arduino	Uno	do	what	you	want	according	to	that	input.
That	means	you	need	to	use	code	to	make	decisions	based	on	incoming
information	from	sensors.	For	example,	if	you	were	building	a	burglar	alarm,
you	would	want	to	sound	the	alarm	only	if	the	alarmed	door	was	open,	so	you
need	to	know	how	to	explain	that	in	code.

Computers	work	by	answering	yes	or	no	questions.	Those	yes	or	no	questions
need	to	be	phrased	like	this:

Is	3	greater	than	5?
Is	10	equal	to	10?
Is	4	less	than	or	equal	to	8?

Written	in	code	(so	that	the	computer	understands	it)	these	questions	would	look
like	this:

3	>	5

10	==	10

4	<=	8

The	computer	or	Arduino	Uno	can	then	do	different	things	based	on	whether	the
answer	to	the	question	is	yes	or	no	(or	true	or	false).	It	does	this	by	using	if
statements.	If	the	answer	to	the	question	in	the	()	is	yes,	then	the	code	between
the	{	and	}	is	executed:

if(a<b)	{	

		//	then	execute	the	code	in	here

}

If	the	answer	is	no,	then	the	code	in	the	{	}	is	skipped.

For	example,	the	following	code:

if(3<5)	{	

							Serial.println("The	statement	is	true.");

}

Serial.println("This	is	after	the	if	statement.");

would	print	the	following:

The	statement	is	true.

This	is	after	the	if	statement.

But	the	following	code:

if(3<1)	{	

							Serial.println("The	statement	is	true.");

}

Serial.println("This	is	after	the	if	statement.");

would	print:

This	is	after	the	if	statement.

It’s	always	easier	to	understand	a	new	concept	by	building	something	yourself
and	seeing	how	it	works.	In	the	next	section,	you’re	going	to	use	if	statements
in	a	project	to	create	a	status	message	sign.

Building	a	Status	Message	Sign
Have	you	ever	seen	a	recording	studio,	either	in	real	life	or	on	a	TV	program	or
movie?	There	is	usually	a	sign	on	the	outside	of	the	room	that	says
“RECORDING”	that	lights	up	to	let	people	know	not	to	enter	because	there’s	a
recording	session	in	progress.

You	are	going	to	build	your	own	sign	that	lets	other	people	know	whether	they
can	enter,	knock	first	or	stay	out.	(If	you	don’t	want	to	use	the	signs	suggested
here,	feel	free	to	make	up	three	different	messages	that	are	entirely	your	own.)
Each	message	has	an	LED	next	to	it.	The	lighted	LED	indicates	which	message
is	the	active	one.	You	set	which	message	you	want	to	be	active	with	a	control
knob	on	the	side	of	the	sign,	as	shown	in	Figure	2-8.

FIGURE	2-8	A	status	message	sign

What	You	Need
For	this	adventure	you	build	your	first	project	with	its	own	housing.	You	need
the	following	tools	and	materials	to	first	build	and	test	the	circuit	on	a
breadboard	and	then	also	the	tools	and	materials	to	build	the	complete	project.
Figure	2-9	shows	the	electronic	components	that	you	need.

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard
3	LEDs	(1	green,	1	yellow,	1,	red)
3	220Ω	resistors
1	10kΩ	potentiometer
8	jumper	wires
Some	wire

Some	electrical	tape
Some	solder
A	shoebox	or	other	small	box
Paper	or	paint	to	decorate	the	box
Scissors	or	a	utility	knife
A	soldering	iron
Wire	cutters
Wire	strippers
USB	power	supply	(optional)

FIGURE	2-9	The	electronic	components	you	need	to	make	a	status	message
sign

Understanding	the	Circuit
As	soon	as	you	start	soldering	and	gluing	materials	together,	if	you	make	a	small
mistake	it	can	be	difficult	to	undo.	There’s	a	way	around	this:	before	you	create
your	finished	circuit,	you	should	always	make	a	prototype	of	it	on	a	breadboard

first,	to	make	sure	the	circuit	works	properly.	That	way,	if	you	make	any
mistakes	in	your	design	you	can	easily	correct	them	before	you	have	the
components	permanently	in	place.

Figure	2-10	shows	the	circuit	that	you’re	going	to	build	for	your	sign.	You	will
be	building	a	circuit	with	three	LEDs	and	one	potentiometer.	The	LEDs	will	be
connected	to	Pins	5,	6	and	7,	and	the	potentiometer	will	be	connected	to	ground,
Pin	A0	and	5V.

FIGURE	2-10	Circuit	schematic	for	the	sign

You	are	now	going	to	test	the	circuit	and	the	Arduino	code	on	the	breadboard,
then	you	will	rebuild	the	circuit	without	a	breadboard.

Prototyping	on	a	Breadboard
To	build	your	prototype	circuit,	use	the	following	steps:

1.	 Use	a	jumper	wire	to	connect	5V	on	the	Arduino	Uno	to	one	of	the	long
rows	running	along	the	bottom	of	the	breadboard.	If	the	breadboard	is
labelled	with	a	red	line	or	+,	connect	5V	to	that	row;	otherwise,	choose
either	row.

2.	 Use	another	jumper	wire	to	connect	GND	on	the	Arduino	Uno	to	the	other
long	row	on	the	breadboard.

3.	 Insert	the	legs	of	the	potentiometer	into	any	of	the	short	rows	in	the	middle
of	the	breadboard.

4.	 Use	a	jumper	wire	to	connect	one	of	the	outside	legs	of	the	potentiometer	to
the	long	row	connected	to	GND	on	the	Arduino	Uno.

5.	 Use	another	jumper	wire	to	connect	the	other	outside	legs	of	the
potentiometer	to	the	long	row	connected	to	5V	on	the	Arduino	Uno.

6.	 Connect	the	middle	leg	of	the	potentiometer	to	pin	A0	on	the	Arduino	Uno.
7.	 Put	one	leg	of	one	of	the	resistors	in	a	short	row	on	the	top	half	of	the

breadboard	towards	the	left	side	of	the	board.	Put	the	other	leg	of	the
resistor	in	the	short	row	across	the	gap	in	the	middle	of	the	breadboard
directly	below	where	you’ve	inserted	the	first	resistor	leg.	The	rows	of	the
breadboard	aren’t	connected	across	the	gap,	so	each	resistor	leg	is	in	its
own	row—they	aren’t	touching	the	same	piece	of	metal	inside	the
breadboard.

8.	 Repeat	with	the	second	and	third	resistors.	Place	one	resistor	in	the	centre
of	the	breadboard	and	the	other	towards	the	right	side	of	the	breadboard.
Each	resistor	should	reach	across	the	gap	in	the	middle	of	the	board	and
have	one	leg	in	a	short	row	above	the	gap	and	the	other	in	a	short	row
below	the	gap.

9.	 Now	add	the	LEDs.	The	long	leg	of	each	LED	connects	to	the	resistor,	and
the	short	leg	connects	to	ground.	Insert	the	long	leg	of	each	LED	into	the
same	short	row	as	each	resistor.	It	should	be	placed	just	below	the	resistor.
Place	the	green	LED	on	the	left	side	of	the	breadboard,	the	yellow	in	the
middle	and	the	red	on	the	right	side.

10.	 Insert	the	short	leg	of	each	LED	into	the	long	rows	running	the	entire	length
of	the	breadboard	at	the	very	bottom	that	is	connected	to	GND	on	the
Arduino	Uno.

11.	 Using	three	more	jumper	wires,	connect	one	wire	from	Pin	5	on	the
Arduino	Uno	(not	A5,	but	the	5	in	the	section	labelled	Digital)	to	the	top	of
the	resistor	on	the	left	side	of	the	breadboard	connected	to	the	green	LED.
Use	a	second	jumper	wire	to	connect	Pin	6	to	the	middle	resistor	connected
to	the	yellow	LED	and	a	third	jumper	wire	to	connect	from	Pin	7	to	the	last
resistor	connected	to	the	red	LED.

When	finished,	your	prototype	circuit	should	look	like	the	one	in	Figure	2-11.
Notice	anything?	The	full	circuit	for	the	sign	is	a	combination	of	the	two	circuits
you	were	worked	with	earlier	in	this	chapter.	The	potentiometer	is	read	into	Pin
A0,	and	the	three	LEDs	are	controlled	by	the	output	on	Pins	5,	6	and	7.

FIGURE	2-11	Prototype	circuit	on	the	breadboard	for	the	sign

Writing	the	Code
Next	you	need	the	code.	Launch	the	Arduino	IDE	and	type	the	following	sketch
in	a	new	sketch	window.	Don’t	forget	to	save	it!

Start	your	sketch	by	creating	empty	setup()	and	loop()	functions.

void	setup()	{

}

void	loop()	{

}

Next	add	a	variable	at	the	top	of	the	sketch	to	keep	track	of	your	potentiometer.

//	Pins

int	potPin	=	A0;

In	the	setup(),	start	serial	communication	so	you	can	print	messages	to	Serial
Monitor.	Type	the	following	lines	between	the	{	and	}	of	the	setup().

//	start	serial

Serial.begin(9600);

The	loop()	function	controls	all	the	action.	The	value	from	the	potentiometer	is
read	and	saved	in	a	variable	called	potValue.	A	different	message	is	then	printed
according	to	the	number	saved	in	the	potValue	variable.	The	message	prints	out
what	should	happen	with	the	LEDs.	Type	the	following	lines	between	the	{	and
}	of	the	loop().

int	potValue	=	analogRead(potPin);

//	print	what	the	pot	value	is

Serial.print("Potentiometer	is:	");

Serial.println(potValue);

//	if	pot	is	less	than	341

if(potValue	<	341)	{	

		Serial.println("Turn	on	green,	turn	off	yellow	and	red");

}

//	if	pot	more	than	or	equal	to	341	and	

//	less	than	682

if(potValue	>=	341	&&	potValue	<	682)	{	

		Serial.println("Turn	on	yellow,	turn	off	green	and	red");

}

//	if	pot	more	than	or	equal	to	682

if(potValue	>=	682)	{	

		Serial.println("Turn	on	red,	turn	off	green	and	yellow.");

}

//	A	pause	to	slow	down	the	messages

delay(50);

Save	the	sketch	and	upload	it	to	your	Arduino	Uno.	Open	the	Serial	Monitor	and
see	what	happens	when	you	turn	the	potentiometer.	You	should	see	the	value	of
the	potentiometer	print	along	with	what	the	LEDs	should	be	doing—but	you
haven’t	programmed	the	LEDs	yet.	Time	to	do	that	now!

Add	three	more	variables	to	keep	track	of	the	LED	pins	at	the	top	of	your	sketch.

int	greenLED	=	5;

int	yellowLED	=	6;

int	redLED	=	7;

Inside	setup(),	add	the	code	to	set	each	pinMode().

//	set	to	output	to	LED	pins

pinMode(greenLED,	OUTPUT);

pinMode(yellowLED,	OUTPUT);

pinMode(redLED,	OUTPUT);

In	the	loop(),	add	the	digitalWrite()	functions	to	turn	on	and	off	each	LED
(shown	in	bold	in	the	following	code).	You	can	also	remove	the	delay()	at	the
end	of	the	loop().	Your	full	sketch	should	look	like	this:

//	Pins

int	potPin	=	A0;

int	greenLED	=	5;

int	yellowLED	=	6;

int	redLED	=	7;

void	setup()	{	

		//	set	to	output	to	LED	pins	

		pinMode(greenLED,	OUTPUT);	

		pinMode(yellowLED,	OUTPUT);	

		pinMode(redLED,	OUTPUT);

		//	start	serial	

		Serial.begin(9600);

}

void	loop()	{	

		int	potValue	=	analogRead(potPin);

		//	print	what	the	pot	value	is	

		Serial.print("Potentiometer	is:	");	

		Serial.println(potValue);

		//	if	pot	is	less	than	341	

		if(potValue	<	341)	{	

				Serial.println("Turn	on	green,	turn	off	yellow	and	red");	

			//	turn	on	green	LED	

			digitalWrite(greenLED,	HIGH);

			//turn	off	yellow	and	red	LEDs	

			digitalWrite(yellowLED,	LOW);	

			digitalWrite(redLED,	LOW);	

		}

		//	if	pot	more	than	or	equal	to	341	and	

		//	less	than	682	

		if(potValue	>=	341	&&	potValue	<	682)	{	

			Serial.println("Turn	on	yellow,	turn	off	green	and	red");	

			//	turn	on	yellow	LED	

			digitalWrite(yellowLED,	HIGH);

			//	turn	off	green	and	red	LEDs	

			digitalWrite(greenLED,	LOW);	

			digitalWrite(redLED,	LOW);	

		}

		//	if	pot	more	than	or	equal	to	682	

		if(potValue	>=	682)	{	

				Serial.println("Turn	on	red,	turn	off	green	and	yellow.");	

			//	turn	on	red	LED	

			digitalWrite(redLED,	HIGH);

			//	turn	off	green	and	yellow	LEDs	

			digitalWrite(greenLED,	LOW);	

			digitalWrite(yellowLED,	LOW);	

		}

}

Upload	the	sketch	with	the	circuit	on	the	breadboard.	If	you	don’t	want	to	type
all	the	code,	you	can	download	the	sketch	from	the	companion	site	at
www.wiley.com/go/adventuresinarduino.

Ready?	Time	to	try	it	out.	You	should	be	able	to	change	which	LED	turns	on	by
turning	the	potentiometer.	Only	one	LED	should	turn	on	at	a	time.	You	can	open
the	Serial	Monitor	in	the	Arduino	IDE	to	make	sure	the	correct	values	are
coming	from	the	potentiometer.

DIGGING	INTO	THE	CODE

	There	is	one	bit	of	code	in	the	sketch	for	the	status	message	sign	that	you	haven’t	seen	before:
&&.	Those	two	ampersands	(&&)	without	a	space	in	between	means	that	both	the	piece	of	code
before	it	and	after	need	to	be	true.

For	example:

4<6	&&	10<20

http://www.wiley.com/go/adventuresinarduino

is	true	because	both	4<=6	and	10<20	are	true.	But:

3>9	&&	5<7

is	false	because	only	5<7	is	true;	3>9	is	false.	The	&&	symbol	is	a	way	to	combine	restrictions	in	an	if
statement.	In	your	sketch,	it’s	used	to	turn	on	the	yellow	LED	only	if	potValue>=341	and	also
potValue<682.

Creating	your	Sign
In	any	project,	the	thing	that	really	brings	it	come	to	life	is	the	structure	in	which
you	house	the	electronics.	It	doesn’t	just	protect	your	electronics	and	hide	the
parts	you	don’t	want	to	see—it	also	gives	you	a	chance	to	get	creative.	The	code
and	circuit	are	a	big	part	of	the	creative	process	of	making	an	Arduino	project,	of
course!	But	this	is	the	part	where	you	can	really	let	your	imagination	run	riot	so
you	can	show	off	your	project	to	your	friends	and	family	by	getting	it	off	the
breadboard	and	into	a	stylish	new	home!

You	can	choose	whatever	materials	you	would	like	to	use	to	create	your	sign,	but
a	shoebox	works	well.	It	can	easily	be	cut	with	a	utility	knife	or	scissors	and
decorated	with	paper	and	glue	or	paint,	and	you’ll	be	able	to	make	it	as	personal
as	you	like.

	You	can	watch	a	video	demonstrating	how	to	build	the	sign	and	solder	the	circuit	on	the
companion	site	at	www.wiley.com/go/adventuresinarduino.

Cutting	Holes	for	the	Potentiometer	and	LEDs
Before	you	decorate	the	box,	you	need	to	cut	some	holes	in	it	where	you	want
your	LEDs	and	the	knob	of	the	potentiometer	to	be	located.	Make	five	holes:
three	for	the	LEDs,	one	for	the	knob	and	one	for	the	USB	cable.	Measure	the
lenses	of	the	LEDs	and	the	shaft	of	the	control	knob	so	you	can	make	the	holes
just	big	enough	for	those	components	to	fit	snugly	into	them.	(If	you	make	the
holes	too	big,	the	LEDs	and	knob	will	just	fall	out!)	For	the	USB	cable,	the	hole
needs	to	be	large	enough	for	you	to	pass	the	end	of	the	USB	cable	that	plugs	into
the	Arduino	through	it.

http://www.wiley.com/go/adventuresinarduino

	If	you	are	using	a	shoebox,	I	recommend	that	you	make	the	holes	for	the	LEDs,	knob	,and
USB	cable	in	the	bottom	of	the	box,	as	shown	in	Figure	2-12.	That	way	you	can	easily
remove	the	lid	to	access	the	electronics	and	then	quickly	hide	them	all	away.

FIGURE	2-12	Cutting	holes	for	the	LEDs	and	knob

Adding	the	Status	Messages	and	Decorating	the	Sign
Now	you’re	ready	to	transform	your	old	shoebox	into	a	slick	sign	box	by
painting	it	or	covering	it	with	paper.	Decide	on	your	messages—you	can	use	the
messages	I’ve	suggested	in	Figure	2-11	or	create	your	own.	It	doesn’t	matter
whether	you	write	or	paint	them	onto	the	box	yourself,	print	them	from	a
computer	and	glue	them	next	to	the	LEDs,	cut	them	out	of	magazines—do
whatever	you	like.	There	are	no	limits!	Express	your	creativity—use	paint,
markers,	crayons	or	whatever	you	have	available.	In	my	opinion,	you	can
seldom	go	wrong	with	glitter.	Or	why	not	use	natural	materials	like	feathers	or

dried	flowers?

Soldering	the	Circuit
You	know	that	your	code	and	circuit	work	(and	if	you	haven’t	tested	them,	go
back	and	do	that!),	so	you	are	ready	to	more	permanently	assemble	your	circuit.
Circuits	depend	on	electricity	flowing	through	conductive	materials	like	metal.
That	means	you	can’t	use	things	like	glue	to	connect	components—the
electricity	can’t	flow	through	glue.	Instead	you	use	solder.	It’s	like	conductive
glue.

Solder	is	a	metal	that	melts	at	a	lower	temperature	than	most	metals,	but	that
lower	temperature	is	still	quite	hot!	Much	hotter	than	the	oven	in	your	kitchen
ever	gets,	so	it’s	important	that	you	are	safe	when	soldering.	Take	as	much	care
as	you	would	handling	hot	pots	and	pans	when	cooking.

	Only	solder	when	an	adult	is	nearby	to	help!

	There	are	lot	of	resources	online	to	help	you	get	started	soldering	if	you	haven’t	done	it
before.	YouTube	is	full	of	videos,	but	the	tutorials	on	Sparkfun
(https://learn.sparkfun.com/tutorials/how-to-solder---through-hole-soldering)
and	Adafruit	(https://learn.adafruit.com/adafruit-guide-excellent-soldering)
are	excellent	places	to	start.

	Soldering	can	get	difficult	when	you	feel	like	you’ve	run	out	of	hands	to	hold	things.	You
can	get	a	tool	called	a	third	hand	or	helping	hand	that	can	help	hold	things	still	for	you.	An
alternative	is	to	use	a	bit	of	poster	putty	to	hold	an	item	in	place	while	you	solder	it.

When	any	paint	or	glue	on	your	box	is	dry,	you	can	start	laying	out	your	circuit.
Before	you	start,	you	should	decide	where	your	Arduino	will	be	located	inside
your	box.

https://learn.sparkfun.com/tutorials/how-to-solder---through-hole-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering

Here’s	how	you	make	your	LED	circuit	(see	Figure	2-13):

1.	 Connect	a	resistor	to	each	of	the	LEDs.	Twist	the	leg	of	a	resistor	with	the
long	leg	of	an	LED	so	that	they	don’t	easily	come	apart.	Solder	the
connection.	Do	this	will	all	three	LEDs.

2.	 Place	the	three	LEDs	in	their	holes	in	the	box.	Bend	the	shorter	leg	(the	leg
that	connects	to	ground)	of	the	top	LED	down	towards	the	LED	below	it.
Repeat	with	the	middle	LED	and	bend	the	shorter	leg	towards	the	bottom
LED.

3.	 Cut	a	piece	of	wire	that	reaches	from	the	leg	of	the	top	bent	LED	to	the
middle	bent	LED	leg	and	then	a	second	piece	of	wire	that	reaches	from	the
middle	bent	LED	leg	to	the	bottom	bent	LED	leg.	It’s	better	for	the	wires	to
be	too	long	than	too	short.	Cut	at	least	an	inch	more	than	you	measured.
Use	wire	strippers	to	strip	approximately	a	½"	from	each	end	of	the	wires.

4.	 Remove	the	LEDs	from	the	box.	Twist	one	end	of	the	one	of	the	wires	with
the	short	bent	leg	of	the	top	LED.	Solder	them	together	with	a	soldering
iron.

5.	 Twist	one	end	of	the	other	wire	with	the	short	bent	leg	of	the	middle	LED.
Solder	them	together.

6.	 Now	you	will	connect	the	wire	connected	to	the	short	leg	of	your	top	LED
to	the	short	leg	of	the	middle	LED.	Twist	the	end	of	the	wire	hanging	from
the	top	LED	around	the	bent	leg	of	the	middle	LED	and	solder	them
together.

7.	 Repeat	with	the	wire	connected	to	the	middle	LED	to	connect	it	to	the
bottom	LED.

8.	 Put	your	newly	connect	LEDs	into	their	holes	in	the	box	to	make	sure	they
still	fit.	If	they	don’t,	you	can	cut	or	desolder	the	wires	and	try	again.

9.	 You	now	are	going	to	cut	the	wires	that	will	reach	from	the	LEDs	to	the
Arduino	Uno.	You	need	to	measure	and	cut	three	wires	that	reach	from	the
resistors	connected	to	the	LEDs	and	one	wire	that	reaches	from	the	short
leg	of	the	bottom	LED.	Again,	cut	them	about	an	inch	longer	than	the
measurement	and	strip	a	½"	from	each	end.

10.	 Solder	each	of	the	wires	to	their	resistor	or	LED.

	Remember	to	only	solder	with	an	adult.	Be	careful;	the	end	of	the	soldering	iron	is	very
hot!

FIGURE	2-13	The	LED	portion	of	the	circuit

Now	solder	the	wires	to	the	potentiometer	(shown	in	Figure	2-14):

1.	 Place	the	potentiometer	in	its	hole.	Cut	three	wires	that	reach	from	the
potentiometer	to	the	Arduino	board.

2.	 Strip	about	half	an	inch	of	the	plastic	from	one	end	of	each	of	the	wires	and
solder	each	wire	to	a	leg	of	the	potentiometer.

3.	 Strip	about	¼"	of	the	plastic	from	the	free	ends	of	each	wire.	You	do	this	so
that	they	can	be	inserted	into	the	pins	on	the	Arduino	board.

FIGURE	2-14	Soldered	potentiometer

At	this	point,	stop	and	inspect	your	work.	Carefully	check	that	none	of	the
exposed	metal	from	the	wires	or	component	legs	can	touch	each	other.	If	they
can,	they	might	create	accidental	electrical	connections.	If	this	is	the	case,	wrap
electrical	tape	around	the	metal	to	prevent	that	happening.

Inserting	the	Electronics
When	the	glue	and	paint	you’ve	used	to	decorate	the	box	is	completely	dry,	you
are	ready	to	finish	your	sign	and	install	your	electronics.

Place	the	LEDs	into	their	holes	in	the	box.	You	can	use	a	little	glue	or	tape	to
hold	them	in	place	if	you	need	to.

The	potentiometer	comes	with	a	washer	and	nut	that	screw	down	on	the	base	of
the	shaft.	Remove	these,	push	the	potentiometer	through	its	hole	and	screw	down
the	washer	and	nut	to	hold	it	firmly	on	the	box.	You	can	make	a	control	knob	to
attach	to	the	end	of	the	potentiometer	if	you’d	like.

Insert	your	wires	from	your	components	into	the	Arduino	Uno.	The	three	wires
connected	to	the	resistors	go	to	Pins	5,	6	and	7.	The	wire	connected	to	the	short
leg	of	the	bottom	LED	is	inserted	in	a	GND	pin.	One	of	wires	connected	to	an
outside	leg	of	the	potentiometer	is	inserted	in	5V,	and	the	other	outside	leg	is
connected	to	GND.	The	remaining	wire	connected	to	the	middle	pin	is	inserted
in	Pin	A0.

You	now	need	to	decide	how	you	want	your	project	to	be	powered.	You	can,	of
course,	leave	your	Arduino	Uno	connected	to	your	computer,	but	that	can	be
inconvenient.	You	can	also	still	use	your	USB	cable,	but	plug	it	into	a	wall
adapter	instead	of	your	computer,	as	shown	in	Figure	2-15.	Wall	adapters	often
come	with	new	mobile	phones,	so	you	might	have	one	lying	around	already.	Any
that	lets	you	connect	a	USB	cable	is	fine	to	use.

FIGURE	2-15	Power	supply	that	you	can	use	with	an	Arduino	board

Congratulations!	You	have	created	your	own	status	message	sign	that	you	can	set
up	and	plug	in	to	display	a	message	of	your	choice.	You’ve	created	your	first
Arduino	project	that	breaks	free	from	the	computer	and	can	run	on	its	own.
Yours	may	look	very	different	from	the	one	in	Figure	2-16,	and	that’s	great!	You
are	well	on	your	way	to	becoming	an	Arduino	expert!

FIGURE	2-16	Completed	status	message	sign

Further	Adventures	with	Arduino
Now	that	you	can	change	the	output	of	the	Arduino	Uno	according	to	the	turn	of
a	potentiometer,	what	else	could	you	do?	Here	are	some	project	ideas:

Change	the	speed	of	a	flashing	LED	by	turning	the	potentiometer.
Make	the	LEDs	flash	in	a	sequence	and	change	the	speed	with	the
potentiometer.

	

Arduino	Command	Quick	Reference	Table
Command Description

int
Data	type	that	creates	a	new	variable	that	is	an	integer	(whole
number).	See	also	http://arduino.cc/en/Reference/Int.

Serial.begin()
Starts	the	serial	communication	so	messages	can	be	sent	and
received.	See	also	http://arduino.cc/en/Serial/Begin.

Serial.print()
Sends	a	message	without	a	newline	at	the	end.	See	also
http://arduino.cc/en/Serial/Print.

Serial.println()
Sends	a	message	with	a	newline	at	the	end.	See	also
http://arduino.cc/en/Serial/Println.

http://arduino.cc/en/Reference/Int
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println

analogRead()
Reads	in	the	voltage	on	the	specified	pin	and	assigns	it	a	number
from	0	(for	ground)	to	1023	(for	5V).	See	also
http://arduino.cc/en/Reference/AnalogRead.

if()
Used	to	determine	whether	a	section	of	code	will	be	executed.	See
also	http://arduino.cc/en/Reference/If.

Achievement	Unlocked:	You	are	taking	charge	and	making	decisions!

In	the	Next	Adventure
You	will	start	adding	motion	and	controlling	a	motor	in	the	next	project.

http://arduino.cc/en/Reference/AnalogRead
http://arduino.cc/en/Reference/If

ONE	WAY	OF	making	your	projects	more	dynamic	is	by	introducing	movement.
When	you	add	movement	to	a	project	it	can	feel	as	if	you’ve	actually	brought	it
to	life.	This	adventure	will	show	you	how,	by	working	with	a	servo	motor	and
adding	switches	to	your	circuits.

In	this	adventure,	you	will	start	by	finding	out	about	the	new	components	you
are	going	to	work	with,	then	use	those	components	to	build	a	fantastic
combination	safe,	which	only	opens	when	you	turn	all	the	potentiometers	to	their
secret	positions	and	push	the	button.	If	you	know	the	right	combination,	the	safe
opens	automatically.	The	safe	is	constructed	from	cardboard,	so	won’t	withstand
a	brute	force	attack,	but	it	can	be	used	to	deter	parents	from	getting	inside!

What	You	Need
You	will	be	using	a	new	actuator,	which	is	a	fancy	word	for	an	object	that	takes
an	electrical	signal	and	then	does	something	in	the	real	world.	You	have	already
used	one	type	of	actuator	in	Adventures	1	and	2:	the	LED.	It	takes	electricity	and
turns	it	into	light.	In	this	adventure,	you	use	a	motor	that	takes	electricity	and
turns	it	into	motion.

	An	actuator	translates	an	electrical	signal	into	a	real-world	modifies	action	such	as	light,
sound	or	movement.

The	opposite	of	an	actuator	is	a	sensor,	and	you	will	be	using	a	new	one	of	those
as	well.	Adventure	2	introduced	the	potentiometer,	which	senses	rotation	and
translates	it	into	an	electrical	signal.	Here	you	use	potentiometers	again	and	also
use	a	button	to	translate	a	press	into	an	electrical	signal.

	A	sensor	detects	something	in	the	real	world	such	as	light,	sound	or	movement,	and
translates	it	into	an	electrical	signal.

You	need	the	following	items.	The	electronic	components	are	shown	in	Figure	3-
1.

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard
4	jumper	wires
A	servo	motor
A	tactile	push	button
1	10kΩ	resistor

FIGURE	3-1	The	electronic	components	you	need	for	the	first	part	of	Chapter	3

Understanding	Different	Types	of	Motors
A	motor	is	general	term	for	something	that	takes	electricity	and	turns	it	into
mechanical	movement,	but	different	types	of	motor	let	you	control	that
movement	in	different	ways.	When	you	think	of	a	motor,	the	thing	you	think	of
is	probably	what	is	called	a	DC	motor.	The	DC	in	DC	motor	stands	for	direct
current.	Direct	current	is	the	type	of	electricity	that	you	use	in	your	Arduino
circuits.

	Direct	current	(DC)	is	the	type	of	electricity	used	in	Arduino	circuits.	It’s	the	same	kind
that	is	generated	by	a	battery	and	is	the	opposite	of	alternating	current	(AC),	which	is	what
comes	out	of	main	plugs	in	the	wall.

Toy	DC	motors	are	common	in	things	like	remote	control	cars.	When	a	DC
motor	is	connected	to	DC	current,	it	spins	a	shaft;	you	can	control	the	speed	of

the	motor	and	the	direction	it	spins,	but	not	much	else.	For	more	control,	you
need	something	that	will	do	more—either	a	servo	motor	or	a	stepper	motor.

There	are	different	types	of	servo	motor,	but	the	most	common	is	known	as	a
standard	hobby	servo	motor.	With	a	DC	motor,	the	shaft	spins,	but	you	don’t
necessarily	know	where	the	shaft	is	pointing	when	the	motor	stops.	A	servo
motor	knows	which	way	the	shaft	is	pointing.	Although	you	can	tell	a	servo
motor	where	to	point,	it	has	some	limitations;	it	can	only	point	in	some
directions	and	can’t	rotate	a	full	circle.	Whereas	a	DC	motor	can	rotate
continuously,	a	servo	motor	can	usually	only	rotate	180	degrees.

A	stepper	motor	combines	the	strengths	of	the	DC	and	servo	motors	in	that	it	can
rotate	continuously	and	you	can	tell	it	a	precise	location	to	rotate	to.	But	that
comes	at	a	price!	Stepper	motors	tend	to	cost	more	than	other	types	of	motor.
There’s	a	solution	to	this:	you	can	choose	the	cheaper	option	of	a	DC	or	servo
motor	for	your	project	(see	Figure	3-2)	and	get	round	the	limitations	by
engineering	a	solution	yourself.

FIGURE	3-2	A	servo	motor	and	toy	DC	motor

	A	servo	is	a	motor	that	can	be	controlled	to	rotate	to	a	specific	position.	It	usually	can’t
rotate	more	than	180	degrees.

	If	you’d	like	to	read	more	about	how	to	use	motors,	check	out	Making	Things	Move	by
Dustyn	Roberts	(McGraw-Hill,	2010).

Controlling	a	Servo	with	Arduino
The	Arduino	integrated	development	environment	(IDE)	comes	with	everything
you	need	to	control	a	servo.	It	even	has	example	sketches	to	get	you	going.	In
order	to	control	your	servo,	you	need	to	open	a	sketch	called	Sweep.	You	open
Sweep	by	launching	the	Arduino	IDE	and	clicking	on	File ⇒ Examples ⇒ Servo 
⇒ Sweep	(Figure	3-3).

FIGURE	3-3	Opening	the	Sweep	example	sketch

This	sketch	shows	how	to	tell	a	servo	to	move.	Read	through	the	code	in	the
Sweep	sketch.	The	first	line	of	code	after	the	comments	hasn’t	appeared	in	the
code	you	used	in	Adventures	1	and	2:	#include	<Servo.h>

The	#include	is	telling	Arduino’s	compiler	that	the	Sweep	sketch	will	be	using
some	functions	that	aren’t	always	included	in	an	Arduino	sketch,	and	that	the
compiler	can	find	those	functions	in	a	library	called	Servo.	The	code	tells	the
compiler	that	it	should	read	the	library	file	called	Servo.h.	The	<	>	around	the
filename	means	that	the	file	is	located	in	the	standard	location	on	the	computer

where	all	Arduino	libraries	are	stored.

Now	look	at	the	next	line	of	code:

Servo	myservo;

This	creates	a	new	variable	called	myservo	but	this	variable	isn’t	an	integer	like
the	other	variables	you’ve	used	(such	as	greenLED	in	Adventure	2).	Instead,	it	is
the	type	Servo	(instead	of	int).	Because	the	variable	is	a	Servo,	it	holds	all	the
information	needed	to	communicate	with	a	servo.

There	is	just	one	more	line	of	code	to	finish	setting	up	the	servo	in	the	Sweep
sketch.	The	Arduino	Uno	needs	to	know	which	pin	the	servo	will	be	connected
to.	This	only	needs	to	be	done	once,	so	that	should	happen	in	the	setup()
function.	A	few	lines	down	in	the	sketch	you	should	see	the	following	line:
myservo.attach(9);

Now	you	need	to	build	a	circuit	to	hook	up	your	servo	motor	to	your	Arduino
board,	which	will	end	up	looking	like	Figure	3-4.	You’ll	be	glad	to	hear	that	this
needs	just	three	connections:	5V,	ground	and	the	controlling	pin.	Unfortunately
the	bad	news	is	that	not	all	servo	motors	make	those	connections	in	the	same
order.	Some	servos	(such	as	those	shown	in	Figures	3-1	and	3-2)	come	with	a
label	that	nicely	illustrates	the	connections.	If	yours	doesn’t,	find	out	if	the	place
where	you	bought	the	servo	has	any	information.	If	that	doesn’t	provide	any
help,	you	can	just	try	wiring	the	circuit	in	different	combinations	until	it	works!

FIGURE	3-4	Circuit	to	connect	a	servo	to	the	Arduino	board

Build	the	circuit	for	the	servo:

1.	 Use	a	jumper	wire	to	connect	the	ground	pin	(may	be	labelled	GND	or	0V)
on	the	servo	to	any	of	the	GND	pins	on	the	Arduino	Uno.

2.	 Use	a	second	jumper	wire	to	connect	the	5V	pin	on	the	servo	to	the	5V	pin
on	the	Arduino	Uno.

3.	 Use	a	third	jumper	wire	to	connect	the	remaining	pin	on	the	servo	to	Pin	9
on	the	Arduino	Uno.

After	the	circuit	is	built,	upload	the	Sweep	sketch	(check	out	Adventure	1	if	you
haven’t	done	this	before),	and	watch	your	servo	come	to	life!	It	should	start
rotating	back	and	forth.	You	will	hear	and	see	it	working.

Repeating	the	Same	Thing	Over	and	Over
The	Arduino	board	controls	the	servo	motor	through	electrical	pulses	that	tell	it
where	to	rotate.	You	don’t	have	to	worry	about	how	it	does	that,	as	the	details	are
nicely	handled	by	the	servo	library.	All	you	have	to	do	is	tell	the	servo	where	to
go	to.	You	can	choose	a	position	for	the	servo	to	point	anywhere	between	0	and

180	degrees.

In	the	Sweep	sketch,	the	servo	rotates	its	arm	back	and	forth.	You	could	tell	the
servo	to	do	this	by	copying	and	pasting	myservo.write	over	and	over	again,	like
this:	myservo.write(0);
myservo.write(1);

myservo.write(2);

myservo.write(3);

That	isn’t	a	very	efficient	way	to	do	things,	though.	Computers	are	really	good	at
doing	repetitive	tasks,	so	there’s	a	better	way	to	make	the	servo	rotate	back	and
forth.	If	you’ve	read	the	code	in	the	Sweep	sketch	to	see	how	it’s	done	there,	you
might	have	noticed	a	programming	tool	called	a	for	loop.

	A	for	loop	is	a	programming	device	that	repeats	a	block	of	code	for	a	predetermined
number	of	times.

The	Sweep	sketch	has	two	for	loops.	Here’s	the	first	one:	for(pos	=	0;	pos	<
180;	pos	+=	1)	

		{	

				myservo.write(pos);	

				delay(15);	

		}

To	set	up	a	for	loop,	you	need	to	provide	three	pieces	of	information:

1.	 First	of	all,	you	need	to	state	what	the	starting	condition	is.	In	this	the
Sweep	sketch	it’s	pos	=	0.

2.	 Next,	you	need	to	say	what	needs	to	happen	for	the	for	loop	to	continue.
Here,	pos	has	to	stay	below	180	(expressed	in	code	as	pos	<	180).	When
pos	is	equal	to	or	larger	than	180,	the	loop	stops	and	the	code	in	between
the	{	and	}	is	no	longer	executed.

3.	 Finally,	you	need	to	say	what	changes	each	time	the	loop	is	executed.	In	the
Sweep	sketch,	1	is	added	to	pos	each	time	the	code	in	between	{	and	}	is
executed.	This	is	written	as	pos+=1,	for	short,	but	you	can	write	it	in	a
number	of	ways;	you	could	write	it	as	pos=pos+1	or	pos++.

	The	computer	doesn’t	notice	indents	or	spaces	between	pieces	of	code.	Sometimes	code
has	spaces	added	to	make	it	easier	to	read.	The	following	two	lines	of	code	look	the	same	to
the	Arduino.

		for(pos=0;	pos<180;pos+=1)

		for	(pos	=	0;	pos	<	180	;	pos	+=1)

It’s	easier	to	see	the	three	parts	of	the	for	loop	when	there	are	spaces	included.

Phew!	It’s	probably	time	for	a	recap.	In	this	example,	in	the	for	loop,	pos	starts
at	0.	Because	0	is	less	than	180,	the	code	in	the	{	}	is	executed.	The	servo	is	set
to	0	and	then	pauses	for	15	milliseconds	(by	using	the	delay()	function).	1	is
added	to	pos,	so	it	now	equals	1.	Because	1	is	less	than	180,	the	servo	is	set	to	1
and	then	pauses	for	15	milliseconds.	This	keeps	happening	until	pos	is	179.	The
servo	is	set	to	179	and	1	is	added	to	pos	making	it	180.	pos	is	no	longer	less	than
180,	so	the	code	in	the	{	}	is	skipped	and	the	Arduino	goes	onto	the	next	line	of
code	after	the	for	loop.

CHALLENGE

	What	is	happening	in	the	second	for	loop	in	the	Sweep	sketch?	This	is	what	it	looks	like:
for(pos	=	180;	pos>=1;	pos-=1)	

{

myservo.write(pos);	

delay(15);	

}

Change	the	for	loop	so	that	the	servo	only	rotates	from	0	to	90.

Digital	Input	with	a	Push	Button
You	might	think	the	simple	switch	would	be	quite	a	straightforward	electrical
component,	but	in	fact	switches	are	deceptively	complicated.	They	come	in
many	shapes	and	sizes.	You	have	many	of	them	in	your	house	to	turn	on	and	off
your	lights.	All	they	do	is	complete	or	interrupt	a	circuit.	Sometimes	they	change

where	the	current	flows	in	a	circuit,	but	the	type	of	switch	that	turns	your	lights
on	and	off	is	made	from	two	pieces	of	metal	that	either	touch	or	don’t	touch,
depending	on	the	position	of	the	switch.

	A	switch	is	a	component	that	either	disrupts	or	redirects	the	flow	of	current	in	a	circuit.

There	is	another	type	of	switch,	called	a	tactile	push	button.	It	also	has	two
pieces	of	metal	inside	of	it,	but	in	this	case	they	only	touch	when	the	button	is
actually	being	pressed.	A	tactile	push	button	has	four	legs,	but	it’s	better	to	think
of	them	as	two	pairs	of	legs	because	the	two	legs	in	each	pair	are	always
electrically	connected—even	when	the	switch	is	not	being	pressed.	When	the
button	is	pressed,	all	four	legs	are	electrically	connected.	See	Figure	3-5	for	an
illustration	of	how	a	tactile	push	button	works.

	A	tactile	push	button	is	a	type	of	switch.	A	push-to-break	push	button	interrupts	the	flow
of	current	in	a	circuit	when	it	is	pressed.	A	push-to-make	push	button	does	the	opposite	by
interrupting	current	only	when	it	is	not	pressed.

FIGURE	3-5	How	a	tactile	push	button	works

Now	you’re	going	to	build	the	circuit,	including	a	push	button,	as	shown	in
Figure	3-6.

1.	 Insert	the	push	button	into	four	rows	in	the	centre	of	your	breadboard.	The
push	button	fits	over	the	gap	in	the	middle,	so	two	legs	are	inserted	in	two
rows	on	the	top	half	of	the	board	and	the	other	two	legs	are	in	two	rows	on
the	bottom	half	of	the	board.

2.	 Use	a	jumper	wire	to	connect	the	row	where	the	bottom-right	leg	of	the
push	button	is	inserted	to	one	of	the	long	rows	along	the	bottom	of	the
breadboard.	If	your	breadboard	is	labelled	with	a	black	or	blue	line	or	a	-,
connect	it	to	that	row.	If	your	breadboard	isn’t	labelled,	connect	it	to	either
row.

3.	 Use	another	jumper	wire	to	connect	the	long	row	connected	to	the	push
button	to	one	of	the	GND	pins	on	the	Arduino	Uno.

4.	 Use	a	jumper	wire	to	connect	Pin	2	on	the	Arduino	Uno	to	the	row
connected	to	the	top-left	leg	of	the	push	button.

FIGURE	3-6	Circuit	with	a	tactile	push	button

Now	you’ve	built	your	circuit,	open	the	example	sketch	at	File ⇒ Examples ⇒ 
01.Basics ⇒ DigitalReadSerial.	Upload	the	sketch	and	open	the	Serial	Monitor
by	clicking	the	button	in	the	Arduino	IDE	or	going	to	Tools ⇒ Serial	Monitor.

Ready?	Time	to	press	and	release	the	button.	What	happens	in	the	Serial
Monitor?	When	your	finger	is	pressing	the	button,	you	should	see	a	0	printed;
when	the	button	is	not	being	pressed,	you	should	see	a	mixture	of	0s	and	1s.	The
sequence	of	0s	and	1s	is	random,	so	you	might	see	mostly	0s	or	mostly	1s	rather
than	an	even	mixture	of	the	two.	This	is	what’s	called	a	floating	input.	When
the	button	isn’t	being	pressed,	the	pin	isn’t	connected	to	a	voltage	source	such	as
ground	or	5V—it’s	floating.	The	Arduino	Uno	is	reading	in	random	values	from
that	pin.

	A	floating	input	is	a	pin	that	is	not	connected	to	anything.	The	pin	reads	in	random	values
if	it	is	not	connected	to	a	voltage	source,	such	as	ground,	5V	or	a	sensor.

It’s	not	a	good	thing	to	have	floating	values.	The	main	reason	is	that	when	the
Arduino	“reads	in”	a	digital	signal	from	a	pin,	it	reads	in	a	0	when	the	pin	is
connected	to	ground	and	reads	in	a	1	when	it’s	connected	to	5V.	If	the	pin	isn’t
connected	to	either	ground	or	5V	and	is	randomly	reading	in	0	and	1,	then	it’s
impossible	for	your	code	to	make	good	decisions	based	on	the	input	from	that
pin.	If	you	want	to	start	a	motor	moving	only	when	a	button	is	pressed,
connecting	that	pin	to	ground,	then	you	can’t	have	the	pin	reading	in	0	when	the
button	isn’t	pressed.

The	way	around	this	problem	is	to	use	a	kind	of	resistor	called	a	pull-up
resistor.	A	pull-up	resistor	gives	a	default	value	of	5V	to	a	pin	by	always
connecting	that	pin	to	5V.	The	pin	is	also	connected	to	the	push	button,	and	the
push	button	is	connected	to	ground.	The	resistor	usually	has	quite	a	high	value,
such	as	10kΩ.	There	is	no	resistance	between	ground	and	the	pin	when	the
button	is	pressed,	so	the	pin	connects	to	ground	instead	of	5V	through	the	pull-
up	resistor.	Electricity	always	chooses	the	path	with	the	least	resistance,	and,	in
this	case,	that	is	the	path	between	ground	and	the	pin.

	A	pull-up	resistor	is	a	resistor	that	is	connected	to	the	high	voltage	in	a	circuit,	which	sets
the	default	state	of	the	pin	on	that	circuit	to	HIGH.	The	resistor	is	usually	10kΩ.

Like	most	things	with	electronics,	the	effect	of	a	pull-up	resistor	is	much	easier
to	understand	when	you	actually	build	a	circuit	and	see	what	happens	for
yourself.	That’s	what	you’re	going	to	do	now.	Change	the	circuit	on	your
breadboard	to	the	one	shown	in	Figure	3-7.

1.	 Start	with	the	circuit	you	just	built	with	the	push	button	in	the	centre	of	the
breadboard.

2.	 Use	a	jumper	wire	to	connect	from	the	5V	pin	on	the	Arduino	Uno	to	the
other	long	row	along	the	bottom	of	the	breadboard	(the	one	that	isn’t
connected	to	ground).

3.	 Place	one	leg	of	the	10kΩ	resistor	in	the	same	short	row	as	the	lower-left
leg	of	the	push	button.	Insert	the	other	leg	of	the	resistor	into	the	long	row
now	connected	to	5V.

FIGURE	3-7	Circuit	with	a	pull-up	resistor

You	don’t	need	to	change	anything	in	your	Arduino	code,	and	you	can	just	leave
the	Serial	Monitor	open.	Now,	what	happens	when	you	press	and	release	the
button?	It	should	now	only	show	0	when	the	button	is	pressed	and	1	when	it	is
released.

The	Arduino	board	has	pull-up	resistors	built	into	it	already,	so	you	can	use	these
instead	of	building	a	pull-up	resistor	into	your	circuit	on	the	breadboard.	To	do
this,	you	first	indicate	that	you	want	to	use	one	of	the	built-in	pull-up	resistors

when	you	set	up	the	pinMode()	in	setup(),	by	typing	in	the	following	code:
pinMode(pushButton,	INPUT_PULLUP);

Next,	change	the	DigitalReadSerial	sketch	so	that	the	second	argument	of
pinMode	is	INPUT_PULLUP	instead	of	INPUT.	Your	setup()	should	look	like:	void
setup()	{	

		//	initialize	serial	communication	at	9600	bits	per	second:	

		Serial.begin(9600);	

		//	make	the	pushbutton’s	pin	an	input:	

		pinMode(pushButton,	INPUT_PULLUP);	

}

Finally,	upload	the	sketch	again	and	change	your	circuit	on	your	breadboard	to
the	one	in	Figure	3-8	by	removing	the	10kΩ	resistor	and	jumper	wire	connecting
5V	and	one	of	the	long	rows.	Your	button	should	act	the	same	way	as	it	did	when
you	had	the	pull-up	resistor	on	the	breadboard.

FIGURE	3-8	Circuit	with	a	push	button	and	internal	pull-up	resistor	on	the
Arduino	board

Building	a	Combination	Safe
Well	done!	You	have	built	up	quite	an	arsenal	of	sensors	and	actuators.	Now	you

can	start	putting	them	together	to	make	something	very	cool	and	very	useful:	a
combination	safe	that	opens	and	closes	automatically	(see	Figure	3-9).	To	open
the	safe,	you	dial	in	a	combination	and	push	a	button.	The	box	will	only	open	if
the	combination	is	correct,	and	it	will	stay	open	until	you	release	the	button.	It
can	be	a	great	place	to	keep	a	secret	candy	stash	or	keep	your	favourite	pens	and
pencils	from	being	“borrowed”	without	your	permission.

FIGURE	3-9	Combination	safe

What	You	Need
You	need	the	items	in	the	following	list	to	build	your	safe.	It	includes	the
components	you	need	to	prototype	your	circuit	on	a	breadboard	and	the
components	you	use	in	your	safe.	Figure	3-10	shows	the	electronic	components
you	need.

FIGURE	3-10	The	electronic	components	you	need	to	build	your	combination
safe

You	use	a	different	button	in	your	safe	than	on	your	breadboard.	You	use	a	panel
mount	push	button	instead	of	a	tactile	push	button.	You	still	use	a	tactile	push
button	to	test	your	circuit	on	a	breadboard,	but	the	panel	mount	button	is	bigger
and	easier	to	mount	on	a	cardboard	box.	You	find	out	how	to	connect	wires	to
the	panel	mount	button	later	in	this	chapter.

	A	panel	mount	push	button	is	a	push	button	that	is	designed	to	be	mounted	inside	a	case.
It	comes	with	a	nut	and	washer	to	secure	it	to	a	panel.

Have	the	following	supplies	on	hand	before	you	start	the	project:

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard

16	jumper	wires
A	tactile	push	button	(push-to-make)
A	panel	mount	push	button	(push-to-make)
A	servo	motor
3	10kΩ	potentiometers
Some	solder
A	soldering	iron
Some	wire
A	paperclip	or	bamboo	skewer
A	small	box	with	a	lid	to	be	your	safe
A	hot	glue	gun
Scissors	or	a	utility	knife

Your	box	can	be	any	size,	but	a	box	approximately	the	size	of	a	shoebox	works
well.	It	works	best	if	the	lid	is	already	attached	to	the	base	of	the	box,	but	the	lid
isn’t	attached,	I	explain	how	you	can	attach	it	yourself.

You	can	also	use	anything	you	would	like	to	decorate	your	box,	such	as	paint	or
paper.

	Visit	the	companion	website	to	see	a	video	showing	how	the	building	the	safe
(www.wiley.com/go/adventuresinarduino).

Understanding	the	Circuit
The	circuit	for	the	safe	has	three	components	a	servo,	three	potentiometers	and	a
push	button.	The	three	potentiometers	are	read	into	three	analog	pins	and	the
push	button	is	read	into	a	digital	pin.	The	servo	motor	is	controlled	from	another
digital	pin.

Figure	3-11	shows	the	schematic	for	the	safe.	Looks	complicated,	doesn’t	it?
Don’t	worry;	you	will	build	it	step	by	step.	Before	you	solder	the	circuit	for	your
safe,	you’re	going	to	make	a	prototype	of	it	on	your	breadboard.

http://www.wiley.com/go/adventuresinarduino

FIGURE	3-11	Circuit	schematic	for	the	combination	safe

	In	circuit	schematics,	line	showing	connections	often	cross	over	each	other.	In	order	to
make	it	less	confusing,	two	lines	are	electrically	connected	to	each	other	only	when	there	is
a	circle	over	their	intersection.	Otherwise,	they	are	two	independent	wires	that	don’t
electrically	make	contact.

Prototyping	on	a	Breadboard
You	should	always	prototype	a	circuit	on	a	breadboard	before	building	your	final
project.	It’s	much	easier	to	fix	any	errors	before	you	have	started	cutting	wire
and	soldering	connections	together!	Build	the	circuit	on	a	breadboard	as	shown
in	Figure	3-12.

1.	 Start	by	placing	the	tactile	push	button	on	the	right	of	the	breadboard.	It
should	fit	over	the	gap	in	the	middle	of	the	breadboard,	and	each	of	the	four
legs	should	be	pushed	into	the	nearest	rows.

2.	 Place	three	potentiometers	evenly	across	the	rest	of	the	breadboard.	Each
leg	of	the	potentiometers	should	be	in	its	own	row	on	the	breadboard.

3.	 Use	a	jumper	wire	to	connect	the	5V	pin	to	one	of	the	long	rows	along	the
bottom	of	the	breadboard	and	a	second	jumper	wire	to	connect	a	GND	pin
to	the	other	long	row.	If	your	breadboard	is	labelled	(not	all	are),	then
connect	5V	to	the	row	with	a	red	line	or	+,	and	connect	GND	to	the	row
with	a	blue	or	black	line	or	-.

4.	 Connect	the	left	leg	of	each	potentiometer	to	the	long	row	connected	to
GND	using	three	jumper	wires.

5.	 Connect	the	right	leg	of	each	potentiometer	to	the	long	row	connected	to	5V
using	three	jumper	wires.

6.	 Connect	the	lower-right	leg	of	the	push	button	to	GND.
7.	 Use	three	jumper	wires	to	connect	the	middle	pin	of	each	potentiometer	to

Pins	A0,	A1	and	A2.
8.	 Use	a	jumper	wire	to	connect	the	top-left	leg	of	the	push	button	to	Pin	7.
9.	 Make	the	three	connections	for	the	servo.	Connect	the	ground	pin	of	the

servo	to	the	long	row	on	the	breadboard	connected	to	GND,	connect	the	5V
pin	of	the	servo	to	the	long	row	connected	to	5V	and	connect	the	remaining
pin	on	the	servo	to	Pin	9	on	the	Arduino	Uno.

FIGURE	3-12	Circuit	for	the	combination	safe

Writing	the	Code
Just	like	the	circuit,	the	sketch	for	the	safe	looks	complicated	at	first.	But	after
you	build	it	up,	step-by-step,	you	will	see	that	sketch	is	just	the	combination	of
smaller	sections	of	code.	The	code	detects	whether	the	button	is	being	pressed.	If

it	is,	the	Arduino	Uno	checks	whether	the	three	potentiometers	are	turned	to	the
correct	values	to	open	the	box.	If	they	are,	then	the	box	opens;	if	they	aren’t,
then	nothing	happens.

Start	by	launching	the	Arduino	IDE.	Start	a	new	sketch	with	an	empty	setup()
and	loop():	void	setup()	{	

}	

void	loop()	{	

}

At	the	very	top	of	your	sketch	before	setup(),	add	the	following	lines:	#include
<Servo.h>	

//	Pins	

int	potPin1	=	A0;	

int	potPin2	=	A1;	

int	potPin3	=	A2;	

int	buttonPin	=	7;	

int	servoPin	=	9;	

//	other	variables	

int	open1	=	0;	

int	open2	=	1023;	

int	open3	=	0;	

int	range	=	10;	

int	boxOpen	=	0;	

Servo	servo;

The	first	line	imports	the	library	to	control	the	servo	and	the	rest	of	the	lines	are
variables.	The	first	group	(under	//	Pins)	are	the	variables	to	keep	track	of
which	pins	are	connected	to	the	sensors	and	actuator.

The	next	five	variables	are	for	controlling	the	box.	The	variables	open1,	open2
and	open3	are	the	values	that	the	potentiometers	need	to	be	turned	to	in	order	to
open	the	box.	Because	it	can	be	difficult	to	turn	the	potentiometer	to	a	precise
number	(especially	when	you	aren’t	using	Serial	Monitor	to	see	the	exact	values
from	the	potentiometers),	the	range	variable	is	used	to	determine	how	close	you
have	to	be	to	the	right	number.	For	example,	any	value	from	open2-range
through	to	open2+range	registers	the	second	potentiometer	as	being	in	the
correct	position.	The	larger	the	number	stored	in	range,	the	easier	it	is	to	open
the	box.

The	boxOpen	variable	is	used	to	keep	track	of	whether	the	box	is	opened	or
closed.	The	box	starts	closed,	so	the	variable	is	set	to	0.	When	it	is	opened,	it	is
set	to	1	and	then	changed	back	to	0	when	the	box	is	closed.	The	loop()	function
holds	the	code	that	controls	boxOpen.

The	last	variable	is	a	familiar	one:	servo.	It	is	the	variable	that	communicates
with	the	servo.

The	next	step	is	to	add	the	code	to	the	setup():	//	set	button	pin	to	be	an
input	with	

//	with	pull-up	resistor	

		pinMode(buttonPin,	INPUT_PULLUP);	

//	attach	servo	to	pin	

servo.attach(servoPin);	//	attaches	the	servo	on	pin	9	

																							//	to	the	servo	object	

servo.write(90);	//	start	with	the	box	closed	

Serial.begin(9600);	//start	serial	communication

The	first	line	of	setup()	sets	the	pinMode()	for	the	push	button	and	turns	on	the
internal	pull-up	resistor.	The	rest	of	the	function	attaches	the	servo	to	its	pin,
makes	sure	the	servo	has	closed	the	box	and	then	starts	serial	communication.

Finish	your	sketch	by	adding	the	following	to	the	loop():	//	check	if	button
is	pressed	

int	buttonValue	=	digitalRead(buttonPin);	

//	if	button	is	pressed	and	box	is	closed	

if(buttonValue	==	0	&&	boxOpen	==	0)	{	

		//	button	is	pressed	

		int	potValue1	=	analogRead(potPin1);	

		int	potValue2	=	analogRead(potPin2);	

		int	potValue3	=	analogRead(potPin3);	

		Serial.print("pot	1:	");	

		Serial.print(potValue1);	

		Serial.print("	pot	2:	");	

		Serial.print(potValue2);	

		Serial.print("	pot	3:	");	

		Serial.println(potValue3);	

//	if	all	values	are	within	correct	range	

if(potValue1	<	(open1+range)	&&	

			potValue1	>	(open1-range)	&&	

			potValue2	<	(open2+range)	&&	

			potValue2	>	(open2-range)	&&	

			potValue3	<	(open3+range)	&&	

			potValue3	>	(open3-range)	

)	{	

			//	open	the	box	

			Serial.println("opening");	

			for(int	pos	=	90;	pos	>	0;	pos	-=	1)	

			{	

					servo.write(pos);	

					delay(15);	

			}	

			boxOpen	=	1;	

		}	

}	

		//	if	button	is	pressed	and	box	is	open	

if(buttonValue==1	&&	boxOpen==1)	{	

		Serial.println("closing	");	

		//	close	the	box	

		for(int	pos	=	0;	pos	<	90;	pos+=1)	

		{	

			servo.write(pos);	

			delay(15);	

		}	

		boxOpen	=	0;	

}

You	now	have	a	complete	sketch	and	you	are	ready	to	check	whether	your	circuit
is	working	correctly.	Upload	your	sketch	to	the	Arduino	Uno	and	open	the	Serial
Monitor.	Turn	the	potentiometers	until	they	match	the	values	stored	in	open1,
open2	and	open3,	and	then	push	and	hold	the	button.	The	servo	should	rotate	and
stop.	Release	the	button	and	the	servo	should	return	to	its	starting	position.

The	Digging	into	the	Code	section	goes	through	the	loop	in	more	detail	to
explain	how	your	safe	functions.	Here’s	the	full	sketch:	#include	<Servo.h>	

//	Pins	

int	potPin1	=	A0;	

int	potPin2	=	A1;	

int	potPin3	=	A2;	

int	buttonPin	=	7;	

int	servoPin	=	9;	

//	other	variables	

int	open1	=	0;	

int	open2	=	1023;	

int	open3	=	0;	

int	range	=	10;	

int	boxOpen	=	0;	

Servo	servo;	

void	setup()	{	

		//	set	button	pin	to	be	an	input	with	

		//	with	pull-up	resistor	

		pinMode(buttonPin,	INPUT_PULLUP);	

		//	attach	servo	to	pin	

		servo.attach(servoPin);	//	attaches	the	servo	on	pin	9	to	the

servo	object	

		servo.write(90);	//	start	with	the	box	closed	

		Serial.begin(9600);	//start	serial	communication	

}	

void	loop()	{	

		//	check	if	button	is	pressed	

		int	buttonValue	=	digitalRead(buttonPin);	

		//	if	button	is	pressed	and	box	is	closed	

		if(buttonValue	==	0	&&	boxOpen	==	0)	{	

			//	button	is	pressed	

			int	potValue1	=	analogRead(potPin1);	

			int	potValue2	=	analogRead(potPin2);	

			int	potValue3	=	analogRead(potPin3);	

			Serial.print("pot	1:	");	

			Serial.print(potValue1);	

			Serial.print("	pot	2:	");	

			Serial.print(potValue2);	

			Serial.print("	pot	3:	");	

			Serial.println(potValue3);	

			//	if	all	values	are	within	correct	range	

			if(potValue1	<	(open1+range)	&&	

					potValue1	>	(open1-range)	&&	

					potValue2	<	(open2+range)	&&	

					potValue2	>	(open2-range)	&&	

					potValue3	<	(open3+range)	&&	

					potValue3	>	(open3-range)	

)	{	

					//	open	the	box	

					Serial.println("opening");	

					for(int	pos	=	90;	pos	>	0;	pos	-=	1)	

					{	

							servo.write(pos);	

							delay(15);	

					}	

					boxOpen	=	1;	

			}	

		}	

		//	if	button	is	pressed	and	box	is	open	

		if(buttonValue==1	&&	boxOpen==1)	{	

			Serial.println("closing	");	

			//	close	the	box	

			for(int	pos	=	0;	pos	<	90;	pos+=1)	

			{	

					servo.write(pos);	

					delay(15);	

			}	

			boxOpen	=	0;	

		}	

}

DIGGING	INTO	THE	CODE

	Let’s	look	at	the	loop()	of	the	code	you’ve	just	input	in	a	little	more	detail.
The	value	of	the	buttonPin	is	read	in.	If	the	value	is	0	and	the	box	is	closed,	then	the	values	of	each	of
the	potentiometers	are	read:	//	check	if	button	is	pressed	
int	buttonValue	=	digitalRead(buttonPin);	

//	if	button	is	pressed	and	box	is	closed	

if(buttonValue	==	0	&&	boxOpen	==	0)	{	

			//	button	is	pressed	

			int	potValue1	=	analogRead(potPin1);	

			int	potValue2	=	analogRead(potPin2);	

			int	potValue3	=	analogRead(potPin3);

The	value	of	each	potentiometer	is	printed	to	the	Serial	Monitor	to	help	with	any	debugging:
Serial.print("pot	1:	");	

Serial.print(potValue1);	

Serial.print("	pot	2:	");	

Serial.print(potValue2);	

Serial.print("	pot	3:	");	

Serial.println(potValue3);

If	each	potentiometer	is	within	range	of	the	correct	value:	//	if	all	values	are	within	correct
range	

if(potValue1	<	(open1+range)	&&	

		potValue1	>	(open1-range)	&&	

		potValue2	<	(open2+range)	&&	

		potValue2	>	(open2-range)	&&	

		potValue3	<	(open3+range)	&&	

		potValue3	>	(open3-range)	

)	{

then	the	box	is	opened	by	using	a	for	loop	to	rotate	to	the	0	position.	You	know	if	the	box	is	closed	if
boxOpen	is	0.	After	the	box	is	open,	boxOpen	gets	set	to	1	so	that	you	have	confirmation	that	the	box	is
open.

			//	open	the	box	

			Serial.println("opening");	

					for(int	pos	=	90;	pos	>	0;	pos	-=	1)	

					{	

							servo.write(pos);	

							delay(15);	

			}	

			boxOpen	=	1;	

		}	

}

If	the	value	of	the	buttonPin	is	1	and	the	box	is	open,	the	box	is	closed	by	using	a	for	loop	to	rotate	the
servo	to	position	90.	The	boxOpen	variable	is	then	set	to	0.

//	if	button	is	pressed	and	box	is	open	

if(buttonValue==1	&&	boxOpen==1)	{	

		Serial.println("closing	");	

		//	close	the	box	

		for(int	pos	=	0;	pos	<	90;	pos+=1)	

		{	

					servo.write(pos);	

					delay(15);	

		}	

		boxOpen	=	0;	

}

If	the	button	is	pressed	while	the	box	is	already	open,	or	the	button	is	released	while	the	box	is	already
closed,	then	nothing	is	done	and	the	loop()	is	repeated.

CHALLENGE
Set	your	secret	combination	to	open	the	safe	using	the	open1,	open2	and	open3	variables.	Adjust	how
easy	it	is	to	dial	in	the	numbers	using	range.

Making	the	Safe
At	last,	you’re	ready	to	make	your	safe!	This	is	very	similar	in	construction	to

the	status	message	sign	in	Adventure	2.	You’re	going	to	use	a	box	(such	as	a
shoebox)	to	house	the	electronics.

1.	 Attach	the	lid	to	the	box.	When	you	attach	the	lid,	make	sure	you	attach	it
along	one	side	so	that	it	hinges	open	and	shut.	That	way,	the	servo	motor
can	dramatically	push	the	lid	up	to	open	the	box	without	the	lid	falling	off.
One	way	of	doing	this	is	to	make	a	paper	hinge	with	a	strip	of	paper	and
glue,	as	shown	in	Figure	3-13.

2.	 Next,	you	need	to	decide	where	you	want	to	put	your	potentiometers	and
button.	This	is	entirely	up	to	you,	although	you	probably	want	them	to	be
on	the	front	of	the	box	for	easy	access.	Cut	holes	so	that	the	shafts	of	the
potentiometers	and	button	fit	snugly.	Cut	a	hole	that	can	pass	the	USB	cable
into	the	box	to	power	the	Arduino	Uno.

3.	 Servo	motors	come	with	a	selection	of	different	arms.	These	pop	onto	the
end	of	the	rotating	shaft	of	the	servo	motor.	You	want	to	use	the	one	that	is
a	single	arm	extending	from	the	shaft.	(Don’t	use	the	cross	arm.)	The	arm
isn’t	very	long,	so	you	can	extend	it	by	attaching	another	object	to	it.	You
can	use	anything	you	like,	but	a	bamboo	skewer	or	paperclip	works	well.
Glue	the	object	to	the	servo	arm	and	make	sure	it’s	firmly	attached	(see
Figure	3-14).

4.	 Upload	the	sketch	for	the	safe	onto	the	Arduino	Uno	and	set	up	the
prototype	circuit	on	the	breadboard	if	you	haven’t	done	so	already.

5.	 Remove	any	arm	attachments	from	the	servo.	If	the	code	is	running	on	the
Arduino	board	and	you	aren’t	pressing	the	button,	the	servo	should	be
rotated	to	the	90	position.	Now	attach	the	servo	arm	so	that	it	is	at	90
degrees—position	it	so	that	it	won’t	push	the	lid	of	the	box	up.	When	you
dial	the	correct	combination	and	press	the	button,	the	servo	arm	should
rotate	to	point	straight	up.

6.	 The	extended	arm	of	the	servo	pushes	up	the	closed	lid,	but	how	does	it
close	it	again	after	it’s	open?	Create	a	paper	loop	that	is	attached	to	the
underside	of	the	lid	as	in	Figure	3-15.	The	extended	arm	of	the	servo	goes
in	this	loop	and	uses	it	to	pull	the	lid	closed.

FIGURE	3-13	If	the	lid	is	not	already	attached	to	your	box,	add	a	paper	hinge.

FIGURE	3-14	Extend	the	servo’s	arm	by	attaching	an	object	like	a	paperclip	or
bamboo	skewer.

FIGURE	3-15	Paper	loop	so	the	servo	can	close	the	safe

Soldering	the	Wires
Use	the	following	steps	to	solder	the	wires:

1.	 Place	the	potentiometers	in	their	holes	in	the	box.	Measure	and	cut	four
pieces	of	wire	that	reach	from	the	potentiometer	farthest	from	the	Arduino

Uno	to	the	next	nearest	potentiometer.	Cut	them	about	an	inch	longer	than
you	need.	Strip	about	½"	from	the	end	of	each	wire.	Repeat	and	cut	a	wire
that	reaches	from	the	middle	potentiometer	to	the	one	closest	to	the	Arduino
Uno	(see	Figure	3-16).	These	wires	connect	the	outside	legs	of	the
potentiometers	to	each	other.

2.	 Cut	two	pieces	of	wire	that	reach	from	the	outside	legs	of	the	potentiometer
closest	to	the	Arduino	Uno	to	the	5V	and	GND	pins	on	the	board.	Cut	them
about	an	inch	longer	than	you	need	and	use	wire	strippers	to	strip	about	½"
from	each	end	of	the	wires.

3.	 Cut	a	piece	of	wire	that	reaches	from	the	closest	potentiometer	to	the
connector	on	the	servo.	Cut	it	about	an	inch	longer	than	you	need	and	use
wire	strippers	to	strip	about	½"	from	each	end	of	the	wires.

	Remember	to	solder	only	with	adult	supervision.	Visit	the	companion	site	for	videos	about
how	to	solder	(www.wiley.com/go/adventuresinarduino).

1.	 Solder	the	outside	legs	of	the	two	potentiometers	farthest	from	the	Arduino
Uno	to	each	other	using	the	wires	as	shown	in	Figure	3-16.

2.	 Solder	the	wires	for	the	potentiometer	closest	to	the	Arduino	Uno.	One	of
the	outside	legs	will	have	two	wires	soldered	to	it—one	from	the	middle
potentiometer	and	a	wire	that	connects	to	the	Arduino	Uno.	The	other
outside	legs	of	the	potentiometer	will	have	three	wires	soldered	to	it—the
remaining	wire	from	the	middle	potentiometer,	a	wire	that	connects	to	the
Arduino	Uno	and	a	wire	that	connects	to	the	servo.

3.	 Measure	and	cut	three	pieces	of	wire	that	reach	from	each	of	the
potentiometers	to	Pins	A0,	A1	and	A2	on	the	Arduino	Uno.	Cut	them	each
about	an	inch	longer	than	you	need	and	strip	about	½"	from	the	end	of	each
wire.

4.	 Solder	one	end	of	each	wire	the	middle	leg	of	each	potentiometer.
5.	 Place	the	panel	mount	push	button	in	its	hole.	Measure	and	cut	two	pieces

of	wire	that	reach	from	the	push	button	to	Pin	7	and	a	GND	pin	on	the
Arduino	Uno.	Cut	the	wire	about	an	inch	longer	than	you	need	and	strip
about	½"	from	the	end	of	each	wire.

http://www.wiley.com/go/adventuresinarduino

6.	 Solder	one	wire	to	one	leg	of	the	push	button	and	the	other	wire	to	the	other
leg.

FIGURE	3-16	Soldered	components

To	summarise:

You	will	have	three	wires	coming	from	the	middle	leg	of	each
potentiometer	that	will	eventually	connect	to	the	Arduino	Uno.
The	potentiometer	farthest	from	the	Arduino	Uno	will	have	one	wire
connected	to	each	outside	leg	that	connects	them	to	outside	legs	of	the	next
potentiometer.
The	middle	potentiometer	will	have	two	wires	connected	to	each	outside
leg:	a	wire	connecting	that	leg	to	the	first	potentiometer	and	a	wire
connecting	it	to	the	last	potentiometer.
The	last	potentiometer	will	have	two	wires	connected	to	one	outside	leg	and
three	wires	connected	to	the	other	outside	leg.	The	leg	with	two	wires	will
be	connected	to	the	middle	potentiometer	and	the	remaining	wire	will
eventually	connect	to	the	Arduino	Uno.	The	leg	with	three	wires	is
connected	to	the	middle	potentiometer,	to	a	wire	that	will	connect	to	the

servo	and	to	a	wire	that	will	connect	to	the	Arduino	Uno.
The	push	button	has	one	wire	connected	to	each	leg.	These	will	eventually
connect	to	the	Arduino	Uno.

	

	Every	box	will	be	a	little	different.	The	sizes	will	be	different,	and	lids	will	be	looser	or
tighter.	You	may	have	to	be	creative	to	solve	engineering	problems	so	that	your	box	opens
and	closes.	For	example,	you	might	need	to	attach	a	paper	loop	on	the	underside	of	the	lid
so	that	the	servo	arm	catches	it	and	pulls	the	lid	down	(refer	to	Figure	3-15).

Why	not	try	making	your	own	paper	box?	Find	an	origami	book	in	your	library	or	look	online	for	a
box	and	lid	pattern.

Inserting	the	Electronics
The	potentiometers	and	push	button	come	with	nuts	and	washers	that	thread	onto
the	base	of	the	shafts.	Remove	the	nuts	and	washers	and	then	stick	the	stems	of
the	potentiometers	and	push	button	through	the	holes	you’ve	made	in	your	box.
Screw	the	washers	and	nuts	back	on	to	secure	the	components	to	the	cardboard.
Add	some	glue	if	they	still	wiggle	around	more	than	you’d	like.

Inside	the	box,	build	your	circuit	by	connecting	the	wires	to	their	respective	pins
on	the	Arduino	Uno.	One	of	the	wires	soldered	to	an	outside	pin	of	a
potentiometer	with	three	wires	soldered	to	it	should	be	inserted	in	5V;	the	other
one	from	the	leg	with	two	wires	soldered	to	it	should	be	inserted	in	a	GND	pin.
Connect	the	three	wires	from	the	three	potentiometers	to	Pins	A0,	A1	and	A2.
Connect	one	wire	from	the	push	button	to	a	GND	pin	and	the	other	wire	to	Pin	7.
Connect	the	last	wire	from	the	potentiometer	leg	with	three	wires	soldered	to	it
to	the	5V	connection	on	the	servo.	Use	two	jumper	wires	to	connect	the	servo	to
GND	and	in	9.

Go	ahead	and	test	it	out!	You	now	have	a	box	with	a	secret	code	that
automatically	opens.	Figure	3-17	shows	the	completed	wiring.

FIGURE	3-17	Completed	combination	safe

Further	Adventures	with	Arduino
Now	that	you	have	some	servo	experience	under	your	belt,	check	out	these
projects:

http://playground.arduino.cc/ComponentLib/Servo

http://arduino.cc/en/pmwiki.php?n=Tutorial/Knob

Working	with	servos	and	Arduino	is	just	the	beginning	of	what	you	can	do	in	the
field	of	robotics.	Check	out	these	amazing	robots—many	built	using	Arduino!

http://artbots.org/2011/participants/

http://makezine.com/projects/building-a-simple-arduino-robot/

http://www.makershed.com/collections/robotics

Arduino	Command	Quick	Reference	Table
Command Description
#include Command	to	import	a	library.	See	also	http://arduino.cc/en/Reference/Include.
Servo.h Library	to	control	a	servo.	See	also	http://arduino.cc/en/reference/servo.
Servo Object	for	controlling	a	servo.	See	also	http://arduino.cc/en/reference/servo.

Servo.attach()
Attach	a	Servo	variable	to	the	specified	pin.	See	also
http://arduino.cc/en/Reference/ServoAttach.
Write	a	value	to	the	servo	to	tell	it	what	position	to	move	to.	See	also

http://playground.arduino.cc/ComponentLib/Servo
http://arduino.cc/en/pmwiki.php?n=Tutorial/Knob
http://artbots.org/2011/participants/
http://makezine.com/projects/building-a-simple-arduino-robot/
http://www.makershed.com/collections/robotics
http://arduino.cc/en/Reference/Include
http://arduino.cc/en/reference/servo
http://arduino.cc/en/reference/servo
http://arduino.cc/en/Reference/ServoAttach

Servo.write() http://arduino.cc/en/Reference/ServoWrite.

for
Loops	over	a	section	of	code	a	certain	number	of	times.	See	also
http://arduino.cc/en/Reference/For.

Achievement	Unlocked:	You	are	successfully	combining	circuits	and	code!

In	the	Next	Adventure…
A	few	LEDs	are	good,	but	lots	of	LEDs	are	even	better!	In	the	next	adventure	you	find	out	how	to	control
large	batches	of	LEDs	with	small	circuit	chips	called	shift	registers.

http://arduino.cc/en/Reference/ServoWrite
http://arduino.cc/en/Reference/For

YOU	ARE	WELL	on	your	way	to	becoming	an	Arduino	expert.	You’ve	tackled
all	sorts	of	things,	from	motors	to	potentiometers.	You’ve	even	handled	three
potentiometers	at	the	same	time.	But	what	about	working	with	more	than	three
of	the	same	thing?	One	LED	is	good,	three	LEDs	are	better—but	how	about	24
LEDs?

As	an	experienced	Arduino	engineer,	you	might	take	a	look	at	your	Arduino
board	and	question	my	counting	abilities.	There	aren’t	24	output	pins	for	LEDs
on	your	board?	You’re	right!	But	you	can	harness	the	power	of	special	chips
called	shift	registers	to	extend	the	number	of	outputs,	and	that’s	what	you’re
going	to	do	in	this	adventure.

Code	can	start	getting	a	little	messy	when	you’re	working	with	so	many	outputs,
so	I’ll	show	you	some	ways	to	keep	your	code	tidy	and	easier	to	understand.

When	you	put	it	all	together	at	the	end	of	the	adventure,	you	will	make	a
carnival-style	light-up	sign	that	spells	out	your	name	(or	any	other	word	you
choose).

What	You	Need
For	the	start	of	this	adventure,	you	need	a	breadboard,	LEDs	and	resistors.
You’re	going	to	be	exploring	different	ways	to	light	up	a	collection	of	LEDs	in

code.	You	then	find	out	what	a	shift	register	is	and	how	to	use	it.	You	need	the
following	items;	the	electronic	components	are	shown	in	Figure	4-1:

A	computer
An	Arduino	Uno
A	USB	cable
1	large	breadboard	or	2	small	ones
38	jumper	wires
16	LEDs
16	220Ω	resistors
2	74HC595	shift	register	integrated	circuits	(ICs)

FIGURE	4-1	What	you	need	for	the	first	part	of	this	adventure

	Integrated	circuit	(IC)	names	can	be	quite	long	and	seem	complicated,	but	they	are	just
holding	a	lot	of	little	pieces	of	information.	For	this	adventure,	you’re	using	the	74HC595
shift	register,	and	that’s	the	set	of	numbers	and	letters	that	you	need	to	look	for	when	you
buy	the	part.	If	you	get	a	chip	that	has	two	letters	in	the	part	number	before	74HC595,	it’s
okay.	These	are	a	code	for	the	company	that	makes	the	chip.	Chips	like	shift	registers	are
made	by	lots	of	different	companies,	so	you	don’t	need	to	worry	if	the	chip	you	are	thinking
about	buying	has	these	two	extra	letters.	As	long	as	the	chips	you	buy	has	the	next	set	of

numbers	and	letters	(74HC595),	what	you	have	is	good.	There	may	be	an	additional	last
letter	tells	you	what	shape	or	package	the	chip	is.	For	breadboard	circuits,	you	want	it	to	be
N	for	a	DIP	(a	package	with	two	rows	of	legs	that	fits	into	a	breadboard).	The	section
“Getting	More	Outputs	with	Shift	Registers”	explains	more	about	what	that	means.

Organising	Your	Code
Code	is	simply	written	instructions	that	a	computer	can	understand.	Often,	you
have	to	repeat	those	instructions.	In	such	cases,	you	can	save	time	by	copying
and	pasting	the	same	piece	of	code	multiple	times	to	get	the	computer	to	repeat
the	same	set	of	instructions.	But	what	if	you	make	a	small	typo?	Maybe	you	miss
a	semicolon?	The	tiniest	mistake	can	lead	to	your	program	not	working	properly.
It	can	be	hard	to	figure	out	why	it	works	the	first	two	times	and	then	fails	the
third	time.	Long	sections	of	repeated	code	can	also	make	it	more	difficult	to
follow	what	is	happening	in	your	sketch.	Your	code	becomes	less	readable.

Programmers	like	to	joke	that	they	are	lazy	and	don’t	want	to	do	more	work	than
necessary!	So	computer	scientists	who	write	programming	languages	spend	a	lot
of	time	designing	the	way	instructions	are	written	out,	to	help	minimise	the	risk
of	making	simple	mistakes	when	doing	things	like	copying	and	pasting	code.
The	following	sections	introduce	you	to	some	of	the	techniques	you	can	use	to
simplify	your	code.

Using	Functions
One	easy	way	to	repeat	code	is	to	put	the	lines	of	code	you	want	to	be	repeated
into	something	called	a	function.	It’s	like	giving	a	name	to	a	set	of	instructions.
You	then	only	need	to	write	out	the	name	of	the	group	of	instructions	each	time
you	want	them	to	happen,	instead	writing	all	of	the	instructions	individually.

If	you’ve	worked	through	the	earlier	adventures,	you	have	already	been	using
functions	written	by	someone	else.	For	example,	digitalWrite()	is	a	function
that	controls	a	Digital	Pin	on	the	Arduino	Uno.	The	function	handles	all	the
details	of	turning	on	and	off	the	pin;	you	just	have	to	call	the	function.	Now	you
get	to	start	writing	your	own	functions.

	You’re	going	to	add	functions	to	the	Blink	sketch	in	this	adventure.	You	might	recall	that

I’ve	talked	about	functions	before—in	particular,	the	setup()	and	loop()	functions.	These
are	functions	just	like	the	ones	you’re	going	to	use	in	the	Blink	sketch,	but	you	don’t	get	to
give	them	your	own	names;	they	have	to	be	called	setup()	and	loop().	When	the	Arduino
first	starts	up,	it	looks	for	a	function	called	setup()	and	executes	the	lines	of	code	in	it.	It
then	looks	for	a	function	called	loop()	and	repeatedly	does	whatever	lines	of	code	are	in
that	function.

It’s	always	easier	to	understand	a	new	concept	when	you	get	to	try	it	out
yourself,	so	take	a	look	at	the	Blink	sketch	you	first	worked	with	in	Chapter	1.
Open	up	the	sketch	by	going	to	File ⇒ Examples ⇒ 1.Basics ⇒ Blink.
The	first	thing	you	need	to	do	is	save	a	copy	of	the	Blink	sketch.	You’re	saving
a	copy	rather	than	using	the	original	example	because	you’re	going	to	make
some	changes	to	the	sketch,	so	you	don’t	want	to	overwrite	the	example.	Save
the	sketch	by	selecting	File ⇒ Save	As.	Name	the	file	BlinkingFunctions.ino.
Take	a	look	at	your	new	BlinkingFunctions	sketch	(your	copy	of	the	Blink
example	sketch).	In	the	sketch,	most	of	the	action	happens	in	the	loop()
function:	//	the	loop	routine	runs	over	and	over	again	forever:	
void	loop()	{	
		digitalWrite(led,	HIGH);						//	turn	the	LED	on	

		delay(1000);																	//	wait	for	a	second	
		digitalWrite(led,	LOW);						//	turn	the	LED	off	

		delay(1000);																	//	wait	for	a	second	
}

You	can	create	your	own	function	that	does	the	same	thing	as	the	four	lines	of
code	in	the	preceding	loop()	function.	But	before	you	do	that,	hold	fire!	There
are	a	couple	of	important	things	I	want	to	highlight	about	writing	a	function	first.

A	function	always	has	three	pieces	of	information,	and	you	need	to	type	all	three
of	these	before	the	first	curly	bracket	of	each	pair	(see	Figure	4-2).

FIGURE	4-2	The	anatomy	of	a	function

The	first	piece	of	information	is	the	type	of	data	that	will	be	output	or	returned
from	the	function.	In	most	of	the	code	you	create	in	this	book,	this	is	just	void,
meaning	that	there	isn’t	anything	returned.	If	there	is	data	that	is	output	or
returned	from	the	function,	the	data	type	is	listed	instead	of	void.	For	example,	if
your	function	computes	an	answer	as	an	integer,	the	return	data	type	is	int
instead	of	void.

	You	might	have	noticed	that	the	term	void	keeps	appearing	before	setup()	and	loop().
The	term	just	means	that	the	function	doesn’t	return	anything	when	it’s	finished.	For
example,	you	might	write	a	function	that	calculates	the	sum	of	three	numbers,	intending	the
answer	to	the	calculation	returned	to	the	position	where	you	called	the	function	so	you	can
save	the	answer	in	a	variable.	This	variable	might	be	an	int.	For	functions	that	simply	turn
on	and	off	lights,	no	additional	information	is	needed	when	the	function	finishes,	so	the
return	type	is	void.

The	second	bit	of	information	is	the	name	of	the	function.	The	rules	for	naming	a
function	are	similar	to	naming	a	variable	as	described	in	Adventure	2:

You	can’t	have	spaces	in	the	name,	but	you	can	use	numbers	and	letters.
You	can’t	start	the	name	with	a	number.
You	make	the	first	letter	lowercase.

You	might	find	the	last	piece	of	information	a	little	hard	to	find;	it’s	the	round
brackets	(also	known	as	parentheses).	When	there	isn’t	anything	between	the

first	(and	the	second),	it	means	there	aren’t	any	input	arguments.	You	can	pass
information	to	a	function	using	input	arguments;	and	you	see	how	to	do	that	later
in	this	section.

Return	to	the	sketch	and	go	to	the	very	last	line	of	code—the	one	after	the
closing	bracket	of	the	loop()	function.	Add	the	following	code,	making	sure	it
isn’t	inside	any	other	function.	(In	other	words,	make	sure	that	the	code	you’re
adding	is	not	inside	the	parentheses	or	brackets	of	any	other	function.)	//	turn
on	the	LED	for	1	second	
//	then	off	for	1	second	
void	blinkOnce()	{	
			digitalWrite(led,	HIGH);						//	turn	the	LED	on	

			delay(1000);																		//	wait	for	a	second	
			digitalWrite(led,	LOW);							//	turn	the	LED	off	

			delay(1000);																		//	wait	for	a	second	

}

You	have	just	created	a	new	function	called	blinkOnce().	It	doesn’t	take	any
input	arguments	(because	the	(and)	are	empty	after	the	function	name),	and	it
doesn’t	return	anything	(because	it	lists	void	before	the	function	name).	Inside
the	function,	it	blinks	the	LED	on	for	1	second	and	then	off	for	1	second.

	It’s	a	good	habit	to	add	a	comment	at	the	top	of	your	function	that	explains	what	the
function	does.	You	can	use	//	at	the	beginning	of	the	each	line	or	/*	and	*/	at	the	beginning
and	end	of	a	paragraph.	It	might	seem	unnecessary	when	it’s	a	simple	function,	but	if	you
always	do	it,	then	you’ll	always	remember	to	add	comments	for	more	complicated
functions.	When	you	share	code	that’s	well	commented,	others	will	be	able	to	understand	it,
too.

Next,	change	the	original	loop()	function	so	it	only	calls	your	new	function:	//
the	loop	routine	runs	over	and	over	again	forever:	
void	loop()	{	
			blinkOnce();	

}

Upload	the	sketch	to	the	Arduino	board	by	connecting	your	Arduino	Uno	and
clicking	the	Upload	button.	You	should	see	the	LED	blink	on	and	off	just	like	the
original	Blink	sketch	did	in	Adventure	1.

Now	you’re	going	to	see	what	functions	can	really	do.	You’re	going	to	add	a
little	more	code	that	adds	a	variable	to	the	function	to	control	the	speed	of	the
blink.

Change	your	blinkOnce()	function	to	the	following	(the	changes	are	in	bold):	//
turn	on	the	LED	for	time	passed	in	argument	
//	then	off	for	time	passed	in	argument	
void	blinkOnce(int	time)	{	
			digitalWrite(led,	HIGH);		//	turn	the	LED	on	

			delay(time);														//	wait	

			digitalWrite(led,	LOW);			//	turn	the	LED	off	

			delay(time);														//	wait	
}

By	adding	a	variable	between	the	(and),	your	program	is	saying	that	the
function	needs	some	additional	information	in	order	to	run.	This	is	called	an
argument,	and	with	it	you	can	pass	information	directly	from	one	function	to
another.

This	means	you	need	to	include	an	argument	when	you	call	blinkOnce()	in	the
loop()	function.	Change	the	loop()	function	again	so	it	matches	the	following
code:	//	the	loop	routine	runs	over	and	over	again	forever:	
void	loop()	{	
			blinkOnce(1000);	

}

When	you	add	an	argument	of	1000,	the	LED	should	blink	on	and	off	just	as	it
did	before—on	for	1	second	and	then	off	for	1	second.

CHALLENGE

	Make	the	LED	blink	on	for	1	second	and	then	off	for	1	second,	then	on	for	5	seconds	and	off
for	5	seconds.	You’ll	need	to	call	the	()	function	twice	in	the	loop()	function	with	different
arguments.

Using	for	Loops
Another	useful	way	to	organise	your	code	is	to	repeat	something	a	certain
number	of	times.	For	example,	instead	of	going	to	all	the	trouble	of	writing	a

function	five	times	in	a	row,	you	can	use	another	piece	of	code	to	do	it	for	you.	A
for	loop	is	one	way	of	doing	that.

A	for	loop	needs	three	key	pieces	of	information,	as	shown	in	Figure	4-3.

FIGURE	4-3	The	anatomy	of	a	for	loop

The	first	piece	of	information	is	the	starting	condition.	A	for	loop	begins	with	a
starting	value	for	a	variable.	This	is	usually	just	a	temporary	variable	that	is	only
used	in	the	for	loop.	It	can	be	called	anything	that	you	would	like,	but
programmers	tend	to	call	this	variable	i.

The	second	piece	of	information	is	what	is	needed	in	order	for	the	loop	to	stop.
This	is	phrased	as	a	true	or	false	question	and	is	often	checking	if	the	variable
has	become	too	big.	It	might	be	something	like	i<10.

The	last	piece	of	information	is	what	happens	to	the	variable	after	each	loop.	The
variable	needs	to	get	from	its	starting	value	to	something	that	causes	the	loop	to
end;	otherwise	it	would	just	go	on	forever	and	your	program	would	never	get
past	the	for	loop.	This	piece	of	information	is	usually	i++,	which	simply	means
add	1	to	i	and	save	the	new	number	in	i	again.

Make	a	new	sketch	(either	by	clicking	the	New	button	in	the	Arduino	IDE	or
going	to	File ⇒ New)	and	type	the	following	code:	void	setup()	{	
			Serial.begin(9600);	

}	

void	loop()	{	
			int	i;	
			for(i=0;	i<10;	i++){	//	for	loop	that	counts	from	0	to	9	
					Serial.println(i);	//	print	the	current	value	of	i	
					delay(1000);	//	wait	for	1	second	
		}	

		delay(3000);	//	wait	for	3	seconds	
}

Upload	the	code	to	your	Arduino	board	and	then	open	the	Serial	Monitor	in	the
Arduino	IDE	by	clicking	on	the	Serial	Monitor	button	or	going	to	Tools ⇒ Serial
Monitor.	You	should	see	the	for	loop	counting	from	0	to	9	over	and	over	again.

	Try	changing	i++	to	i+=2.	What	do	you	think	is	happening?

Getting	More	Outputs	with	Shift	Registers
In	the	earlier	adventures	in	the	book,	you	built	circuits	with	some	essential
electrical	components.	Things	like	resistors	are	the	most	basic	components	but
you	can	combine	them	with	other	basic	components	to	form	more	complicated
circuits.	However,	you	don’t	necessarily	have	to	spend	a	lot	of	time	(and	use	up
a	lot	of	space)	building	a	complicated	circuit.	You	can	sometimes	buy	a	chip	that
has	already	been	put	together	for	you,	containing	more	complicated	circuits.
These	chips	are	called	integrated	circuits,	or	ICs	for	short.

	Integrated	circuits	(ICs)	are	circuits	contained	within	a	single	chip.	The	same	circuit	can
be	put	into	different	shaped	chips,	called	packages.	When	working	with	a	breadboard,	you
want	what	is	known	a	DIP	or	DIL	package.	That’s	the	shape	that	has	legs	that	fit	into	a
breadboard.

	Chips	come	in	different	packages.	That	just	means	different	sizes	and	shapes.	When
working	with	breadboards,	you	will	want	to	use	components	that	are	dual	in-line	packages
(shortened	to	DIP	or	DIL).	They	have	legs	that	fit	into	a	breadboard.	The	other	type	of
component	package	is	a	surface-mount	device	(SMD).	SMD	packages	are	very	small	and
are	designed	to	be	easily	placed	on	circuit	boards	in	factories.	They	are	much	more	difficult
to	use	in	circuits	built	at	home	with	breadboards.	Most	of	the	components	on	your	Arduino
Uno	(all	those	tiny	black	rectangles	and	even	the	LEDs)	are	SMD	packages.

	A	dual	in-line	package	(DIP	or	DIL)	is	one	possible	shape	of	an	IC	chip.	It	has	two	rows
of	legs	that	can	fit	into	a	breadboard.

	A	surface-mount	device	(SMD)	is	one	possible	shape	of	an	IC	chip	or	other	component
such	as	a	resistor.	It	is	made	for	soldering	onto	a	flat	surface	without	any	legs	being	inserted
into	holes	on	a	circuit	board.

You	can	use	multiple	chips	in	the	same	circuit	to	do	the	same	thing	over	and
over.	You	can	think	of	ICs	as	being	the	functions	of	electronic	components.

In	this	adventure	you	are	going	to	use	an	IC	called	a	shift	register.	The	shift
register	you’ll	use	takes	three	inputs	that	control	what	happens	on	eight	outputs.
So	with	just	three	pins	from	the	Arduino	board,	you	will	be	controlling	eight
different	LEDs.	Even	better,	you	can	attach	a	shift	register	to	another	shift
register	in	a	chain.	So	you	can	keep	adding	eight	more	LEDs	while	still	only
using	three	pins	on	your	Arduino	board!

	A	shift	register	is	a	device	that	can	control	multiple	outputs	with	relatively	few	inputs.	It	is
commonly	used	to	control	a	large	number	of	LEDs.

How	a	Shift	Register	Works
The	three	inputs	that	a	shift	register	takes	are	the	CLOCK,	the	DATA	and	LATCH.

Clock
The	CLOCK	is	the	drum	beat	of	the	circuit.	Messages	are	being	sent	from	the
Arduino	to	the	IC.	You	can	think	of	the	Arduino	as	singing	a	song	with	the	IC.	In
order	for	the	IC	to	be	able	to	follow	along,	the	Arduino	and	IC	need	to	sing	at
the	same	tempo.	The	CLOCK	is	a	series	of	HIGH	and	LOW	values	(see	Figure	4-4)
that	pulse	to	let	the	IC	know	when	new	information	is	being	transmitted,	like	the
drumbeat	that	lets	the	IC	follow	along	with	the	Arduino.

FIGURE	4-4	The	CLOCK	signal

Data
The	DATA	is	what	you	want	each	of	the	outputs	(LEDs)	to	be	set	to,	which	will	be
either	HIGH	or	LOW.	A	shift	register	can	control	eight	LEDs.	The	Arduino	Uno
sends	the	shift	register	the	value	of	the	LEDs	one	by	one	like	so:

1.	 The	first	LED	value	is	sent	to	the	shift	register	from	the	Arduino	Uno.	The
shift	registers	sets	the	first	output	pin	to	be	that	value.

2.	 The	second	LED	value	is	sent	to	the	shift	register.	The	shift	register	set	the
second	output	pin	to	the	value	that	was	saved	in	the	first	output	pin	and	then
sets	the	first	output	pin	to	the	most	recent	value	sent	by	the	Arduino	Uno.

3.	 The	Arduino	Uno	sends	a	third	LED	value	to	the	shift	register.	The	third
output	pin	now	is	set	to	what	the	second	output	pin	was	previously	set	to;
the	second	output	pin	is	set	to	what	the	first	output	pin	was	set	to;	and	the
first	output	pin	is	set	to	the	new	value.

4.	 The	Arduino	Uno	keeps	sending	new	values	to	the	shift	register.	Each	time
a	new	value	comes	in,	the	shift	register	shifts	all	the	previously	saved

values	for	each	output	pin	down	to	the	next	pin.	The	newest	value	sets	the
first	output	pin.

Each	time	you	send	the	shift	register	a	new	value	for	an	output,	the	previous
value	gets	shifted	to	the	next	output.	That’s	where	the	name	shift	register	comes
from!

When	you	have	finished	sending	output	values,	you	need	to	tell	the	shift	register
that	you	have	finished	so	it	can	turn	on	or	off	the	output	pins	of	the	chip—which
is	what	LATCH	does.

Latch
The	final	input	is	the	signal	that	tells	the	shift	register	to	either	listen	for	more
information	or	go	ahead	and	output	the	information	it	has.	When	the	LATCH	pin	is
LOW,	the	IC	is	listening;	when	it	changes	to	HIGH,	the	IC	starts	doing	and	the
output	values	are	sent	out.	When	LEDs	are	connected	to	the	shift	register,	they
will	turn	on	or	off	according	to	the	new	values	stored	in	the	shift	register	when
the	LATCH	changes	to	HIGH.

Figure	4-5	illustrates	how	the	three	inputs	work	together	to	control	the	shift
register.

FIGURE	4-5	How	a	shift	register	works

Making	the	Connections	for	a	Shift	Register
The	first	thing	to	do	is	build	your	circuit.	Start	by	putting	your	shift	register	chip
on	your	breadboard.	The	chip	fits	over	the	gap	in	the	middle	of	the	board.	You

may	need	to	bend	the	legs	a	little	to	get	the	chip	to	fit	nicely	into	the	holes.
Notice	that	there’s	a	little	dot	printed	on	a	corner	or	a	half	circle	cut	out	from	one
end	of	the	chip:	this	is	the	top	of	the	chip,	and	it’s	very	important	that	the	chip	is
in	the	same	orientation	as	the	diagram	shown	in	Figure	4-6.

	The	legs	of	the	IC	can	be	delicate,	so	take	care	when	bending	them.	Also	take	care	when
removing	the	chip	from	the	breadboard	as	it	can	be	easy	to	accidentally	bend	the	legs.

FIGURE	4-6	Pin-out	diagram	for	the	shift	register

You	are	ready	to	start	building	your	shift	register	circuit.	Figure	4-6	is	a	pin-out
diagram	that	shows	the	shift	register	labelled	with	the	pin	numbers	for	the	chip
and	shows	what	connects	to	each	pin	on	the	chip.	Note	that	the	colours
correspond	to	the	wire	colours	in	Figure	4-7.	Now	you	need	to	make	the	first	of
the	connections	by	following	these	steps	(don’t	connect	your	Arduino	Uno	to
your	computer	yet):

1.	 Use	a	jumper	wire	to	connect	one	of	the	long	rows	along	the	bottom	of	your
breadboard	to	a	GND	pin	on	the	Arduino	Uno.	If	your	breadboard	is	a
labelled	with	a	blue	or	black	line	or	a	-,	connect	it	to	that	row.

2.	 Use	a	jumper	wire	to	connect	the	other	long	row	along	the	bottom	of	your
breadboard	to	the	5V	pin	on	the	Arduino	Uno.

3.	 Use	two	jumper	wires	to	connect	each	of	the	long	rows	along	the	bottom	of
the	breadboard	to	the	long	rows	along	the	top.	If	your	breadboard	is
labelled,	connect	the	red	or	+	to	the	other	row	with	red	or	a	+	then	connect
the	remaining	two	long	rows	to	each	other.

4.	 Use	two	jumper	wires	to	connect	the	short	rows	connected	to	Pin	8	and	Pin
13	on	the	shift	register	to	the	long	row	on	the	breadboard	connected	to
ground.

5.	 Use	two	jumper	wires	to	connect	the	short	rows	connected	to	Pin	10	and	16
on	the	chip	to	the	long	row	connected	to	5V.

6.	 Use	a	jumper	wire	to	connect	the	short	row	connected	to	Pin	14	on	the	shift
register	to	Pin	11	on	the	Arduino	board.

7.	 Use	a	jumper	wire	to	connect	the	short	row	connected	to	Pin	11	on	the	shift
register	to	Pin	12	on	the	Arduino	board.

8.	 Use	a	jumper	wire	to	connect	the	short	row	connected	to	Pin	12	on	the	shift
register	to	Pin	8	on	the	Arduino	board.

When	you’ve	finished,	your	circuit	should	look	like	Figure	4-7.	Notice	the	shift
register	chip	in	the	middle,	facing	in	the	correct	direction.

FIGURE	4-7	First	connections	for	the	shift	register

Adding	LEDs
Now	it’s	time	to	add	the	LEDs.	If	you	have	a	second	breadboard,	you	might	find

it	easier	to	have	the	shift	register	on	one	board	and	the	LEDs	on	another,	but	you
can	also	fit	everything	on	a	single	breadboard.

Each	of	the	LEDs	needs	a	current-limiting	resistor,	just	like	when	a	LED	is
hooked	up	directly	to	a	pin	on	the	Arduino	board.	Each	output	of	the	shift
register	is	connected	to	a	current-limiting	resistor	and	then	to	a	LED,	which	is
then	connected	to	ground.

Using	Figure	4-8	as	a	guide,	follow	these	steps	to	add	your	LEDs	and	resistors:

1.	 Place	the	short	legs	of	8	LEDs	in	the	long	row	along	the	top	of	the
breadboard	that	is	connected	to	ground.

2.	 Place	each	of	the	long	legs	of	the	LEDs	into	their	own	short	rows	on	the
breadboard—wherever	they	easily	fit	is	fine	as	long	(as	nothing	else	is
already	connected	to	the	row).

3.	 Place	one	leg	of	a	resistor	into	the	same	short	rows	as	the	long	legs	of	the
LEDs.

4.	 Bend	the	resistors	over	the	gap	in	the	middle	of	the	breadboard,	and	insert
the	free	legs	of	the	resistors	into	the	short	row	directly	on	the	other	side	of
the	gap.

5.	 Use	eight	jumper	wires	to	connect	each	resistor	to	an	output	pin	on	the	shift
register—pins	15	and	1	through	7.	Use	Figures	4-6	and	4-8	as	guides.

FIGURE	4-8	The	full	circuit	for	the	shift	register

Double-check	that	your	connections	are	correct—go	through	each	step	again.
When	are	you	sure	everything	is	in	the	right	place,	you	are	ready	to	power	the
circuit	by	connecting	the	Arduino	Uno	to	your	computer.

	Your	chip	should	never	get	hot!	If	it	ever	gets	hot,	something	is	plugged	in	wrong,	so	you
must	remove	the	power	immediately.	The	chip	might	be	damaged	and	may	need	to	be
replaced.	If	it	ever	makes	a	popping	sound	and	even	smokes	a	little,	it	definitely	needs	to	be
replaced.	Be	sure	to	check	over	your	circuit	again	and	find	the	mistake	before	putting	in	a
new	chip,	or	you	will	just	damage	the	next	chip	in	the	same	way!

Writing	the	Code
Create	a	new	sketch	by	clicking	on	the	New	button	in	the	Arduino	IDE	or	going
to	File ⇒ New	and	enter	the	following	code:	void	setup()	{	

}	

void	loop()	{	

}

At	the	very	top	of	your	sketch,	before	the	setup()	begins,	add	the	following
variables:	//Pin	connected	to	latch	pin	(ST_CP)	of	74HC595	
int	latchPin	=	8;	
//Pin	connected	to	clock	pin	(SH_CP)	of	74HC595	
int	clockPin	=	12;	
//Pin	connected	to	Data	in	(DS)	of	74HC595	
int	dataPin	=	11;

They	are	the	three	pins	for	the	LATCH,	CLOCK	and	DATA	connections	to	the	shift
register.

Next,	type	the	following	code	between	the	{	and	}	of	setup():	//set	pins	to
output	because	they	are	addressed	in	the	main	loop	
pinMode(latchPin,	OUTPUT);	
pinMode(dataPin,	OUTPUT);	

pinMode(clockPin,	OUTPUT);

Each	of	those	lines	of	code	set	up	the	pins	to	be	outputs	that	send	out	data	to	the
shift	register	(as	opposed	to	reading	in	data).

Lastly,	type	the	following	code	between	the	{	and	}	of	loop():	//	loop
through	0	to	256	
int	i;	
for(i=0;	i<256;	i++)	{	
			//	turn	off	the	output	so	the	pins	don’t	light	up	
			//	while	you’re	shifting	bits:	
			digitalWrite(latchPin,	LOW);	
			shiftOut(dataPin,	clockPin,	LSBFIRST,	i);	

			//	turn	on	the	output	so	the	LEDs	can	light	up:	
			digitalWrite(latchPin,	HIGH);	
			delay(300);	
}

Your	complete	sketch	should	now	look	like	this:	//Pin	connected	to	latch
pin	(ST_CP)	of	74HC595	
int	latchPin	=	8;	
//Pin	connected	to	clock	pin	(SH_CP)	of	74HC595	
int	clockPin	=	12;	
//Pin	connected	to	Data	in	(DS)	of	74HC595	
int	dataPin	=	11;	

void	setup()	{	
			//set	pins	to	output	because	they	are	addressed	in	the	main	 
loop	
			pinMode(latchPin,	OUTPUT);	
			pinMode(dataPin,	OUTPUT);	

			pinMode(clockPin,	OUTPUT);	
}	

void	loop()	{	
			//	loop	through	0	to	256	
			int	i;	
			for(i=0;	i<256;	i++)	{	
					//	turn	off	the	output	so	the	pins	don’t	light	up	

					//	while	you’re	shifting	bits:	
					digitalWrite(latchPin,	LOW);	
					shiftOut(dataPin,	clockPin,	LSBFIRST,	i);	

					//	turn	on	the	output	so	the	LEDs	can	light	up:	
					digitalWrite(latchPin,	HIGH);	
					delay(300);	
			}	
}

	You	can	download	the	sketches	in	this	chapter	from	the	companion	site
(www.wiley.com/go/adventuresinarduino).

Upload	the	sketch	to	your	Arduino	Uno.	Your	LEDs	should	start	turning	on	and
off.

DIGGING	INTO	THE	CODE

	So	what	is	going	on	in	the	loop()	function?	The	loop()	function	uses	a	for	loop	as	described
earlier	in	this	adventure.	Inside	the	for	loop,	you	call	a	function	named	shiftOut().	This	is	a
function	that	the	Arduino	knows,	and	it	takes	four	arguments.	In	the	first	argument	it	sends	out	a
number	through	the	given	pin	(dataPin),	using	the	pin	given	in	the	second	argument	to	send	the
CLOCK	signal	(clockPin).	The	third	argument	uses	a	keyword	to	indicate	whether	the	number
being	sent	out	starts	with	the	first	digit	or	the	last	digit	(LSBFIRST).	The	last	argument	is	the
number	being	sent	out.	Here	the	number	being	sent	out	is	stored	in	i,	which	is	controlled	by	the
for	loop.	It	starts	at	i=1	and	stops	after	i=255.

shiftOut(dataP0in,	clockPin,	LSBFIRST,	i);

Before	shiftOut()	is	called,	the	latchPin	is	set	to	LOW.	This	tells	the	shift	register	to	stop	doing	and	start
listening.	The	new	values	for	the	LEDs	are	then	sent	in	the	shiftOut()	function,	and	then	the	latchPin
is	set	to	HIGH.	That	tells	the	shift	register	to	stop	listening	and	start	doing.	It	then	turns	on	and	off	the
LEDs	according	to	the	new	values	it	just	received.

You	may	have	spotted	something	a	little	weird	in	the	code.	Why	does	the	for	loop	start	at	0	and	count	up
to	256?	Doesn’t	that	seem	a	little	strange?

Computers	like	to	start	counting	at	0.	As	humans,	we	usually	skip	over	0	and	start	counting	at	1,	but	0	is

http://www.wiley.com/go/adventuresinarduino

typically	the	starting	point	for	computers.	That’s	why	the	for	loop	starts	at	0.

And	why	are	you	using	255	as	the	maximum	value?	The	shift	register	is	controlling	eight	LEDs.	Each
LED	can	either	be	on	or	off,	so	that’s	two	possible	states	for	every	LED.	If	a	0	represents	an	LED	off	and
a	1	represents	an	LED	on,	you	can	describe	the	on	and	off	states	of	all	the	LEDs	with	a	single	number.
11111111	would	be	all	the	LEDs	on.	10000001	would	be	all	the	LEDs	off	except	the	first	and	last	ones.

These	numbers	are	special	because	they	don’t	use	all	the	possible	digits	between	0	and	9,	but	instead	only
0	and	1.	Numbers	that	use	all	the	digits	from	0	to	9	are	called	decimal	numbers	(what	you	think	of	as
normal	numbers),	and	numbers	that	count	using	only	0	and	1	are	called	binary.	The	number	being	sent
out	the	dataPin	is	represented	in	binary.

The	sketch	that	you	just	wrote	is	a	binary	counter;	it	shows	you	in	lights	how	to	count	from	0	to	255	in
binary	(0	to	11111111).

	A	binary	number	uses	only	the	digits	0	and	1,	as	opposed	to	decimal,	which	uses	the	digits
0	through	9.	Binary	is	also	referred	to	as	base-2.	Decimal	is	referred	to	as	base-10.

Figure	4-9	shows	you	how	to	convert	binary	numbers	into	decimal	numbers.	At	this	point,	you	don’t	need
to	worry	too	much	about	this	if	learning	about	different	ways	of	representing	numbers	doesn’t	seem	like
much	fun,	but	if	you	like	secret	codes	and	messages,	it	may	be	a	topic	that	you	will	find	very	interesting.

FIGURE	4-9	How	to	convert	from	a	binary	number	to	a	decimal	number

CHALLENGE

	Calculate	the	decimal	number	from	the	binary	pattern	shown	in	Figure	4-10.

FIGURE	4-10	How	would	this	binary	pattern	be	represented	by	a	decimal
number?

	A	single	digit	in	a	binary	number	is	called	a	bit	and	a	group	of	8	bits	is	called	a	byte.	All
computing	is	based	on	bits	and	bytes.	If	you’re	interested	in	learning	more,	you	can	start	by
looking	up	more	information	on	bits	and	bytes	at	http://en.wikipedia.org/wiki/Bit	and
http://en.wikipedia.org/wiki/Byte.

Adding	More	Shift	Registers
To	add	another	shift	register,	you	need	to	put	a	second	IC	on	the	breadboard	(if
you’re	using	a	big	breadboard)	or	on	a	second	breadboard	(if	you’re	using	two
small	breadboards):

1.	 Follow	the	steps	you	followed	earlier	to	connect	the	shift	register	to	5V	and
GND.	If	you	are	using	a	second	breadboard,	be	sure	to	connect	the	long

http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte

rows	of	that	breadboard	to	the	long	rows	of	the	first	breadboard.
2.	 Instead	of	connecting	Pins	12,	14	and	11	on	the	shift	register	to	Pins	8,	11

and	12	on	the	Arduino	Uno,	connect	Pins	11	and	12	of	the	second	shift
register	to	Pins	11	and	12	on	the	first	shift	register.	This	connects	LATCH	and
CLOCK	from	the	first	shift	register	to	the	second	one,	as	shown	in	Figure	4-
11.

3.	 The	DATA	for	the	second	shift	register	doesn’t	come	from	the	Arduino
board,	but	from	Pin	9	of	the	first	shift	register.	Use	a	jumper	wire	to	connect
Pin	14	of	the	second	shift	register	to	Pin	9	of	the	first	shift	register.

4.	 Follow	the	same	steps	in	the	“Adding	LEDs”	section	for	adding	the	LEDs
the	first	shift	register	to	connect	8	more	LEDs	to	the	second	shift	register.

FIGURE	4-11	Adding	a	second	shift	register

When	your	circuit	is	built,	you	need	to	change	your	sketch	so	that	it	controls	two
shift	registers	instead	of	only	one.	Make	the	changes	shown	in	bold	to	the
loop()	function	of	your	sketch:	void	loop()	{	
			//	loop	through	0	to	256	
			int	i;	
			for(i=0;	i<256;	i++)	{	
					//	turn	off	the	output	so	the	pins	don’t	light	up	
					//	while	you’re	shifting	bits:	
					digitalWrite(latchPin,	LOW);	

					//	send	to	second	shift	register	
					shiftOut(dataPin,	clockPin,	LSBFIRST,	i);	
					//	send	to	first	shift	register	
					shiftOut(dataPin,	clockPin,	LSBFIRST,	i);	

					//	turn	on	the	output	so	the	LEDs	can	light	up:	
					digitalWrite(latchPin,	HIGH);	
					delay(300);	
			}	
}

Upload	the	sketch	to	your	Arduino	Uno	and	watch	all	16	of	your	LEDs	turn	on
and	off.

Building	Your	Name	in	Lights
Different	electrical	components	can	perform	the	same	function	but	look	very
different	from	each	other.	LEDs	are	an	example	of	this;	for	example,	you	can	use
LEDs	in	different	colours	without	having	to	change	the	circuit,	although	you	still
need	a	current-limiting	resistor	and	a	connection	to	a	positive	voltage	and
ground.

LEDs	are	measured	by	their	width	and	you	can	also	buy	them	in	different	sizes.
You	are	probably	using	5mm	LEDs	but	you	can	get	them	is	all	sizes	so	you
might	like	to	try	them	in	3mm	or	10mm.	The	10mm	LEDs	work	nicely	in	this
project,	but	you	can	use	whatever	size	and	colour	that	you	think	looks	good.

In	this	project	you	can	light	up	as	many	as	24	LEDs.	You	can	decide	how	you
want	to	arrange	those	LEDs	and	use	them	to	embellish	a	carnival-style	letter
sign.	You’re	going	to	create	your	own	design	for	a	fantastic	sign	and	put	your
name	in	lights	(see	Figure	4-12).	You	can	choose	what	you’d	like	to	spell.	It	can
be	your	name	(or	just	initials	if	your	name	is	quite	long)	or	any	other	word—like
LED!

FIGURE	4-12	Your	name	(or	any	other	word)	in	lights!

You	will	choose	what	letters	you	would	like	to	make	and	cut	them	out	of
cardboard.	Then	you	can	decide	where	you	want	to	place	the	24	LEDs	and	add
them	to	your	letters.

	You	can	watch	a	video	of	how	to	build	a	carnival-style	letter	sign	on	the	companion
website	at	www.wiley.com/go/adventuresinarduino.

What	You	Need
Following	is	a	list	of	what	you	need	to	build	your	sign.	Remember	that
Appendix	A	lists	places	that	you	can	buy	the	electronic	components	shown	in
Figure	4-13.

http://www.wiley.com/go/adventuresinarduino

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard	(you	may	need	several	if	you	build	a	lot	of	letters)
57	jumper	wires
24	LEDs
24	220Ω	resistors
3	74HC595	shift	register	ICs	(1	for	every	8	LEDs)
Some	cardboard	(cutting	up	old	cardboard	boxes	works	well)
Some	wire
Some	solder
Paint	or	coloured	paper	for	decoration
A	soldering	iron
Masking	tape
Scissors	or	a	utility	knife
A	pencil,	screwdriver	or	hole	punch

FIGURE	4-13	The	electronic	components	you	need	to	build	your	name	in	lights

Understanding	the	Circuit
The	circuit	for	this	project	is	very	similar	to	the	one	you	built	earlier	in	this
chapter	using	two	shift	registers	with	16	LEDs.	You	can	add	up	to	three	shift
registers	and	24	LEDs.	You	need	one	shift	register	for	every	8	LEDs.

There	are	a	lot	of	connections	to	make,	so	use	Figure	4-14	as	a	guide	to	what
should	be	connected.	Remember,	only	the	lines	that	intersect	with	a	circle	are	the
wires	that	are	connected	to	each	other.

FIGURE	4-14	Circuit	schematic	for	three	shift	registers

Prototyping	on	a	Breadboard
Always	check	that	your	circuit	is	working	before	you	start	soldering!	Prototype
the	circuit	with	three	shift	registers.	You	may	need	to	use	multiple	breadboards.
Follow	the	steps	in	the	“Adding	More	Shift	Registers”	section	to	set	up	three
shift	registers.	Pin	14	of	one	shift	register	will	be	connected	to	Pin	11	on	the
Arduino	Uno.	For	the	other	two	shift	registers,	Pin	14	on	both	of	them	connect
Pin	9	of	the	next	shift	register.	Use	Figure	4-11	as	a	guide	and	add	a	third	shift
register	to	the	second	shift	register	in	the	same	way	you	connected	the	second
shift	register	to	the	first	shift	register.	Connect	eight	LEDs	to	each	of	the	shift
registers	using	the	steps	in	“Adding	the	LEDs”	section.

Writing	the	Code
Create	a	new	sketch	by	clicking	on	the	New	button	in	the	Arduino	IDE	or	going
to	File ⇒ New.	Type	the	following	code	to	begin	writing	your	sketch:	void
setup()	{	

}	

void	loop()	{	

}

At	the	top	of	the	sketch,	before	the	setup(),	add	the	following	variables:	//Pin
connected	to	latch	pin	(ST_CP)	of	74HC595	
int	latchPin	=	8;	
//Pin	connected	to	clock	pin	(SH_CP)	of	74HC595	
int	clockPin	=	12;	
//Pin	connected	to	Data	in	(DS)	of	74HC595	
int	dataPin	=	11;	

//	number	of	shift	registers	used	
int	numRegisters	=	3;	

//	first	pattern	to	be	displayed	
int	pattern1	=	85;	
//	second	pattern	to	be	displayed	
int	pattern2	=	170;

Inside	setup(),	set	the	pin	modes	and	call	a	function,	setLEDs(),	that	you	will
write	later.	Add	the	following	code:	//set	pins	to	output	because	they	are
addressed	in	the	main	loop	
pinMode(latchPin,	OUTPUT);	
pinMode(dataPin,	OUTPUT);	

pinMode(clockPin,	OUTPUT);	

//	start	with	all	LEDs	off	
setLEDs(0);

Inside	the	loop()	type	the	following	code	to	send	a	blinking	pattern	to	the
LEDs:	//	turn	on	LEDs	in	the	pattern	01010101	
setLEDs(pattern1);	
//	wait	1	sec	
delay(1000);	
//	turn	on	LEDs	in	the	pattern	10101010	
setLEDs(pattern2);	
//	wait	1	sec	
delay(1000);

The	only	function	missing	is	the	setLEDs()	function.	This	is	a	new	function	that
you	writing—it	isn’t	included	in	the	Arduino	IDE.	Type	the	following	code	after
the	loop()	(after	the	})	and	you	can	read	more	about	what	it	is	doing	in	the
Digging	into	the	Code	sidebar:	//	sends	pattern	to	shift	register	for	
//	which	LEDs	to	turn	on	and	off	
void	setLEDs(int	lightPattern)	{	
			//	turn	off	the	output	so	the	pins	don’t	light	up	
			//	while	you’re	shifting	bits:	
			digitalWrite(latchPin,	LOW);	
			

			int	i;	
			for(i=0;	i<numRegisters;	i++)	{	
					//	sends	out	the	pattern	once	for	each	shift	register	
					shiftOut(dataPin,	clockPin,	LSBFIRST,	lightPattern);	
			}	

			//	turn	on	the	output	so	the	LEDs	can	light	up:	
			digitalWrite(latchPin,	HIGH);	
			delay(300);	
}

Following	is	the	full	sketch,	but	you	can	also	download	it	from	the	companion
site	at	www.wiley.com/go/adventuresinarduino.

//Pin	connected	to	latch	pin	(ST_CP)	of	74HC595	
int	latchPin	=	8;	
//Pin	connected	to	clock	pin	(SH_CP)	of	74HC595	
int	clockPin	=	12;	

http://www.wiley.com/go/adventuresinarduino

//Pin	connected	to	Data	in	(DS)	of	74HC595	
int	dataPin	=	11;	

//	number	of	shift	registers	used	
int	numRegisters	=	3;	

//	first	pattern	to	be	displayed	
int	pattern1	=	85;	
//	second	pattern	to	be	displayed	
int	pattern2	=	170;	

void	setup()	{	
			//set	pins	to	output	because	they	are	addressed	in	the	main

loop	
			pinMode(latchPin,	OUTPUT);	
			pinMode(dataPin,	OUTPUT);	

			pinMode(clockPin,	OUTPUT);	

			//	start	with	all	LEDs	off	
			setLEDs(0);	
}	

void	loop()	{	
			//	turn	on	LEDs	in	the	pattern	01010101	
			setLEDs(pattern1);	
			//	wait	1	sec	
			delay(1000);	
			//	turn	on	LEDs	in	the	pattern	10101010	
			setLEDs(pattern2);	
			//	wait	1	sec	
			delay(1000);	
}	

//	sends	pattern	to	shift	register	for	
//	which	LEDs	to	turn	on	and	off	
void	setLEDs(int	lightPattern)	{	

			//	turn	off	the	output	so	the	pins	don’t	light	up	
			//	while	you’re	shifting	bits:	
			digitalWrite(latchPin,	LOW);	
			

			int	i;	
			for(i=0;	i<numRegisters;	i++)	{	
					//	sends	out	the	pattern	once	for	each	shift	register	
					shiftOut(dataPin,	clockPin,	LSBFIRST,	lightPattern);	
			}	

			//	turn	on	the	output	so	the	LEDs	can	light	up:	
			digitalWrite(latchPin,	HIGH);	
			delay(300);	
}

Connect	your	Arduino	Uno	to	your	computer	and	upload	the	code.	Your	lights
should	start	flashing.

DIGGING	INTO	THE	CODE

	The	variables	at	the	top	of	the	code	and	most	of	the	setup()	should	look	familiar	to	you;	they
are	the	same	as	what	you	used	earlier	in	this	adventure.	There	is	one	new	variable:
numRegisters.	It	is	currently	set	to	3,	but	if	you	would	like	to	use	fewer	shift	registers,	you	can
change	it	to	the	number	you	are	using.

There’s	also	a	new	function:	setLEDs().	This	function	is	defined	underneath	loop().	It	takes	one
argument:	the	pattern	of	LEDs	to	light	up	(pattern1	or	pattern2).

The	pattern	is	described	by	a	decimal	number.	For	pattern1,	it	is	the	number	85	in	decimal,	which	is
01010101	in	binary,	so	it	turns	on	every	other	LED	of	each	set	of	eight	LEDs.	The	other	LED	pattern	is
pattern2,	which	is	170	in	decimal	or	10101010	in	binary.	It	is	the	opposite	of	pattern1—it	turns	on	the
LEDs	that	were	off	in	pattern1	and	turns	off	the	LEDs	that	were	on.	So	when	the	LEDs	alternate
between	pattern1	and	pattern2,	it	creates	a	flashing	pattern.

	Want	your	sign	to	light	up	in	a	different	pattern?	It’s	not	too	difficult	to	create	your	own.
Write	out	the	pattern	as	a	sequence	of	eight	0s	and	1s	and	then	calculate	what	that	number
would	be	in	decimal.	You	can	also	use	an	online	calculator	to	help	convert	between	binary

and	decimal;	try	www.mathsisfun.com/binary-decimal-hexadecimal-converter.html	or
www.binaryhexconverter.com/binary-to-decimal-converter.

Making	the	Lights
Your	first—and	biggest—decision	is	to	choose	the	letters	you	will	create.
Remember,	you	only	have	24	LEDs	to	decorate	your	signs	with.	You	need	to
decide	what	letters	you	would	like	to	make	and	where	the	LEDs	will	be	placed.

1.	 Trace	your	letters	onto	cardboard.	Cardboard	from	old	boxes	works	well.
Use	a	pair	of	scissors	or	a	utility	knife	to	cut	out	the	letters.

2.	 If	you	want	to	decorate	your	letters	with	paint	or	paper,	go	ahead	and	do
that	now.

3.	 When	any	paint	or	glue	used	to	decorate	your	letters	are	dry,	use	a	tool	to
poke	a	hole	in	the	cardboard	letters	where	you	want	to	place	each	LED.	A
pencil	or	screwdriver	can	work	well.	Make	sure	the	hole	is	just	big	enough
to	snugly	hold	the	LED	in	place.	At	this	point	you’re	just	determining	the
placement	of	the	LEDs.	You	insert	the	lights	into	the	holes	after	you	have
the	wires	soldered.	You	should	now	have	letters	similar	to	the	ones	in
Figure	4-15.

FIGURE	4-15	Cardboard	letters	with	holes	for	LEDs

Soldering	the	Wires
Use	the	following	steps	to	solder	your	circuit:

http://www.mathsisfun.com/binary-decimal-hexadecimal-converter.html
http://www.binaryhexconverter.com/binary-to-decimal-converter

1.	 Solder	a	resistor	to	the	long	leg	of	each	LED.	Twist	the	legs	of	the	resistor
and	LED	together	so	that	they	don’t	easily	come	apart	and	then	solder	them.

	Always	have	an	adult	nearby	when	you	are	soldering.	Adventure	2	has	some	more	tips	to
help	you	stay	safe	when	you	solder.

1.	 Place	the	LEDs	in	their	holes	in	the	cardboard	letters.	Bend	the	short	legs	of
each	of	the	LEDs	towards	the	next	LED	(use	Figure	4-16	as	a	guide).	If	the
short	leg	of	an	LED	doesn’t	reach	the	LED	next	to	it,	cut	a	piece	of	wire
that	reaches	from	that	LED	to	the	next.	Solder	either	the	wire	to	each	LED
or	the	short	leg	of	the	first	LED	directly	to	the	next.	Repeat	for	all	the
LEDs.	You	should	have	one	short	leg	of	an	LED	left	on	each	letter.	The	rest
of	the	short	legs	of	the	LEDs	should	be	connected	to	each	other.

2.	 You	use	a	breadboard	to	connect	your	shift	registers	to	the	LEDs	and	the
Arduino	Uno.	Decide	where	the	breadboard	and	Arduino	Uno	will	be
placed.	They	could	be	taped	to	the	back	of	a	letter	or	could	rest	on	the	table
next	to	the	letters.

3.	 Cut	24	pieces	of	wire	that	reach	from	each	of	the	resistors	soldered	to	the
LEDs	to	the	breadboard.	You	might	want	to	hide	the	wires	by	taping	them
along	the	back	of	the	letters,	so	be	sure	to	cut	them	long	enough	for	that	if
that’s	what	you	would	like	to	do.

4.	 Strip	about	½"	from	each	end	of	all	the	wires	you	just	cut.	Solder	each	wire
to	its	LED.

5.	 Cut	a	wire	that	reaches	from	the	remaining	short	LED	leg	on	each	letter	to
the	breadboard.	You	need	one	for	each	letter.

6.	 Strip	about	½"	from	each	end	of	the	wires	you	just	cut.	Solder	each	wire	to
its	short	LED	leg	on	each	letter.

FIGURE	4-16	Soldered	LEDs	and	resistors

Inserting	the	Electronics
When	you’ve	finished	soldering	all	your	LEDs,	just	pop	them	through	the	holes
in	your	letters.	You	might	need	to	add	a	little	glue	if	they	don’t	stay	put.	Then
you	are	ready	to	build	your	shift	register	circuits	onto	one	breadboard	as	shown
in	Figure	4-17:

1.	 Follow	the	same	steps	you	went	through	when	building	the	prototype
circuit.	You	connect	the	5V,	ground,	CLOCK,	LATCH	and	DATA	lines	as	you
have	done	previously.

2.	 The	resistors	are	soldered	to	the	LEDs,	so	they	don’t	need	to	be	placed	on
the	breadboard.	Instead	connect	the	wires	that	you	soldered	to	the	resistors
to	the	pins	on	the	shift	registers.	See	Figure	4-16	for	guidance.

3.	 Connect	the	wires	from	the	short	legs	of	each	LED	to	ground	on	the
breadboard.

4.	 Connect	your	Arduino	Uno	to	your	computer	or	to	a	power	supply.

Power	up	your	Arduino	board	and	hey	presto!	Your	name	is	in	lights!

FIGURE	4-17	Back	of	lights

Further	Adventures	with	Shift	Registers
You	now	have	a	great	display	to	try	out	different	light	animations.	Try	writing
your	own	functions	with	light	patterns	of	your	own	design.

You	might	want	to	check	out	some	of	these	tutorials	online:

http://arduino.cc/en/tutorial/ShiftOut

https://learn.adafruit.com/adafruit-arduino-lesson-4-eight-

leds/the-74hc595-shift-register

In	the	project	you	just	created,	you	are	sending	a	decimal	number	to	shiftOut(),
which	then	turns	the	number	into	a	binary	number	to	tell	each	output	pin	whether
it	should	be	HIGH	or	LOW.	You	can	read	more	about	binary	numbers	at

http://arduino.cc/en/tutorial/ShiftOut
https://learn.adafruit.com/adafruit-arduino-lesson-4-eight-leds/the-74hc595-shift-register

http://en.wikipedia.org/wiki/Binary-coded_decimal.

Arduino	Command	Quick	Reference	Table
Command Description

void
Tells	the	computer	that	no	data	will	be	returned	by	a	function	when	it	finishes.	See	also
http://arduino.cc/en/Reference/Void.

shiftOut()
Sends	a	series	of	HIGH	and	LOW	values	in	time	with	a	CLOCK	signal.	See	also
http://arduino.cc/en/Reference/ShiftOut.

Achievement	Unlocked:	Skillful	engineer	of	shining	signs!

In	the	Next	Adventure
In	the	next	adventure,	you	will	learn	how	to	add	a	speaker	and	play	music	to	transform	your	Arduino	into
an	electronic	synthesiser!

http://en.wikipedia.org/wiki/Binary-coded_decimal
http://arduino.cc/en/Reference/Void
http://arduino.cc/en/Reference/ShiftOut

THERE	ARE	LOTS	of	ways	to	make	code	control	things	in	the	real	world.	You
have	already	controlled	movement	with	motors	and	controlled	light	with	LEDs.
In	this	adventure	you’re	going	to	create	sound!

In	Adventures	3	and	4,	you	discover	some	new	ways	to	make	your	code	more
efficient	when	you	need	to	repeat	the	instructions	more	than	once.	The	for	loop
is	a	great	tool	for	repeating	something	a	set	number	of	times.	When	you	combine
a	for	loop	with	special	lists	in	code—called	arrays—you	end	up	with	a	powerful
coding	tool.

After	learning	how	to	harness	the	power	of	arrays	and	figuring	out	how	to	get
your	Arduino	to	sing	to	you,	you’re	going	to	put	your	new	skills	into	practice	by
building	an	augmented	wind	chime	that	plays	both	acoustic	and	electronic
sounds.

What	You	Need
You	need	a	few	things	for	the	first	part	of	this	chapter	(the	electronic	components
are	shown	in	Figure	5-1):

A	computer
An	Arduino	Uno

A	USB	cable
A	breadboard
7	jumper	wires
6	LEDs
6	220Ω	resistors
A	piezo

Figure	5-1	The	electronic	components	you	need	for	the	first	part	of	this
adventure

Making	a	List
Variables	are	useful	ways	of	keeping	track	of	information	like	the	numbers	of	the
pins	on	your	Arduino	Uno.	Creating	a	variable	to	store	the	number	of	the	pin	to
which	a	particular	LED	is	connected	makes	your	code	easier	to	read	later	on.
When	you	create	a	variable	like	this:	int	ledPin	=	12;

you	can	write	this	later:

digitalWrite(ledPin,	HIGH);

instead	of	having	to	write	this:	digitalWrite(12,	HIGH);

Using	the	variable	makes	your	code	easier	to	read.	You	might	not	remember
what	is	connected	to	Pin	12,	but	the	variable	ledPin	makes	it	easier	to	figure	out
what	the	code	is	doing.

But	what	if	you	want	to	keep	track	of	more	than	one	LED?	Well,	you	could
create	a	variable	for	each	pin,	like	this:	int	ledPin1	=	3;	
int	ledPin2	=	4;	

int	ledPin3	=	5;	

int	ledPin4	=	6;	

int	ledPin5	=	7;	

int	ledPin6	=	8;

But	that	doesn’t	seem	very	efficient!	Why	should	you	have	to	type	the	same
thing	over	and	over	again	when,	as	we	know,	computers	are	good	at	doing	the
same	thing	many	times.	There	must	be	a	better	way,	right?

There	is!	Computers,	including	the	Arduino,	can	collect	information	in	lists
called	arrays.	Instead	of	having	to	create	a	variable	for	each	piece	of
information,	you	create	a	variable	that	is	an	array.	Whenever	you	want	to	refer	to
one	of	the	items	in	the	array,	you	simply	give	the	number	of	that	item.	Figure	5-2
shows	examples	of	two	arrays.

	An	array	is	a	list	of	the	same	type	of	thing	in	code.	For	example,	an	array	can	hold	a	list	of
ints.

Figure	5-2	Two	example	arrays

The	one	little	trick	to	remember	with	arrays	is	that	the	first	item	isn’t	number	1;
it’s	actually	number	0.	So,	for	example,	if	you	wanted	to	use	the	first	item	in	the

list	called	ledPins,	you	would	type:	ledPins[0]

If	you	want	to	turn	on	an	LED	on	the	pin	number	stored	in	the	third	item	in	the
array,	you	would	type:	digitalWrite(ledPins[2],	HIGH);

Making	Your	Intentions	Known
So,	how	do	you	create	a	new	array?	You	don’t	just	create	a	variable	that	holds	a
single	number,	like	an	int	or	float.	The	process	involves	more	steps	than	that.

	A	float	is	a	data	type	for	numbers	that	aren’t	whole	numbers	but	include	a	decimal	place
such	as	1.3	or	-54.089.

The	first	step	is	to	declare	the	new	variable	that	will	hold	the	array.	Declare	is
just	a	fancy	word	for	something	you	have	already	been	doing	in	your	sketches.	It
means	creating	a	new	variable	by	giving	it	a	name	and	a	data	type.	The
following	line	of	code	declares	a	new	variable	called	ledPin	that	contains	an
int:	int	ledPin;

	Declaring	a	variable	is	where	you	create	a	new	variable	by	giving	it	a	name	and	a	data	type
such	as	int.	The	variable	does	not	hold	a	value	until	it	is	given	its	first	value.

If	you	already	know	what	value	you	want	to	store	in	the	variable	when	you
create	it,	you	can	instantiate	it	at	the	same	time.	That	just	means	giving	it	a
starting	value:	int	ledPin	=	13;

	Instantiating	a	variable	is	where	you	give	it	a	value	for	the	first	time.	Instantiation	can
happen	at	the	same	time	you	declare	the	variable,	or	you	can	do	it	later,	but	the	declaration
always	needs	to	come	first.

You	don’t	have	to	declare	and	instantiate	the	variable	at	the	same	time.;	you	can

declare	a	variable	and	instantiate	it	later	on	in	your	code:	int	ledPin;	
//	some	more	code	happens	here	

ledPin	=	13;

	Be	careful	if	you	decide	not	to	instantiate	a	variable	at	the	same	time	that	you	declare	it.
You	can’t	use	that	variable	until	it	has	a	value,	or	your	Arduino	code	might	not	work	as	you
would	expect.

To	declare	and	create	a	new	array	of	six	integers	called	ledList,	use	the
following	code:	int	ledList[6];

The	preceding	code	is	only	a	little	different	from	what	you	would	type	to	create	a
new	variable	that	holds	an	int.	After	the	variable	name	ledList,	there	is	[6].
The	[]	means	that	instead	of	a	single	int,	the	variable	is	going	to	hold	an	array
of	ints.	The	6	is	the	number	of	ints	the	array	will	hold.

Now	that	you	have	created	the	array	by	declaring	it,	you	can	instantiate	it,	and
fill	it	with	values	later	in	the	code:	ledList[0]	=	3;	
ledList[1]	=	4;	

ledList[2]	=	5;	

ledList[3]	=	6;	

ledList[4]	=	7;	

ledList[5]	=	8;

Declaring	an	array	and	not	instantiating	it	at	the	same	time	is	useful	if	you	don’t
know	what	values	need	to	go	into	the	array	when	you	create	it.	However,	if	you
already	know	what	all	the	values	should	be,	you	can	instantiate	the	array	at	the
same	time	you	declare	it,	as	shown	here:	int	ledList[]	=	{3,	4,	5,	6,	7,
8};

The	values	to	be	stored	in	the	array	are	listed	between	{	and	}.	The	[]	no	longer
needs	a	number	in	it,	because	the	number	of	items	in	the	array	is	established	by
the	number	of	items	in	{}.

Looping	Through	an	Array
It’s	easy	to	do	the	same	thing	with	each	item	in	an	array	without	copying	and
pasting	the	same	code	multiple	times.	You	can	use	a	for	loop	to	do	this.	As	you
might	remember	from	earlier	adventures,	a	for	loop	has	three	parts	that

determine	how	many	times	it	is	run.	A	new	variable,	often	named	i,	is	created
and	used	to	count	through	the	loop.	In	the	following	code,	the	loop	will	run	six
times:	int	i;	
for(i=0;	i<6;	i++)	{	

}

i++	indicates	that	the	variable	i	increases	each	time	the	computer	runs	through
the	loop.	Instead	of	accessing	a	single	item	in	the	array,	such	as	ledList[3],	the
variable	i	can	be	used	to	access	the	next	item	in	the	list	each	time	through	the
loop.	Here’s	an	example:	int	i;	
for(i=0;	i<6;	i++)	{	

			Serial.println(ledList[i]);	//	print	the	next	item	in	the	list

}

You	can	also	write	a	for	loop	so	that	it	makes	a	change	to	each	item	in	the	array:
int	i;	

for(i=0;	i<6;	i++)	{	

			ledList[i]	=	i+2	//	add	2	to	each	item	in	the	array	

}	

DIGGING	INTO	THE	CODE

The	code	snippet	i++	is	shorthand	for	i=i+1,	but	that’s	not	the	only	useful	code	snippet.	If	i++	increases	i
by	adding	1	to	it	and	saving	the	new	number	in	i,	you	might	be	able	to	guess	what	i--	does.	That’s	right;
it	subtracts	1	from	i	and	saves	the	new	number	in	i.

Another	way	to	increase	i	by	1	is	to	write	i+=1;	similarly	you	can	decrease	i	by	1	by	writing	i-=1.	You
can	use	these	conventions	to	increase	and	decrease	a	variable	by	any	number,	so	to	increase	i	by	3	it
would	be	i+=3	or	to	decrease	by	7	it	would	be	i-=7.

Putting	It	Into	Practice
That’s	enough	talking	about	what	happens	in	code.	It’s	time	to	light	up	some
LEDs	and	actually	see	what	happens	in	code!

This	circuit	is	one	you	have	seen	many	times	before	in	other	adventures—an
LED	with	a	current	limiting	resistor.	This	time,	you’re	going	to	set	up	six	of
them	on	digital	Pins	3	to	8,	as	shown	in	Figure	5-3:

1.	 Start	by	using	a	jumper	wire	to	connect	a	GND	on	the	Arduino	Uno	to	a
long	row	on	the	bottom	of	the	breadboard.	If	your	breadboard	is	labelled
with	a	blue	or	black	line	or	a	–,	connect	GND	to	that	row.

2.	 Place	the	six	LEDs	across	the	breadboard	by	inserting	the	short	leg	of	each
LED	into	the	long	row	now	connected	to	GND.	Spread	them	out	evenly
across	the	breadboard.

3.	 Place	the	long	leg	of	each	LED	into	a	short	row	that	is	easy	for	that	LED	to
reach.	It	doesn’t	matter	which	rows	you	use;	the	only	important	thing	is	that
each	LED	is	in	its	own	short	row.

4.	 Connect	one	leg	of	a	resistor	to	each	short	row	that	you	just	inserted	the
LED	into.	Bend	the	legs	of	the	resistors	so	that	they	reach	over	the	gap	in
the	middle	of	the	breadboard,	and	insert	the	other	resistor	leg	into	the	short
row	across	the	gap.

5.	 Connect	each	resistor	to	an	output	pin	on	the	Arduino	Uno.	Use	six	jumper
wires	to	connect	Pins	3	through	8	to	the	resistors.

Figure	5-3	The	circuit	for	an	array	of	LEDs

The	following	code	lets	you	put	into	practice	setting	up	an	array	of	values.	Here,
each	of	the	items	in	the	array	is	a	pin	number	that	controls	an	LED.	So	the	whole
array	of	LEDs	can	be	blinked	in	the	same	way	you	would	blink	a	single	LED.
The	pinMode()	is	set	for	each	of	the	pins,	and	each	pin	is	set	to	HIGH	and	then
LOW:	//	pins	for	leds	
int	ledList[]	=	{	

		3,	4,	5,	6,	7,	8};	

//	number	of	pins	

int	numPins	=	6;	

void	setup()	{	

		int	i;	

		for(i=0;	i<numPins;	i++){	

			//	set	pins	to	OUTPUT	

			pinMode(ledList[i],	OUTPUT);	

		}	

}	

void	loop()	{	

		//	blink	the	LEDs	one	by	one	

		int	i;	

		for(i=0;	i<numPins;	i++)	{	

					//	turn	on	the	led	

					digitalWrite(ledList[i],	HIGH);	

					delay(500);	

					//	turn	off	the	led	

					digitalWrite(ledList[i],	LOW);	

					delay(500);	

		}	

}

	What	happens	if	you	change	the	for	loop	in	the	loop()	function	to	for(i=numPins-1;
i>=0;	i--)?

DIGGING	INTO	THE	CODE

	Your	six	LEDs	are	now	blinking	on	and	off,	one	by	one,	but	how	is	the	code	making	that
happen?	Let’s	start	at	the	top	of	the	sketch.	There	you	see	the	variables	being	used.	The	first	is
an	array	ledList	that	holds	all	the	pin	numbers	for	the	LEDs,	and	the	second	is	an	int,	numPins,
that	stores	the	total	number	of	LED	pins:	//	pins	for	leds	
int	ledList[]	=	{	

		3,	4,	5,	6,	7,	8};	

//	number	of	pins	

int	numPins	=	6;

Going	on	in	the	code,	you	come	to	your	first	for	loop	of	the	sketch	in	setup().	The	for	loop	is	used	to
set	the	pin	mode	of	each	of	the	LED	pins	to	OUTPUT.	The	variable	i	is	used	to	iterate	through	each	item	in

the	array:	int	i;	
for(i=0;	i<numPins;	i++){	

		//	set	pins	to	OUTPUT	

		pinMode(ledList[i],	OUTPUT);	

}

The	second	for	loop	of	the	sketch	is	in	loop().	The	variable	i	is	used	again	to	iterate	through	the	array.
This	time,	instead	of	setting	the	pin	mode	for	each	pin,	the	pin	is	turned	on	by	being	set	to	HIGH.	The
Arduino	Uno	waits	for	500	ms	when	delay(500)	is	called,	and	then	the	pin	is	turned	off	by	being	set	to
LOW.	The	Arduino	Uno	is	paused	for	500	ms	again	before	going	on	to	the	next	pin	in	the	array.

//	blink	the	LEDs	one	by	one	

int	i;	

for(i=0;	i<numPins;	i++)	{	

		//	turn	on	the	led	

		digitalWrite(ledList[i],	HIGH);	

		delay(500);	

		//	turn	off	the	led	

		digitalWrite(ledList[i],	LOW);	

		delay(500);	

}

Because	the	for	loop	is	inside	loop(),	it	gets	continuously	run	until	the	Arduino	Uno	is	no	longer
powered.

Making	Noise
It’s	not	unusual	for	computers	to	make	sounds.	You	probably	listen	to	music
stored	on	a	music	player	or	phone	(which	are	types	of	computers)	all	the	time,
but	you	might	not	have	given	much	thought	to	how	the	computer	physically
creates	the	sound	you	hear.

Sound	is	just	vibrations	(usually	vibrations	in	the	air)	that	our	ears	can	detect.
The	speed	at	which	something	vibrates	determines	whether	it	sounds	low	or
high.	The	vibrations	are	measured	in	Hertz	(Hz),	which	is	equivalent	to	cycles
per	second.	Humans	can	hear	around	20	Hz	to	20,000	Hz,	though	as	we	get	older
we	tend	to	not	hear	high	frequencies	as	well	as	we	do	when	we	are	younger.
Figure	5-4	illustrates	how	sound	is	made.

Figure	5-4	How	sound	is	made

So,	how	does	a	computer	get	air	to	vibrate?	A	computer	or	Arduino	Uno	can
output	a	changing	voltage	that	alternates	between	positive	and	negative.	A
loudspeaker	takes	that	changing	voltage	and	turns	it	into	vibrations.	One	type	of
loudspeaker	uses	a	piezo	element.	This	usually	looks	like	a	gold	disc	with	two
wires	coming	from	it,	although	it	is	sometimes	enclosed	in	plastic.

	A	piezo	is	a	crystal	that	expands	and	shrinks	when	electricity	is	run	through	it.	It	also
generates	electricity	when	it	is	squeezed	or	bent.

Now	that	you	know	a	little	bit	about	how	computers	generate	sound,	you	can
make	your	Arduino	produce	some	tones.	You	know	that	the	Arduino	outputs	0
and	5V	because	you	have	used	digitalWrite()	to	set	a	pin	to	LOW	(0V)	and

HIGH	(5V).	Making	an	Arduino	board	output	a	voltage	between	0	and	5V	is
actually	a	tricky	thing	to	do.	Luckily	the	Arduino	library	has	a	built-in	set	of
functions	that	does	this	and	generates	sound	without	you	needing	to	know	the
details.	Of	course,	if	you	would	like	to	know	more	about	how	sound	is
generated,	you	can	read	more	in	the	Arduino	documentation	at
http://arduino.cc/en/Reference/Tone.

Wiring	the	Circuit
A	piezo	has	two	wires	attached	to	it.	The	black	wire	connects	to	GND	on	the
Arduino	board	and	the	red	wire	connects	to	the	pin	that	the	audio	plays	from.
Connect	the	black	wire	to	GND	and	the	red	wire	to	Pin	8	now,	as	shown	in
Figure	5-5.

Figure	5-5	The	circuit	for	a	using	a	piezo	as	a	speaker

Writing	the	Code
The	main	function	for	creating	sound	is	tone().	It	can	be	used	in	two	ways.	The
first	is	to	give	three	arguments:	the	pin	that	the	sound	should	play	from;	the
frequency	of	the	sound;	and	how	long	the	sound	should	play.	Here’s	an	example:
//	play	on	Pin	8	a	tone	of	750	Hz	for	1000	ms	(1	s)	

tone(8,	750,	1000);	

delay(1000);

http://arduino.cc/en/Reference/Tone

Notice	that	right	after	the	tone()	function	there	is	a	delay()	function.	Even	if
the	tone()	function	is	told	how	long	to	play	a	sound,	the	Arduino	board	still
needs	to	be	told	to	wait	for	the	sound	to	finish	playing	before	tone()	is	called
again.	The	delay()	function	specifies	how	long	that	wait	should	be.

The	other	way	to	use	the	tone()	function	is	to	give	it	only	two	arguments:	the
pin	that	the	sound	should	play	from;	and	the	frequency	of	the	sound.	The	sound
starts	playing	when	the	function	is	called,	and	it	doesn’t	stop	until	the	function
noTone()	is	called,	as	in	the	following	code:	//	play	on	Pin	8	a	tone	of	750
Hz	

tone(8,	750);	

//	other	code	can	happen	here	

//	stop	the	tone	

noTone(8);

The	functions	tone()	and	noTone()	can	be	used	in	setup()	if	you	want	sound	to
play	only	once	when	the	Arduino	is	first	powered,	or	in	the	loop()	if	the	sound
should	play	repeatedly.

As	you	have	already	connected	the	piezo	to	the	Arduino	board,	all	that	remains
is	for	you	to	upload	the	following	code:	int	piezoPin	=	8;	

void	setup()	{	

		//	play	3	tones	when	the	board	first	starts	

		tone(piezoPin,	523,	200);	

		//	delay	is	slightly	longer	than	tone	

		//	so	that	there	is	silence	in	between	the	sounds	

		delay(210);	

		tone(piezoPin,	784,	200);	

		delay(210);	

		tone(piezoPin,	1047,	250);	

		delay(260);	

}	

void	loop()	{	

		//	play	5	more	tones	

		tone(piezoPin,	523,	200);	

		delay(210);	

		tone(piezoPin,	587,	200);	

		delay(210);	

		tone(piezoPin,	659,	200);	

		delay(210);	

		tone(piezoPin,	698,	200);	

		delay(210);	

		tone(piezoPin,	784,	200);	

		//	wait	5	seconds	before	starting	the	loop	over	

		delay(5000);	

}

When	the	Arduino	first	runs	the	code,	you	should	hear	three	notes	magically
ringing	out.	The	three	notes	should	then	play	in	a	repeated	pattern	(that	goes	on
and	on	and	on	and	on…).

DIGGING	INTO	THE	CODE

	So	what	exactly	is	happening	in	the	sketch	you	just	uploaded?	The	format	of	the	sketch	is
similar	to	the	others	you	have	worked	with:	Variables	are	created	at	the	top,	anything	that
happens	only	once	is	done	in	setup(),	and	everything	else	that	happens	repeatedly	is	done	in
loop().

This	sketch	only	has	one	variable:	int	piezoPin	=	8;
The	setup()	in	previous	sketches	has	been	used	to	set	pin	modes.	That	doesn’t	need	to	happen	in	this
sketch	because	the	only	pin	being	used	is	outputting	sound	using	tone().	Instead,	you	use	tone()	to
demonstrate	the	difference	between	setup()	and	loop().	The	setup()plays	three	tones	before	the
loop()	plays	five	tones.	The	tones	in	setup()only	play	once,	when	the	Arduino	Uno	is	first	started,	but
the	five	tones	keep	playing	and	playing	until	you	remove	power	from	the	board.

The	setup()	only	calls	two	functions.	The	first	is	tone(),	which	tells	the	Arduino	Uno	what	frequency	to
play	on	what	pin	and	for	how	long.	Then	delay()	is	called	to	make	the	Arduino	Uno	wait	for	the	tone()
to	finish	playing	before	continuing	onto	the	next	line	of	code.

//	play	3	tones	when	the	board	first	starts	

tone(piezoPin,	523,	200);

//	delay	is	slightly	longer	than	tone	

//	so	that	there	is	silence	in	between	the	sounds	

delay(210);	

tone(piezoPin,	784,	200);	

delay(210);	

tone(piezoPin,	1047,	250);	

delay(260);	

The	loop()	is	just	like	setup()	except	it	plays	five	tones

instead	of	three:	

//	play	5	more	tones	

tone(piezoPin,	523,	200);	

delay(210);	

tone(piezoPin,	587,	200);	

delay(210);	

tone(piezoPin,	659,	200);	

delay(210);	

tone(piezoPin,	698,	200);	

delay(210);	

tone(piezoPin,	784,	200);	

//	wait	5	seconds	before	starting	the	loop	over	

delay(5000);

	If	you	know	how	to	read	sheet	music,	open	File ⇒ Examples ⇒ 02.Digital ⇒ toneMelody.
You	can	see	that	there	are	two	tabs	in	the	Arduino	IDE:	one	labelled	toneMelody	and
another	labelled	pitches.h.

The	tab	pitches.h	is	a	list	of	values	like	this:	#define	NOTE_B0	31

Just	pay	attention	to	NOTE_B0	and	31.	The	first	is	the	musical	note	B	and	the	number	(31,	in	this
example)	is	the	frequency	for	that	note.	The	number	next	to	the	note	(like	the	0	in	B0)	is	the	octave.
You	can	use	these	numbers	to	help	you	write	musical	melodies.

CHALLENGE

	The	following	code	uses	an	array	to	play	the	same	sequence	of	sounds.	Create	a	new	sketch
with	the	following	code	and	upload	it	to	your	Arduino	Uno.	Try	changing	the	array	so	it	plays
the	pitches	in	reverse	(high	to	low	instead	of	low	to	high):	int	piezoPin	=	8;	
int	pitches[]	=	{	

		523,	587,	659,	698,	784};	

int	numPitches	=	5;	

void	setup()	{	

		//	play	3	tones	when	the	board	first	starts	

		tone(piezoPin,	523,	200);	

		//	delay	is	slightly	longer	than	tone	

		//	so	that	there	is	silence	in	between	the	sounds	

		delay(210);	

		tone(piezoPin,	784,	200);	

		delay(210);	

		tone(piezoPin,	1047,	250);	

		delay(260);	

}	

void	loop()	{	

		//	play	5	more	tones	

		int	i;	

		for(i=0;	i<numPitches;	i++){	

			tone(piezoPin,	pitches[i],	200);	

			delay(210);	

		}	

		//	wait	5	seconds	before	starting	the	loop	over	

		delay(5000);	

}

Building	an	Augmented	Wind	Chime
An	augmented	musical	instrument	is	what	can	be	called	a	“normal”	musical
instrument—such	as	a	trumpet	or	piano—that	has	electronics	added	to	it.	The
electronics	let	the	musician	use	a	computer	or	microcontroller	to	add	to	the
sound	that	the	instrument	naturally	makes.

As	you	have	just	discovered,	the	Arduino	has	a	set	of	functions	that	can	generate
sound.	You	know	that	the	Arduino	can	also	read	in	information	from	its	pins,	so
you	can	combine	reading	from	pins	to	trigger	different	sounds.	To	complete	this
adventure	in	sound,	you’re	going	to	augment	a	wind	chime	(see	Figure	5-6)	so
that	it	doesn’t	just	make	the	usual	sounds	when	it’s	buffeted	by	the	wind	but	also
plays	tones	produced	by	the	Arduino!

Figure	5-6	An	augmented	wind	chime

	You	can	watch	a	video	on	how	to	make	your	augmented	wind	chime	on	the	companion	site

at	www.wiley.com/go/adventuresinarduino.

	There	are	lots	of	augmented	instruments	that	you	can	read	about	and	learn	from!	Here	are
some	of	my	favourites,	but	you	can	do	some	research	online	and	find	even	more:

Magnetic	Resonance	Piano:
www.eecs.qmul.ac.uk/~andrewm/mrp.html

Digi	Didgeridoo:	http://createdigitalmusic.com/2009/12/digi-
didgeridoo-augmented-wireless-digital-instrument-with-

aboriginal-roots

Augmented	Beatboxing:	www.cs4fn.org/music/beatboxing.php

What	You	Need
You	need	the	following	items	to	build	your	augmented	wind	chime.	Figure	5-7
shows	the	electronic	components	you	need.

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard
12	jumper	wires
5	tactile	pushbuttons
A	strip	of	5	header	pins
A	9V	battery
A	9V	battery-to-DC	barrel	jack	connector
Some	thin	wire
Small	piece	of	solid	core	wire
Some	string,	ribbon	or	yarn
10	beads	(plastic	or	glass	large	enough	to	pass	string	or	ribbon)
6	washers	or	other	conductive	object	to	act	as	the	chimes

http://www.wiley.com/go/adventuresinarduino
http://www.eecs.qmul.ac.uk/~andrewm/mrp.html
http://createdigitalmusic.com/2009/12/digi-didgeridoo-augmented-wireless-digital-instrument-with-aboriginal-roots/
http://www.cs4fn.org/music/beatboxing.php

Some	stiff	cardboard	or	plastic	to	use	as	the	base
Masking	tape
A	soldering	iron
Some	solder
Scissors	or	a	utility	knife
A	pencil	or	hole	punch
A	multimeter	with	continuity	test

Figure	5-7	The	electronic	components	you	need	to	make	the	wind	chime

Understanding	the	Circuit
There’s	not	too	much	to	the	circuit	for	the	wind	chime;	it	combines	switches
with	a	piezo	speaker.	The	fun	part	is	that	the	final	circuit	uses	materials	that	you
don’t	normally	see	in	electronics.	Before	experimenting	with	new	materials,	it’s
a	good	idea	to	build	a	prototype	of	the	circuit	on	a	breadboard	to	make	sure	it
works	as	you	expect	it	to.

Figure	5-8	shows	the	circuit	schematic	for	the	wind	chime.	It	looks	very

different	to	the	finished	wind	chime!	The	chimes	act	as	switches,	even	though
they	don’t	look	like	normal	switches.

Figure	5-8	Circuit	schematic	for	the	augmented	wind	chime

Prototyping	on	a	Breadboard

The	circuit	consists	of	five	switches	on	digital	pins	and	one	piezo	on	another
digital	pin.	Because	you	learned	how	to	use	the	internal	pull-up	resistor	in	the
Arduino	Uno	in	Adventure	3	instead	of	needing	to	add	a	resistor	to	the	switch
circuits,	there	aren’t	that	many	components.

Build	the	circuit	shown	in	Figure	5-9:

1.	 Place	five	tactile	pushbuttons	across	the	gap	in	the	middle	of	the	breadboard
so	that	two	of	the	legs	are	inserted	in	short	rows	above	the	gap	and	the	other
two	legs	are	inserted	in	rows	below	the	gap.

2.	 Use	a	jumper	wire	to	connect	a	GND	pin	on	the	Arduino	Uno	to	a	long	row
along	the	bottom	of	the	breadboard.	If	the	breadboard	is	labelled	with	a
black	or	blue	line	or	a	–,	use	that	row.

3.	 Use	five	jumper	wires	to	connect	the	bottom-right	leg	of	each	pushbutton	to
the	long	row	connected	to	GND.

4.	 Use	five	jumper	wires	to	connect	the	upper-left	leg	of	each	pushbutton	to
Pins	3	through	7	on	the	Arduino	Uno.

5.	 Connect	the	red	wire	of	the	piezo	to	any	empty	short	row	on	the
breadboard.	Use	a	jumper	wire	to	connect	that	short	row	with	Pin	8	on	the
Arduino	Uno.

6.	 Connect	the	black	wire	of	the	piezo	to	the	long	row	connected	to	GND.

Figure	5-9	Breadboard	prototype	circuit

The	wind	chime	circuit	is	a	little	different	from	the	circuit	in	Adventure	3	that
used	a	switch.	Instead	of	pushbutton	switches,	you’re	using	conductive	metallic
items	(such	as	washers	or	anything	else	you	choose)	connected	to	wires	dangling
from	the	wind	chime’s	base.	Each	of	these	conductive	items	is	connected	to	a
digital	pin.	A	sixth	conductive	item	that’s	connected	to	GND	hangs	in	the
middle.	When	the	wind	causes	the	middle	conductive	chime	to	come	into	contact
with	one	of	the	chimes	connected	to	a	pin,	it	is	electrically	the	same	as	pushing
the	button	on	the	combination	safe	in	Adventure	3.

Writing	the	Code
Launch	the	Arduino	IDE	and	open	a	new	sketch.	Type	the	following	code	in
your	sketch:	int	chimes[]	=	{	
		3,	4,	5,	6,	7};	//	array	of	pins	for	chimes	

int	numChimes	=	5;	//	total	number	of	chimes	

int	piezoPin	=	8;	//	pin	for	piezo	

void	setup(){	

		int	i;	

		//	set	pinMode	on	all	the	chimes	pins	

		for(i=0;	i<numChimes;	i++)	{	

				pinMode(chimes[i],	INPUT_PULLUP);	

		}	

}	

void	loop(){	

		int	i;	

		for(i=0;	i<numChimes;	i++)	{	

				//	read	in	value	on	pin	

				int	value	=	digitalRead(chimes[i]);	

				//	if	LOW	(meaning	it	has	connected	to	ground	

				if(value	==	LOW)	{	

						//	play	the	sound	

						tone(piezoPin,	(100*i)+200,	30);	

						delay(1);	

			}	

		}	

}

Upload	the	sketch	to	your	Arduino	Uno	connected	to	the	tactile	pushbuttons	and
piezo	circuit	you	just	built.	You	should	hear	a	different	pitch	played	when	each
button	is	pressed.

Of	course,	you	can	change	what	is	played	when	each	chime	is	triggered.	Come
up	with	your	own	musical	algorithm!

DIGGING	INTO	THE	CODE

	The	main	parts	of	the	sketch	use	an	array,	a	for	loop	to	iterate	through	that	array,	and	the
tone()	function.	The	array	chimes[]	stores	each	pin	number	that	is	connected	to	the	conductive
chimes	(or	prototyped	with	a	pushbutton).

int	chimes[]	=	{	

		3,	4,	5,	6,	7};	//	array	of	pins	for	chimes	

int	numChimes	=	5;	//	total	number	of	chimes	

int	piezoPin	=	8;	//	pin	for	piezo

The	setup()	then	sets	the	pin	modes	for	each	of	the	pins	connected	to	the	pushbuttons	or	chimes.
Because	they	are	inputs	that	use	the	internal	pull-up	resistors	in	the	Arduino	Uno,	you	use	the	argument
INPUT_PULLUP.

int	i;	

//	set	pinMode	on	all	the	chimes	pins	

for(i=0;	i<numChimes;	i++)	{	

		pinMode(chimes[i],	INPUT_PULLUP);	

}

The	for	loop	in	the	loop()	checks	the	value	of	each	pin.	When	a	chime	connects	to	GND,	a	tone()	is
played.	Because	you’ve	used	an	internal	pull-up	resistor,	you	know	that	the	value	of	a	pushbutton	or
chime	is	HIGH	when	it’s	not	connected	to	ground,	and	then	the	value	changes	to	LOW	when	it	is	connected
to	ground.	The	frequency	of	the	tone()	is	determined	by	which	chime	triggered	the	sound.

int	i;	

for(i=0;	i<numChimes;	i++)	{	

		//	read	in	value	on	pin	

		int	value	=	digitalRead(chimes[i]);	

		//	if	LOW	(meaning	it	has	connected	to	ground	

		if(value	==	LOW)	{	

			//	play	the	sound	

			tone(piezoPin,	(100*i)+200,	30);	

			delay(1);	

		}	

}

Making	the	Wind	Chime
Now	that	you	know	that	your	sketch	is	working	correctly	and	you	have	built	a
test	circuit	on	your	breadboard,	you	are	ready	to	make	your	wind	chime.	The
wind	chime	is	constructed	from	a	base	from	which	hang	six	chimes—five	outer
chimes	and	a	grounded	inner	chime.	You	can	make	the	wind	chime	from	any
materials	you	like,	but	it’s	important	that	the	chimes	are	conductive	and	that	they
are	electrically	connected	to	the	Arduino	Uno.	Visit	a	hardware	store	and	look
through	all	the	small	metal	fastenings	to	choose	what	you	want	to	use	as	chimes.
Washers	come	in	many	different	sizes,	but	you	might	prefer	hexagonal	nuts	over
circular	washers.

Making	the	Base
You	can	make	the	base	from	anything	that	is	strong	enough	to	support	your
chimes	and	can	also	hold	an	Arduino	Uno	and	battery.	Stiff	cardboard	or	plastic
are	good	options.

First,	cut	a	circle	from	the	base	material	that’s	approximately	6	inches	in
diameter.	Poke	six	small	holes	in	it;	the	strings	and	wires	pass	through	these
holes.	Five	of	the	holes	should	be	evenly	distributed	around	the	outside	of	the
base,	and	the	sixth	hole	should	be	in	the	center.

Poke	four	more	holes	around	the	edges	of	the	base.	These	are	for	the	strings	to
hang	the	chime.

Making	the	Chimes
When	you	choose	what	material	to	use	to	make	the	chimes,	you	need	to
remember	two	important	characteristics:	you	need	to	be	able	to	solder	wires	to	it
and	it	must	conduct	electricity.	To	test	if	you	can	solder	to	it,	just	try	to	do	it!
Whatever	material	you	have	chosen,	it	will	probably	take	a	few	more	seconds	to
get	hot	enough	to	solder	than	something	small	like	a	wire,	so	be	patient.

	Only	solder	when	an	adult	is	nearby	to	help!	It	takes	a	lot	of	heat	from	the	iron	to	get	your
chime	hot	enough	to	melt	solder.	It	also	takes	a	longer	time	to	cool	down	after	you’ve
soldered	your	wire	to	it.	Be	very	careful	and	wait	at	least	5	minutes	before	picking	up
something	you’ve	soldered.

To	check	whether	the	material	conducts	electricity,	you	need	a	multimeter.	A
multimeter	measures	multiple	things	(so	it’s	a	pretty	good	name),	including
voltage	and	resistance.	You	need	a	meter	that	also	measures	continuity.
Continuity	indicates	whether	current	can	flow	between	the	two	probes	attached
to	the	meter,	which	indicates	conductivity.	Not	all	multimeters	have	a	continuity
test,	so	pay	attention	to	the	listed	features	of	the	multimeter	before	you	buy	it.

Test	your	potential	chime	by	touching	it	in	two	different	spots	on	the	chime	with
the	probes	(see	Figure	5-10).	If	the	multimeter	beeps,	your	material	is
conductive.	If	it	doesn’t,	you	should	find	something	else	to	use.

Figure	5-10	Conductivity	test

	If	you	are	using	very	thin	wire	than	doesn’t	have	a	plastic	sleeve	around	it,	it	may	still	have
a	thin	coating	of	insulation	on	it.	If	you	have	problems	soldering	it	or	it	fails	a	continuity
test,	you	can	scrape	off	the	insulating	coating	with	some	sandpaper	or	a	nail	file.

After	you	have	chosen	your	material	for	your	chimes,	solder	a	wire	to	each	of
them.	The	wire	should	be	long	enough	to	reach	from	where	you	want	the	chime
to	hang	through	the	base	and	to	the	Arduino	Uno.	Wrap	the	wire	several	times
around	your	chime	(see	Figure	5-11)	and	make	sure	you	have	a	strong	electrical
connection	and	then	solder	it	to	the	chime.

Figure	5-11	A	chime

As	yet,	the	wire	is	too	weak	to	support	the	chime	by	itself.	Chandeliers	are	held
up	by	a	strong	chain	with	a	wire	that	runs	along	it	to	light	up	the	bulbs.	In	the
same	way,	to	give	your	wind	chime	extra	support,	the	next	section	will	show	you
how	to	use	string	or	ribbon	to	hang	the	chime.

Attaching	the	Chimes
The	most	important	thing	to	remember	is	that	the	string	or	ribbon	should	bear	all
the	weight	of	the	chime;	the	wire	is	just	there	to	conduct	the	signal	from	the
Arduino	to	the	chime.	The	wire	should	not	bear	any	weight.

Tie	a	piece	of	string	or	ribbon	around	the	chime	as	shown	in	Figure	5-12.	Bring
the	wire	and	ribbon	up	through	the	hole	together	and	then	thread	a	bead	onto	the
string	or	ribbon—not	the	wire.	Tie	a	knot	in	the	string	or	ribbon	to	keep	the	bead
in	place	and	keep	the	chime	from	pulling	the	string	back	through	the	base	(see
Figure	5-12).

Do	this	with	all	six	chimes.

FIGURE	5-12	A	chime	attached	to	the	base

Connecting	the	Electronics
You	are	almost	finished!	Now	to	complete	the	final	few	steps:

1.	 Solder	a	small	section	of	solid-core	wire	to	the	chime	hanging	from	the
center.	Plug	that	wire	into	GND	on	the	Arduino	board.

2.	 Tape	the	Arduino	board	and	piezo	to	the	top	of	the	base.	Connect	the	black
wire	of	the	piezo	to	a	GND	pin	on	the	Arduino	board	and	connect	the	red
wire	to	Pin	8.

3.	 Solder	each	of	the	wires	from	the	five	remaining	chimes	to	a	pin	on	the
section	of	header	pins.	This	is	some	tricky	soldering,	so	just	take	your	time.
Place	the	header	pins	in	a	breadboard	to	hold	the	pins	upright.	Heat	up	a
header	pin	with	the	soldering	iron	and	coat	it	in	solder.	Then	heat	up	the	end
of	the	wire	and	coat	it	in	solder.	Place	the	wire	so	it	touches	the	header	pin
and	heat	up	both	again	so	that	the	solder	coating	them	melts	and	connects
them	together.	Repeat	this	process	for	the	remaining	pins.

4.	 Push	the	header	pins	into	Pins	3	through	7.
5.	 Connect	the	battery	to	the	Arduino	board	using	the	battery	holder	(see

Figure	5-13)	and	attach	the	battery	to	the	base	using	tape.

Figure	5-13	Top	of	base

Cut	two	more	pieces	of	string	about	24"	long.	These	will	hang	your	wind	chime.
Fold	them	each	in	half	and	thread	each	end	of	the	strings	through	one	of	the	four
holes	on	the	base.	The	ends	should	stick	out	from	the	bottom	of	the	base.	Tie	a
bead	onto	each	string	to	keep	the	string	from	pulling	back	through	the	base.
Hang	up	your	wind	chime,	and	enjoy	your	augmented	sounds!

Further	Adventures	with	Sound
You	are	now	a	sound	savant!	You	can	control	sound	along	with	light	and	motion
from	your	circuit	and	code	knowledge.	Plus,	you	now	know	that	you	don’t	have
to	go	to	a	special	shop	to	buy	materials	for	your	circuits.	You	can	test	whether
something	conducts	electricity	and	start	using	everyday	household	items	in	your
circuits.

If	you’d	like	to	read	more	about	how	to	use	tone(),	visit	the	Arduino
documentation	at	http://arduino.cc/en/reference/tone.

You	might	want	to	check	out	some	of	these	other	examples	and	tutorials	online:

http://arduino.cc/en/reference/tone

http://arduino.cc/en/Tutorial/Tone

http://arduino.cc/en/Tutorial/Tone2

http://arduino.cc/en/Tutorial/Tone3

http://arduino.cc/en/Tutorial/Tone4

http://itp.nyu.edu/physcomp/labs/labs-arduino-digital-and-

analog/tone-output-using-an-arduino/

https://learn.adafruit.com/adafruit-arduino-lesson-10-making-

sounds

If	you	are	curious	about	exactly	how	the	Arduino	makes	sound,	check	out	the
Wikipedia	page	on	Pulse	Width	Modulation	(PWM)	at
http://en.wikipedia.org/wiki/Pulse-width_modulation.	Adventure	6
shows	you	how	PWM	is	used	to	control	light	instead	of	sound.

Arduino	Command	Quick	Reference	Table
Command Description

[]
Indicates	that	the	variable	is	an	array	of	variables	rather	than	a	single	variable.	See	also
http://arduino.cc/en/Reference/Array.

tone

Plays	a	sound	with	a	given	frequency.	If	a	duration	is	given	as	well,	the	sound	plays	only	for	that	length	of
time;	otherwise,	the	sound	plays	until	noTone	is	called.	See	also
http://arduino.cc/en/Reference/Tone.

noTone Stops	the	tone	from	playing.	See	also	http://arduino.cc/en/Reference/NoTone.

Achievement	Unlocked:	Inspirational	engineer	of	sound!

In	the	Next	Adventure

http://arduino.cc/en/Tutorial/Tone
http://arduino.cc/en/Tutorial/Tone2
http://arduino.cc/en/Tutorial/Tone3
http://arduino.cc/en/Tutorial/Tone4
http://itp.nyu.edu/physcomp/labs/labs-arduino-digital-and-analog/tone-output-using-an-arduino/
https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://arduino.cc/en/Reference/Array
http://arduino.cc/en/Reference/Tone
http://arduino.cc/en/Reference/NoTone

In	the	next	adventure,	you	use	even	more	materials	that	you	wouldn’t	expect	in	an	electrical	circuit.	You
also	find	out	how	to	control	a	colour-changing	LED!

IT’S	TIME	TO	push	the	boundaries	of	your	Arduino!	In	previous	adventures
you	used	Digital	and	Analog	Pins	on	your	Arduino	Uno,	but	what’s	the
difference	between	a	digital	and	analogue	signal?	You	have	output	on	a	Digital
Pin	in	Adventures	1	through	3,	have	read	in	from	a	Digital	Pin	in	Adventures	2
and	5,	and	read	in	from	an	Analog	Pin	in	Adventure	2,	but	what	about	outputting
analogue	signals?	Well,	that	comes	next.	But	then	what?	After	you’ve	tackled
outputting	analogue	signals,	is	that	it?	Is	that	the	end	of	Arduino	coding?	Not	at
all!

You	can	push	your	Arduino	even	further	by	using	libraries.	This	allows	you
easily	to	incorporate	clever	functions,	which	have	been	written	by	other	people,
into	your	sketches.	In	this	adventure	you	will	use	a	library	that	lets	you	turn
(almost)	anything	you	like	into	a	touch	sensor.	You	are	then	going	to	build	a
magical	crystal	ball	that	glows	when	you	wave	your	hands	over	it.

What	You	Need
You	need	the	following	items	for	the	first	part	of	this	adventure.	The	electronic
components	are	shown	in	Figure	6-1.

A	computer
An	Arduino	Uno

A	USB	cable
A	breadboard
4	jumper	wires
1	LED
1	RGB	common	cathode	LED
3	220Ω	resistors
1	10	MΩ	resistor

Figure	6-1	The	electronic	components	you	need	for	the	first	part	of	this
adventure

Analogue	Out
If	you	have	completed	Adventures	1,	2	or	4,	you	know	that	digitalWrite()	can
do	two	things:	output	5V	when	set	to	HIGH	or	output	0V	when	set	to	LOW.	You
then	use	digitalRead()to	read	in	whether	a	pin	is	connected	to	5V	or	0V.	You
can	check	out	Adventure	3	if	you	need	a	refresher	on	using	digitalRead()	to
read	from	a	push	button.

You	also	know	from	Adventures	2	and	3	that	if	you	want	to	measure	a	voltage	on
a	pin	that	is	between	0V	and	5V,	you	need	to	use	analogRead().	It	returns	a
number	between	0	and	1023	that	corresponds	to	the	input	voltage.	So	it	stands	to
reason	that	if	you	want	to	output	a	voltage	between	0V	and	5V,	there	is	probably
a	function	called	analogWrite()	that	would	let	you	do	that.	That’s	absolutely
correct!

But	first,	what	exactly	is	the	difference	between	an	analogue	and	digital	signal?
A	digital	signal	is	an	electrical	signal	that	can	only	be	one	of	two	things—either
on	or	off.	When	represented	in	electricity,	it’s	either	5V	(on)	or	0V	(off).	When
represented	in	code,	it’s	either	HIGH	(on)	or	LOW	(off).

	A	digital	signal	is	a	signal	that	is	only	either	on	or	off,	HIGH	or	LOW.	On	the	Arduino	Uno,	a
HIGH	signal	is	5V	and	a	LOW	signal	is	ground.

An	analogue	signal	is	a	signal	that	can	be	values	between	on	and	off.	When
represented	in	electricity,	it	can	be	any	voltage	between	0V	and	5V.	When
represented	in	code,	it	can	be	any	number	between	0	and	1023.	Figure	6-2
further	illustrates	the	difference	between	analogue	and	digital	signals.

	An	analogue	signal	is	a	signal	that	varies	between	LOW	and	HIGH.	On	the	Arduino	Uno,	an
analogue	signal	can	be	measured	as	a	number	between	0	for	ground	and	1023	for	5V.	An
analogue	signal	can	be	output	as	a	value	between	0	for	0V	and	255	for	5V.

Figure	6-2	Analogue	and	digital	signals

You	can	output	a	digital	signal	using	digitalWrite()	and	can	use	any	Digital
Pin	on	the	board.	You	can	also	read	in	a	digital	signal	using	digitalRead()
using	any	Digital	Pin	and	read	in	an	analogue	signal	using	any	Analog	Pin.	To
output	an	analogue	signal,	you	use	analogWrite(),	but	you	can	only	use	special
Digital	Pins.	Outputting	a	value	between	HIGH	and	LOW	is	trickier	for	a
microcontroller	than	outputting	a	digital	signal,	so	there	are	only	some	of	the
pins	can	do	that.	These	are	nicely	marked	on	your	Arduino	board	with	the	~
symbol.	On	the	Arduino	Uno,	these	are	Pins	3,	5,	6,	10	and	11	(see	Figure	6-3).

Figure	6-3	The	pins	that	support	analogWrite()

The	other	important	thing	to	know	is	that	not	all	Arduino	pins	can	use
analogWrite().

	Reading	and	writing	HIGH	and	LOW	to	and	from	a	pin	is	super-easy	for	a	microcontroller	like
the	Arduino	Uno	to	do.	All	the	input	and	output	pins	on	the	Arduino	board	can	do	this—and
are	very	good	at	it.	You	can	even	use	analog	pins	to	input	or	output	a	digital	signal	when
you	have	run	out	of	available	digital	pins.	Reading	in	or	outputting	a	voltage	that	is	between
HIGH	and	LOW	is	harder	to	do	and	requires	some	special	functionality	in	the	microcontroller.
This	is	why	analogRead()	only	works	on	A0	through	A5.	And	analogWrite()	only	works
on	pins	marked	with	a	~.

Just	like	digitalWrite(),	analogWrite()	takes	two	arguments.	The	first
argument	defines	which	pin	should	be	used	and	the	second	determines	what
voltage	should	be	output.	This	second	argument	is	a	little	different	from	other
arguments.	You	don’t	use	HIGH	or	LOW;	instead	you	use	a	number	between	0	and

255,	with	0	used	for	0V	and	255	for	5V.	The	following	example	code,	outputs	a
signal	on	Pin	6	that	is	roughly	one	third	of	5V,	so	set	the	second	argument	to	83:
analogWrite(6,	83);

If	you	wanted	to	output	almost	the	maximum	(5V),	you	would	use	a	number	just
under	255:	analogWrite(6,	249);

Fading	an	LED
Why	would	you	want	to	output	a	voltage	between	0V	and	5V?	There	are	lots	of
reasons,	but	one	common	use	is	to	smoothly	fade	an	LED	on	and	off.

Start	the	Arduino	IDE	and	open	File⇒Examples⇒03.Analog⇒Fading.	Build	an
LED	circuit	with	a	current	limiting	resistor	on	Pin	9	(see	Figure	6-4):

1.	 Use	a	jumper	wire	to	connect	a	GND	pin	on	the	Arduino	Uno	to	a	long	row
along	the	bottom	of	the	breadboard.	If	the	breadboard	is	labelled	with	a
black	or	blue	line	or	–,	connect	the	pin	to	that	row.

2.	 Insert	the	short	leg	of	the	LED	into	the	row	now	connected	to	a	GND	pin.
3.	 Insert	the	long	leg	of	the	LED	into	any	nearby	short	row.	Insert	one	leg	of

the	resistor	into	the	same	short	row.
4.	 Insert	the	other	resistor	leg	into	any	other	short	row.	Use	a	jumper	wire	to

connect	that	short	row	to	Pin	9	on	the	Arduino	Uno.

Upload	the	example	and	see	what	happens.	You	should	see	the	LED	fade	on	and
off.

Figure	6-4	LED	circuit	for	fading	an	LED

This	example	combines	analogWrite()	with	the	for	loop	you	have	already	been
using	in	Adventures	3	through	5.	The	first	for	loop	slowly	increases	the	voltage
output	to	the	LED:	//	fade	in	from	min	to	max	in	increments	of	5
points:	

for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

		//	sets	the	value	(range	from	0	to	255):	

		analogWrite(ledPin,	fadeValue);	

		//	wait	for	30	milliseconds	to	see	the	dimming	effect	

		delay(30);	

}

The	second	for	loop	does	the	opposite,	and	decreases	the	voltage:	//	fade	out
from	max	to	min	in	increments	of	5	points:	

for(int	fadeValue	=	255;	fadeValue	>=	0;	fadeValue	-=5)	{	

		//	sets	the	value	(range	from	0	to	255):	

		analogWrite(ledPin,	fadeValue);	

		//	wait	for	30	milliseconds	to	see	the	dimming	effect	

		delay(30);	

}

CHALLENGE

	Increase	the	speed	at	which	the	LED	fades	on	and	off	by	adjusting	the	delay()	time.	Now	try
increasing	the	fading	speed	by	changing	fadeValue.

DIGGING	INTO	THE	CODE

	Using	the	analogWrite()	function	actually	requires	a	little	bit	of	a	trick,	because	it	doesn’t
really	output	a	steady	voltage	somewhere	between	0V	and	5V.	In	fact,	it	uses	pulse	width
modulation	(PWM).	You	might	have	noticed	that	it	says	PWM	on	your	Arduino	board	next	to
the	~	symbol.	PWM	outputs	a	signal	that	switches	back	and	forth	between	on	and	off	at
different	speeds.	This	happens	so	fast	that	when	you	light	up	an	LED	using	PWM,	your	eyes
don’t	see	the	switching	back	and	forth.	Instead	they	see	something	in	between,	like	an	LED	at
only	half	power.

	Pulse	width	modulation	(PWM)	is	how	the	Arduino	board	generates	an	output	signal
between	0V	and	5V.	The	signal	switches	quickly	between	LOW	and	HIGH	and	the	resulting
output	voltage	is	between	the	two	voltages.

Figure	6-5	shows	three	example	PWM	signals.	The	top	one	is	a	signal	that	is	mostly	off,	so	the	LED
appears	only	dimly	on.	The	middle	signal	is	on	half	the	time	and	off	half	the	time,	so	the	LED	appears
roughly	half	as	bright	as	an	LED	set	to	HIGH.	The	bottom	signal	is	on	almost	all	the	time,	so	the	LED
appears	almost	as	bright	as	one	that	is	set	to	HIGH.

Figure	6-5	Pulse	width	modulation	examples

The	ratio	of	how	long	the	signal	is	output	to	HIGH	versus	LOW	determines	how	bright	the	LED	appears.
This	ratio	is	called	the	duty	cycle.	The	more	time	the	signal	is	HIGH,	the	higher	the	voltage	appears	to	be
and	the	brighter	the	LED	seems	to	shine.

	The	duty	cycle	is	the	ratio	of	time	a	signal	is	HIGH	versus	LOW	in	a	given	cycle.	In	PWM,
the	higher	the	duty	cycle,	the	higher	the	output	voltage.

Mixing	Light
There	are	many	different	kinds	of	LED,	and	they	come	in	all	shapes	and	sizes.
The	kind	you’ve	used	in	previous	adventures	is	called	through-hole	LEDs—that
just	means	they	have	legs	and	if	you	want	to	attach	them	to	a	circuit	board	the
board	has	to	have	holes	for	the	legs	to	go	through.

LEDs	also	come	in	many	different	colours.	Red,	yellow	and	green	are	the	most
common,	but	you	can	buy	other	colours	such	as	blue	and	orange.	There	are	also

LEDs	that	are	really	three	LEDs	put	into	what	looks	like	one	LED.	These	are
called	RGB	LEDs,	which	stands	for	red–green–blue	LEDs.

	An	RGB	LED	(red–green–blue	light-emitting	diode)	is	a	single	LED	with	four	legs	that
contains	three	lights:	one	red,	one	green	and	one	blue.	The	three	lights	share	either	a
common	anode	or	a	common	cathode.

There	are	two	kinds	of	RGB	LED,	and	both	of	them	have	four	legs	(see	Figure
6-6).	Three	of	the	legs	are	for	the	colours	(red,	green	and	blue).	The	fourth	leg	is
a	shared	leg,	either	a	shared	positive	leg	(an	anode)	or	a	shared	negative	leg	(a
cathode).	For	both	types,	you	need	three	current	limiting	resistors,	as	you	would
with	three	separate	LEDs.

Figure	6-6	RGB	LEDs

	An	anode	is	the	positive	leg	of	a	directional	component,	such	as	the	long	leg	of	an	LED.

	A	cathode	is	the	negative	leg	of	a	directional	component,	such	as	the	short	leg	of	an	LED.

The	big	difference	between	the	two	kinds	of	RGB	LED	is	that	the	common
anode	LED	circuit	shares	a	common	power	source,	such	as	5V,	and	the	common
cathode	LED	shares	a	common	ground.	It’s	a	bit	easier	to	think	about	how
electricity	flows	with	a	common	cathode	RGB	LED,	so	that’s	the	one	we’ll	use.

Wiring	the	Circuit
The	longest	leg	of	the	LED	is	the	cathode—the	leg	that	goes	to	ground.	The
other	three	legs	are	connected	to	the	red,	green	and	blue	lights	within	the	LED.
To	have	the	best	control	over	the	lights,	use	three	Arduino	pins	that	can	use
analogWrite().	Pins	9,	10	and	11	are	good	choices.	Build	the	circuit	shown	in
Figure	6-7:

1.	 The	only	fiddly	part	when	working	with	RGB	LEDs	is	figuring	out	which
leg	controls	which	colour.	The	best	way	to	determine	this	is	to	connect	each
LED	leg	individually	to	5V	and	see	what	colour	lights	up.	Remember	to	use
the	current	limiting	resistor;	don’t	directly	connect	5V	to	the	LED.

2.	 Use	a	jumper	wire	to	connect	a	GND	pin	on	the	Arduino	Uno	to	a	long	row
along	the	bottom	of	the	breadboard.	If	the	breadboard	is	labelled	with	a
black	or	blue	line	or	–,	connect	the	pin	to	that	row.

3.	 Place	the	RGB	LED	in	the	breadboard	so	that	each	leg	is	in	its	own	short
row.	Use	a	jumper	wire	to	connect	the	longest	leg	of	the	LED	to	the	long
row	connected	to	the	GND	pin.

4.	 Insert	one	leg	of	a	220Ω	resistor	into	the	same	row	as	each	of	the	colour
legs	of	the	LED.	Bend	the	resistor	over	the	gap	in	the	middle	of	the	board,
and	insert	the	leg	of	each	LED	into	its	own	short	row.

5.	 Find	the	red	leg	and	connect	the	resistor	now	connected	to	it	to	Pin	9	with	a

jumper	wire;	repeat	to	connect	the	resistor	connected	to	the	green	leg	to	Pin
10;	and	the	resistor	connected	the	blue	leg	to	Pin	11.

Figure	6-7	Circuit	connecting	an	RGB	LED	to	an	Arduino	board

Writing	the	Code
The	code	for	controlling	an	RGB	LED	looks	just	like	code	that	controls	three
LEDs.	Create	a	new	sketch	in	the	Arduino	IDE	and	write	the	following	code.

	You	can	download	all	the	code	in	this	book	that	isn’t	from	the	examples	that	come	with	the
Arduino	IDE.	You	can	find	it	on	the	companion	site	at
www.wiley.com/go/adventuresinarduino.

//	LED	Pins	

int	redPin	=	9;	

int	greenPin	=	10;	

int	bluePin	=	11;	

void	setup()	{	

		//	set	pins	to	OUTPUT	

		pinMode(redPin,	OUTPUT);	

		pinMode(greenPin,	OUTPUT);	

http://www.wiley.com/go/adventuresinarduino

		pinMode(bluePin,	OUTPUT);	

}	

void	loop()	{	

		//	red	

		for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

			analogWrite(redPin,	fadeValue);	

			delay(30);	

		}	

		for(int	fadeValue	=	255;	fadeValue	>=	0;	fadeValue	-=5)	{	

			analogWrite(redPin,	fadeValue);	

			delay(30);	

		}	

		//	green	

		for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

			analogWrite(greenPin,	fadeValue);	

			delay(30);	

		}	

		for(int	fadeValue	=	255;	fadeValue	>=	0;	fadeValue	-=5)	{	

			analogWrite(greenPin,	fadeValue);	

			delay(30);	

		}	

		//	blue	

		for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

			analogWrite(bluePin,	fadeValue);	

			delay(30);	

		}	

		for(int	fadeValue	=	255;	fadeValue	>=	0;	fadeValue	-=5)	{	

			analogWrite(bluePin,	fadeValue);	

			delay(30);	

		}	

		//	blue	+	increasing	red	

		digitalWrite(bluePin,	HIGH);	

		for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

			analogWrite(redPin,	fadeValue);	

			delay(30);	

		}	

		//	turn	blue	off	again	

		digitalWrite(bluePin,	LOW);	

		//	green	+	increasing	red	

		digitalWrite(greenPin,	HIGH);	

		for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

			analogWrite(redPin,	fadeValue);	

			delay(30);	

		}	

		//	turn	green	off	again	

		digitalWrite(greenPin,	LOW);	

		//	turn	off	red	

		digitalWrite(redPin,	LOW);	

		//	blue	+	increasing	green	

		digitalWrite(bluePin,	HIGH);	

		for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

			analogWrite(greenPin,	fadeValue);	

			delay(30);	

		}	

		//	turn	blue	off	again	

		digitalWrite(bluePin,	LOW);	

		//	turn	off	green	

		digitalWrite(greenPin,	LOW);	

		//	turn	all	on	to	make	white	

		digitalWrite(redPin,	HIGH);	

		digitalWrite(greenPin,	HIGH);	

		digitalWrite(bluePin,	HIGH);	

		delay(2000);	

		//	turn	all	off	

		digitalWrite(redPin,	LOW);	

		digitalWrite(greenPin,	LOW);	

		digitalWrite(bluePin,	LOW);	

}

Upload	the	sketch	to	your	Arduino	Uno	connected	to	the	RGB	LED	circuit	you
just	built.	The	LED	should	repeatedly	go	through	a	colour	sequence.

DIGGING	INTO	THE	CODE

	The	code	goes	through	a	light	sequence	that	first	lights	up	the	different	colours	individually	and
then	lights	up	different	combinations	of	red,	green	and	blue	to	create	other	colours.	The	top	of
the	sketch	start	by	defining	variables	for	each	pin:	//	LED	Pins	

int	redPin	=	9;	

int	greenPin	=	10;	

int	bluePin	=	11;

The	setup()then	sets	the	pin	modes	for	each	of	the	LED	pins:	//	set	pins	to	OUTPUT	
pinMode(redPin,	OUTPUT);	

pinMode(greenPin,	OUTPUT);	

pinMode(bluePin,	OUTPUT);

The	loop()	then	starts	the	colour	sequence.	First,	each	colour	on	each	pin	is	faded	on	and	off,	one	by	one,
using	two	for	loops	for	each	pin.	The	following	code	is	just	for	the	red	pin,	but	it	is	repeated	for	the
green	and	blue	pins:	//	red	
for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

		analogWrite(redPin,	fadeValue);	

		delay(30);	

}	

for(int	fadeValue	=	255;	fadeValue	>=	0;	fadeValue	-=5)	{	

		analogWrite(redPin,	fadeValue);	

		delay(30);	

}

Then	two	pins	are	lit	up	at	a	time	to	show	what	the	resulting	light	looks	like.	The	following	code	is	for
combining	blue	and	red:	//	blue	+	increasing	red	
digitalWrite(bluePin,	HIGH);	

for(int	fadeValue	=	0;	fadeValue	<=	255;	fadeValue	+=5)	{	

		analogWrite(redPin,	fadeValue);	

		delay(30);	

}	

//	turn	blue	off	again	

digitalWrite(bluePin,	LOW);

After	blue	and	red	light	comes	blue	and	green	light.	Finally,	all	three	colours	are	turned	on	at	the	same
time	and	then	turned	off	before	the	whole	loop()	starts	over	again:	//	turn	all	on	to	make	white	
digitalWrite(redPin,	HIGH);	

digitalWrite(greenPin,	HIGH);	

digitalWrite(bluePin,	HIGH);	

delay(2000);	

//	turn	all	off	

digitalWrite(redPin,	LOW);	

digitalWrite(greenPin,	LOW);	

digitalWrite(bluePin,	LOW);

You	will	see	that	you	can	still	tell	the	difference	between	the	red,	green	and	blue	LEDs	inside	the	RGB
LED	when	they	are	all	on.	It	may	look	more	white	than	when	only	one	or	two	of	the	colours	are	on,	but	it
won’t	have	completely	mixed.	The	RGB	LED	you	are	using	is	fairly	cheap,	and	you	can	spend	more
money	on	ones	that	mix	their	colours	better,	but	these	are	great	to	use	when	you	are	just	starting	out!

	As	you’ll	know	if	you’ve	ever	painted	something,	two	colours	can	be	mixed	together	to
create	a	new	colour.	For	example,	if	you	mix	blue	and	yellow	paint	you	get	green	paint.
Mixing	all	the	paint	colours	together	creates	black—or	at	least	a	dark	colour	like	black	or
brown.	It	can	be	tricky	to	produce	black	without	being	very	precise	with	exactly	what
colours	you	mix	together.

The	physics	behind	mixing	paint	colours	is	called	subtractive	mixing.	Mixing	light	is	different	to
mixing	paint,	however.	For	example,	if	you	mix	red	and	green	light	it	creates	yellow;	and	if	you	mix
red,	green	and	blue	light	it	results	in	white	light.	This	process	is	called	additive	mixing.	See	Figure	6-
8	for	examples	of	the	two	types	of	mixing.	You	can	research	additive	mixing	online	to	learn	more
about	how	to	create	different	colours	with	your	RGB	light.

Figure	6-8	Mixing	light	versus	mixing	paint

Capacitive	Sensing
You	probably	don’t	realise	it	but	you	already	interact	with	capacitive	sensors
every	day;	for	example,	most	touchscreens	on	smartphones	and	music	players
use	capacitive	sensors.	What’s	exciting	is	that	you	can	use	an	Arduino	to	build
your	own	capacitive	sensor.

Capacitance	is	the	ability	to	store	an	electrical	charge.	Have	you	ever	walked
across	a	carpeted	room	then	touched	something	like	a	cat	or	a	friend’s	arm	and
received	an	electric	shock?	That	demonstrates	that	you	store	electrical	charge.	A
capacitive	sensor	detects	when	something	that	stores	charge	is	nearby.

	Capacitance	is	the	ability	to	store	an	electrical	charge.	Electrical	components	built
especially	to	hold	charge	are	called	capacitors,	but	other	objects—even	people—also	have
capacitance.

The	code	that	senses	when	someone	is	touching	or	near	to	a	capacitive	sensor	is
a	bit	complicated.	Unless	you	are	really	interested	in	the	details	of	how	it	works,
you	don’t	need	to	deal	with	all	the	ins	and	outs	of	the	code—luckily,	that’s	where
libraries	come	in!

Adding	a	Library
A	library	is	a	collection	of	functions	that	are	bundled	together.	It’s	an	easy	way
of	writing	bits	of	code	that	other	people	can	use	and	is	also	an	easy	way	of	using
bits	of	code	written	by	others.	It	means	you	don’t	have	to	“reinvent	the	wheel”
when	other	people	have	already	done	it	for	you.	Some	libraries	are	included	with
the	Arduino	IDE,	but	when	you	use	a	library	that	isn’t	included,	you	need	to
download	it	and	put	in	a	place	where	the	IDE	knows	to	look.

	A	library	is	a	collection	of	reusable	functions	in	code	that	can	be	imported	and	used	in
multiple	sketches.

In	this	case,	you’re	going	to	use	the	capacitive	sensing	library	that	you	can
download	from	http://playground.arduino.cc/Main/CapacitiveSensor.

1.	 Download	and	unzip	the	folder	from	https://github.com/arduino-
libraries/CapacitiveSensor/zipball/master.	The	folder	may	be	called
something	like	arduino-libraries-CapacitiveSensor-3e33f75—the
letters	and	numbers	at	the	end	of	the	file	might	differ.	Inside	should	be	a
folder	called	libraries	that	holds	two	folders	named	CapacitiveSensor
and	CapacitiveSensorDue.

2.	 The	Arduino	IDE	only	looks	for	new	libraries	in	one	place:	the	libraries
folder	inside	your	sketchbook.	Your	sketchbook	is	a	folder	called	Arduino

http://playground.arduino.cc/Main/CapacitiveSensor
https://github.com/arduino-libraries/CapacitiveSensor/zipball/master

inside	your	Documents	or	My	Documents	folder,	depending	on	your
operating	system.	Move	the	CapacitiveSensor	and	CapacitiveSensorDue
folders	and	everything	in	them	into	the	libraries	folder	in	your
sketchbook	(as	shown	in	Figure	6-9).

3.	 If	the	Arduino	IDE	is	already	open,	close	and	restart	it;	otherwise,	just	open
it.

4.	 To	check	whether	the	library	has	installed	correctly,	go	to	Sketch⇒Import
Library	and	see	if	CapacitiveSensor	and	CapacitiveSensorDue	appear	in
the	list	like	in	Figure	6-10.	Also	go	to	File⇒Examples,	where	you	should
see	CapacitiveSensor	listed.

Figure	6-9	Place	the	downloaded	and	unzipped	folder	in	the	libraries	folder	of
the	Arduino	sketchbook.

Figure	6-10	Check	for	the	library	and	example	in	the	menus.

	If	you	don’t	see	the	example	or	library	listed	in	your	menus,	try	restarting	the	Arduino	IDE.
If	that	still	doesn’t	make	them	appear,	go	back	through	the	steps	and	make	sure	you	have
renamed	the	downloaded	folder	correctly	and	have	put	it	in	the	correct	libraries	folder.

Wiring	the	Circuit
The	circuit	for	a	capacitive	sensor	uses	two	pins.	One	pin	sends	out	a	signal	to	an
antenna,	the	second	pin	listens	to	that	signal	coming	back	in.	The	antenna	can	be
anything	conductive.	Foil	works	well,	but	you	can	also	always	just	use	a	wire
without	anything	connected	to	it.	When	a	capacitive	object	(like	your	finger,	for
example)	is	near	the	antenna,	the	received	signal	is	changed	according	to	how
close	the	capacitive	object	is.	The	library	reports	back	a	number	that	corresponds

to	how	close	or	far	away	the	capacitive	object	is.

	You	may	want	to	solder	a	plain	paperclip	to	a	wire	(make	sure	the	paperclip	doesn’t	have	a
plastic	coating;	you	can	strip	it	with	wire	strippers	if	it	does).	Then	you	can	use	the
paperclip	to	attach	to	an	object	like	foil	and	use	the	wire	to	connect	the	foil	to	your
breadboard.

The	circuit	for	a	capacitive	sensor	uses	a	resistor	between	the	antenna	and	the
sending	pin.	You	need	to	use	a	very	large	resistor—at	least	10MΩ	(that’s	10
million	Ohms)!	Build	the	circuit	shown	in	Figure	6-11:

1.	 Insert	one	leg	of	a	10MΩ	resistor	in	the	middle	of	the	breadboard.	Insert	the
other	leg	into	any	other	row.

2.	 Use	a	jumper	wire	to	connect	one	side	of	the	resistor	to	Pin	2	on	the
Arduino	Uno	and	a	second	jumper	wire	to	connect	the	other	side	of	the
resistor	to	Pin	4	on	the	Arduino	Uno.

3.	 Connect	another	jumper	wire	to	the	same	short	row	on	the	breadboard	that
is	connected	to	Pin	2.	Don’t	connect	the	other	end	of	the	jumper	wire	to
anything.	This	is	now	your	antenna	for	your	capacitive	sensor.

Figure	6-11	Capacitive	sensing	circuit

Writing	the	Code

When	you	are	using	a	library,	the	first	step	is	to	tell	the	Arduino	IDE	in	your
code	what	library	you	want	to	use.	You	do	this	by	using	#include	and	then	the
name	of	the	file	that	describes	the	library,	like	this:	#include
<CapacitiveSensor.h>

The	file	extension	is	.h.	The	<	and	>	mean	that	the	library	is	located	where	the
Arduino	IDE	would	expect	it	to	be:	the	libraries	folder	in	the	sketchbook.

The	library	uses	an	object	called	CapacitiveSensor.	This	object	handles	all	the
nitty-gritty	details	of	interacting	with	the	sensor.	You	need	to	create	a	new
variable	that	is	the	type	CapacitiveSensor.	It	only	takes	two	arguments:	the	pin
from	where	the	signal	is	sent	and	the	pin	the	sensor	is	connected	to:
CapacitiveSensor	handSensor	=	CapacitiveSensor(outputPin,	

sensorPin);

The	capacitiveSensor()	function	is	called	to	read	from	the	sensor.	Call	the
function	type	handSensor.capacitiveSensor(),	because	the	function	belongs
to	the	CapacitiveSensor	variable	handSensor:	long	sensorValue	=
handSensor.capacitiveSensor(30);

The	returned	value	is	stored	in	a	long	data	type.	A	long	is	like	an	int,	but	it	can
hold	much	smaller	and	bigger	numbers.	The	returned	number	from	the
capacitive	sensor	might	be	a	larger	number	than	an	int	can	hold,	so	it’s	best	to
use	the	larger	data	type.

	A	long	is	a	data	type	that	can	hold	whole	integer	numbers	from	–2,147,483,648	to
2,147,483,647.

When	you	put	all	the	code	together,	it	looks	like	the	following	sketch:	#include
<CapacitiveSensor.h>	

//	capSense	pins	

int	sensorPin	=	2;	

int	outputPin	=	4;	

CapacitiveSensor	handSensor	=	CapacitiveSensor(outputPin,	

sensorPin);	

void	setup()	{	

		//	begin	serial	communication	

		Serial.begin(9600);	

}	

void	loop()	{	

		//	read	in	the	value	from	the	sensor	

		long	sensorValue	=	handSensor.capacitiveSensor(30);	

		//	print	the	value	

		Serial.println(sensorValue);	

		//	wait	for	a	short	while	before	continuing	

		delay(10);	

}

Upload	the	sketch	to	your	Arduino	Uno	and	open	the	Serial	Monitor	in	the
Arduino	IDE	on	your	computer.	Touch	the	end	of	the	jumper	wire	acting	as	your
antenna	and	watch	what	happens	to	values	being	printed.

DIGGING	INTO	THE	CODE

	There	isn’t	a	lot	to	the	sketch—it’s	quite	short,	but	let’s	go	over	it	in	more	detail.	At	the	top	are
the	variables	for	the	sketch.	There	are	two	pins	that	the	capacitive	sensor	needs:	the	pin
connected	to	the	resistor	and	the	pin	connected	to	the	resistor	and	antenna:	//	capSense	pins	
int	sensorPin	=	2;	

int	outputPin	=	4;

Inside	the	setup(),	the	only	thing	that	happens	is	that	serial	communication	starts:	//	begin	serial
communication	

Serial.begin(9600);

The	loop()	is	also	brief.	It	reads	in	the	current	value	from	the	capacitive	sensor	and	saves	it	in	the
variable	sensorValue.	That	variable	is	then	printed	to	the	Serial	Monitor.	A	delay()	is	used	to	pause	the
loop()	before	the	whole	process	repeats	again.

//	read	in	the	value	from	the	sensor	

long	sensorValue	=	handSensor.capacitiveSensor(30);	

//	print	the	value	

Serial.println(sensorValue);	

//	wait	for	a	short	while	before	continuing	

delay(10);

	What	happens	when	you	don’t	touch	the	exposed	metal	pin	of	the	jumper	wire	antenna	and
you	only	touch	the	plastic	coating	on	the	wire?

	Try	adding	more	10MΩ	resistors	to	increase	the	sensitivity	of	your	sensor.	That	means	the
sensor	will	be	able	to	detect	your	hand	from	farther	away.	Add	them	in	series—end	to	end.
When	you	combine	resistors	in	series,	the	total	resistance	is	the	sum	of	the	individual
resistors.	This	is	useful	as	it’s	practically	impossible	to	buy	resistors	with	values	greater
than	10MΩ,	but	you	can	put	multiple	resistors	in	series	and	to	the	sensor	circuit	they	look
like	one	big	resistor.

Building	a	Crystal	Ball
Capacitive	touch	sensors	can	appear	to	be	quite	magical,	even	though	you	know
it’s	just	electrical	engineering.	So	let’s	exaggerate	the	experience	and	create	a
crystal	ball	that	mysteriously	lights	up	when	you	wave	your	hand	near	it,	like	in
Figure	6-12.

You	can	make	your	own	“crystal”	with	papier	maché	tissue	paper	over	a	balloon.
It’s	a	great	way	to	make	a	semi-transparent	sphere	that	will	light	up	nicely	when
your	RGB	LED	is	inside.

Figure	6-12	A	touch-sensitive	crystal	ball

What	You	Need
You	will	need	the	following	items	to	make	your	crystal	ball.	The	electronic
components	are	pictured	in	Figure	6-13.

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard
8	jumper	wires
Solid	core	wire
3	220Ω	resistors
4	10MΩ	resistors
An	RGB	common	cathode	LED
A	paperclip
9V	battery
9V	battery-to-DC	barrel	jack	connector
3	sheets	white	tissue	paper
A	balloon
Thin	cardboard	or	thick	paper
Aluminium	foil
A	soldering	iron
Solder
Scissors	or	utility	knife
PVA	glue
Paintbrush

Figure	6-13	The	electronic	components	you	need	to	make	the	crystal	ball

Understanding	the	Circuit
The	circuit	for	the	crystal	ball	is	a	combination	of	the	RGB	LED	and	capacitive-
sensing	circuits	you	made	earlier	in	this	adventure.	It	might	be	easier	to
understand	the	circuit	by	looking	at	a	circuit	schematic,	instead	of	looking	at	a
breadboard,	so	take	a	look	at	Figure	6-14.

Figure	6-14	Circuit	schematic	for	the	crystal	ball

Prototyping	on	a	Breadboard
If	you’ve	worked	through	the	earlier	adventures	in	this	book	you’re	now	an
experienced	engineer,	so	you	know	how	important	it	is	to	try	things	out	on	a
breadboard	before	you	start	soldering	everything	together.	However,	I	still	want
to	remind	you	to	do	it,	just	in	case	you	feel	like	rushing	through	this	step.	Build
the	circuit	shown	in	Figure	6-15:

1.	 Use	a	jumper	wire	to	connect	a	GND	pin	on	the	Arduino	Uno	to	a	long	row
along	the	bottom	of	the	breadboard.	If	the	breadboard	is	labelled	with	a

black	or	blue	line	or	-,	connect	the	pin	to	that	row.
2.	 Place	the	RGB	LED	in	the	breadboard	so	that	each	leg	is	in	its	own	short

row.	Use	a	jumper	wire	to	connect	the	longest	leg	of	the	LED	to	the	long
row	connected	to	the	GND	pin.

3.	 Insert	one	leg	of	a	220Ω	resistor	into	the	same	row	as	each	of	the	colour
legs	of	the	LED.	Bend	the	resistor	over	the	gap	in	the	middle	of	the	board,
and	insert	the	leg	of	each	LED	into	its	own	short	row.

4.	 Find	the	red	leg	and	connect	the	resistor	now	connected	to	it	to	Pin	9	with	a
jumper	wire;	repeat	to	connect	the	resistor	connected	to	the	green	leg	to	Pin
10;	and	repeat	a	second	time	to	connect	the	resistor	connected	the	blue	leg
to	Pin	11.

5.	 At	the	other	end	of	the	breadboard,	insert	the	legs	of	a	10MΩ	resistor	into
two	different	rows	in	the	middle	of	the	breadboard.

6.	 Insert	the	leg	of	a	second	10MΩ	resistor	into	the	same	row	as	one	of	the
legs	of	the	first	resistor.	Insert	the	last	leg	into	an	empty	row.

7.	 Connect	a	jumper	wire	from	Pin	2	to	one	of	the	resistors	(just	don’t	connect
it	to	the	row	where	the	resistors	are	connected	to	each	other).	Connect
another	jumper	wire	into	this	same	row.	This	acts	as	your	antenna	for	your
prototype	circuit.

8.	 Connect	a	jumper	wire	from	Pin	4	to	the	remaining	resistor	leg	that	isn’t
connected	to	anything	else.

Figure	6-15	Breadboard	prototype	circuit

After	you	have	built	your	base	for	your	crystal	ball	from	paper	and	foil,	you	use
the	breadboarded	circuit	to	determine	how	many	resistors	you	would	like	for
your	capacitive	touch	sensor.	Somewhere	between	one	and	four	should	be	right.
You	can	add	more	resistors	to	your	two	resistors	on	the	breadboard	end	to	end
the	way	the	two	resistors	are	already	connected.

Writing	the	Code
The	first	few	lines	of	the	sketch	are	a	mash-up	of	the	RGB	LED	sketch	and
capacitive	sensing	sketch	from	earlier	in	this	adventure.	In	this	code,	the
variables	for	the	pins	and	the	sensor	are	set	up.	You	will	be	building	your	base	in
the	next	section.	It	will	be	covered	in	foil	and	will	be	the	antenna	for	your
circuit,	but	first	create	a	new	sketch	in	the	Arduino	IDE	with	the	following	code:
#include	<CapacitiveSensor.h>	

//	LED	pins	

int	redPin	=	9;	

int	greenPin	=	10;	

int	bluePin	=	11;	

//	capSense	pins	

int	sensorPin	=	2;	

int	outputPin	=	4;	

//	touch	threshold	

int	threshold	=	1000;	

CapacitiveSensor	handSensor	=	CapacitiveSensor(outputPin,	@@ta

sensorPin);	

void	setup()	{	

		pinMode(redPin,	OUTPUT);	

		pinMode(greenPin,	OUTPUT);	

		pinMode(bluePin,	OUTPUT);	

		Serial.begin(9600);	

}	

void	loop()	{	

		long	sensorValue	=	handSensor.capacitiveSensor(30);	

		Serial.println(sensorValue);	

		//	if	above	the	threshold	

		if(sensorValue	>	threshold)	{	

			//	calculate	color	value	based	on	sensor	reading	

			int	redValue	=	map(sensorValue,	threshold,	90000,	0,	255);	

			int	greenValue	=	map(sensorValue,	threshold,	20000,	0,	255);	

			int	blueValue	=	map(sensorValue,	threshold,	30000,	0,	255);	

			//	turn	on	led	

			analogWrite(redPin,	redValue);	

			analogWrite(greenPin,	greenValue);	

			analogWrite(bluePin,	blueValue);	

		}	

		else{	

			//	otherwise	turn	off	led	

			digitalWrite(redPin,	LOW);	

			digitalWrite(greenPin,	LOW);	

			digitalWrite(bluePin,	LOW);	

		}	

}

Upload	the	sketch	to	your	Arduino	Uno,	and	touch	the	jumper	wire	acting	as	the
antenna.	You	should	see	the	light	turn	on	and	change	colours.	Open	the	Serial
Monitor	in	the	Arduino	IDE	to	monitor	the	values	being	read	by	the	touch
sensor.

DIGGING	INTO	THE	CODE

	The	main	variable	you	use	to	adjust	your	interaction	with	your	crystal	ball	is	threshold.	This
variable	plays	in	an	important	role	in	the	loop().	It	determines	how	sensitive	your	crystal	ball	is
by	keeping	the	LED	turned	off	until	a	big-enough	value	is	read	from	the	sensor:	//	touch
threshold	

int	threshold	=	1000;

Adjust	this	num	e	sensor	in	the	Serial	Monitor.	You	may	have	to	adjust	this	number	multiple	times	as
your	antenna	changes	from	a	prototype	jumper	wire	to	your	crystal	ball.

In	the	loop(),	threshold	determines	when	the	lights	turn	on:			//	if	above	the	threshold	
		if(sensorValue	>	threshold)	{

Within	that	if	statement,	there	are	three	lines	of	code	using	a	new	function:	map().	This	function	takes	a
number	within	a	range	of	values	and	translates	it	to	a	new	range	of	values.	This	is	useful	because	the
range	of	numbers	that	can	be	read	in	from	the	sensor	can	get	very	large,	but	analogWrite()	can’t	handle
anything	larger	than	255.	The	map()	function	helps	by	scaling	the	value	from	the	sensor	to	a	new	number
that’s	within	the	acceptable	range.	Figure	6-16	illustrates	how	this	works.

Figure	6-16	Mapping	a	value	to	a	new	range

The	first	argument	of	map()	is	the	number	to	be	mapped.	The	second	and	third	arguments	are	the	current
lowest	and	highest	values	those	numbers	can	be.	The	fourth	and	fifth	numbers	are	the	new	lowest	and
highest	values	the	mapped	numbers	can	be:				int	redValue	=	map(sensorValue,	threshold,	
90000,	0,	255);	

			int	greenValue	=	map(sensorValue,	 	threshold,	20000,	0,	255);	

			int	blueValue	=	map(sensorValue,	threshold,	30000,	0,	255);

In	the	sketch,	the	maximum	of	the	starting	range	is	different	for	each	colour.	This	is	to	make	each	of	the
colours	respond	slightly	differently	to	the	same	sensor	value.	For	example,	a	value	of	3000	creates	a
redValue	of	6,	greenValue	of	28	and	a	blueValue	of	18.	Try	out	some	different	values	in	the	three	map()
functions	to	get	the	colours	you	like	best.

Making	the	Crystal	Ball
Now	to	make	the	crystal	ball	itself.	You	are	going	to	use	papier	maché	to	create	a
thin	sphere	that	will	let	through	light.	The	base	on	which	the	ball	sits	is	thin
cardboard	or	thick	paper	covered	in	aluminium	foil.	The	base	serves	as	the
capacitive	sensor.	The	electronics	fit	nicely	inside	the	base	and,	if	you	use	a
battery	to	power	the	Arduino,	it	will	create	a	perfect	magical	illusion.

Making	a	Papier	Maché	Ball
The	“ball”	of	the	crystal	will	be	papier	maché	that	gets	it	shape	from	a	balloon.
You	use	tissue	paper	instead	of	a	thicker	paper	so	that	the	light	from	the	RGB
LED	is	still	visible.

1.	 Blow	up	a	balloon	to	the	size	that	you	want	your	crystal	ball.	Remember
that	if	you	want	the	Arduino	board	to	fit	inside	the	base,	your	balloon	needs
to	be	big	enough	to	rest	in	a	base	that	can	hold	the	board.

2.	 Water	down	about	a	tablespoon	or	25	ml	of	white	PVA	glue	with	a	half	to
full	tablespoon	or	15–25	ml	of	water.

3.	 Cut	up	three	sheets	of	white	tissue	paper	into	approximately	one-inch	by
one-inch	squares.

4.	 Use	a	paint	brush	to	apply	the	glue	mixture	to	a	small	section	of	the	balloon
starting	at	the	top	opposite	of	the	knot.

5.	 Place	a	tissue	paper	square	on	the	glued	area	and	brush	more	glue	on	top	of
the	paper.

6.	 Repeat	steps	4	and	5	working	towards	the	knot	of	the	balloon,	taking	care	to
overlap	the	squares	only	a	tiny	bit,	until	the	top	two-thirds	of	the	balloon	is
covered.

7.	 Leave	the	balloon	to	dry	for	at	least	half	a	day	or	overnight.
8.	 Repeat	with	another	layer	of	tissue	paper.	You	may	need	to	apply	up	to

three	layers	of	tissue.	You	want	the	dried	papier	maché	to	feel	firm	enough
to	support	its	shape	after	you	have	popped	and	removed	the	balloon.

9.	 When	the	papier	maché	is	dry	and	feels	firm	enough	to	hold	its	shape,	pop
the	balloon.	Carefully	peel	away	the	balloon	from	the	inside	of	the	papier
maché.	If	needed,	trim	the	paper	to	create	a	neat	edge	to	the	“crystal”.	You
will	end	up	with	an	object	like	the	one	shown	in	Figure	6-17.

10.	 Cut	a	strip	of	thicker	paper	or	thin	cardboard	about	2”	wide.	Wrap	it	in
aluminium	foil.

11.	 Curl	the	foil-covered	paper	into	a	ring	just	big	enough	to	rest	the	ball	on
and	will	also	fit	around	the	Arduino	Uno	(see	Figure	6-18).	Secure	the	ring
with	a	staple	or	tape.

12.	 Attach	the	ball	to	the	ring	with	tape	or	glue.

Figure	6-17	Papier	maché	crystal	ball

Figure	6-18	Aluminium	foil–covered	base

Soldering	the	Electronics
There	aren’t	many	parts	to	this	circuit,	but	be	sure	to	prototype	it	on	a
breadboard	first	or	you	won’t	know	how	many	resistors	to	use	for	your	sensor.

	Soldering	can	be	dangerous	as	the	iron	gets	very	hot.	Only	solder	when	an	adult	is	nearby
to	help.

Solder	a	220Ω	resistor	onto	each	of	the	shorter	three	legs	of	the	RGB	LED.	Cut	a
piece	of	solid-core	wire	the	same	length	as	a	resistor	and	solder	it	to	the	cathode
of	the	RGB	LED	(see	Figure	6-19).

Figure	6-19	Soldered	LED	circuit

Solder	together	the	number	of	10M-ohm	resistors	you	need	for	your	circuit.

Cut	a	piece	of	solid-core	wire	about	3”	long.	Solder	one	end	to	a	paperclip	and
the	other	end	to	the	last	10M-ohm	resistor	in	your	chain	of	resistors	(see	Figure
6-20).

Figure	6-20	Soldered	sensor	circuit

Connecting	the	Electronics
Insert	the	end	of	the	resistors	not	soldered	to	the	wire	into	Pin	4	and	the	wire
connected	to	the	paperclip	into	Pin	2.	Insert	the	resistors	connected	to	the	red,
green	and	blue	parts	of	the	RGB	LED	into	Pins	9,	10	and	11	(see	Figure	6-21).
Attach	the	paperclip	onto	the	aluminium	foil	base	of	the	crystal	ball.

Figure	6-21	Completed	crystal	ball	circuit

Power	the	Arduino	board	using	a	9V	battery	and	DC	barrel	jack	connector.	Try
out	your	crystal	ball	by	waving	your	hands	over	it!	The	crystal	ball	should	only
light	up	when	your	hand	is	near	and	change	colours	when	your	hand	gets	closer
to	the	aluminium	base.	Remember,	you	may	need	to	adjust	the	threshold	value
until	you	get	the	interaction	that	you	want.

Further	Adventures	with	Libraries
You	have	learned	how	to	strike	out	on	your	own	and	start	using	other	libraries
with	your	Arduino.	A	whole	world	of	possibilities	has	opened	up!	Explore	the
Arduino	Playground	(http://playground.arduino.cc/)	to	see	what	other
libraries	are	available.

If	you’d	like	to	read	more	on	how	to	use	capacitive	sensing,	visit	the	Arduino
Playground	documentation	at
http://playground.arduino.cc/Main/CapacitiveSensor.

Arduino	Command	Quick	Reference	Table

http://playground.arduino.cc/
http://playground.arduino.cc/Main/CapacitiveSensor

Command Description

analogWrite()
Outputs	a	voltage	between	0	and	5V	on	a	specified	pin.	A	value	of	0	outputs	0V	and	255	outputs
5V.	See	also	http://arduino.cc/en/Reference/AnalogWrite.

CapacitiveSensor
Library	for	creating	capacitive	sensors.	See	also
http://playground.arduino.cc/Main/CapacitiveSensor?from=Main.CapSense.

long
A	long	is	a	data	type	that	can	hold	whole	integer	numbers	from	–2,147,483,648	to	2,147,483,647.
See	also	http://arduino.cc/en/Reference/Long.

map()
Takes	a	value	within	an	initial	range	and	maps	it	to	a	new	range.	See	also
http://arduino.cc/en/Reference/Map.

Achievement	Unlocked:	You	have	expanded	your	knowledge	with	libraries!

In	the	Next	Adventure
In	the	next	adventure,	you	start	exploring	other	types	of	Arduino	boards	to	create	a	custom	computer
game	controller!

http://arduino.cc/en/Reference/AnalogWrite
http://playground.arduino.cc/Main/CapacitiveSensor?from=Main.CapSense
http://arduino.cc/en/Reference/Long
http://arduino.cc/en/Reference/Map

WHEN	YOU	SELECT	your	Arduino	Uno	board	from	Tools⇒Board	in	the
Arduino	IDE,	you	might	notice	that	that	it	is	just	one	item	in	a	very	long	list	of
board	names.	All	the	others	sound	just	as	exciting.	So,	what	makes	them
different	from	your	Uno?	There’s	not	room	in	this	book	to	describe	all	of	them
but	in	this	adventure	you	will	get	to	know	one	of	them—the	Arduino	Leonardo.
The	Leonardo	has	a	special	skill	that	the	Uno	doesn’t	have:	it	can	make	a
computer	believe	that	the	Arduino	board	is	a	USB	keyboard	or	mouse.

For	this	adventure,	you	also	use	a	sensor	that	detects	whether	it’s	in	bright	light
or	shadow.	You	use	this	to	create	a	USB	game	controller.	The	sensor	means	you
will	be	able	to	wave	your	hands	in	the	air	above	the	controller	to	play	computer
games!

What	You	Need
You	need	the	following	items	for	the	first	part	of	the	adventure	(see	Figure	7-1):

Figure	7-1	The	electronic	components	you	need	for	the	first	part	of	this
adventure

A	computer
An	Arduino	Leonardo
A	USB	Micro	cable
A	breadboard
4	jumper	wires
A	light-dependent	resistor
A	10kΩ	resistor

Introducing	the	Arduino	Leonardo
One	of	the	many	great	things	about	the	Arduino	platform	is	that	you	can	choose
a	different	board	for	your	project	without	having	to	change	the	code.	You	can
use	almost	all	the	code	you	have	learned	to	write	for	the	Arduino	Uno	with	the
Arduino	Leonardo	as	well.	You	even	use	the	same	Arduino	integrated
development	environment	(IDE)	to	upload	the	code.

The	main	thing	you	have	to	do	differently	is	that	when	you	select	which	board
you	are	using	from	Tools⇒Board	in	the	IDE,	you	need	to	select	Arduino
Leonardo,	as	shown	in	Figure	7-2.

Figure	7-2	Selecting	the	Arduino	Leonardo	from	Tools⇒Board	in	the	Arduino
IDE

Connecting	Your	Leonardo	for	the	First	Time
The	first	thing	you	might	notice	when	connecting	your	Arduino	Leonardo	to
your	computer	for	the	first	time	is	that	it	doesn’t	have	the	same	kind	of	USB
connector	as	your	Arduino	Uno.	You	can’t	use	the	same	USB	cable	for	both
boards.

The	connectors	on	USB	cables	come	in	different	sizes	and	shapes,	as	shown	in
Figure	7-3.	What	you	might	think	of	as	a	“normal”	USB	cable	has	a	Type	A
connector	at	one	end,	which	goes	into	your	computer,	and	a	Type	B	connector	at
the	other	end,	which	goes	into	your	Arduino	Uno.	The	Arduino	Leonardo	uses	a
USB	Micro	connector	instead	of	a	Type	B	connector.	This	doesn’t	do	anything
different	from	a	normal	USB	cable;	it	still	lets	the	Leonardo	get	power	from	a
computer	and	can	be	used	to	talk	with	the	computer.	The	only	difference	is	that
the	connector	has	a	different	shape.	That	means	you	have	to	keep	track	of	two
different	kinds	of	USB	cable!

Figure	7-3	USB	connectors

One	of	the	features	the	Leonardo	has	that	the	Uno	doesn’t	is	that,	to	the
computer,	the	board	can	seem	like	a	USB	keyboard.	Because	of	this,	when	you
connect	your	Leonardo,	your	computer	might	pop	open	a	window	that	says	the
computer	has	detected	a	new	keyboard.	Just	close	the	window.	You	don’t	need	to
click	Continue	or	set	up	a	new	device;	you	program	your	Arduino	Leonardo
using	the	Arduino	IDE	just	like	you	have	been	doing	with	your	Arduino	Uno.

	If	the	computer	you	are	using	to	program	your	Arduino	Leonardo	runs	on	Windows	7,	you
may	need	to	install	some	additional	drivers.	Connect	your	Leonardo	and	wait	for	the
automatic	driver	installation	process.	If	nothing	happens	after	a	few	minutes,	go	to
http://arduino.cc/en/Guide/ArduinoLeonardoMicro?from=Guide.ArduinoLeonardo	for
instructions	about	how	to	install	the	drivers	yourself.

http://arduino.cc/en/Guide/ArduinoLeonardoMicro?from=Guide.ArduinoLeonardo

DIGGING	INTO	THE	CODE

	Most	of	the	time,	the	code	that	you	write	for	your	Uno	works	the	same	way	on	the	Leonardo,
but	it’s	good	to	know	what	might	be	a	little	different.

With	your	Arduino	Uno,	every	time	you	open	the	Serial	Monitor	in	the	Arduino	IDE,	the	Uno	resets.	The
setup()	function	then	runs	once	before	going	into	loop().	The	same	isn’t	true	for	your	Leonardo.	The
Leonardo	doesn’t	reset	when	the	Serial	Monitor	is	opened.	That	means	that	if	you	want	to	print
something	to	the	Serial	Monitor	from	the	setup()	function,	it	doesn’t	appear;	by	the	time	the	Serial
Monitor	opens,	the	print	statement	from	the	setup()	function	would	already	have	passed	and	you’d
only	see	messages	from	the	loop.

In	the	Arduino	IDE,	create	a	new	sketch	with	the	following	code.	Upload	it	to	your	Leonardo	and	then
open	the	Serial	Monitor:

void	setup()	{	

		Serial.begin(9600);	

		Serial.println("Hello	from	the	setup!");	

}	

void	loop()	{	

		Serial.println("And	hello	from	the	loop!");	

		delay(1000);	

}

You	only	see	the	message	“And	hello	from	the	loop!”	printed	over	and	over	again.

Now	try	pressing	the	reset	button	on	the	Leonardo	board	(it’s	next	to	the	USB	Micro	connector).	The
messages	stop	printing	to	the	Serial	Monitor	completely!	This	is	because	the	connection	between	the
Serial	Monitor	and	the	Leonardo	was	broken	when	you	pressed	reset.	You	need	to	close	and	reopen	Serial
Monitor	to	let	the	Arduino	Leonardo	know	that	the	Serial	Monitor	is	there	and	waiting.

So	what	does	that	all	mean?	Does	that	mean	you	can’t	ever	print	messages	from	the	setup()	function	of
an	Arduino	Leonardo	to	read	in	the	Serial	Monitor?	That	would	be	frustrating!	It	can	be	really	useful	to
print	messages,	as	it	helps	you	to	know	what	is	going	on	inside	the	board	and	fix	any	problems	with	your
code.	Well,	the	good	thing	is	there	is	a	way	around	this.

You	can	tell	the	Leonardo	to	wait	and	not	do	anything	until	a	serial	connection	to	something	like	Serial
Monitor	is	opened.

Try	uploading	the	following	code	to	your	Leonardo,	and	then	open	the	Serial	Monitor:

void	setup()	{	

		Serial.begin(9600);	

		while(!Serial);	//	sit	and	wait	for	a	serial	connection	

		Serial.println("Hello	from	the	setup!");	

}	

void	loop()	{	

		Serial.println("And	hello	from	the	loop!");	

		delay(1000);	

}

You	should	now	see	the	“Hello	from	the	setup!”	message	before	the	“And	hello	from	the	loop!”
messages.	If	you	try	pressing	reset	on	the	board,	you	see	that	you	still	need	to	close	and	reopen	the	Serial
Monitor	to	see	the	printing	messages	again.

Acting	Like	a	Keyboard
You	can	send	messages	to	the	computer	from	your	Arduino	Uno	using	functions
like	Serial.println(),	but	you	need	a	special	program	like	the	Serial	Monitor
in	the	Arduino	IDE	to	be	able	to	read	those	messages.	The	Arduino	Leonardo
can	send	messages	that	don’t	need	a	special	program	for	the	computer	to
understand.	It	can	send	messages	that	look	like	keys	being	pressed	on	a
keyboard.	Any	program	that	responds	to	key	presses	(like	a	word	processing
program	or	a	computer	game)	can	understand	those	messages.

Start	by	creating	a	new	sketch	in	the	Arduino	IDE.	Write	out	the	following	code
to	create	an	empty	setup()	and	loop():

void	setup()	{	

}	

void	loop()	{	

}

Before	you	start	turning	your	Arduino	Leonardo	into	a	keyboard,	it’s	very
important	that	you	give	it	an	off	switch.	Your	Leonardo	overrides	your
computer’s	keyboard	the	same	way	as	plugging	a	USB	keyboard	into	your
computer	does.	If	your	Leonardo	is	constantly	typing	messages	at	your
computer,	it	can	be	difficult	to	tell	your	computer	to	do	anything	else—including
uploading	a	new	sketch	to	your	Leonardo.

To	prevent	this	from	happening,	in	the	loop()	you	are	going	to	first	check	to	see

if	an	input	pin	is	set	to	0.	If	it	is,	then	don’t	print	any	keyboard	messages.	You
don’t	even	need	to	wire	up	a	switch	like	you	did	in	Adventure	3;	you	can	just	use
a	jumper	wire!	Here’s	how.

First,	at	the	top	of	your	sketch,	before	the	setup(),	create	a	new	variable	to	store
your	switch	pin	number:

int	switchPin	=	4;

Inside	the	{	and	}	of	setup(),	set	that	pin	to	be	an	input	with	the	pull-up	resistor
turned	on:

pinMode(switchPin,	INPUT_PULLUP);

Then	in	loop(),	add	the	following	code	to	check	if	switchPin	has	been
connected	to	ground.	If	it	has,	continue	on	to	print	the	message;	otherwise	do
nothing:

//	read	the	pushbutton:	

int	switchState	=	digitalRead(switchPin);	

//	if	the	switch	is	open	(not	connected	to	ground),	

if	(switchState	==	LOW)	{	

		//	add	keyboard	code	here	

}	

delay(500);

The	purpose	of	delay()	at	the	end	is	to	slow	down	how	often	the	loop	repeats.
That	way,	when	messages	are	being	sent,	they	aren’t	sent	too	fast.

Now	if	you	connect	a	wire	between	switchPin	(Pin	4)	and	GND,	the	code	that
you	put	inside	the	if	statement	is	run.	If	you	don’t	connect	anything	to	the
switchPin,	the	pull-up	resistor	causes	the	value	read	from	switchPin	to	be	1
and	the	code	inside	the	if	statement	is	skipped.

Time	to	start	adding	some	keyboard	messages!

The	Keyboard	functions	look	a	lot	like	the	Serial	functions.	In	the	setup()
function	you	need	to	start	the	Leonardo’s	keyboard	messaging	by	calling:

Keyboard.begin();

You	can	then	write	messages	using	Keyboard:

Keyboard.println("This	is	your	Leonardo	acting	like	a

keyboard.");

When	the	code	is	all	put	together,	you	get	the	following	sketch:

int	switchPin	=	4;						//	input	pin	for	switch	

void	setup()	{	

		//	make	the	switchPin	and	input	

		//	with	an	internal	pull-up	resistor	

		pinMode(switchPin,	INPUT_PULLUP);	

		//	initialize	control	over	the	keyboard:	

		Keyboard.begin();	

}	

void	loop()	{	

		//	read	the	pushbutton:	

		int	switchState	=	digitalRead(switchPin);	

		//	if	the	switch	is	open	(not	connected	to	ground),	

		if	(switchState	==	LOW)	{	

			Keyboard.println("This	is	your	Leonardo	acting	like	a

keyboard.");	

		}	

		delay(500);	

}

Upload	the	code	to	your	Leonardo	and	then	open	any	word	processing	program.
Use	the	jumper	wire	to	connect	your	switchPin	to	GND.	You	should	see	your
Leonardo	typing	out	messages	like	those	in	Figure	7-4!

Figure	7-4	The	Leonardo	typing	in	a	word	processing	program

	Don’t	create	a	runaway	keyboard!	If	you	find	you	are	having	problems	uploading	a	new
sketch	to	your	Leonardo,	there	is	something	you	can	try.	You	can	manually	reset	the
Arduino	Leonardo	and	tell	it	to	listen	for	a	sketch	to	be	uploaded.	Hold	down	the	button	on
the	Leonardo	and	then	click	on	the	Upload	button	in	the	Arduino	IDE.	Wait	until	the	IDE
says	“Uploading…”	and	then	release	the	button.	Your	sketch	should	then	finish	uploading
onto	your	board.

	Did	you	know	you	can	come	up	with	a	new	idea	using	an	Arduino,	then	make	and	sell	your
idea	as	a	product	in	a	store?	The	MaKey	MaKey	is	one	example	of	an	Arduino	project	you
can	buy	in	a	store.	The	MaKey	MaKey	is	based	on	the	Leonardo	Arduino—its	name	comes
from	“Make	anything	into	a	keyboard”.	You	now	know	a	lot	about	the	code	behind	how	it
works.	If	you’d	like	to	learn	more	about	the	MaKey	MaKey,	go	to
http://makeymakey.com,	where	you	can	download	the	Arduino	code	used	to	program	the
MaKey	MaKey	and	read	how	it	works.	You	can	even	turn	your	Arduino	Leonardo	into	a
MaKey	MaKey!

This	is	all	because	the	Arduino	is	open	source	hardware	and	the	Arduino	is	open	source	software.
You	can	read	more	about	what	that	means	online	at	http://en.wikipedia.org/wiki/Open-
source_software	and	http://en.wikipedia.org/wiki/Open-source_hardware.

Sensing	Light
In	Adventure	2	you	were	introduced	to	analogue	inputs,	using	the	potentiometer
to	control	a	status	message	sign.	Here’s	a	little	refresher	about	how	analogue
inputs	work.

An	analogue	input	on	an	Arduino	board	is	an	input	that	can	read	in	voltages
between	ground	and	5V.	A	digital	input	can	read	in	either	ground	or	5V,	and	it
can’t	tell	if	an	input	is	only	2.3V	or	any	other	value	between	ground	and	5V	(see
Figure	7-5).

http://makeymakey.com/
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Open-source_hardware

Figure	7-5	Analogue	and	digital	signals

There	are	a	lot	of	different	sensors	that	output	analogue	signals	and	not	digital
signals—that	is	they	don’t	detect	only	whether	something	is	on	or	off;	they	also
measure	how	much	there	is	of	something.	Microphones	measure	sound,
accelerometers	measure	movement	and	light	sensors	measure	light.	All	of	these
sensors	output	an	analogue	signal,	which	would	be	read	into	an	Arduino	board	as
an	analogue	input.	The	type	of	light	sensor	you	work	with	in	this	adventure	is	a
light-dependent	resistor	(LDR).	An	LDR	is	a	resistor	that	changes	its	resistance
according	to	how	much	light	it	is	exposed	to.	Sometimes	LDRs	are	also	called
photoresistors.	I	like	the	name	LDR	because	is	describes	exactly	how	the	resistor
works—it	depends	on	the	light.

	A	light-dependent	resistor	(LDR)	changes	its	resistance	according	to	how	much	light	it	is
exposed	to.	It	is	also	sometimes	called	a	photoresistor.

	Use	a	multimeter	to	measure	the	resistance	of	your	LDR.	Connect	one	probe	to	one	leg	of

the	LDR	and	the	other	probe	to	the	other	leg.	Set	the	multimeter	to	measure	resistance	and
see	what	value	you	get.	Try	shining	a	light	on	the	LDR	to	see	what	happens.	What	happens
when	you	cover	the	LDR	and	block	out	light?

Building	the	Circuit
An	Arduino	board	can	only	measure	voltage,	but	an	LDR	only	changes	its
resistance,	which	makes	for	a	bit	of	a	puzzle.	How	can	you	get	the	Arduino	to
see	how	the	LDR	is	responding	to	brighter	or	darker	environments	if	the	LDR
only	changes	resistance	and	not	voltage?	The	trick	is	to	use	some	clever	circuit
design.

Voltage,	current	and	resistance	are	all	connected.	You	can’t	change	one	of	those
things	in	a	circuit	without	changing	the	others.	The	way	they	are	all	related	is
defined	by	Ohm’s	Law,	which	is	shown	in	Figure	7-6.

Figure	7-6	Ohm’s	Law	defines	how	voltage,	current	and	resistance	are	related.

	Ohm’s	Law	is	the	mathematical	relationship	between	voltage,	current	and	resistance.
Voltage	equals	current	multiplied	by	the	resistance—or,	put	another	way,	V=IR.

You	don’t	have	to	worry	too	much	about	the	details	of	that	equation	right	now.

The	important	thing	to	know	is	that	you	can	design	a	circuit	that	changes	the
voltage	when	you	change	the	resistance.	The	type	of	circuit	you	are	going	to
build	to	do	this	is	called	a	voltage	divider.

	A	voltage	divider	is	a	circuit	that	outputs	a	fraction	of	the	input	voltage.	It	is	a	useful
circuit	for	translating	a	change	in	resistance	into	a	change	in	voltage.

The	voltage	divider	you	are	going	to	make	has	two	different	resistors.	One	of	the
resistors	is	a	“normal”	fixed-value	resistor;	the	other	is	a	variable	resistor	that
changes	its	value.	You	are	going	to	use	an	LDR	as	the	variable	resistor	here,	but
in	a	future	project	you	could	build	this	circuit	with	another	sensor	that	is	a
variable	resistor.

When	the	resistance	of	the	LDR	goes	up	or	down,	the	output	voltage	goes	up	or
down.	So	when	more	or	less	light	is	shown	on	the	LDR	in	the	voltage	divider
circuit,	the	output	voltage	goes	up	and	down.	Whether	you	put	the	LDR	in	the
top	or	bottom	position	affects	whether	the	voltage	goes	up	or	down	when	you
block	out	light	from	the	LDR.	Figure	7-7	shows	two	ways	that	an	LDR	can	be
built	into	a	voltage	divider	circuit.

Figure	7-7	Two	voltage	divider	circuits,	one	with	an	LDR	as	the	top	resistance
and	the	other	with	an	LDR	as	the	bottom	resistance

Some	people	find	it	easier	to	understand	how	something	works	when	it	is
described	with	a	mathematical	equation.	If	you	would	like	to	work	out	how	the
voltage	output	from	the	circuit	changes	when	you	change	the	resistor	values,	you
can	use	the	equation	shown	in	Figure	7-8.	If	you	don’t	enjoy	working	with
numbers	and	equations,	then	you	can	just	ignore	that	for	now	and	instead	have	a
go	at	building	the	circuit	so	you	can	actually	see	what	is	happening.

Figure	7-8	The	equation	to	calculate	how	different	resistor	values	in	a	voltage
divider	change	the	output	voltage

Writing	the	Code
One	of	the	great	things	about	working	with	Arduino	boards	is	that	the	board
doesn’t	care	what	sensor	is	connected	to	its	input	pins.	It	only	cares	if	it	is
outputting	an	analogue	or	digital	signal.	If	you’ve	worked	through	Adventure	2,
you	already	have	seen	all	the	Arduino	code	to	read	in	the	values	from	your	LDR
—it’s	the	same	code	you	would	use	to	read	from	a	potentiometer.	Open	the
example	code	at	File⇒Examples⇒01.Basics⇒AnalogRead	in	the	Arduino	IDE
to	see	an	example	sketch	that	reads	in	the	value	from	analogue	input	A0	and	then
prints	that	value	to	the	Serial	Monitor.

In	the	AnalogRead	sketch,	the	setup()	function	starts	the	serial	communication:

//	the	setup	routine	runs	once	when	you	press	reset:	

void	setup()	{	

		//	initialize	serial	communication	at	9600	bits	per	second:	

		Serial.begin(9600);	

}

The	loop()	function	reads	in	the	value	on	Analog	Pin	A0	and	saves	it	in	a
variable	called	sensorValue.	That	variable	is	then	printed	to	the	Serial	Monitor:

//	the	loop	routine	runs	over	and	over	again	forever:	

void	loop()	{	

		//	read	the	input	on	analog	pin	0:	

		int	sensorValue	=	analogRead(A0);	

		//	print	out	the	value	you	read:	

		Serial.println(sensorValue);	

		delay(1);							//	delay	in	between	reads	for	stability	

}

CHALLENGE

	Build	the	voltage	divider	circuit	with	the	LDR	in	the	top	position	and	upload	the
AnalogReadSerial	sketch	to	your	Arduino	board.	Open	Serial	Monitor	and	observe	what
happens	when	you	shine	or	block	light	from	the	sensor.

Swap	the	LDR	and	fixed	value	resistor	so	the	LDR	is	now	in	the	bottom	position.	Watch	what	values	are
printed	in	the	Serial	Monitor.	When	might	you	want	to	use	the	first	circuit,	and	when	might	you	prefer	to
use	the	second	one?

Building	a	Game	Controller
You	now	know	how	to	get	an	Arduino	Leonardo	to	act	like	a	USB	keyboard.	Do
you	also	like	to	play	computer	games?	If	you	do,	you	probably	can	think	of	some
games	you	can	play	using	only	the	keyboard	as	input.	If	you	don’t	play	a	lot	of
computer	games,	that’s	okay;	I	can	point	out	some	that	you	can	try!

If	you	can	get	your	Leonardo	to	act	like	a	keyboard	that	controls	a	computer
game,	then	you	can	start	designing	your	own	game	controller	like	the	one	in
Figure	7-9.	That	opens	up	a	wide	world	of	different	sensors	that	you	can	use	to
play	a	game.	Boring	buttons	are	a	thing	of	the	past!	You’re	going	to	build	a
controller	that	uses	light	to	control	key	presses,	but	you	could	use	any	sensor	you
like!

Figure	7-9	Arduino	Leonardo	game	controller

	You	watch	a	video	on	how	to	build	your	controller	on	the	companion	site
(www.wiley.com/go/adventuresinarduino).

What	You	Need
You	need	the	following	supplies	to	make	a	game	controller	(Figure	7-10	shows
the	electronic	components	you	need):

http://www.wiley.com/go/adventuresinarduino

Figure	7-10	The	electronic	components	you	need	to	make	the	game	controller

A	computer
An	Arduino	Leonardo
A	USB	Micro	cable
A	breadboard
10	jumper	wires
4	10kΩ	resistors
4	light-dependent	resistors
A	piece	of	paper	or	card	to	cover	the	breadboard
Some	markers	or	coloured	pencils
A	pair	of	scissors	or	a	utility	knife

Building	the	Circuit
The	circuit	for	the	game	controller	doesn’t	need	to	have	any	extension	wires
soldered	to	it,	so	you	can	build	it	directly	on	your	breadboard.

The	game	controller	circuit	consists	of	the	same	circuit	repeated	four	times.
There	are	four	LDRs;	each	one	controls	a	different	arrow	key.	Each	LDR	is	in	its

own	voltage	divider	circuit	with	a	fixed	value	resistor.	Figure	7-11	shows	the
circuit	schematic	for	the	game	controller.

Figure	7-11	Circuit	schematic	for	the	game	controller

Use	the	following	steps	to	build	the	circuit	in	Figure	7-12	on	your	breadboard.
It’s	good	to	space	out	the	LDRs	so	they	aren’t	too	close	to	each	other.	You	don’t
want	to	accidentally	block	the	light	from	a	LDR	when	you	are	trying	to	block	the
LDR	next	to	it:

Figure	7-12	The	game	controller	circuit

1.	 Position	the	four	LDRs	by	spanning	the	gap	in	the	middle	of	the
breadboard.

2.	 Connect	each	of	the	resistors	between	one	of	the	long	rows	along	the	top	of
the	breadboard	and	the	LDRs.

3.	 Connect	a	jumper	from	the	bottom	leg	of	each	of	the	LDRs	to	a	long	row	on
the	bottom	of	the	breadboard.

4.	 Connect	the	long	row	along	the	top,	connecting	the	resistors	to	the	5V	pin
on	the	Arduino	Leonardo.

5.	 Use	a	jumper	wire	to	connect	the	long	row	along	the	bottom	of	the
breadboard	with	the	other	jumper	wires	to	a	GND	pin	on	the	Arduino
Leonardo.

6.	 Using	four	jumper	wires,	connect	pins	A0,	A1,	A2	and	A3	to	each	of	the
LDRs.	One	end	of	the	jumper	wire	plugs	into	the	pin	on	the	Arduino
Leonardo	and	the	other	end	plugs	into	the	same	row	as	the	resistor	leg	and
LDR	leg.

Writing	the	Code
In	order	to	make	sure	your	circuit	is	working	properly,	you	first	program	the
Leonardo	to	print	messages	to	the	Serial	Monitor	before	programming	it	to	act
like	a	keyboard.	After	you	know	everything	is	okay	with	the	circuit	and	you’ve
figured	out	the	thresholds	for	when	the	sensor	should	trigger	a	message,	you
replace	the	serial	messages	with	keyboard	messages.

Start	by	creating	a	new	Arduino	sketch	and	creating	an	empty	setup()	and
loop():

void	setup()	{	

}	

void	loop()	{	

}

At	the	top	of	the	sketch	before	setup(),	declare	and	initialise	the	variables	for
the	input	pins.	There	are	five	inputs:	the	switch	pin	and	one	input	for	each	of	the
four	LDRs:

int	switchPin	=	4;	

int	leftSensor	=	A0;	

int	rightSensor	=	A1;	

int	upSensor	=	A2;	

int	downSensor	=	A3;

Inside	setup()	start	serial	communication	and	set	the	pin	mode	for	the
switchPin:

//	make	the	switchPin	an	input	with	an	internal	pull-up	resistor	

pinMode(switchPin,	INPUT_PULLUP);	

//	initialize	control	over	the	keyboard:	

Serial.begin(9600);

Inside	the	loop(),	check	the	state	of	switchPin	and	create	an	if	statement	that
is	true	if	switchPin	is	LOW:

//	read	the	pushbutton:	

int	switchState	=	digitalRead(switchPin);	

//	if	the	switch	is	open	(not	connected	to	ground),	

if	(switchState	==	LOW)	{	

}	

delay(50);

The	delay()	makes	sure	messages	can’t	be	sent	too	quickly.

At	the	top	of	your	code	with	your	other	variables,	add	the	following	lines	of
code:

int	rightThreshold	=	400;	

int	leftThreshold	=	400;	

int	upThreshold	=	400;	

int	downThreshold	=	400;

These	variables	keep	track	of	when	each	LDR	circuit	will	trigger	a	message.

	You	probably	need	to	use	a	value	other	than	400	for	your	LDRs.	You	may	need	to	make	the
values	higher	or	lower,	and	each	LDR	might	even	require	a	different	value!	Later	you	will
figure	out	the	best	values	for	your	controller	by	trying	out	different	values,	but	you	aren’t
ready	to	do	that	yet!	You	need	to	finish	the	sketch	first.

Inside	your	if	statement,	add	the	following	code.	Even	though	it’s	long,	it’s	just
the	same	thing	repeated	four	times—once	for	each	LDR:

//	RIGHT	ARROW	

int	rightValue	=	analogRead(rightSensor);	

//Serial.println(rightValue);	

if(rightValue	>	rightThreshold)	{	

		Serial.println("right	arrow");	

}	

//	LEFT	ARROW	

int	leftValue	=	analogRead(leftSensor);	

//Serial.println(leftValue);	

if(leftValue	>	leftThreshold)	{	

		Serial.println("left	arrow");	

}	

//	UP	ARROW	

int	upValue	=	analogRead(upSensor);	

//Serial.println(upValue);	

if(upValue	>	upThreshold)	{	

		Serial.println("up	arrow");	

}	

//	DOWN	ARROW	

int	downValue	=	analogRead(downSensor);	

//Serial.println(downValue);	

if(downValue	>	downThreshold)	{	

		Serial.println("down	arrow");	

}

In	each	of	the	four	blocks	of	code,	the	value	from	the	analog	pin	is	read	in	and
saved	to	a	variable.	If	that	variable	is	less	than	the	threshold	value	for	the	LDR,
then	the	message	is	printed.

Inside	each	block	of	code	is	a	line	of	code	commented	out.	If	you	uncomment
that	line	(by	deleting	//)	then	the	value	of	that	pin	is	printed.	This	can	be	useful
to	help	set	your	threshold	values,	but	it	also	prints	a	lot	of	numbers	and	can	be
confusing.	You	probably	want	to	uncomment	only	one	of	them	at	a	time.

What	follows	here	is	the	full	code	for	trying	out	printing	serial	messages.	Build
your	circuit	and	upload	the	code	to	your	Arduino	Leonardo.

	Remember	that	your	sketch	won’t	check	the	values	of	the	pins	unless	you	have	connected
Pin	4	to	GND!

int	switchPin	=	4;	

int	leftSensor	=	A0;	

int	rightSensor	=	A1;	

int	upSensor	=	A2;	

int	downSensor	=	A3;	

//	adjust	these	variables	to	values	that	

//	work	for	your	controller	

int	rightThreshold	=	400;	

int	leftThreshold	=	400;	

int	upThreshold	=	400;	

int	downThreshold	=	400;	

void	setup()	{	

		//	make	the	switchPin	an	input	//	with	an	internal	pull-up

resistor	

		pinMode(switchPin,	INPUT_PULLUP);	

		//	initialize	control	over	the	keyboard:	

		Serial.begin(9600);	

}	

void	loop()	{	

		//	read	the	pushbutton:	

		int	switchState	=	digitalRead(switchPin);	

		//	if	the	switch	is	open	(not	connected	to	ground),	

		if	(switchState	==	LOW)	{	

			//	RIGHT	ARROW	

			int	rightValue	=	analogRead(rightSensor);	

			//Serial.println(rightValue);	

			if(rightValue	>	rightThreshold)	{	

					Serial.println("right	arrow");	

			}	

			//	LEFT	ARROW	

			int	leftValue	=	analogRead(leftSensor);	

			//Serial.println(leftValue);	

			if(leftValue	>	leftThreshold)	{	

					Serial.println("left	arrow");	

			}	

			//	UP	ARROW	

			int	upValue	=	analogRead(upSensor);	

			//Serial.println(upValue);	

			if(upValue	>	upThreshold)	{	

					Serial.println("up	arrow");	

			}	

			//	DOWN	ARROW	

			int	downValue	=	analogRead(downSensor);	

			//Serial.println(downValue);	

			if(downValue	>	downThreshold)	{	

					Serial.println("down	arrow");	

			}	

		}	

		delay(50);	

}

	As	the	sketches	get	longer,	you	may	prefer	to	download	them	from	the	companion	site
(www.wiley.com/go/adventuresinarduino)	instead	of	typing	them	out.

Now	open	the	Serial	Monitor	and	try	out	your	LDRs	one	by	one,	by	holding
your	hand	over	each	one.	Adjust	the	threshold	values	until	they	print	a	message

http://www.wiley.com/go/adventuresinarduino

only	when	you	want	them	to.

After	you	know	what	your	thresholds	should	be,	you	can	change	your	sketch	to
output	key	presses	instead	of	serial	messages.

Save	your	sketch	and	then	create	a	new	empty	sketch.	Copy	and	paste	the	sketch
that	you	just	saved	into	the	new	sketch.	You	are	going	to	keep	most	of	what	you
have	already	written	and	replace	the	lines	of	code	that	use	Serial	functions	with
Keyboard	functions.

In	the	setup(),	replace	the	line	that	starts	serial	communication	with	the
following:

//	initialize	control	over	the	keyboard:	

Keyboard.begin();

In	each	of	the	four	blocks	of	code	that	print	the	serial	message	about	which
sensor	was	triggered,	replace	the	Serial.println()	with	the	following	line,
using	KEY_RIGHT_ARROW,	KEY_LEFT_ARROW,	KEY_UP_ARROW	and	KEY_DOWN_ARROW:

Keyboard.press(KEY_RIGHT_ARROW);

Instead	of	printing	a	message,	the	Leonardo	is	sending	a	message	that	a	key	has
been	pressed.	At	the	end	of	the	loop,	the	following	line	of	code	sends	the
message	that	all	the	keys	have	been	released:

Keyboard.releaseAll()

When	you	put	it	all	together,	you	have	the	following	sketch:

int	switchPin	=	4;	

int	leftSensor	=	A0;	

int	rightSensor	=	A1;	

int	upSensor	=	A2;	

int	downSensor	=	A3;	

//	adjust	these	variables	to	values	that	

//	work	for	your	controller	

int	rightThreshold	=	400;	

int	leftThreshold	=	400;	

int	upThreshold	=	400;	

int	downThreshold	=	400;	

void	setup()	{	

		//	make	the	switchPin	and	input	//	with	an	internal	pull-up

resistor	

		pinMode(switchPin,	INPUT_PULLUP);	

		//	initialize	control	over	the	keyboard:	

		Keyboard.begin();	

}	

void	loop()	{	

		//	read	the	pushbutton:	

		int	switchState	=	digitalRead(switchPin);	

		//	if	the	switch	is	open	(not	connected	to	ground),	

		if	(switchState	==	LOW)	{	

			//	RIGHT	ARROW	

			int	rightValue	=	analogRead(rightSensor);	

			//Serial.println(rightValue);	

			if(rightValue	>	rightThreshold)	{	

					Keyboard.press(KEY_RIGHT_ARROW);	

			}	

			//	LEFT	ARROW	

			int	leftValue	=	analogRead(leftSensor);	

			//Serial.println(leftValue);	

			if(leftValue	>	leftThreshold)	{	

					Keyboard.press(KEY_LEFT_ARROW);	

			}	

			//	UP	ARROW	

			int	upValue	=	analogRead(upSensor);	

			//Serial.println(upValue);	

			if(upValue	>	upThreshold)	{	

					Keyboard.press(KEY_UP_ARROW);	

			}	

			//	DOWN	ARROW	

			int	downValue	=	analogRead(downSensor);	

			//Serial.println(downValue);	

			if(downValue	>	downThreshold)	{	

					Keyboard.press(KEY_DOWN_ARROW);	

			}	

		}	

		delay(50);	

		Keyboard.releaseAll();	

}

Build	the	circuit	and	upload	the	sketch.	Open	a	spreadsheet	program,	such	as
Microsoft	Excel,	and	test	that	you	can	use	your	controller	to	move	to	different
squares	just	as	you	could	with	the	arrow	keys.

	Does	your	game	use	keys	other	than	the	arrows?	Or	maybe	it	needs	the	arrow	keys	and	the
spacebar?	You	can	read	more	about	all	the	keys	the	Arduino	Leonardo	can	press	on	the
Arduino	website	at	http://arduino.cc/en/Reference/KeyboardModifiers.

Making	the	Controller	Cover
Using	paper	or	card,	cut	out	a	shape	for	your	game	controller.	It	can	be	a
rectangle	or	any	other	shape.	It	doesn’t	have	to	look	like	any	game	controller
you’ve	ever	seen	before!	It	just	needs	to	be	big	enough	to	cover	your
breadboard.

Decorate	your	cover	however	you’d	like.	It	would	be	a	good	idea	to	label	which
key	is	triggered	by	which	LDR.	When	you’re	at	a	tricky	part	in	your	game,	you
don’t	want	to	forget	which	sensor	is	which	key	and	accidentally	lose	your	game!

Using	scissors,	poke	a	hole	where	each	LDR	will	be	placed	(see	Figure	7-13).
This	is	where	the	wire	legs	of	the	LDR	will	pass	through	the	cover	so	that	the
top	part	of	the	sensor	is	above	the	cover,	but	the	legs	are	connected	to	the	circuit
underneath	on	the	breadboard.

http://arduino.cc/en/Reference/KeyboardModifiers

Figure	7-13	Cover	without	any	circuitry

Putting	It	All	Together
Since	you’ve	already	tested	your	controller	with	a	spreadsheet	program,	the	last
step	is	to	add	your	controller	cover	before	playing	your	games	with	your	new
controller.

One	by	one,	remove	an	LDR	from	the	breadboard	and	poke	its	legs	through	the
holes	in	the	paper	cover.	Then	connect	that	LDR	back	into	the	circuit	on	the
breadboard.	You	can	always	solder	longer	wires	onto	the	LDRs	if	you	find	it	too
tricky	to	connect	the	LDRs	back	into	circuit	on	the	breadboard.

Test	your	controller	again	with	the	spreadsheet	program	just	to	make	sure	you’ve
connected	everything	correctly.	After	you’ve	confirmed	that	it’s	all	okay,	load	up
your	favorite	game	that	uses	the	arrow	keys	and	start	playing!

	If	you	are	looking	for	some	games	to	play	with	your	new	controller,	2048	at
http://gabrielecirulli.github.io/2048	is	a	good	one	to	try.	It’s	a	number	puzzle	game.
I	also	like	the	maze	game	at	www.primarygames.com/puzzles/mazes/mazerace.	It’s	much
harder	than	it	looks!

http://gabrielecirulli.github.io/2048/
http://www.primarygames.com/puzzles/mazes/mazerace/

Further	Adventures	with	the	Leonardo
You	have	now	started	working	with	more	advanced	circuits	called	voltage
dividers.	If	you	would	like	to	learn	even	more	about	voltage	dividers,	you	can
start	by	checking	out	Sparkfun’s	tutorial	at
https://learn.sparkfun.com/tutorials/voltage-dividers.

For	more	information	about	the	Arduino	Leonardo	and	what	you	can	do	with	it,
visit	the	Arduino	Leonardo	page	on	the	Arduino	website	at
http://arduino.cc/en/Guide/ArduinoLeonardoMicro?

from=Guide.ArduinoLeonardo.

You	can	also	explore	more	examples	using	the	Keyboard	functions	in	the
Arduino	IDE	by	going	to	File⇒Examples⇒09.USB.	Here,	you	will	also	find
examples	that	turn	your	Arduino	Leonardo	into	a	mouse.

Boards	like	the	Arduino	Leonardo	and	Uno	are	open	source	hardware.	That
means	that	you	can	make	new	projects	and	even	new	boards	that	use	the	features
of	Arduinos,	just	like	the	MaKey	MaKey.	If	you	would	like	to	learn	more	about
open	source	hardware,	check	out	the	Open	Source	Hardware	Association
(OSHWA)	at	www.oshwa.org/.

Arduino	Command	Quick	Reference	Table
Command Description
While(!Serial); Causes	the	Leonardo	to	wait	and	do	nothing	until	a	serial	connection	is	opened.
Keyboard.begin() Begins	keyboard	functionality.	See	also	http://arduino.cc/en/Reference/KeyboardBegin.

Keyboard.println()
Sends	a	message	to	the	computer	as	if	it	was	typed	on	the	keyboard.	See	also
http://arduino.cc/en/Reference/KeyboardPrintln.

Keyboard.press()
Sends	a	message	to	the	computer	that	a	key	is	pressed.	See	also
http://arduino.cc/en/Reference/KeyboardPress.

Keyboard.releaseAll()
Sends	a	message	to	the	computer	that	all	keys	have	been	released.	See	also
http://arduino.cc/en/Reference/KeyboardReleaseAll.

https://learn.sparkfun.com/tutorials/voltage-dividers
http://arduino.cc/en/Guide/ArduinoLeonardoMicro?from=Guide.ArduinoLeonardo
http://www.oshwa.org/
http://arduino.cc/en/Reference/KeyboardBegin
http://arduino.cc/en/Reference/KeyboardPrintln
http://arduino.cc/en/Reference/KeyboardPress
http://arduino.cc/en/Reference/KeyboardReleaseAll

Achievement	Unlocked:	Expert	constructor	of	a	game	controller.	Well	played!

In	the	Next	Adventure
In	the	next	adventure,	you	continue	your	exploration	of	other	types	of	Arduino	boards	to	create	an
amazing	wearable	circuit!

YOU	HAVE	ONLY	just	begun	to	explore	all	the	different	ways	to	make	a
project	with	an	Arduino!	In	Adventure	7	you	learned	how	to	design	and	build
your	own	game	controller	using	the	Arduino	Leonardo.	The	Arduino	board	still
looked	exactly	like	an	Arduino	Uno,	however,	and	you	still	built	circuits	the
same	way	you	would	build	your	circuit	for	an	Arduino	Uno	project—using
breadboards,	wire	and	solder.

But	what	if,	for	example,	you	wanted	to	build	an	Arduino	project	that	you	could
wear?	You	can’t	use	stiff	wires	and	hard	solder	if	you	want	something	to	bend
like	fabric	and	be	comfortable	to	wear.	Luckily,	conductive	metals	can	be	made
into	thread,	which	means	you	can	sew	a	circuit	with	a	needle	and	(conductive)
thread.	It’s	called	making	a	soft	circuit.	And	there’s	a	particular	type	of	Arduino
board	that	has	been	built	to	make	it	easy	to	sew	a	microcontroller	into	your
project:	the	Lilypad	Arduino	USB!

In	this	adventure	you’re	going	to	create	a	hoodie	with	an	Arduino	and	LEDs
embedded	in	its	sleeve.	The	LEDs	will	display	a	secret	message	that	you
program	into	your	Lilypad	Arduino	USB.	The	secret	message	is	stored	on	the
Lilypad	Arduino	USB	using	arrays,	so	before	you	start	writing	the	code	for	this
adventure’s	project,	I	remind	you	how	arrays	work	and	show	you	how	to	push
them	to	a	second	dimension.

What	You	Need
You	need	the	components	shown	in	Figure	8-1	for	the	first	part	of	this	adventure.

A	computer
A	Lilypad	Arduino	USB
A	USB	Micro	cable
10	alligator	clips
5	Lilypad	LEDs	(or	5	LEDs	and	5	68Ω	or	100Ω	resistors	if	not	using
Lilypad	LEDs)

Figure	8-1	The	electronic	components	you	need	for	the	first	part	of	this
adventure

Introducing	the	Lilypad	Arduino	USB
The	Lilypad	Arduino	USB	is	a	member	of	a	family	of	Lilypad	Arduinos.
Although	you	could	use	any	of	the	Lilypad	Arduinos,	the	Lilypad	Arduino	USB
shown	in	Figure	8-2	has	some	features	that	make	it	a	bit	nicer	to	use,	such	as	not
needing	a	second	board	to	upload	sketches.	But	because	they	are	all	Arduinos,
your	code	remains	the	same,	so	the	code	you	write	here	will	still	work	on	a
Lilypad	Arduino,	Lilypad	Arduino	Simple	or	Lilypad	Arduino	SimpleSnap.

Figure	8-2	The	Lilypad	Arduino	USB

The	Lilypad	Arduino	USB	has	the	same	microcontroller	chip	as	the	Arduino
Leonardo.	That	means	you	can	turn	it	into	a	mouse	or	keyboard	just	like	you	can
with	an	Arduino	Leonardo,	but	it	also	means	it	is	easier	to	program	than	the
other	Lilypad	Arduinos.	The	Lilypad	Arduino	USB	has	a	USB	Micro	connector
on	it—the	same	connector	that	is	on	the	Arduino	Leonardo.	Programming	the
Lilypad	Arduino	USB	is	just	like	programming	any	of	the	other	Arduino	boards
you	have	used	so	far:	Connect	the	board	to	the	USB	cable	and	then	connect	the

USB	cable	to	the	computer.

The	other	types	of	Lilypad	Arduino	don’t	have	a	USB	Micro	connector	on	them.
Instead	they	have	six	pins	on	the	top	of	the	board.	These	pins	connect	to	a	FTDI
board	(see	Figure	8-3),	which	has	a	USB	connector	on	it.	To	program	those
boards,	you	first	connect	the	FTDI	board	to	the	Lilypad	Arduino,	then	connect
the	USB	cable	to	the	FTDI	board	and	then	connect	the	USB	cable	to	the
computer.	So	if	you	already	have	a	Lilypad	Arduino	or	can’t	find	a	Lilypad
Arduino	USB,	don’t	worry!	You	can	still	use	a	different	Lilypad	Arduino	board;
just	make	sure	you	also	get	an	FTDI	programming	board.

	FTDI	stands	for	Future	Technology	Devices	International,	a	company	that	makes	a	chip
that	was	used	in	most	Arduino	boards.	An	FTDI	chip	translates	the	electrical	signals	sent	by
the	computer	over	a	USB	cable	into	signals	the	Arduino	can	understand.	The	Arduino	Uno
uses	a	chip	similar	to	the	FTDI	chip	to	do	this	translation	for	the	microcontroller	chip.	It
comes	already	included	on	the	Arduino	Uno’s	board.

The	Lilypad	Arduino	doesn’t	have	this	extra	chip	on	its	board,	so	you	have	to	connect	the	Lilypad
Arduino	to	an	FTDI	board	that	has	the	chip	on	it	whenever	you	want	to	upload	new	sketches.	The
Lilypad	Arduino	USB	has	a	different	microcontroller	chip	than	the	Arduino	Uno	or	Lilypad	Arduino.
Its	chip	can	handle	the	translation	from	the	USB	signal	on	its	own	without	a	second	chip,	so	you
don’t	need	to	use	an	FTDI	board.

If	you	are	interested	in	the	design	details	that	make	the	Arduino	boards	different	from	each	other,
check	out	Sparkfun’s	comparison	guide	at	https://learn.sparkfun.com/tutorials/arduino-
comparison-guide/introduction.

https://learn.sparkfun.com/tutorials/arduino-comparison-guide/introduction

Figure	8-3	An	FTDI	programming	board,	which	you	need	if	you	are	using	a
type	of	Lilypad	Arduino	other	than	a	Lilypad	Arduino	USB

Blinking	from	a	Lilypad	Arduino
The	first	and	vitally	important	difference	between	the	Arduino	Uno	and
Leonardo	and	the	Lilypad	Arduino	is	that	it	has	an	ON	switch!	The	board	won’t
automatically	turn	on	if	you	give	it	power,	which	can	be	confusing	and
frustrating	if	you	don’t	know	about	the	switch.	You	might	even	think	your	board
is	broken!	But	don’t	fret.	The	switch	is	on	the	top	of	the	board,	on	the	opposite
side	of	the	microcontroller	chip	from	the	reset	button.	Figure	8-4	shows	where	it
is.

Figure	8-4	The	Arduino	Lilypad	Arduino	USB	ON	switch

	One	of	the	things	that	the	Lilypad	Arduino	USB	can	do	that	other	boards	can’t	do	is	charge
a	battery.	This	is	convenient	for	wearable	projects	as	they	almost	always	need	to	be	battery
powered.	The	switch	has	two	positions:	ON	and	CHG.	CHG	is	for	charging	a	battery	from
the	USB	cable.	You	can’t	charge	the	battery	and	turn	on	the	microcontroller	at	the	same
time.	You	will	find	out	more	about	how	to	power	the	board	with	batteries	later,	when	you
build	your	hoodie.

Whenever	you	start	using	a	new	microcontroller	or	Arduino	board,	it’s	always
good	to	begin	with	a	“Hello	World”	program	that	demonstrates	that	your	board	is
working	correctly	and	you	know	how	to	program	it.	You	first	did	this	with	your
Arduino	Uno	in	Adventure	1.	For	Arduino,	the	Blink	sketch	is	the	“Hello	World”

program.

Open	the	Blink	sketch	by	launching	the	Arduino	IDE	and	going	to
File⇒Examples⇒01.Basics⇒Blink.	You	don’t	need	to	change	any	of	the	code
and	can	immediately	upload	it	to	the	board.

To	upload	it,	you	need	to	connect	the	board	to	your	computer	and	then	tell	the
Arduino	IDE	which	board	you	are	using.	Go	to	Tools⇒Board	and	select	Lilypad
Arduino	USB	from	the	list,	as	shown	in	Figure	8-5.	Then	click	the	Upload
button.

Figure	8-5	Select	Lilypad	Arduino	USB	from	the	list	of	boards

A	light	on	the	Lilypad	Arduino	USB	starts	blinking,	turning	on	for	one	second

then	off	for	one	second.

CHALLENGE

	New	Arduino	boards	often	come	with	Blink	already	running	on	them,	so	your	board	might
already	blink	its	LED	on	and	off	on	Pin	13	for	one	second	at	time.	Change	the	timing	in	the
Blink	sketch	so	that	the	LED	is	off	for	only	half	a	second	instead	of	a	full	second.	Upload	it	to
the	board	and	make	sure	the	LED	now	blinks	according	to	the	new	sketch.

Prototyping	Soft	Circuits
Now	that	you	know	how	to	upload	a	sketch	to	your	Lilypad	Arduino	USB,	you
can	start	connecting	sensors	and	actuators.	The	puzzling	thing	is	how	are	you
supposed	to	do	that?	The	Lilypad	doesn’t	have	pins	that	you	can	plug	jumper
wires	into.	It	has	big	pads	with	holes	that	are	large	enough	to	allow	you	to	sew
conductive	thread	easily	to	create	soft	circuits,	but	you	don’t	want	to	sew	every
circuit.	That	takes	a	lot	of	time.	So	how	do	you	prototype	with	soft	circuits?	The
answer	is	alligator	clips	(sometimes	also	called	crocodile	clips).

	A	sensor	is	a	device	that	detects	something	in	the	real	world	such	as	light,	sound	or
movement	and	translates	it	into	an	electrical	signal.	Examples	include	potentiometers	and
light-dependent	resistors.

	An	actuator	is	a	device	that	translates	an	electrical	signal	into	a	real-world	action	such	as
light,	sound	or	movement.	Examples	include	motors,	lights	and	speakers.

	Soft	circuits	are	circuits	built	with	flexible	materials	like	conductive	thread	and	fabric.
They	are	often	used	in	projects	that	are	going	to	be	worn.

Alligator	clips,	shown	in	Figure	8-6,	are	wires	with	spring-loaded	clips	that
resemble	the	jaws	of	an	alligator.	You	attach	one	end	of	the	clip	onto	the	Lilypad
Arduino	USB	pad	and	the	other	to	the	next	part	of	the	circuit,	such	as	an	LED.

Figure	8-6	Instead	of	jumper	wires	to	connect	components,	use	alligator	clips
when	prototyping	soft	circuits.

	Alligator	clips	are	wires	with	spring-loaded	clips	that	resemble	the	jaws	of	an	alligator.
They	are	useful	for	prototyping	soft	circuits	or	connecting	components	that	don’t	use
jumper	wires.

The	Lilypad	Arduino	USB	operates	at	a	lower	voltage	than	the	Arduino	Uno	and
Leonardo.	When	you	set	a	pin	to	HIGH,	it	outputs	3.3V	instead	of	5V.	You	don’t
have	to	worry	about	why	it	uses	3.3V	instead	of	5V,	but	it	does	mean	that	your
LED	doesn’t	need	a	current-limiting	resistor	with	as	high	a	resistance	value.	You
can	use	a	resistor	that’s	anywhere	from	68	to	100Ω.

You	can	also	buy	Lilypad	LEDs	like	the	ones	in	Figure	8-7	for	your	soft	circuit
projects.	These	are	LEDs	on	purple	boards	(that	match	the	Lilypad	Arduino
boards),	and	they	already	have	current-limiting	resistors	on	the	board	with	them.
As	a	bonus,	you	don’t	have	to	sew	as	many	components!

Figure	8-7	Lilypad	LEDs	are	sewable	LEDs	that	already	have	current-limiting
resistors.

CHALLENGE

	Use	alligator	clips	to	build	a	circuit	with	your	Lilypad	Arduino	USB	and	an	LED.	If	you	have	a
regular	LED,	be	sure	to	use	a	current-limiting	resistor	that	is	either	68	or	100Ω	as	well;
otherwise,	you	can	use	a	Lilypad	LED.

Choose	one	of	the	pads	to	connect	to	your	LED	circuit.	Note	that	you	don’t	have	as	many	to	choose	from
as	you	do	with	other	Arduino	boards.	Your	options	for	digital	pins	are	2,	3,	9,	10	11.	Choose	a	pin	and
then	modify	the	Blink	sketch	to	use	your	chosen	pin	instead	of	Pin	13.	Upload	your	sketch	and	blink	your
LED!

Getting	Clever	with	Arrays
In	Adventure	5,	you	were	first	introduced	to	arrays	for	storing	a	list	of	values
without	needing	to	create	a	new	variable	for	each	one.	To	create	a	list	of	ints,
create	a	variable	that	is	the	data	type	int[]	and	then	list	the	numbers	inside	{	},

as	shown	in	Figure	8-8.

Figure	8-8	A	list	of	integers,	also	called	a	one-dimensional	array

Lists	are	one-dimensional	arrays,	but	arrays	can	have	more	than	one	dimension.
They	can	have	any	number	of	dimensions	you	like,	but	it	can	be	difficult	to
picture	something	with	more	than	three	dimensions.	Two-dimensional	arrays
are	something	you	probably	are	already	used	to—they	are	data	arranged	in	rows
and	columns	like	a	spreadsheet.	Figure	8-9	shows	one	way	you	can	picture	a
two-dimensional	array.

	A	two-dimensional	array	is	data	stored	in	rows	and	columns	like	in	a	spreadsheet.

Figure	8-9	A	two-dimensional	array	of	integers	stored	in	rows	and	columns

You	will	be	using	two-dimensional	arrays	to	store	the	messages	that	your	hoodie
will	display.	Each	letter	of	your	message	will	be	an	array.	Picture	an	LED	sign	at
a	bus	stop	or	train	station	that	displays	letters	and	numbers.	You	can	think	of
each	character	as	taking	up	a	rectangle	of	space—each	letter	or	number	has	a
width	and	height.	Within	that	rectangle	the	lights	are	turned	on	in	a	pattern	to
show	that	letter	or	number.	Those	rectangles	of	LEDs	for	each	letter	or	number
are	two	dimensional	arrays.

To	create	a	two-dimensional	array	requires	a	little	more	work	than	creating	a
one-dimensional	array.	In	a	one-dimensional	array,	you	don’t	have	to	say	how
many	items	are	in	your	list.	You	can	just	list	them	between	the	{	and	the	},	and
the	Arduino	IDE	counts	them	for	you.	When	creating	a	two-dimensional	array,
however,	you	have	to	count	the	items	yourself.

The	following	code	creates	a	variable	called	twoDArray	that	has	three	columns
and	two	rows:

int	twoDArray[2][3]	=	{{1,	2,	3},

																							{4,	5,	6}};

You	might	want	to	store	the	number	of	columns	and	rows	in	variables	as	it	is
useful	information	to	refer	to	later.	If	you	want	to	do	this,	you	need	to	add	const
in	front	of	the	variables.	That	means	the	variable’s	value	won’t	ever	change.

const	numRows	=	2;	

const	numCols	=	3;	

int	twoDArray[numRows][numCols]	=	{{1,	2,	3},	

																																			{4,	5,	6}};

It	might	not	yet	be	clear	why	you	would	ever	want	to	use	two-dimensional
arrays,	so	let’s	build	a	circuit	that	uses	them.	Build	the	circuit	in	Figure	8-10
with	an	LED	attached	to	Pins	2,	3,	9,	10	and	11.	Start	by	connecting	each	pin	to
the	positive	side	of	one	of	the	Lilypad	LEDs.	Then	connect	all	the	negative	sides
of	the	Lilypad	LEDs	to	each	other.	Connect	the	negative	side	of	the	LED
connected	to	Pin	2	to	the	GND	pad	of	the	Lilypad	Arduino	USB.

Figure	8-10	Circuit	for	an	array	of	LEDs

	If	you	don’t	have	Lilypad	LEDs,	replace	them	with	current-limiting	resistors	that	are	68	or
100Ω	and	normal	LEDs.

You’re	now	going	to	animate	the	LEDs	and	store	each	frame	of	the	animation	in
a	two-dimensional	array.	Start	by	opening	the	Arduino	IDE	and	creating	a	new
sketch.	Create	an	empty	setup()	and	loop():

void	setup()	{	

}	

void	loop()	{	

}

Create	two	variables	that	hold	the	number	of	rows	and	columns	in	the	array	at
the	top	of	the	sketch.	The	array	has	one	column	for	each	LED	(five	columns)	and
one	row	for	each	frame	of	the	animation.	The	simple	animation	for	the	example
has	nine	frames	(nine	rows):

const	int	numLEDs	=	5;	

const	int	numFrames	=	9;

Next	create	the	array	that	holds	each	of	the	pin	numbers	that	have	LEDs:

int	ledPins[]	=	{	

								2,	3,	9,	10,	11};

Then	type	out	the	two-dimensional	array	of	the	animation:

int	frames[numFrames][numLEDs]	=	

{	

		{1,	0,	0,	0,	0},	

		{0,	1,	0,	0,	0},	

		{0,	0,	1,	0,	0},	

		{0,	0,	0,	1,	0},	

		{0,	0,	0,	0,	1},	

		{0,	0,	0,	1,	0},	

		{0,	0,	1,	0,	0},	

		{0,	1,	0,	0,	0},	

		{1,	0,	0,	0,	0}};

Add	the	following	lines	of	code	inside	setup()	to	set	the	pin	mode	for	each	LED
pin:

int	i;	

for(int	i=0;	i<numLEDs;	i++)	{	

		pinMode(ledPins[i],	OUTPUT);

Inside	loop()	is	where	you	start	to	see	unfamiliar	code!	Add	the	following	code

to	your	sketch,	and	then	you	can	go	over	it	in	more	detail:

//	variables	to	keep	track	of	current	frame	and	LED	

int	frame;	

int	led;	

for(frame=0;	frame<numFrames;	frame++)	{	

		//	iterate	through	each	frame	stored	in	a	row	

		for(led=0;	led<numLEDs;	led++)	{	

			//	turn	on	or	off	the	each	LED	in	the	frame	

			digitalWrite(ledPins[led],	frames[frame][led]);	

		}	

		delay(300);	//	pause	between	each	frame	

}

You	have	used	for	loops	before,	to	go	through	each	item	in	a	list	one	by	one.
Because	there	are	two	dimensions	to	the	frames	array	(you	can	think	of	it	as	a
list	of	lists),	two	for	loops	are	needed.

The	first	for	loop	goes	through	each	row,	which	holds	a	frame	of	data	describing
what	all	the	LEDs	should	do.	The	second	for	loop	goes	through	that	frame	and
sets	the	LED	to	be	on	or	off.	After	the	second	for	loop	has	turned	each	of	the
LEDs	on	or	off,	the	sketch	pauses	before	continuing	to	the	next	frame.	If	it	didn’t
do	this,	the	animation	would	be	too	fast	to	see!	Figure	8-11	shows	how	the	array
is	iterated	over,	row	by	row.

Figure	8-11	Iterating	over	frames	of	an	animation	stored	in	a	two-dimensional
array

The	following	code	is	the	full	sketch.	Build	the	circuit	and	upload	the	sketch	to
see	the	animation	in	motion:

const	int	numLEDs	=	5;	

const	int	numFrames	=	9;	

//	pins	that	have	LEDs	

int	ledPins[]	=	{	

		2,	3,	9,	10,	11};	

//	frames	of	the	animation	

int	frames[numFrames][numLEDs]	=	

{	

		{1,	0,	0,	0,	0},	

		{0,	1,	0,	0,	0},	

		{0,	0,	1,	0,	0},	

		{0,	0,	0,	1,	0},	

		{0,	0,	0,	0,	1},	

		{0,	0,	0,	1,	0},	

		{0,	0,	1,	0,	0},	

		{0,	1,	0,	0,	0},	

		{1,	0,	0,	0,	0}};	

void	setup()	

{	

		//	set	pin	modes	to	OUTPUT	

		int	i;	

		for(int	i=0;	i<numLEDs;	i++)	{	

			pinMode(ledPins[i],	OUTPUT);	

		}	

}	

void	loop()	

{	

		//	variables	to	keep	track	of	current	frame	and	LED	

		int	frame;	

		int	led;	

		for(frame=0;	frame<numFrames;	frame++)	{	

			//	iterate	through	each	frame	stored	in	a	row	

			for(led=0;	led<numLEDs;	led++)	{	

					//	turn	on	or	off	the	each	LED	in	the	frame	

					digitalWrite(ledPins[led],	frames[frame][led]);	

			}	

			delay(300);	//	pause	between	each	frame	

		}	

}

Passing	Data	Between	Functions
If	you	want	to	do	other	things	in	loop()	besides	running	the	animation,	it’s
useful	to	put	the	animation	code	into	its	own	function.	The	next	example	shows
you	how	do	that.

Create	a	function	called	displayAnimation()	and	cut	and	paste	the	animation
code	from	loop()	into	the	function:

void	displayAnimation()	{	

		//	variables	to	keep	track	of	current	frame	and	LED	

		int	frame;	

		int	led;	

		for(frame=0;	frame<numFrames;	frame++)	{	

			//	iterate	through	each	frame	stored	in	a	row	

			for(led=0;	led<numLEDs;	led++)	{	

					//	turn	on	or	off	the	each	LED	in	the	frame	

					digitalWrite(ledPins[led],	frames[led][frame]);	

			}	

			delay(300);	//	pause	between	each	frame	

		}	

}

Remember	that	you	now	need	to	call	your	new	function	from	loop()	or	it	will
never	run	the	animation.	The	new	function	displayAnimation()	should	be	after
loop()	and	loop()	should	look	like	the	following

void	loop()	

{	

		displayAnimation();	

}

Now	that	the	code	controlling	the	animation	is	nicely	contained	within	one
function,	you	can	take	advantage	of	how	functions	work.	You	can	pass	data	to
the	function	and	then	have	the	function	change	what	it	does	according	to	that
data.

In	order	to	pass	data,	you	need	to	create	an	argument.	This	is	done	in	the	same
line	of	code	where	you	give	the	function	a	name.	You	also	give	your	argument	a
name	and	say	what	data	type	it	will	have.

Change	your	function	to	the	following:

void	displayAnimation(int	animationSpeed)	{

The	displayAnimation()	function	now	has	one	argument	that	is	an	int;	this	is
animationSpeed.	The	function	now	needs	to	do	something	with
animationSpeed.	It	will	control	the	length	of	time	the	animation	pauses	between
each	frame.	Use	this	variable	to	set	the	delay()	after	each	frame.

Change	the	line	of	code	that	sets	the	delay	in	the	function	to	the	following:

delay(animationSpeed);	//	pause	between	each	frame

Now	you	can	call	the	function	displayAnimation()	with	different	values	for	the
argument,	to	play	the	animation	at	different	speeds!	The	following	code	is	the
full	sketch.	Upload	it	to	your	Lilypad	Arduino	USB	with	five	Lilypad	LEDs
connected	and	watch	the	animation	described	by	the	two-dimensional	array:

//	const	means	the	value	won’t	change	

const	int	numLEDs	=	5;	

const	int	numFrames	=	9;	

//	pins	that	have	LEDs	

int	ledPins[]	=	{	

		2,	3,	9,	10,	11};	

//	frames	of	the	animation	

int	frames[numFrames][numLEDs]	=	

{	

		{1,	0,	0,	0,	0},	

		{0,	1,	0,	0,	0},	

		{0,	0,	1,	0,	0},	

		{0,	0,	0,	1,	0},	

		{0,	0,	0,	0,	1},	

		{0,	0,	0,	1,	0},	

		{0,	0,	1,	0,	0},	

		{0,	1,	0,	0,	0},	

		{1,	0,	0,	0,	0}};	

void	setup()	

{	

		//	set	pin	modes	to	OUTPUT	

		int	i;	

		for(int	i=0;	i<numLEDs;	i++)	{	

			pinMode(ledPins[i],	OUTPUT);	

		}	

}	

void	loop()	

{	

		displayAnimation(100);	

		displayAnimation(500);	

		displayAnimation(1000);	

}	

void	displayAnimation(int	animationSpeed)	{	

//	variables	to	keep	track	of	current	frame	and	LED	

		int	frame;	

		int	led;	

		for(frame=0;	frame<numFrames;	frame++)	{	

			//	iterate	through	each	frame	stored	in	a	row	

			for(led=0;	led<numLEDs;	led++)	{	

					//	turn	on	or	off	the	each	LED	in	the	frame	

					digitalWrite(ledPins[led],	frames[frame][led]);	

			}	

			delay(animationSpeed);	//	pause	between	each	frame	

		}	

}

CHALLENGE

	Build	the	circuit	for	the	LED	animation	shown	in	the	section	headed	"Passing	Data	Between
Functions."	Modify	the	code	in	the	sketch	to	use	a	for	loop	to	cycle	through	speeds	for	the
animation	from	50	to	500.

Remember	that	you	can	increment	in	steps	higher	than	one,	for	example	by	creating	the	following	for
loop:

int	i;	

for(i=0;	i<100;	i+=5)	{	

}

Building	a	POV	Hoodie
Have	you	ever	waved	a	sparkler	around	and	noticed	that	it	seemed	to	leave	a
trail	of	light?	Or	maybe	you’ve	seen	toys	with	a	set	of	LEDs	that	display	a	word
or	image	when	you	move	them	quickly.	Both	are	examples	of	persistence	of
vision	(POV)	where	your	eyes	and	brain	keep	seeing	a	light	path	after	the	light
source	is	moved	or	turned	off.	In	the	case	of	the	sparkler,	the	glowing	sparkler
moves	but	your	brain	still	sees	where	it	used	to	be,	so	it	looks	like	it’s	leaving	a
trail.	With	the	toys,	the	LEDs	are	blinking	on	and	off	quickly	in	a	pattern.	Your
brain	puts	all	the	different	patterns	together	when	the	toy	is	moved	and	interprets
the	patterns	as	a	word	or	image.

Excitingly,	you	can	make	your	own	POV	display	with	the	Lilypad	Arduino	USB
and,	because	you	are	using	a	Lilypad,	you	can	sew	the	circuit	into	clothes	and
wear	it.	You	can	then	program	your	Lilypad	to	display	a	secret	message	that	can
be	seen	by	taking	a	long	exposure	photograph	(see	Figure	8-12).	Sewing	the
circuit	on	the	shoulder	of	a	hoodie	works	well,	but	you	can	sew	it	on	any	piece

of	clothing!

Figure	8-12	Persistence-of-vision	hoodie

What	You	Need
You	need	the	following	items	to	build	a	POV	hoodie.	Figure	8-13	shows	the
electronic	components	that	you	need:

A	computer
A	Lilypad	Arduino	USB
A	USB	micro	cable
A	breadboard
14	alligator	clips
7	Lilypad	LEDs	(or	7	LEDs	and7	68Ω	or	100Ω	resistors	if	not	using
Lilypad	LEDs)
A	lithium	ion	polymer	(LiPo)	battery
Some	normal	sewing	thread
Some	conductive	thread
A	hoodie
A	sewing	needle
Scissors

Some	white	PVA	glue
Pliers	(if	not	using	Lilypad	LEDs)

Figure	8-13	The	electronic	components	you	need	for	the	POV	hoodie

Understanding	The	Circuit
The	circuit	for	the	POV	hoodie	is	similar	to	the	LED	animation	circuit	you	made
earlier	in	this	adventure.	The	only	change	is	that	you	use	seven	LEDs	instead	of
five.	Figure	8-14	shows	the	circuit	schematic	for	the	POV	hoodie.

Figure	8-14	Circuit	schematic	for	the	POV	hoodie

Prototyping	with	Alligator	Clips
The	POV	hoodie	is	a	soft	circuit,	so	you	should	prototype	the	circuit	with
alligator	clips	because	the	Lilypad	Arduino	USB	and	Lilypad	LEDs	don’t	fit	into
a	breadboard.	Build	the	circuit	shown	in	Figure	8-15.

Figure	8-15	Prototyping	the	circuit	with	alligator	clips

Start	by	connecting	each	pin	to	the	positive	side	of	one	of	the	Lilypad	LEDs.
Then	connect	all	the	negative	sides	of	the	Lilypad	LEDs	to	each	other.	Connect
the	negative	side	of	the	LED	connected	to	Pin	2	to	the	GND	pad	of	the	Lilypad
Arduino	USB.

	If	you	don’t	have	Lilypad	LEDs,	replace	them	with	current-limiting	resistors	and	normal
LEDs.

Charging	the	Battery
The	Lilypad	Arduino	USB	includes	a	connector	for	a	rechargeable	lithium	ion
polymer	(LiPo)	battery	and	even	has	a	charger	built	in.	LiPo	batteries	are	flat,
silver	batteries.	You	don’t	need	a	big	battery	for	this	project.	Batteries	are
measured	in	milliamp-hours	(mAh),	which	is	a	measure	of	how	much	current
they	can	output	for	how	long.	A	500	mAh	battery	provides	a	good	balance—it’s
not	too	big	and	doesn’t	need	to	be	charged	too	frequently—but	you	can	use
whatever	size	battery	you	can	buy	easily.

To	charge	the	battery,	connect	it	to	the	Lilypad	Arduino	USB	and	connect	the
Lilypad	to	a	power	source	such	as	a	computer	with	a	USB	cable.	Make	sure	the
switch	on	the	Lilypad	board	is	in	the	CHG	position.	The	LED	above	CHG	on	the
board	lights	up	when	the	battery	is	charging;	the	battery	stops	charging
automatically	when	it’s	fully	charged.

	LiPo	batteries	can	be	dangerous	if	you	don’t	take	care	of	them	properly.	Never	leave	them
on	their	own	while	they’re	charging!	It’s	also	best	to	buy	them	from	a	trusted	manufacturer
like	Adafruit	or	Sparkfun,	or	one	of	their	distributors.	Only	buy	LiPos	that	have	built-in
protection	circuitry,	and	never	use	a	battery	that	looks	swollen	or	damaged.	Adafruit	has	a
nice	guide	on	how	to	work	with	LiPo	batteries	at	https://learn.adafruit.com/li-ion-
and-lipoly-batteries.

Writing	the	Code
The	code	for	displaying	the	POV	message	is	similar	to	the	code	for	the	LED
animation	earlier	in	this	adventure.	The	frames	for	the	LEDs	are	stored	in	two-
dimensional	arrays:	one	for	each	letter	and	one	for	a	space.	Because	there	are	so
many	arrays,	to	help	organise	the	code	they	are	all	stored	in	a	header	(.h)	file.
The	code	is	available	at	www.wiley.com/go/adventuresinarduino.

https://learn.adafruit.com/li-ion-and-lipoly-batteries
http://www.wiley.com/go/adventuresinarduino

Open	the	downloaded	sketch	in	the	Arduino	IDE.	The	sketch	should	have	two
tabs:	one	named	pov_hoodie	and	the	other	alphabet.h.

Click	the	pov_hoodie	tab.	Change	the	message	in	the	bold	line	of	code	in	loop()
to	what	you	want	to	be	written	on	the	hoodie,	and	upload	it	to	your	Lilypad
Arduino	USB.	Your	message	can	only	consist	of	uppercase	letters	and	spaces.

void	loop()	

{	

		String	message	=	"HELLO	";	//	put	message	in	all	caps	here	

		printText(message);	

}

Wave	your	circuit	in	the	air	(a	dark	room	and	a	friend	to	move	with	the	circuit
makes	this	easier),	or	take	a	long-exposure	photo	to	see	the	message	as	shown	in
Figure	8-16.

Figure	8-16	Persistence	of	vision	message	captured	with	a	long-exposure
photograph

DIGGING	INTO	THE	CODE

	Open	the	sketch	you	just	downloaded	in	the	Arduino	IDE,	and	click	the	alphabet.h	tab	to	see
the	code	in	the	header	file.

The	following	is	the	code	for	the	letter	A.	If	you	turn	your	head	sideways,	you	might	be	able	to	see	the
shape	of	the	letter	A	written	out	in	1s:

int	A[numFrames][numLEDs]	=	{	

		{1,1,1,1,1,1,0},	

		{0,0,1,0,0,0,1},	

		{0,0,1,0,0,0,1},	

		{0,1,1,0,0,1,1},	

		{1,1,1,1,1,1,0}};

In	the	main	sketch,	the	header	file	describing	all	the	letters	is	imported	at	the	very	top	of	the	file:

#include	"alphabet.h"

Then	there	are	three	variables	describing	how	long	the	LEDs	are	turned	off	between	letters,	how	long
they	are	on	when	displaying	a	frame	of	a	letter	and	what	pins	have	LEDs.	Because	the	Lilypad	Arduino
USB	only	has	five	digital	pins,	two	analog	pins	are	also	used:

int	letterSpace	=	6;	//	time	LEDs	off	between	letters	

int	dotTime	=	3;	//	time	LEDs	are	on	

int	ledPins[]	=	{	

		2,	3,	9,	10,	11,	A2,	A3};

Inside	setup(),	each	pinMode()	is	set	to	be	OUTPUT	and	serial	communication	is	started.	The	serial
communication	is	used	for	debugging	to	see	what	is	being	output	in	the	Serial	Monitor:

//	set	pin	modes	to	OUTPUT	

int	i;	

for(int	i=0;	i<numLEDs;	i++)	{	

		pinMode(ledPins[i],	OUTPUT);	

}	

Serial.begin(9600);

The	loop()	is	kept	quite	simple	as	most	of	the	work	is	done	in	other	functions.	The	message	to	be
displayed	is	stored	in	message	and	then	sent	to	the	function	printText()	as	an	argument.	Because	the
header	file	only	describes	how	to	display	capital	letters,	the	message	needs	to	be	written	only	in	capital
letters	or	spaces—there	should	be	no	lowercase	letters	or	punctuation:

String	message	=	"A	B	C	D	";	//	put	message	in	all	caps	here	

printText(message);

The	function	printText()	is	a	long	one,	but	it	is	just	doing	a	simple	task	many	times.	It	reads	in	the
message,	letter	by	letter,	and	then	tells	the	function	printLetter()	to	display	that	letter	in	the	message.
The	following	code	is	for	only	A,	B	and	C,	but	you	can	get	the	idea	for	how	the	rest	of	the	alphabet	works:

for	(int	i=0;	i<text.length();	i++)	

{	

		switch(text[i])	

		{	

		case	'A':	

			printLetter(A);	

			break;	

		case	'B':	

			printLetter(B);	

			break;	

		case	'C':	

			printLetter(C);	

			break;

The	function	printLetter()	is	just	like	the	displayAnimation()	function	you	wrote	earlier.	It	goes
frame	by	frame	through	the	letter	that	is	being	displayed.	It	also	prints	what	it	is	being	sent	to	the	LEDs	to
the	Serial	Monitor	to	help	show	what	is	going	on.	It	has	an	extra	for	loop	at	the	end	of	the	function	to
pause	between	each	letter;	otherwise,	it	would	be	hard	to	read	the	individual	letters	and	they	would	all
blur	together:

int	frame;	

int	led;	

//	print	letter	

for(frame=0;	frame<numFrames;	frame++)	{	

		for(led=0;	led<numLEDs;	led++)	{	

			digitalWrite(ledPins[led],	letter[frame][led]);	

			Serial.print(letter[frame][led]);	

		}	

		Serial.println();	

		//	delay	between	each	column	displayed	

		delay(dotTime);	

}	

Serial.println("-------");	

//	print	space	after	letter	

for(led=0;	led<numLEDs;	led++)	{	

		digitalWrite(ledPins[led],	0);	

}	

//	delay	for	space	between	letters	

delay(letterSpace);

Making	the	POV	Hoodie
After	you	have	built	the	prototype	circuit	with	your	alligator	clips	and	uploaded
the	code	to	test	that	it	all	works,	you	are	ready	to	start	sewing!	Using	conductive
thread,	you	are	going	to	stitch	the	Lilypad	Arduino	USB	pads	to	each	of	the
LEDs.	Remember	that	conductive	thread	is	just	like	wire,	but	it	doesn’t	have	the

insulating	plastic	protecting	it.	That	means	if	any	pieces	of	thread	touch	each
other,	they	will	conduct	electricity	between	them	and	may	short	your	circuit.	Use
a	separate	piece	of	thread	for	each	connection	and	make	sure	they	don’t
accidentally	touch	another	part	of	the	circuit.

Making	Sewable	LEDs
If	you	don’t	have	Lilypad	LEDs,	you	can	still	use	the	LEDs	you	would	use	in	a
breadboard.	Using	pliers,	twist	the	legs	of	the	LEDs	and	resistors	into	loops	that
you	can	sew	through.	You	can	twist	the	long	and	short	legs	of	the	LEDs	into	two
different	shapes	to	keep	track	of	which	is	the	positive	and	which	is	the	negative.
I	like	to	twist	the	positive	into	a	circle	and	the	negative	into	a	square	(because	it
reminds	me	of	a	negative	sign)	as	shown	in	Figure	8-17,	but	you	can	make	any
shapes	that	help	you	keep	track	of	the	legs.

Figure	8-17	Bending	the	legs	of	components	to	make	them	sewable

Sewing	the	Electronics
Sew	the	circuit	by	going	through	the	following	steps:

1.	 Start	by	deciding	where	you	want	to	place	your	LEDs	on	the	upper	right
sleeve	of	your	hoodie.	You	may	want	to	mark	the	locations	of	the	LEDs
with	pins	or	tailor’s	chalk.

2.	 Start	with	the	bottom	LED.	Using	conductive	thread,	stitch	Pin	9	to	the
positive	side	of	the	LED.	Keep	the	stitches	firm	against	the	fabric	of	the

hoodie	and	stitch	the	pads	of	the	Lilypad	Arduino	USB	and	the	Lilypad
LED	about	five	times	to	secure	them	to	the	fabric.	Knot	and	cut	the	thread.
See	Figure	8-18	for	guidance.

3.	 Alternatively,	if	you	are	using	regular	LEDs	and	resistors,	stitch	the
Arduino	pad	to	the	LED	and	then	use	a	separate	piece	of	conductive	thread
to	stitch	the	LED	to	the	resistor.

4.	 With	a	separate	piece	of	conductive	thread,	stitch	Pin	10	to	the	positive	side
of	the	next	LED	above	the	one	you	just	sewed.	Again,	firmly	stitch	the	pads
to	the	fabric	and	then	knot	and	cut	the	thread.

5.	 Continue	with	each	of	the	remaining	LEDs.	Take	care	that	the	stitched
threads	never	touch	each	other	(see	Figure	8-19).

6.	 The	negative	sides	of	the	LEDs	(or	resistors	if	you	are	not	using	Lilypad
LEDs)	can	all	touch	each	other,	so	they	can	be	sewn	with	a	single	piece	of
thread.	Start	at	the	negative	pad	of	the	Lilypad	Arduino	USB	and	then	stitch
the	bottom	LED.	After	securing	the	negative	pad	of	the	LED,	continue
stitching	up	to	the	next	LED.

7.	 Repeat	step	6,	sewing	the	negative	pad	of	the	next	LED	until	you	have
sewn	on	all	the	LEDs	as	in	Figure	8-20.

8.	 Secure	each	of	the	knots	with	a	little	white	PVA	glue.	The	conductive
thread	can	sometimes	unknot	itself	over	time,	so	the	glue	helps	to	prevent
this.

9.	 Using	normal	thread,	stitch	around	the	battery	to	secure	it	to	the	hoodie.

Figure	8-18	First	connections	for	sewing	the	Lilypad	circuit

Figure	8-19	Continuing	to	sew	the	LEDs	into	the	circuit

Figure	8-20	The	sewn	POV	circuit

	You	might	not	want	to	sew	your	Lilypad	Arduino	USB	directly	onto	your	hoodie,
especially	if	you	want	to	use	the	same	board	in	multiple	projects.	The	Lilypad	Arduino
SimpleSnap	(http://arduino.cc/en/Main/ArduinoLilyPadSimpleSnap)	comes	with
female	snaps	soldered	to	each	of	the	pads.	You	can	then	sew	the	matching	male	side	of	the
snaps	into	the	hoodie	using	conductive	thread.	Because	the	snaps	are	metal,	they	conduct
electricity,	but	the	snaps	let	you	remove	the	board	from	the	hoodie	without	harming	the
hoodie.

You	can	modify	your	Lilypad	Arduino	USB	to	work	the	same	way	by	soldering	snaps	onto	the	pads
yourself.	You	can	find	metal	snaps	at	any	sewing	or	craft	store.

Further	Adventures	with	the	Lilypad
If	you	would	like	to	learn	more	about	the	Lilypad	Arduino	USB,	visit	its	page	on
the	Arduino	website	at	http://arduino.cc/en/Guide/ArduinoLilyPadUSB.

http://arduino.cc/en/Main/ArduinoLilyPadSimpleSnap
http://arduino.cc/en/Guide/ArduinoLilyPadUSB

You	can	also	learn	more	about	using	the	Lilypad	and	find	more	projects	at
http://lilypadarduino.org.

There	are	a	lot	books	about	soft	circuits	for	you	to	choose	from.	Here	are	just	a
few:

Fashioning	Technology	by	Syuzi	Pakhchyan	(Maker	Media,	2008)
Make:	Wearable	Electronics	by	Kate	Hartman	(Maker	Media,	2014)
Switch	Craft	by	Alison	Lewis	and	Fang-Yu	Lin	(Potter	Craft,	2008)
Sew	Electric	by	Leah	Buechley,	Kanjun	Qi	and	Sona	de	Boer	(HLT	Press,
2013)
Make:	Wearable	Electronics	by	Kate	Hartman	(Maker	Media,	Inc.,	2014)

Arduino	Command	Quick	Reference	Table
Command Description
int[][] Indicates	that	the	variable	will	be	a	two-dimensional	array	of	variables	stored	in	rows	and	columns.
const Indicates	that	the	variable	will	not	change	its	value.

Achievement	Unlocked:	Bright	light	of	Arduino	fashion	and	manipulator	of
multiple	dimensions!

In	the	Next	Adventure
In	the	next	adventure,	you	put	all	your	new	skills	together	to	create	a	pinball-inspired	game!

http://lilypadarduino.org/

YOU’VE	COME	A	long	way,	and	now	you’ve	reached	your	final	adventure—
the	biggest	yet!	In	this	adventure,	you	are	going	to	combine	digital	input,	digital
output,	analogue	input	and	analogue	output	to	create	a	marble	maze	game	like
the	one	in	Figure	9-1.	Inspired	by	retro	pinball	machines,	your	game	knows
when	you’ve	scored	points	and	tells	you	if	you’ve	achieved	a	new	high	score.	It
counts	down	to	when	the	next	game	begins	and	keeps	track	of	the	time
remaining	in	the	game.	It	even	has	its	own	sound	effects!

Figure	9-1	A	completed	big	adventure	marble	maze	game

The	game	brings	together	a	lot	of	the	different	skills	you’ve	learned	from	the
earlier	adventures,	but	there	are	a	couple	of	other	things	for	you	to	learn	before
you	can	build	your	game.	The	first	is	how	to	use	a	piezo	as	a	sensor.	You’ve
already	used	a	piezo	as	a	speaker	but	it	is	a	multitalented	component	and	you	can
also	use	it	to	sense	vibrations,	which	is	a	vital	skill	for	your	marble	maze	game!

What	You	Need
You	need	the	following	items	for	your	marble	maze	game.	The	electronic
components	that	you	need	are	shown	in	Figure	9-2:

A	computer
An	Arduino	Uno
A	USB	cable
A	breadboard

Some	jumper	wires
6	piezos
6	1MΩ	resistor
1	red	LED
1	yellow	LED
1	green	LED
3	220Ω	resistors
1	panel	mount	push-to-make	button
1	tactile	pushbutton
1	9V	battery
1	9V	battery	connector
Some	wire
A	marble
A	cardboard	box
Some	thick	paper	or	card
White	PVA	glue
Masking	tape	or	duct	tape
Paint	or	markers
Scissors	or	a	utility	knife
A	soldering	iron
Solder

Figure	9-2	The	electronic	components	you	need	to	build	your	maze	game

Part	One:	Scoring	Points
In	Adventure	5	you	were	introduced	to	piezos	as	actuators	that	translate	a
varying	voltage	into	a	vibration	that	you	can	then	hear	as	a	sound	wave.	But
that’s	not	all	they	can	do!	Piezos	are	clever	little	components	that	can	also
translate	vibrations	into	varying	voltage.

In	this	adventure,	you	use	piezos	to	detect	which	hole	in	the	maze	your	marble
has	fallen	through.	Each	hole	is	worth	a	different	number	of	points,	so	part	of
your	game	design	is	to	make	the	holes	that	are	harder	to	reach	worth	more
points.

Sensing	Vibrations	with	Piezos
Piezos	have	the	ability	to	produce	voltage	spikes	that	could	damage	your
Arduino,	so	you	need	a	really	big	resistor	to	help	protect	your	Arduino.	A
resistor	value	of	100MΩ	(that’s	100	million	Ohms)	is	typically	used.

As	piezos	output	a	varying	voltage,	you	will	want	to	measure	not	just	LOW	or
HIGH	voltages	but	also	voltages	in	between.	You	will	therefore	want	to	use	an
Analog	Pin	and	analogRead()	to	measure	the	voltage.

Build	the	circuit	shown	in	Figure	9-3:

1.	 Place	the	red	wire	of	the	piezo	in	any	of	the	short,	middle	rows	of	the
breadboard	and	place	the	black	wire	in	one	of	the	long	outside	rows.

2.	 Put	one	leg	of	a	1MΩ	resistor	in	the	same	short	row	as	the	red	wire	and	the
other	leg	in	the	same	long	row	as	the	black	wire.

3.	 Use	a	jumper	wire	to	connect	the	row	with	the	red	wire	and	resistor	leg	to
Pin	A0.

4.	 Use	another	jumper	wire	to	connect	the	row	with	the	black	wire	and	the
other	resistor	leg	to	GND.

Figure	9-3	Circuit	to	use	a	piezo	as	a	sensor

Launch	the	Arduino	IDE.	Go	to	File ⇒ Examples ⇒ 06.Sensor	and	open	the
sketch	Knock.	Upload	it	to	your	Arduino	and	open	the	Serial	Monitor.	Try	out
the	sketch	by	tapping	on	the	piezo.	Watch	what	happens	to	the	LED	next	to	Pin
13	and	see	what	is	printed	in	the	Serial	Monitor.	You	should	see	the	LED	turn	on

and	off	with	your	knocks	on	the	piezo.

Setting	a	Points	Threshold
You	now	have	the	basics	of	how	to	read	in	a	value	from	a	piezo—but	you	need
more	than	one	piezo	to	make	your	game	challenging!	The	next	step	is	to	add
four	more	piezos	so	that	you	have	five	in	total.

On	the	same	breadboard	where	you	have	one	piezo	connected	to	Pin	A0,	set	up
four	more	piezos	in	the	same	way.	Connect	them	to	Pins	A1,	A2,	A3	and	A4	as
shown	in	Figure	9-4.	Ignore	the	last	piezo	for	now	(the	one	connected	to	Pin	9).

Figure	9-4	Circuit	for	five	piezos	as	sensors	and	one	piezo	as	a	speaker

Launch	the	Arduino	IDE	and	start	a	new	sketch.	Begin	by	creating	an	empty
setup()	and	loop():

void	setup()	{

}

void	loop()	{

}

Because	you	have	five	piezos	to	keep	track	of,	it’s	best	to	store	them	all	in	an
array.	At	the	top	of	the	sketch,	add	an	array	that	stores	all	the	pins	with	the
piezos	as	sensors	and	a	variable	that	stores	how	many	piezos	you	are	using:

int	pointsPins[]	=	{	

		A0,	A1,	A2,	A3,	A4};	

//	number	of	piezos	for	points	

int	numPointsPins	=	5;

You	don’t	need	to	set	the	pin	mode	of	Analog	Pins	when	you	are	using	them	as
inputs,	so	the	only	line	of	code	to	add	to	your	setup()	is	for	beginning	serial
communication:

Serial.begin(9600);

Inside	loop(),	read	in	the	value	of	each	of	the	piezos.	Because	the	pins	are	all
stored	in	an	array,	you	can	use	a	for	loop.	For	now	you	just	print	those	values	to
the	Serial	Monitor.

Add	the	following	lines	of	code	to	your	loop,	then	upload	it	to	your	Arduino	Uno
and	open	Serial	Monitor	in	the	Arduino	IDE:

//	variables	for	pins	

int	i;	

for(i=0;	i<numPointsPins;	i++)	{	

		int	currPinValue	=	analogRead(pointsPins[i]);	

		//	print	which	pin	in	array	and	value	

		Serial.print("Piezo:	");	

		Serial.print(i);	

		Serial.println("	Value:	");	

		Serial.println(currPinValue);	

}

Tap	on	the	piezos	and	note	what	values	are	being	generated.	Drop	the	marble
you	will	use	in	your	maze	game	onto	a	piezo	and	watch	the	values.

Now	you	need	to	change	your	sketch	so	that	a	message	is	only	printed	when	a
piezo	goes	above	a	threshold	value.	In	other	words,	a	message	is	only	printed
when	the	piezos	are	triggered	with	a	strong	enough	force.

At	the	top	of	your	sketch	before	setup(),	with	your	other	variables,	add	a
variable	to	set	the	threshold	of	when	a	piezo	should	trigger	scoring	points.	Set	it
to	a	value	that	makes	sense	from	your	tests	with	your	marble:

int	piezoThreshold	=	800;

Inside	of	loop(),	add	an	if	statement.	The	if	statement	checks	whether	the
current	piezo	being	read	has	gone	above	the	threshold	that	you	set.	When	the
current	goes	above	the	threshold,	the	piezo	number	and	value	are	printed	to
Serial	Monitor.

int	i;	

for(i=0;	i<numPointsPins;	i++)	{	

		if(currPinValue	>	piezoThreshold){	

			//	print	which	pin	in	array	and	value	

			Serial.print("Piezo:	");	

			Serial.print(i);	

			Serial.println("	Value:	");	

			Serial.println(currPinValue);	

			//	pause	so	that	same	marble	doesn’t	score	twice	

			delay(300);	

		}	

}

Upload	the	changes	to	your	sketch	and	check	that	each	piezo	only	prints	a
message	when	you	drop	the	marble	on	it.	Here	is	the	sketch	as	it	stands:

//	variables	for	pins	

int	pointsPins[]	=	{	

		A0,	A1,	A2,	A3,	A4};	

//	number	of	piezos	for	points	

int	numPointsPins	=	5;	

//---setup---------------------------	

//	runs	once	when	board	first	powered	

//	or	reset	

void	setup()	{	

		//	start	serial	communication	

		Serial.begin(9600);	

}	

//---loop----------------------------	

//	runs	continuously	after	setup()	

void	loop()	{	

		int	i;	

		for(i=0;	i<numPointsPins;	i++)	{	

			int	currPinValue	=	analogRead(pointsPins[i]);	

			//	if	above	the	threshold	

			if(currPinValue	>	piezoThreshold){	

					//	print	points	and	new	score	

					Serial.print("Piezo:	");	

					Serial.print(i);	

					Serial.println("	Value:");	

					Serial.print(currPinValue);	

					//	pause	so	that	same	marble	doesn’t	score	twice	

					delay(300);	

			}	

		}	

}

Adding	Sound	Effects
Now	it’s	time	to	see	what	that	sixth	piezo	is	supposed	to	do!	In	the	previous
section	you	worked	with	the	five	piezos	that	are	acting	as	sensors;	the	sixth	piezo
acts	as	a	speaker.	In	Figure	9-4,	the	circuit	for	the	sixth	piezo	looks	just	like	the
circuits	for	the	other	five	piezos,	which	might	be	confusing.	The	only	difference
is	that	it	is	connected	to	Pin	9	instead	of	an	Analog	Pin.

You	use	Pin	9	so	that	you	can	call	tone()	to	make	sound	through	the	piezo.
However,	just	because	the	piezo	is	being	used	as	a	speaker,	it	doesn’t	prevent	it
from	potentially	producing	a	voltage	spike	as	a	sensor.	If	the	marble	hits	the
speaker	piezo,	it	could	produce	a	voltage	spike	that	could	damage	your	Arduino
Uno.	So	you	use	the	same	protection	circuit	on	the	speaker	piezo.

Go	ahead	and	add	the	last	piezo	on	Pin	9	as	shown	in	Figure	9-3.

In	your	code,	add	a	variable	at	the	top	before	setup()	to	keep	track	of	the
speaker:

int	speakerPin	=	9;

Right	after	you	have	printed	your	messages	in	the	for	loop	and	before	the
delay(),	add	the	following	lines	of	code	in	bold	to	play	a	sound	whenever	a
piezo	is	triggered	above	the	threshold:

//	if	above	the	threshold	

if(currPinValue	>	piezoThreshold){	

		//	print	points	and	new	score	

		Serial.print("Piezo:	");	

		Serial.print(i);	

		Serial.println("	Value:");	

		Serial.print(currPinValue);	

		//	play	scoring	music	

		tone(speakerPin,	659,	300);	

		delay(300);	

		//	pause	so	that	same	marble	doesn’t	score	twice	

		delay(300);	

}

Upload	your	sketch	to	your	Arduino	Uno	and	test	that	you	hear	a	tone	whenever
a	piezo	is	triggered.

Keeping	Score
Now	that	you	have	five	piezos	that	sense	when	the	marble	drops	on	them	and
another	that	acts	as	a	speaker,	you	can	start	assigning	point	values	to	each	of	the
sensors	and	keep	track	of	your	score.

First	you	need	to	create	a	new	variable	to	store	your	score.	At	the	top	of	your
sketch,	with	your	other	variables,	add	the	following	line:

int	currentScore	=	0;

Inside	the	if	statement	in	the	for	loop	in	loop(),	you	are	going	to	do	three
things.	First	you	create	a	variable	that	calculates	how	many	points	have	just	been

scored	and	then	adds	it	to	current	score.	Then	you	print	the	number	of	points	that
have	just	been	scored	and	the	new	total	current	score	to	the	Serial	Monitor:

if(currPinValue	>	piezoThreshold){	

		//	add	points	

		int	newPoints	=	(i+1)*10;	

		currentScore	+=	newPoints;	

			

		//	print	points	and	new	score	

		Serial.print("	Score!	");	

		Serial.print(newPoints);	

		Serial.println("	points");	

		Serial.print("	Current	score:	");	

		Serial.print(currentScore);	

		Serial.println("	points");	

		//	play	scoring	music	

		tone(speakerPin,	659,	300);	

		delay(300);	

		//	pause	so	that	same	marble	doesn’t	score	twice	

		delay(300);	

}

The	number	of	points	is	determined	by	adding	1	to	the	pin	in	the	array	that	was
triggered	(the	variable	i)	and	then	multiplying	that	number	by	10.	For	example,
the	piezo	on	Pin	A3	is	item	3	in	the	array,	so	the	score	for	triggering	that	piezo	is
(3+1)*10,	or	40	points.

The	following	code	is	the	full	sketch	with	the	changes	in	bold.	Upload	it	to	your
Arduino	Uno	and	open	the	Serial	Monitor.	Check	that	the	sound	effects	and
points	messages	all	work	as	you	would	expect:

//	variables	for	pins	

int	pointsPins[]	=	{	

		A0,	A1,	A2,	A3,	A4};	

int	speakerPin	=	9;	

//	number	of	piezos	for	points	

int	numPointsPins	=	5;	

//	when	points	triggered	

int	piezoThreshold	=	800;	

int	currentScore	=	0;	

void	setup()	{	

		//	start	serial	communication	

		Serial.begin(9600);	

}	

void	loop()	{	

		int	i;	

		for(i=0;	i<numPointsPins;	i++)	{	

			int	currPinValue	=	analogRead(pointsPins[i]);	

			

			//	if	above	the	threshold	

			if(currPinValue	>	piezoThreshold){	

					//	add	points	

					int	newPoints	=	(i+1)*10;	

					currentScore	+=	newPoints;	

					

					//	print	points	and	new	score	

					Serial.print("	Score!	");	

					Serial.print(newPoints);	

					Serial.println("	points");	

					Serial.print("	Current	score:	");	

					Serial.print(currentScore);	

					Serial.println("	points");	

					//	play	scoring	music	

					tone(speakerPin,	659,	300);	

					delay(300);	

					//	pause	so	that	same	marble	doesn’t	score	twice	

					delay(300);	

			}	

		}	

}

	You	can	download	all	the	sketches	from	the	companion	site	at
www.wiley.com/go/adventuresinarduino.

http://www.wiley.com/go/adventuresinarduino

Part	Two:	Designing	Your	Maze	Game
At	last	you’re	ready	to	start	working	on	your	maze!	First,	you	need	to	find	a	box
that	you	can	turn	into	your	game.	The	exact	size	isn’t	important—it	just	needs	to
be	big	enough	to	hold	all	the	sensors	and	the	Arduino	Uno,	but	it’s	best	not	to
have	a	box	that’s	so	big	that	you	can’t	easily	hold	it	in	your	hands.	A	box	that	is
approximately	10	×	13	×	3	inches	(26	×	33	×	8	cm)	works	well.

	If	you	can	only	find	a	box	that	is	the	right	length	and	width	but	is	too	tall,	use	scissors	or	a
utility	knife	to	make	it	shorter.	You	may	need	help	from	an	adult	if	it’s	tough	to	cut!

Drawing	the	Maze
When	you	have	your	box	ready,	make	a	sketch	of	what	you	want	your	maze	to
look	like.	Here	are	a	few	rules	to	keep	in	mind	when	you	do	this	(see	Figure	9-
5):

Make	your	game	into	five	columns	and	decide	where	in	each	column	you
will	place	the	holes.	There	will	only	be	one	piezo	for	each	column,	so	you
can	only	have	one	hole	per	column.	Decide	how	many	points	you	want	each
hole	to	be	worth,	with	one	worth	10	points,	one	worth	20,	one	worth	30,
one	worth	40	and	one	worth	50.	Make	the	most	difficult	hole	worth	the
most	and	the	easiest	one	worth	the	least.
It’s	important	to	leave	an	empty	space	at	the	bottom	of	the	maze.	This	is
where	the	marble	rolls	out	when	you	have	scored.	You	need	to	leave	enough
space	that	you	can	easily	retrieve	the	marble	and	play	again.
Reserve	a	section	in	the	upper-right	corner	for	three	LEDs	and	the	button.
These	tell	you	when	to	start,	when	your	time	is	up	and	whether	you	have
achieved	a	new	high	score.	Leave	enough	room	for	the	LEDs,	button	and
labels.	Approximately	2	×	3	inches	(5	×	8	cm)	should	be	enough.
Decide	where	you	will	place	the	marble	at	the	start	of	each	game.

Figure	9-5	Guidelines	for	designing	your	maze

After	you	have	laid	out	where	the	holes	and	other	components	will	be	located,
you	are	ready	to	design	your	maze!	Draw	the	path	of	your	maze	on	a	piece	of
paper.	Don’t	lose	that	piece	of	paper—you’ll	need	it	later	when	you	actually
build	the	maze.

Designing	the	Game	Code
Here’s	how	the	marble	maze	game	is	played:

1.	 The	player	presses	the	start	button.	The	red	LED	lights	up,	then	the	yellow
LED	and	finally	the	green	LED.	The	starting	music	plays	and	the	game
starts.	The	player	places	the	marble	in	the	starting	position	on	the	maze.

2.	 The	player	tries	to	roll	the	marble	along	the	maze	and	into	the	different
holes	to	score	points.

3.	 A	tone	plays	whenever	points	are	scored.
4.	 Each	time	the	player	scores,	the	marble	rolls	to	the	bottom	of	the	box.	The

player	places	the	marble	back	at	the	starting	position	and	tries	to	score
again.

5.	 The	steps	are	repeated	until	the	time	runs	out.
6.	 If	the	player	has	just	achieved	a	new	high	score,	a	tune	plays	and	the	green

LED	blinks.	If	they	didn’t	achieve	a	new	high	score,	a	different	tune	plays
and	the	red	LED	blinks.

7.	 If	the	Arduino	Uno	is	reset	or	turned	off,	the	high	score	is	cleared.
Otherwise	players	can	play	more	rounds	and	try	to	beat	the	previous	high
score.

All	of	these	steps	can	be	broken	down	into	functions	for	the	code.	Then	those
functions	can	be	called	at	the	right	time	in	the	game.	Figure	9-6	shows	how	all
the	functions	interact	in	the	Arduino	sketch	that	you	will	write	later.

Figure	9-6	How	the	code	works	when	a	game	is	played

Prototyping	the	Circuit
You	have	already	built	most	of	the	circuit	for	the	maze	game—you	have	built	the
circuit	for	the	five	sensor	piezos	and	the	speaker	piezo.	The	remaining
components	are	the	three	LEDs	and	button.	Figure	9-7	shows	the	circuit
schematic	for	the	full	maze	game.

Figure	9-7	Circuit	schematic	of	the	maze	game

You	should	test	your	circuit	on	a	breadboard	before	building	your	full	maze
game—but	you	know	that	by	now!	Build	the	circuit	now	(shown	in	Figure	9-8):

1.	 Start	with	the	piezo	circuits	that	you	have	already	built.
2.	 Add	three	LEDs	to	the	breadboard—one	red,	one	yellow	and	one	green.

Connect	the	negative	legs	to	the	long	row	connected	to	GND.
3.	 Place	a	220Ω	current-limiting	resistor	before	each	LED.
4.	 Use	a	jumper	wire	to	connect	the	resistor	before	the	red	LED	to	Pin	6,	the

resistor	before	the	yellow	LED	to	Pin	5	and	the	resistor	before	the	green
LED	to	Pin	4.

5.	 Place	your	tactile	pushbutton	across	the	gap	in	the	middle	of	the	board.	Use
a	jumper	wire	to	connect	one	side	of	your	button	to	the	long	row	connected
to	GND.	Connect	the	other	side	to	Pin	7.

Figure	9-8	Maze	game	prototype	circuit	on	a	breadboard

Part	Three:	Writing	the	Code
You’re	about	to	write	the	longest	Arduino	sketch	of	all	the	adventures.	Don’t
worry—you	are	ready!	You	have	seen	all	the	different	parts	of	the	code	before.
You’re	about	to	put	it	together	into	a	more	complex	sketch,	but	the	sketch	is	just
made	up	of	smaller	chunks	of	code.	You	start	with	the	piezo-scoring	sketch	that
you	wrote	earlier	in	this	adventure	and	add	new	features,	little	by	little.	You
should	test	what	you	have	written	after	you	add	each	new	feature;	I’ll	tell	you
when	you	should	do	that.

Starting	the	Game
The	LEDs	need	to	show	the	countdown	to	begin	whenever	a	new	game	is
started.	You	can	also	print	serial	messages	that	show	extra	information	if	your
Arduino	Uno	is	connected	to	your	computer.	The	first	lines	of	code	are	the
variables	for	the	LED	pins.	At	the	top	of	your	sketch	add	the	following	lines:

int	greenLED	=	4;	

int	yellowLED	=	5;	

int	redLED	=	6;

To	help	organise	your	sketch,	you	create	a	function	that	performs	all	the	tasks
that	need	to	be	done	when	a	new	game	begins.	Add	the	following	code	to	the
end	of	your	sketch	afterloop():

void	startGame()	{	

		//	make	sure	all	LEDs	start	off	

		digitalWrite(redLED,	LOW);	

		digitalWrite(yellowLED,	LOW);	

		digitalWrite(greenLED,	LOW);	

		Serial.println("****NEW	GAME****");	

		Serial.print("Starting	game	in…");	

		//	turn	on	red	LED	

		digitalWrite(redLED,	HIGH);	

		Serial.print("ready…");	

		delay(1000);	

		//	turn	off	red	LED	

		digitalWrite(redLED,	LOW);	

		//	turn	on	yellow	LED	

		digitalWrite(yellowLED,	HIGH);	

		Serial.print("set…");	

		delay(1000);	

		//	turn	off	yellow	LED	

		digitalWrite(yellowLED,	LOW);	

		Serial.println("go!");	

		//	turn	on	green	LED	

		digitalWrite(greenLED,	HIGH);	

		//	reset	score	

		currentScore	=	0;	

}

The	startGame()	function	makes	sure	all	the	LEDs	are	off	at	the	start	of	the
game	and	then	turns	them	on	one	by	one.	It	also	prints	countdown	messages.	At
the	end	of	the	function	the	variable	holding	the	current	score,	currentScore,	is
reset	to	0.

In	setup(),	set	the	pinMode()	to	OUTPUT	for	each	of	the	LEDs	and	call	the
function	you	just	wrote	so	that	a	new	game	starts	automatically	when	you	turn
on	the	Arduino	Uno.	The	new	code	you	should	add	is	in	bold:

void	setup()	{

		//	set	up	pin	mode	for	button	

		pinMode(buttonPin,	INPUT_PULLUP);	

		//	set	up	pin	modes	for	LEDs	

		pinMode(greenLED,	OUTPUT);	

		pinMode(yellowLED,	OUTPUT);	

		pinMode(redLED,	OUTPUT);	

		//	start	serial	communication	

		Serial.begin(9600);	

		//	start	countdown	to	start	

		startGame();	

}

Upload	your	sketch,	open	Serial	Monitor	and	test	that	it	works.	Your	LEDs

should	light	up	in	the	right	order	and	countdown	messages	should	appear	in
Serial	Monitor.

Ending	the	Game
To	turn	your	marble	maze	into	a	game,	you	need	a	timer	so	the	player	can	score
as	many	points	as	possible	within	a	given	time.

To	make	a	timer	in	your	code,	begin	by	adding	the	following	variables	to	the	top
of	your	sketch.	You	don’t	use	all	of	them	right	away	but	they	will	all	be	used	in
your	completed	game:

int	buttonPin	=	7;	

int	maximumTime	=	10000;	

long	gameStartTime;	

boolean	playingGame	=	false;

The	first	variable	you	use	is	gameStartTime.	You	might	notice	that	it	isn’t	an	int
—it’s	a	long.	You	first	encountered	long	in	Adventure	6.	A	long	can	store	a
bigger	number	than	an	int,	which	was	needed	for	the	capacitive	sensing	library
that	you	used	to	make	your	crystal	ball.	Here	the	gameStartTime	variable	stores
the	time	counted	in	the	number	of	milliseconds	since	the	Arduino	sketch	began.
That	could	be	a	very	big	number,	so	the	variable	should	be	a	long	instead	of	an
int.

In	order	to	store	the	time	that	a	game	starts,	you	use	a	new	function:	millis().
This	is	a	built-in	function	for	Arduino	so	you	don’t	need	to	import	a	library	to
use	it.	It	returns	the	current	number	of	milliseconds	that	have	passed	since	the
sketch	started.	You	want	to	save	this	number	so	that	you	can	check	and	see	how
much	time	has	gone	by	since	a	game	was	started.

Add	the	following	line	of	code	to	the	very	end	of	your	startGame()	function:

gameStartTime	=	millis();

In	loop(),	you	then	check	and	see	if	time	has	run	out.	The	variable	maximumTime
stores	how	long	a	game	can	run.	It’s	currently	set	to	10,000	milliseconds	(10
seconds),	but	you	can	make	that	shorter	or	longer.

Add	the	following	if	statement	to	the	top	of	loop().	All	the	code	you	have

written	so	far	in	your	loop	that	reads	in	from	the	piezos	and	keeps	track	of	the
score	should	go	inside	the	if	statement.	That	way,	new	points	can	only	be	scored
if	the	time	hasn’t	run	out:

if((millis()	-	gameStartTime)	<	maximumTime){	

		//	code	you	have	already	written	that	keeps	track	of	points

being	scored	

}

The	if	statement	checks	that	the	time	since	the	game	was	started	is	still	less	than
maximumTime.

The	variable	playingGame	is	one	of	the	variables	you	just	added	to	the	top	of
your	sketch.	It	has	a	Boolean	data	type.	That	means	the	variable	can	only	be
equal	to	true	or	false.	You	are	using	the	variable	as	a	flag.	Whenever	a	game	is
being	played,	the	variable	is	set	to	true,	and	when	a	game	isn’t	being	played	the
variable	is	set	to	false.	You	can	then	make	decisions	in	code	based	on	whether	a
game	is	being	played.

	A	flag	is	a	variable	in	a	program	that	keeps	track	of	the	state	of	some	other	part	of	the	code.
It	is	usually	a	Boolean.

In	startGame(),	add	a	line	at	the	end	of	the	function	that	sets	the	flag
playingGame	to	true:

playingGame	=	true;

Now	create	a	new	function	at	the	end	of	your	sketch	called	endGame().	This
function	is	called	when	the	time	has	run	out.	It	then	sets	the	playingGame	flag	to
false:

void	endGame()	{	

		Serial.println("Game	Over!");	

		Serial.print("Score:	");	

		Serial.println(currentScore);	

		//	set	flag	that	not	currently	playing	a	game	

		playingGame	=	false;	

}

The	if	statement	checks	if	a	game	is	within	the	time	limit.	If	that	isn’t	true,	you
want	something	other	than	scoring	points	to	occur.	If	the	game	is	being	played
and	the	time	has	run	out,	you	need	to	end	the	game.	If	the	time	has	run	out	and
the	game	isn’t	being	played,	then	you	need	to	display	whether	a	new	high	score
was	achieved.	You	code	the	new	high	score	part	in	the	next	section.	For	now,
focus	on	ending	the	game.

In	the	code	that	runs	only	when	the	game	isn’t	being	played	or	the	time	has	run
out,	you	use	an	else	statement.	An	else	statement	contains	the	code	that	should
be	run	only	when	the	conditions	in	the	if	statement	are	false.	It	won’t	run	that
code	at	any	other	time,	and	it	has	to	be	paired	with	an	if.

Inside	your	loop,	after	the	closing	}	of	your	if	statement,	add	the	following
lines:

else{	

		//	else	if	playing	a	game	but	time	has	run	out	

		if(playingGame){	

			//	end	the	game	

			endGame();	

		}	

}

The	code	in	in	the	else	statement	is	run	only	if	the	time	has	run	out.	The	if
statement	inside	the	else	statement	checks	if	the	game	flag	is	still	set	to	true.	If
it	is,	then	the	game	is	ended	by	calling	endGame.

Upload	the	sketch	to	your	Arduino	Uno	and	test	that	it	works.	It	should	do
everything	that	it	has	been	doing	so	far—starting	a	game	and	keeping	track	of
the	score.	Now	it	should	also	end	the	game	after	maximumTime,	which	is	set	to	10
seconds.

Starting	a	New	Game
Now	that	your	game	ends	after	a	time	limit,	you	need	a	way	to	start	a	new	game
to	try	and	beat	your	score!	The	next	step	is	to	add	a	button	that	starts	a	new
game.	You	already	have	the	button	in	the	circuit	on	your	breadboard,	so	you	only
need	to	add	the	code.

Inside	the	else	statement	you	just	added	in	the	previous	section,	add	another
else	statement	to	the	if	statement	that	is	checking	whether	the	playingGame
flag	is	true:

else{	

		int	buttonValue	=	digitalRead(buttonPin);	

		if(buttonValue	==	0)	{	

			//	button	is	pressed,	start	new	game	

			startGame();	

		}	

}

Now	if	the	playGame	flag	is	set	to	false,	the	button	is	checked	to	see	if	it	is
being	pressed.	If	it	is,	then	a	new	game	is	started	by	calling	the	startGame()
function.

The	loop()	now	has	the	following	code.	Upload	your	sketch	to	your	Arduino
Uno	and	test	that	everything	works.	A	new	game	should	start	with	its	countdown
LEDs	when	you	first	start	the	Arduino	Uno,	and	it	should	end	after	10	seconds.
If	you	push	the	button,	a	new	round	of	the	game	begins:

void	loop()	{	

		//	if	playing	a	game	and	still	within	time	

		if((millis()	-	gameStartTime)	<	maximumTime){	

			//	read	in	each	points	pin	

			int	i;	

			for(i=0;	i<numPointsPins;	i++)	{	

					int	currPinValue	=	analogRead(pointsPins[i]);	

					

					//	if	above	the	threshold	

					if(currPinValue	>	piezoThreshold){	

							//	add	points	

							int	newPoints	=	(i+1)*10;	

							currentScore	+=	newPoints;	

							//	print	points	and	new	score	

							Serial.print("	Score!	");	

							Serial.print(newPoints);	

							Serial.println("	points");	

							Serial.print("	Current	score:	");	

							Serial.print(currentScore);	

							Serial.println("	points");	

							//	pause	so	that	same	marble	doesn’t	score	twice	

							delay(300);	

					}	

			}	

		}	

		else{	

			//	else	if	playing	a	game	but	time	has	run	out	

			if(playingGame){	

					//	end	the	game	

					endGame();	

			}	

			//	else	if	not	playing	a	game	

			else{	

					//	check	if	button	has	been	pressed	to	start	new	game	

					int	buttonValue	=	digitalRead(buttonPin);	

					if(buttonValue	==	0)	{	

								//	button	is	pressed,	start	new	game	

								startGame();	

					}	

			}	

		}	

}

By	now	the	loop()	is	getting	a	little	complicated!	Figure	9-9	illustrates	how	it
all	works.	It	also	shows	what	you	will	be	adding	next—keeping	track	of	the	high
score.

Figure	9-9	How	a	loop()	works

Keeping	Track	of	the	High	Score
At	the	top	of	your	sketch,	add	three	more	variables:

boolean	newHighScore	=	false;	

int	currentScore;	

int	highScore	=	0;

You	have	added	one	more	flag:	newHighScore.	This	flag	keeps	track	of	whether
the	last	game	played	resulted	in	a	new	high	score.	If	it	did,	then	the	green	LED
flashes	when	a	game	isn’t	being	played.	If	it	didn’t,	then	the	red	LED	flashes.

In	endGame(),	add	the	following	code.	It	compares	the	latest	score	with	the	saved
high	score.	If	it’s	a	new	high	score,	then	the	flag	is	set	to	true.	Otherwise	it	is	set
to	false:

if(currentScore	>	highScore)	{	

		//	if	a	new	high	score	

		highScore	=	currentScore;	

		Serial.println("New	High	Score!");	

		newHighScore	=	true;	

}	

else{	

		//	else	new	no	high	score	

			newHighScore	=	false;	

}

Now	you	need	to	add	the	code	to	make	the	LEDs	flash.	In	loop(),	inside	the
else	statement	where	you	check	the	button,	add	the	following	code:

if(newHighScore)	{	

		digitalWrite(greenLED,	HIGH);	

		delay(200);	

		digitalWrite(greenLED,	LOW);	

		delay(200);	

}	

//	blink	red	if	flag	is	false	

else	{	

		digitalWrite(redLED,	HIGH);	

		delay(200);	

		digitalWrite(redLED,	LOW);	

		delay(200);	

}

Upload	the	sketch	and	check	that	it	works.	You	should	be	able	to	start	a	game
when	the	Arduino	Uno	is	turned	on	or	reset,	then	when	the	game	ends	the	green

LED	flashes	if	you	get	a	new	high	score.	If	you	didn’t	achieve	a	new	high	score,
the	red	LED	flashes	until	you	start	a	new	game.

	If	you	are	having	problems	getting	your	sketch	to	compile	because	of	a	typo,	try
downloading	the	sketch	from	the	companion	site
(www.wiley.com/go/adventuresinarduino).	Reading	through	how	the	code	works	before
trying	to	type	it	all	will	help	you	better	understand	what	is	going	on.

Adding	Sounds
You	already	have	written	the	code	that	plays	sounds	when	points	are	scored	in
Part	One	of	this	adventure.	The	only	thing	left	to	do	is	to	put	it	in	its	own
function.	That	makes	the	code	easier	to	read	and	makes	it	easier	to	understand
what	is	going	on.

Cut	the	two	lines	of	code	in	loop()	that	play	a	sound	when	a	piezo	is	triggered
and	put	it	in	its	own	function	called	playScoreMusic	at	the	end	of	the	sketch:

void	playScoreMusic()	{	

		tone(speakerPin,	659,	300);	

		delay(300);	

}

Now	you	need	to	call	the	function	you	just	wrote.	In	loop(),	call	the	function
right	after	you	have	printed	the	current	score:

playScoreMusic();

There	are	just	three	more	tone	sequences	to	code.	The	first	is	the	music	that	will
be	played	when	a	new	game	starts.	At	the	end	of	the	sketch,	add	a	new	function
called	playStartMusic()	with	the	following	lines	of	code:

void	playStartMusic()	{	

		tone(speakerPin,	523,	300);	

		delay(300);	

		tone(speakerPin,	659,	300);	

		delay(300);	

		tone(speakerPin,	784,	300);	

http://www.wiley.com/go/adventuresinarduino

		delay(300);	

		tone(speakerPin,	1047,	500);	

		delay(600);	

}

At	the	end	of	startGame,	call	the	function	you	just	wrote:

playStartMusic();

One	of	two	different	tone	sequences	are	played	at	the	end	of	the	game.	Which
one	is	played	depends	on	whether	a	new	high	score	was	just	achieved.	The
sequence	for	new	high	score	sounds	happier	than	the	tones	played	when	you
didn’t	get	a	new	high	score.

At	the	end	of	your	sketch,	add	the	playNewHighScoreMusic()	and
playSadEndMusic()	functions:

void	playNewHighScoreMusic()	{	

		tone(speakerPin,	880,	300);	

		delay(200);	

		tone(speakerPin,	440,	500);	

		delay(200);	

		tone(speakerPin,	880,	300);	

		delay(200);	

		tone(speakerPin,	440,	500);	

		delay(200);	

		tone(speakerPin,	880,	300);	

		delay(200);	

		tone(speakerPin,	440,	500);	

		delay(200);	

		tone(speakerPin,	880,	300);	

		delay(500);	

}	

void	playSadEndMusic()	{	

		tone(speakerPin,	698,	300);	

		delay(300);	

		tone(speakerPin,	622,	300);	

		delay(300);	

		tone(speakerPin,	587,	300);	

		delay(300);	

		tone(speakerPin,	523,	500);	

		delay(600);	

}

Both	functions	are	called	within	the	endGame	function.	playNewHighScoreMusic
is	called	inside	the	if	statement	that	checks	whether	a	new	high	score	was
achieved,	and	playSadEndMusic	is	called	inside	the	else:

if(currentScore	>	highScore)	{	

		//	if	a	new	high	score	

		highScore	=	currentScore;	

		Serial.println("New	High	Score!");	

		newHighScore	=	true;	

		//	play	new	high	score	music	

		playNewHighScoreMusic();	

}	

else{	

		//	else	no	new	high	score	

		newHighScore	=	false;	

		//	play	end	music	

		playSadEndMusic();	

}

CHALLENGE

	Try	changing	the	start	and	end	tone()	sequences	to	customise	your	game!

And	that’s	it!	You	now	have	the	full	sketch.	The	full	code	is	shown	here	so	that
you	can	check	what	you’ve	written	against	it.	Upload	the	sketch	to	your	Arduino
Uno	and	test	it	out	with	your	breadboard	circuit.	After	you	are	happy	with	how
your	game	works,	you	are	ready	to	finish	building	your	maze	game!

//	variables	for	pins	

int	pointsPins[]	=	{	

		A0,	A1,	A2,	A3,	A4};	

int	buttonPin	=	7;	

int	greenLED	=	4;	

int	yellowLED	=	5;	

int	redLED	=	6;	

int	speakerPin	=	9;	

//	number	of	piezos	for	points	

int	numPointsPins	=	5;	

//	when	points	triggered	

int	piezoThreshold	=	800;	

//game	timer	variables	

int	maximumTime	=	10000;	

long	gameStartTime;	

boolean	playingGame	=	false;	

//	high	score	variables	

boolean	newHighScore	=	false;	

int	currentScore;	

int	highScore	=	0;	

//---setup---------------------------	

//	runs	once	when	board	first	powered	

//	or	reset	

void	setup()	{	

		//	set	up	pin	mode	for	button	

		pinMode(buttonPin,	INPUT_PULLUP);	

		//	set	up	pin	modes	for	LEDs	

		pinMode(greenLED,	OUTPUT);	

		pinMode(yellowLED,	OUTPUT);	

		pinMode(redLED,	OUTPUT);	

		//	start	serial	communication	

		Serial.begin(9600);	

		//	start	countdown	to	start	

		startGame();	

}	

//---loop----------------------------	

//	runs	continuously	after	setup()	

void	loop()	{	

		//	if	playing	a	game	and	still	within	time	

		if((millis()	-	gameStartTime)	<	maximumTime){	

			//	read	in	each	points	pin	

			int	i;	

			for(i=0;	i<numPointsPins;	i++)	{	

					int	currPinValue	=	analogRead(pointsPins[i]);	

					

					//	if	above	the	threshold	

					if(currPinValue	>	piezoThreshold){	

							//	add	points	

							int	newPoints	=	(i+1)*10;	

							currentScore	+=	newPoints;	

							//	print	points	and	new	score	

							Serial.print("	Score!	");	

							Serial.print(newPoints);	

							Serial.println("	points");	

							Serial.print("	Current	score:	");	

							Serial.print(currentScore);	

							Serial.println("	points");	

							//	play	scoring	music	

							playScoreMusic();	

							//	pause	so	that	same	marble	doesn’t	score	twice	

							delay(300);	

					}	

			}	

		}	

		else{	

			//	else	if	playing	a	game	but	time	has	run	out	

			if(playingGame){	

					//	end	the	game	

					endGame();	

			}	

			//	else	if	not	playing	a	game	

			else{	

					//	check	if	button	has	been	pressed	to	start	new	game	

					int	buttonValue	=	digitalRead(buttonPin);	

					if(buttonValue	==	0)	{	

							//	button	is	pressed,	start	new	game	

							startGame();	

					}	

					//	blink	green	if	newHighScore	flag	is	true	

					if(newHighScore)	{	

							digitalWrite(greenLED,	HIGH);	

							delay(200);	

							digitalWrite(greenLED,	LOW);	

							delay(200);	

					}	

					//	blink	red	if	flag	is	false	

					else	{	

							digitalWrite(redLED,	HIGH);	

							delay(200);	

							digitalWrite(redLED,	LOW);	

							delay(200);	

					}	

			}	

		}	

}	

//---startGame---------------------------	

//	sets	up	variables	for	a	new	game	and	starts	

//	countdown	

void	startGame()	{	

		//	make	sure	all	LEDs	start	off	

		digitalWrite(redLED,	LOW);	

		digitalWrite(yellowLED,	LOW);	

		digitalWrite(greenLED,	LOW);	

		Serial.println("****NEW	GAME****");	

		Serial.print("Starting	game	in…");	

		//	turn	on	red	LED	

		digitalWrite(redLED,	HIGH);	

		Serial.print("ready…");	

		delay(1000);	

		//	turn	off	red	LED	

		digitalWrite(redLED,	LOW);	

		//	turn	on	yellow	LED	

		digitalWrite(yellowLED,	HIGH);	

		Serial.print("set…");	

		delay(1000);	

		//	turn	off	yellow	LED	

		digitalWrite(yellowLED,	LOW);	

		Serial.println("go!");	

		//	turn	on	green	LED	

		digitalWrite(greenLED,	HIGH);	

		//play	start	music	

		playStartMusic();	

		//	start	game	timer	

		gameStartTime	=	millis();	

		//	set	flag	that	currently	playing	a	game	

		playingGame	=	true;	

		//	reset	score	

		currentScore	=	0;	

}	

//---endGame---------------------------	

//	sets	up	variables	for	a	new	game	and	starts	

//	countdown	

void	endGame()	{	

		Serial.println("Game	Over!");	

		Serial.print("Score:	");	

		Serial.println(currentScore);	

		//	turn	off	green	LED	

		digitalWrite(greenLED,	LOW);	

		//	calculate	high	score	

		if(currentScore	>	highScore)	{	

			//	if	a	new	high	score	

			highScore	=	currentScore;	

			Serial.println("New	High	Score!");	

			newHighScore	=	true;	

			//	play	new	high	score	music	

			playNewHighScoreMusic();	

		}	

		else{	

			//	else	new	no	high	score	

			newHighScore	=	false;	

			//	play	end	music	

			playSadEndMusic();	

		}	

		Serial.print("High	Score	is:	");	

		Serial.println(highScore);	

		Serial.println();	

		//	set	flag	that	not	currently	playing	a	game	

		playingGame	=	false;	

}	

//---playStartMusic-----------------------	

//	plays	starting	tone	sequence	

void	playStartMusic()	{	

		tone(speakerPin,	523,	300);	

		delay(300);	

		tone(speakerPin,	659,	300);	

		delay(300);	

		tone(speakerPin,	784,	300);	

		delay(300);	

		tone(speakerPin,	1047,	500);	

		delay(600);	

}	

//---playScoreMusic-----------------------	

//	plays	scoring	tone	

void	playScoreMusic()	{	

		tone(speakerPin,	659,	300);	

		delay(300);	

}	

//---playSadEndMusic-----------------------	

//	plays	sad	tone	sequence	

void	playSadEndMusic()	{	

		tone(speakerPin,	698,	300);	

		delay(300);	

		tone(speakerPin,	622,	300);	

		delay(300);	

		tone(speakerPin,	587,	300);	

		delay(300);	

		tone(speakerPin,	523,	500);	

		delay(600);	

}	

//---playNewHighScoreMusic-----------------------	

//	plays	happy	new	high	score	tone	sequence	

void	playNewHighScoreMusic()	{	

		tone(speakerPin,	880,	300);	

		delay(200);	

		tone(speakerPin,	440,	500);	

		delay(200);	

		tone(speakerPin,	880,	300);	

		delay(200);	

		tone(speakerPin,	440,	500);	

		delay(200);	

		tone(speakerPin,	880,	300);	

		delay(200);	

		tone(speakerPin,	440,	500);	

		delay(200);	

		tone(speakerPin,	880,	300);	

		delay(500);	

}

Part	Four:	Building	the	Maze	Game
Now	that	you	have	your	code	and	circuit	tested	and	working,	it’s	time	to	finish
building	your	maze.	You	are	going	to	use	a	box	with	no	lid—so	three	sides	and
bottom,	but	no	top.	You	will	be	making	a	partial	top	for	the	box	that	contain	the
maze	and	holes	for	the	marble	to	drop	through.	If	you	want	to	cover	the	box	with
paint	or	paper	to	decorate	it,	you	might	find	it	easier	to	do	before	cutting	holes
and	assembling	the	electronics	inside	it.

	You	can	watch	a	video	of	how	to	build	your	maze	game	on	the	companion	site	at
www.wiley.com/go/adventuresinarduino.

Making	the	Maze
Use	the	following	steps	to	create	the	maze:

1.	 Cut	four	strips	of	very	thick	paper	or	card	that	are	the	length	of	your	maze
and	approximately	3"	(8	cm)	high.	Fold	over	about	half	an	inch	(1	cm)	of
the	card	so	that	you	can	glue	the	strips	of	paper	to	the	inside	of	the	box.
These	strips	stop	the	marble	from	rolling	onto	another	piezo	and
accidentally	triggering	more	points	after	it	has	dropped	from	the	maze.	Glue
the	strips	of	paper	into	place	as	shown	in	Figure	9-10.

2.	 Cut	another	piece	of	cardboard	about	2"	(5	cm)	wider	than	the	bottom	of
your	box	width	and	about	2"	(5	cm)	shorter	than	the	length	of	your	maze.
You	can	fold	the	extra	inch	on	each	side	into	flaps	to	help	keep	the	maze
firmly	in	place	in	the	box.	See	Figure	9-11	as	a	guide.

3.	 Now’s	the	time	to	find	the	piece	of	paper	on	which	you	created	your	design
for	the	maze	earlier	in	this	adventure.	Using	this	as	your	guide,	mark	the
maze	and	hole	locations	on	the	piece	of	cardboard	that	you	just	cut.	Mark
the	holes	for	the	LEDs	and	button.

4.	 Make	the	holes	in	the	cardboard	for	the	marble,	LEDs	and	button,	as	shown
in	Figure	9-12.

http://www.wiley.com/go/adventuresinarduino

5.	 Create	“walls”	from	paper	to	form	your	maze.	Cut	strips	of	paper	and	fold
an	edge	to	glue	to	the	cardboard	along	your	maze	lines.

6.	 Use	paint	or	markers	to	decorate	the	cardboard	in	any	way	you	like—here’s
where	you	can	let	your	imagination	run	wild!	You	probably	want	to	include
some	indication	of	the	number	of	points	that	can	be	scored	at	each	hole.

Figure	9-10	Glue	strips	of	card	to	guide	the	marble	after	it	drops	through	a	hole.

Figure	9-11	Lid	of	the	maze	game	fitted	to	bottom

Figure	9-12	Maze	game	before	electronics

Assembling	the	Piezos
You	are	now	going	to	start	assembling	your	circuit.	Use	the	following	steps	to
assemble	the	piezos:

1.	 Mark	on	your	box	where	your	piezos,	LEDs	and	button	will	be	located.
2.	 In	the	upper-right	corner	of	your	box,	poke	a	hole	through	the	cardboard	so

that	all	the	wires	from	inside	the	box	can	pass	through	and	eventually	reach
the	Arduino	Uno	on	the	outside	of	the	box.

3.	 Cut	wires	for	each	of	the	piezos	that	reach	from	the	red	wire	of	each	piezo
to	the	Arduino	Uno.	Cut	another	set	of	wires	that	connect	all	the	black
wires	from	the	piezos	to	each	other	(see	Figure	9-13).

4.	 Solder	a	1MΩ	resistor	between	the	red	and	black	wires	of	the	piezos.	Solder

the	wires	onto	the	resistor	on	the	same	side	as	the	red	wire	from	the	piezos.
Solder	the	wires	connecting	each	of	the	black	wires	from	the	piezos.	See
Figure	9-13	for	guidance.	Label	the	wires	so	you	know	which	wire	goes	to
which	pin.

	Only	start	the	soldering	steps	when	there	is	an	adult	nearby	to	help	you.	Soldering	can	be
dangerous,	so	be	careful!

1.	 Insert	the	six	wires	soldered	to	the	red	wires	of	the	piezos	into	their	input
pins	on	the	Arduino	Uno.	Insert	the	wire	soldered	to	the	piezos'	black	wires
into	GND.	Upload	the	maze	game	sketch	and	test	that	the	piezos	all	work.
You	should	be	able	to	score	points	with	five	of	them,	and	the	sixth	should
play	back	the	sound	effects	and	music.

Figure	9-13	Wiring	layout	for	piezos

Assembling	the	LEDs	and	Button
When	you’re	sure	that	any	wet	paint	or	glue	that	you	used	in	your	decorations
have	dried,	use	the	following	steps	to	assemble	the	LEDs	and	button:

1.	 Solder	a	current-limiting	resistor	onto	each	of	the	positive	legs	of	the	LEDs.
Cut	and	solder	on	wires	that	reach	from	each	of	the	resistors	to	the	Arduino
Uno.

2.	 Cut	and	solder	two	wires	from	each	of	the	contacts	on	the	button	that
reaches	to	the	Arduino	Uno.

3.	 Place	the	LEDs	and	button	in	their	holes	on	the	cardboard	top	to	the	game.
Solder	the	negative	legs	of	the	LEDs	and	one	contact	of	the	button	together.
Figure	9-14	shows	what	you	should	have	in	front	of	you	once	you’ve
finished	soldering.

Figure	9-14	Solder	the	negative	legs	of	the	LEDs	and	one	contact	of	the	button
together.

Completing	the	Finishing	Touches
You	just	need	a	few	finishing	touches	to	complete	this	adventure!	Use	the
following	steps	to	bring	it	all	together:

1.	 Pass	the	all	the	wires	from	the	piezos,	LEDs	and	pushbutton	through	the
hole	in	back	of	the	bottom	box.	Attach	the	Arduino	Uno	to	the	outside	of
the	box	near	the	hole	for	the	wires	using	masking	tape.

2.	 Connect	the	wires	to	the	Arduino	Uno	with	the	sensor	piezos	connecting	to
analog	inputs,	and	connect	the	speaker	piezo,	button	and	LEDs	to	digital
pins.	One	wire	connecting	all	the	negative	wires	of	the	piezos	should

connect	to	one	GND	pin,	and	another	wire	connecting	the	negative	legs	of
the	LEDs	and	button	should	connect	to	another	GND	pin.

3.	 Test	that	your	lights,	button	and	piezos	are	all	acting	as	you	expect	by
playing	a	round	of	your	new	game.

Finished!	Congratulations	on	completing	your	big	adventure!	That	was	a	lot	of
work	but	I	hope	you	found	it	rewarding.	You	can	now	relax	by	playing	a	few
rounds	of	your	new	marble	maze	game!

Arduino	Command	Quick	Reference	Table
Command Description

boolean
Data	type	for	a	variable.	Can	be	either	true	or	false.	See	also
http://arduino.cc/en/Reference/BooleanVariables.

else
Code	that	is	executed	only	if	the	preceding	if	statement	was	false.	See	also
http://arduino.cc/en/Reference/Else.

millis()
Function	that	returns	how	long	the	Arduino	sketch	has	been	running	in	milliseconds.	See	also
http://arduino.cc/en/Reference/Millis.

	

Further	Adventures:	Continuing	Your
Adventures	with	Arduino
The	Arduino	is	a	great	way	to	learn	about	electronics	and	coding	but	of	course
that	is	only	half	the	fun.	As	you’ve	seen,	projects	really	come	alive	when	you
start	embedding	your	Arduino	into	physical	objects.	You	have	used	a	lot	of
different	hand	tools	and	techniques,	but	why	not	start	exploring	digital	tools	like
laser	cutters	and	3D	printers?	Check	out	Make	Magazine’s	site
(http://makezine.com/3d-printing/)	to	get	started.

You	could	also	take	the	electronics	and	coding	skills	you’ve	learned	with	the
Arduino	and	use	them	with	the	Raspberry	Pi!	Check	out	Adventures	in
Raspberry	Pi	by	Carrie	Anne	Philbin	(Wiley,	2014).

Most	importantly,	remember	that	you	are	now	a	member	of	a	worldwide	Arduino
community.	You	can	always	find	more	resources	and	tutorials	on	the	Arduino
website	(http://arduino.cc)	along	with	a	forum	full	of	nice	people	ready	to
answer	your	questions.

http://arduino.cc/en/Reference/BooleanVariables
http://arduino.cc/en/Reference/Else
http://arduino.cc/en/Reference/Millis
http://makezine.com/3d-printing/
http://arduino.cc/

Achievement	Unlocked:	Arduino	mastermind!

JUST	BECAUSE	YOU’VE	reached	the	end	of	your	Arduino	adventures	here,	it
doesn’t	mean	your	adventures	are	finished!	It’s	time	for	you	to	venture	out	on
your	own.	There	are	lots	of	things	to	explore	and	many	resources	to	help	you
explore	them.

More	Boards,	Shields,	Sensors	and	Actuators
You	have	already	looked	at	two	Arduino	boards	besides	the	Arduino	Uno:	the
Lilypad	and	Leonardo.	Arduinos	come	many	shapes	and	sizes,	so	if	you	have	a
project	in	mind,	explore	what	might	be	best	for	it.	Does	it	need	to	be	small?	The
Sparkfun	Arduino	Pro	Mini	(www.sparkfun.com/products/11113)	or	Arduino
Micro	(http://arduino.cc/en/Main/ArduinoBoardMicro)	might	be	perfect.
Do	you	want	to	add	lots	of	touch	sensors	and	play	audio	files?	The	Bare
Conductive	Touch	Board	(www.bareconductive.com/shop/touch-board/)	does
that	all	on	a	single	board!

Shields
A	shield	is	a	soldered	circuit	that	fits	perfectly	on	top	of	your	Arduino	Uno
board.	It	can	hold	some	complicated	circuitry	like	an	Arduino	Ethernet	Shield
(http://arduino.cc/en/Main/ArduinoEthernetShield)	that	lets	you	connect
your	Arduino	to	the	Internet	with	an	Ethernet	cable.	There	are	shields	that	add

https://www.sparkfun.com/products/11113
http://arduino.cc/en/Main/ArduinoBoardMicro
http://www.bareconductive.com/shop/touch-board/
http://arduino.cc/en/Main/ArduinoEthernetShield

touch	screens,	MP3	players,	motor	control	and	much	more.	Visit	your	favourite
store—whether	in	person	or	online—and	see	what’s	available.

Sensors	and	Actuators
There	are	also	many	more	sensors	available	than	you’ve	used	for	the	adventures
in	this	book.	Just	about	anything	you	can	sense,	you	can	get	your	Arduino	to
sense	as	well.	Want	to	detect	the	barometric	pressure?	Try	the	BMP180
(www.adafruit.com/products/1603).	How	about	sound?	Try	an	electret
microphone	from	SparkFun	(https://www.sparkfun.com/products/9964).

The	same	goes	for	actuators.	There	are	many	types	of	motor	and	speaker	and,	of
course,	there	is	a	huge	selection	of	LEDs	and	screens.	The	Adafruit	NeoPixel	is
a	great	RGB	LED	that	you	can	control	with	an	Arduino
(www.adafruit.com/category/168).

Of	course,	an	alternative	to	buying	more	sensors	is	to	make	your	own!
Kobakant’s	How	to	Get	What	You	Want	(http://kobakant.at/DIY)	is	a
collection	of	guides	and	documentation	on	DIY	sensors,	often	using	materials
like	conductive	thread	and	fabric.

On	the	Web
The	web	is	full	of	projects	and	resources.	Only	a	few	of	the	most	popular	ones
are	listed	here,	so	search	around	for	more!

The	Arduino	Site
The	first	stop	for	any	aspiring	Arduino	engineer	is	the	Arduino	website
(http://arduino.cc).	You	will	find	everything	you	need	to	know	about	every
official	Arduino	board	that	is	made—and	there	are	a	lot	of	them.	It’s	also	the
home	of	the	Arduino	playground	(http://playground.arduino.cc)	where
Arduino	users	can	upload	their	own	projects	and	tutorials.

If	you	have	any	questions	or	problems	trying	to	bring	a	project	to	life,	you	can
ask	a	question	on	the	Arduino	Forum	(http://forum.arduino.cc).	There	are
always	friendly	folk	willing	to	help,	but	it’s	good	to	do	a	couple	of	things	before
asking	a	question.	First,	make	sure	it’s	not	a	question	that	has	already	been
asked.	Search	around	the	forums—maybe	someone	else	has	already	provided	all

http://www.adafruit.com/products/1603
https://www.sparkfun.com/products/9964
http://www.adafruit.com/category/168
http://kobakant.at/DIY/
http://arduino.cc/
http://playground.arduino.cc/
http://forum.arduino.cc/

the	information	you	need.	Second,	give	as	many	details	as	you	can.	Describe
what	you	have	tried	to	do,	what	you	want	to	happen	and	exactly	what	is	actually
happening.	This	makes	it	much	easier	for	others	to	help	you	and	more	likely	that
they	will	reply.

Manufacturers
Other	than	the	Arduino	website,	the	best	resources	are	two	companies	that	build
their	own	sensors,	actuators	and	kits	for	the	Arduino:	SparkFun	and	Adafruit.
Both	have	excellent	sites	full	of	tutorials	and	guides.	Adafruit	is	at
https://learn.adafruit.com	and	SparkFun	is	at
https://learn.sparkfun.com.

Blogs
If	you	are	in	need	of	some	inspiration	for	your	next	project,	try	out	Adafruit’s
blog	(http://adafruit.com/blog),	Make	Magazine	(http://makezine.com)	or
Hackaday	(http://hackaday.com).	There	are	lots	of	specialist	blogs	as	well.	For
example,	if	you	are	into	wearable	technology,	keep	your	eye	on	Fashioning
Technology	(http://fashioningtech.com).	Want	to	take	your	Arduino	to	the
skies?	DIY	Drones	(http://diydrones.com/)	can	help	you	with	that.

Videos
Sometimes	nothing	beats	seeing	a	video	demonstration	of	a	new	skill.	YouTube
channels	are	a	great	way	to	learn	about	a	new	sensor	or	how	to	make	a	new
project.	You	won’t	be	surprised	to	learn	that	both	Adafruit
(https://www.youtube.com/user/adafruit)	and	SparkFun
(https://www.youtube.com/user/sparkfun)	have	YouTube	channels
overflowing	with	information.	Make	Magazine	has	one	as	well
(https://www.youtube.com/user/makemagazine).

For	an	excellent	series	of	electronics	videos,	search	YouTube	for	“Collin’s	Lab”.
Collin	Cunningham	teaches	basic	electronics	in	a	way	that’s	easy	to	follow.
Some	of	the	videos	are	made	with	Make	Magazine	and	others	are	from	Adafruit,
so	just	search	for	“Collin’s	Lab”.

Massimo	Banzi,	one	of	the	founders	of	Arduino,	made	a	series	of	videos	that
accompanies	the	official	Arduino	Starter	Kit.	The	videos	have	a	project	book,

https://learn.adafruit.com/
https://learn.sparkfun.com/
http://adafruit.com/blog/
http://makezine.com/
http://hackaday.com/
http://fashioningtech.com/
http://diydrones.com/
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/makemagazine

but	you	can	only	get	it	by	buying	the	kit.	The	first	video	is	at
https://www.youtube.com/watch?v=2X8d_r0p92U.

Books
Physical	books	are	great	to	have	on	hand	for	reference.	There	are	a	lot	of	them
out	there	and	more	are	being	written	about	the	latest	technology	all	the	time,	but
here	are	a	few	to	get	you	started.

Getting	Started	with	Arduino	and	General	Projects
There	are	far	more	projects	you	can	make	with	an	Arduino	than	you	have	made
with	this	book.	Go	out	and	make	even	more	projects!	Build	more	things!

Getting	Started	with	Arduino	by	Massimo	Banzi	(Maker	Media,	Inc.,	2011)
Arduino	For	Dummies	by	John	Nussey	(Wiley,	2013)
Arduino	Projects	For	Dummies	by	Brock	Craft	(Wiley,	2013)
Exploring	Arduino:	Tools	and	Techniques	for	Engineering	Wizardry	by
Jeremy	Blum	(Wiley,	2013)

General	Electronics
Electrical	circuits	include	much	more	than	just	Arduinos.	If	you	would	like	to
start	making	really	advanced	projects,	it’s	a	good	idea	to	learn	more	about
circuits.	These	books	can	get	you	going:

Make:	Electronics	by	Charles	Platt	(Make,	2009)
Practical	Electronics	for	Inventors	by	Paul	Scherz	and	Simon	Monk	(Tab
Books,	2013)

Soft	Circuits	and	Wearables
Electronics	and	crafting	techniques	like	sewing	actually	go	together	really	well.
If	you’re	interested	in	exploring	this	perfect	match,	here	are	some	great	books	to
get	you	started:

Fashioning	Technology	by	Syuzi	Pakhchyan	(Maker	Media,	Inc.,	2008)

https://www.youtube.com/watch?v=2X8d_r0p92U

Switch	Craft:	Battery-Powered	Crafts	to	Make	and	Sew	by	Alison	Lewis
and	Fang-Yu	Lin	(Potter	Craft,	2008)
Sew	Electric	by	Leah	Buechley,	Kanjun	Qi,	and	Sonja	de	Boer	(HLT	Press,
2013)
Make:	Wearable	Electronics	by	Kate	Hartman	(Maker	Media,	Inc.,	2014)

Other	Specialised	Topics
Of	course,	there	are	so	many	more	things	that	Arduinos	can	do.	How	about
investigating	Arduino	robots	or	Arduinos	that	can	talk	to	the	Internet?

Making	Things	Move:	DIY	Mechanisms	for	Inventors,	Hobbyists,	and
Artists	by	Dustyn	Roberts	(McGraw-Hill,	2011)
Making	Things	Talk:	Using	Sensors,	Networks,	and	Arduino	to	See,	Hear,
and	Feel	Your	World	by	Tom	Igoe	(Maker	Media,	Inc.,	2011)

NAVIGATING	YOUR	WAY	through	the	world	of	tools	and	electrical
components	can	be	difficult,	but	luckily	the	growth	of	do-it-yourself	electronics
and	coding	projects	has	made	it	easier	than	ever	before	to	find	what	you	need	for
your	Arduino	project.

Starter	Kits
A	really	easy	way	to	get	going	with	the	adventures	in	this	book	is	to	buy	a	starter
kit.	A	starter	kit	will	include	an	Arduino	Uno	and	almost	all	the	components	you
need	like	LEDs,	resistors	and	a	servo.	You	can	compare	the	list	of	components
you	need	in	the	Introduction	with	what	is	available	in	a	starter	kit	and	then	buy
whatever	isn’t	included.	You	will	still	need	to	buy	an	Arduino	Leonardo	and
Lilypad	Arduino	USB	separately	to	complete	Adventures	7	and	8

Almost	all	the	stores	listed	in	this	appendix	sell	their	own	starter	kits,	so	there
are	lots	of	options.	The	Arduino	company	makes	its	own	starter	kit	that	comes
with	a	whole	book	of	projects.	You	can	buy	it	from	a	reseller	or	directly	from	the
Arduino	shop	online	(http://store.arduino.cc/product/K000007).

Brick-and-Mortar	Stores
A	brick-and-mortar	store	simply	means	a	shop!	Being	able	to	walk	into	a	store	to

http://store.arduino.cc/product/K000007

find	the	components	you	need	has	some	benefits.	For	example,	when	working
with	physical	components,	it’s	always	useful	to	be	able	to	pick	them	up	and	see
them	for	yourself.	You	can	also	ask	questions	from	the	helpful	staff	in	the	store.
Plus,	you	don’t	have	to	wait	for	your	package	to	be	delivered;	you	can	go	home
and	get	making	right	away!

In	the	UK
Maplin	(www.maplin.co.uk)	sells	all	sorts	of	things	and	has	a	wide	range	of
stock;	you	can	now	buy	Arduinos	there,	along	with	electrical	components.	Most
of	the	smaller	components	like	resistors	and	LEDs	are	kept	behind	the	counter,
so	you	can	look	up	the	product	code	in	a	catalogue	or	in-store	computer	and	a
member	of	staff	will	get	it	for	you.	They	also	stock	useful	tools	like	soldering
irons.

In	the	US
RadioShack	(www.radioshack.com)	had	long	been	the	place	for	hobbyist
electronics.	The	chain	filed	for	bankruptcy	in	2015,	leaving	those	in	the	United
States	without	a	physical	store	to	visit.	There	isn’t	yet	a	chain	as	large	as
RadioShack	to	take	its	place,	but	spaces	like	TechShop	(http://techshop.ws/)
are	becoming	more	widespread	and	contain	shops	selling	electronics.

Online	Stores
There	are	broadly	two	different	kinds	of	online	store	for	electrical	components:
friendly	hobbyist	or	specialist	sites;	and	vast	catalogue	sites.	If	you	are	just
starting	out,	it’s	better	to	stick	with	a	friendly	site	that	doesn’t	stock	so	many
different	options	but	does	stock	what	you	will	most	likely	need.

The	bigger	sites	have	thousands,	if	not	millions,	of	components	so	can	be
difficult	to	navigate	if	you	don’t	know	exactly	what	you	are	looking	for.
However,	they	tend	to	be	cheaper	than	other	online	stores	and	also	stock	less
popular	items	that	are	harder	to	find.

Online	Stores	Shipping	from	the	EU
Adafruit	and	Sparkfun	are	the	best	sites	for	reference,	but	you	might	not	want	to
deal	with	international	shipping	if	you	don’t	live	in	North	America.	Luckily

http://www.maplin.co.uk/
http://www.radioshack.com/
http://techshop.ws/

there	are	a	large	number	of	EU	distributors	that	import	Adafruit	and	Sparkfun
products.	That	means	you	can	get	making	faster!	Try	some	of	these	sites	to	see	if
they	have	what	you	need:

Arduino	Store:	http://store.arduino.cc
Cool	Components:	www.coolcomponents.co.uk
Maplin:	www.maplin.co.uk
Oomlout:	http://oomlout.com
Pimoroni:	http://shop.pimoroni.com
Proto-Pic:	http://proto-pic.co.uk
RobotShop:	www.robotshop.com/eu/en
SK	Pang:	http://skpang.co.uk

Some	big	catalogue	sites	that	serve	the	EU	include	the	following:

DigiKey:	www.digikey.co.uk
Farnell:	www.farnell.com
Mouser:	http://uk.mouser.com
Rapid:	www.rapidonline.com
RS	Components:	www.rs-components.com/index.html

Online	Stores	Shipping	from	the	US	or	Canada
The	two	maker-focused	sites	that	all	other	maker	companies	aspire	to	be	are
Adafruit	(www.adafruit.com)	and	Sparkfun	(https://www.sparkfun.com).
Both	have	excellent	guides	and	tutorials	for	how	to	use	everything	they	sell.	A
lot	of	their	stock	overlaps,	but	each	company	also	makes	their	own	products.
These	sites	should	always	be	your	first	stop	online.	They	are	both	located	in	the
US,	so	read	on	to	the	next	section	if	you	are	not	in	North	America	and	don’t
want	to	wait	(or	pay)	for	your	order	to	arrive	from	far	away.

You	can	also	check	out	these	other	smaller	online	sites	that	are	also	in	the	US:

Maker	Shed:	www.makershed.com
RobotShop:	www.robotshop.com

http://store.arduino.cc/
http://www.coolcomponents.co.uk/
http://www.maplin.co.uk
http://oomlout.com/
http://shop.pimoroni.com/
http://proto-pic.co.uk/
http://www.robotshop.com/eu/en/
http://skpang.co.uk/
http://www.digikey.co.uk/
http://www.farnell.com/
http://uk.mouser.com/
http://www.rapidonline.com/
http://www.rs-components.com/index.html
http://www.adafruit.com/
https://www.sparkfun.com/
http://www.makershed.com/
http://www.robotshop.com/

Spinkenzie	Labs:	www.spikenzielabs.com

If	you	want	to	try	one	of	the	large	catalogue	sites	based	in	the	US,	check	out
some	of	these:

Allied	Electronics:	http://ex-en.alliedelec.com
DigiKey:	www.digikey.com
Jameco:	www.jameco.com
Mouser:	www.mouser.com
Newark:	www.newark.com

http://www.spikenzielabs.com/
http://ex-en.alliedelec.com/
http://www.digikey.com/
http://www.jameco.com/
http://www.mouser.com/
http://www.newark.com/

actuator
A	device	that	translates	an	electrical	signal	into	a	real-world
action	such	as	light,	sound	or	movement.	Examples	include
motors,	lights	and	speakers.

alligator	clips
Wires	with	spring-loaded	clips	that	resemble	the	jaws	of	an
alligator.	They	are	useful	for	prototyping	soft	circuits	or
connecting	components	that	don’t	use	jumper	wires.

analogue
A	signal	that	varies	between	LOW	and	HIGH,	as	opposed	to	a	digital
signal.	On	the	Arduino	Uno,	an	analogue	signal	can	be	measured
as	a	number	between	0	for	ground	and	1023	for	5V.	An	analogue
signal	can	be	output	as	a	value	between	0	for	0V	and	255	for	5V.

anode
The	positive	leg	of	a	directional	component,	such	as	the	long	leg
of	an	LED.

argument
A	piece	of	information	given	to	a	function,	which	the	function
then	uses	to	perform	its	task.	The	argument	goes	inside	the
brackets	that	follow	the	function	name.	For	example,	the	function
delay(1000)	has	the	argument	1000,	which	is	the	number	of
milliseconds	you	want	the	Arduino	to	wait	before	executing	the
next	line.

array

A	list	of	the	same	type	of	thing	in	code.	For	example,	an	array	can
hold	a	list	of	ints.

binary
A	number	that	uses	only	the	digits	0	and	1,	as	opposed	to	decimal,
which	uses	the	digits	0	to	9.	Binary	is	also	known	as	base-2.
Decimal	is	referred	to	as	base-10.

breadboard
A	reusable	device	that	allows	you	to	create	circuits	without
needing	to	solder	all	the	components.	Breadboards	have	a	number
of	holes	into	which	you	push	wires	and	components	to	create
circuits.

capacitance
The	ability	to	store	an	electrical	charge.	Electrical	components
built	especially	to	hold	a	charge	are	called	capacitors,	but	other
objects—even	people—also	have	capacitance.

cathode
The	negative	leg	of	a	directional	component,	such	as	the	short	leg
of	an	LED.

comments
Notes	within	your	code	that	explain	what	a	line	or	section	of	code
is	intended	to	do.	Each	comment	line	begins	with	//	or,	if	you
want	to	write	a	comment	that	spans	multiple	lines,	it	is	placed
between	/*	and	*/.	These	special	characters	tell	the	computer
running	the	program	to	ignore	that	line	or	lines.

compiling
The	process	of	taking	code	written	by	a	human	and	turning	it	into
instructions	that	can	be	understood	by	a	machine.

current
The	rate	at	which	electrical	energy	flows	past	a	point	in	a	circuit.
It	is	the	electrical	equivalent	of	the	flow	rate	of	water	in	pipes.

Current	is	measured	in	amperes	(A).	Smaller	currents	are
measured	in	milliamperes	(mA).

debugging
The	process	of	locating	the	cause	of	any	errors	in	your	computer
program	code	and	fixing	them.

declaring
Where	a	new	variable	is	created	by	giving	it	a	name	and	a	data
type	such	as	int.	The	variable	does	not	hold	a	value	until	it	is
given	its	first	value.

digital
A	signal	that	is	only	either	on	or	off,	or	HIGH	or	LOW.	On	the
Arduino	Uno,	a	HIGH	signal	is	5V	and	a	LOW	signal	is	ground.

direct	current	(DC)
The	type	of	electricity	used	in	Arduino	circuits.	It’s	the	same	kind
that	is	generated	by	a	battery	and	is	the	opposite	of	alternating
current	(AC),	which	is	what	comes	out	of	mains	plugs	in	the	wall.

driver
A	piece	of	software	that	lets	your	computer	communicate	with	an
external	device,	such	as	a	printer	or	a	keyboard.

dual	in-line	package	(DIP	or	DIL)
One	possible	shape	of	an	IC	chip.	It	has	two	rows	of	legs	that	can
fit	into	a	breadboard.

duty	cycle
The	ratio	of	time	a	signal	is	HIGH	versus	LOW	in	a	given	cycle.	In
PWM,	the	higher	the	duty	cycle,	the	higher	the	output	voltage.

float
A	data	type	for	numbers	that	aren’t	whole	numbers,	but	include	a
decimal	place	such	as	1.3	or	–54.089.

floating	input

A	pin	that	is	not	connected	to	anything.	The	pin	reads	in	random
values	if	it	is	not	connected	to	a	voltage	source	such	as	ground,
5V	or	a	sensor.

for	loop
A	programming	device	that	repeats	a	block	of	code	for	a
predetermined	number	of	times.

function
A	set	of	lines	of	code	that	have	a	name.	A	function	can	be	used
over	and	over	again.	It	may	take	some	information	as	an	input	and
output	more	information	when	it	is	finished,	but	not	all	functions
need	to	do	that.

instantiation
Giving	a	variable	a	value	for	the	first	time.	Instantiation	can
happen	at	the	same	time	you	declare	the	variable	or	you	can	do	it
later,	but	the	declaration	always	needs	to	come	first.

integrated	circuit	(IC)
Circuits	contained	within	a	single	chip.	The	same	circuit	can	be
put	into	different	shaped	chips,	called	packages.	When	working
with	a	breadboard,	you	need	what	is	known	a	DIP	or	DIL
package.	That’s	the	shape	that	has	legs	that	fit	into	a	breadboard.

integrated	development	environment	(IDE)
A	software	application	that	is	used	to	write	computer	code	in	a
particular	language;	it’s	also	referred	to	as	a	programming
environment.	The	application	can	create	and	edit	code,	as	well	as
run	(or	execute)	the	code.	Many	IDEs	also	provide	features	to
help	programmers	debug	their	programs—in	other	words,	check
their	programs	for	errors.

light-emitting	diode	(LED)
An	electrical	component	that	lights	up	when	electrical	current
flows	through	it.	A	diode	only	lets	electricity	flow	in	one

direction,	so	an	LED	lights	up	only	when	the	long	leg	is
connected	to	the	positive	side	of	a	power	source	and	the	short	leg
is	connected	to	the	negative	side.	If	the	legs	are	switched,	the
LED	won’t	light	up.

library
A	collection	of	reusable	functions	in	code	that	can	be	imported
and	used	in	multiple	sketches.

light-dependent	resistor
A	resistor	that	changes	its	resistance	according	to	how	much	light
it	is	exposed	to.	It	is	also	sometimes	called	a	photoresistor.

long
A	data	type	that	can	hold	whole	integer	numbers	from	–
2,147,483,648	to	2,147,483,647.

newline	character
A	character	that	represents	what	happens	when	you	press	the
Enter	or	Return	key	on	your	keyboard.

Ohm’s	Law
The	mathematical	relationship	between	voltage,	current	and
resistance.	Voltage	equals	current	multiplied	by	the	resistance—
or,	put	another	way,	V=IR.

panel	mount	push	button
A	push	button	that	is	designed	to	be	mounted	inside	a	case.	It
comes	with	a	nut	and	washer	to	secure	it	to	a	panel.

piezo
A	crystal	that	expands	and	shrinks	when	electricity	is	run	through
it.	It	also	generates	electricity	when	it	is	squeezed	or	bent.

potentiometer
A	type	of	resistor	with	an	adjustable	knob	to	vary	the	resistance	of
current.

pull-up	resistor
A	resistor	that	is	connected	to	the	high	voltage	in	a	circuit,	which
sets	the	default	state	of	the	pin	on	that	circuit	to	HIGH.	The	resistor
is	usually	10kΩ.

pulse	width	modulation	(PWM)
How	the	Arduino	board	generates	an	output	signal	between	0V
and	5V.	The	signal	switches	quickly	between	LOW	and	HIGH
and	the	resulting	output	voltage	is	between	the	two	voltages.

red-green-blue	light-emitting	diode	(RGB	LED)
A	single	LED	with	four	legs	that	contains	three	lights:	one	red,
one	green	and	one	blue.	The	three	lights	share	either	a	common
anode	or	a	common	cathode.

resistor
An	electrical	component	that	resists	current	in	a	circuit.	For
example,	LEDs	can	be	damaged	by	too	much	current,	but	if	you
add	a	resistor	with	the	correct	value	to	the	LED	circuit	to	limit	the
amount	of	current,	the	LED	is	protected.	Resistance	is	measured
in	ohms	or	Ω.	You	need	to	pick	a	resistor	with	the	correct	value	to
limit	the	current	through	a	circuit;	the	value	of	a	resistor	is	shown
by	coloured	bands	that	are	read	from	left	to	right.

sensor
A	device	that	detects	something	in	the	real	world	such	as	light,
sound	or	movement	and	translates	it	into	an	electrical	signal.
Examples	include	potentiometers	and	light-dependent	resistors.

serial	communication
A	way	that	two	devices,	such	as	a	computer	and	an	Arduino
board,	can	send	and	receive	data	to	each	other.	One	piece	of	data
is	sent	at	a	time.

servo
A	motor	that	can	be	controlled	to	rotate	to	a	specific	position.	It

usually	can’t	rotate	more	than	180	degrees.

shift	register
A	device	that	can	control	multiple	outputs	with	relatively	few
inputs.	It	is	commonly	used	to	control	a	large	number	of	LEDs.

sketches
Arduino	programs.	The	name	comes	from	the	quick	drawings
artists	make.

soft	circuit:
Circuit	built	with	flexible	materials	such	as	conductive	thread	and
fabric.	Soft	circuits	are	often	used	in	projects	that	are	going	to	be
worn.

surface-mount	device	(SMD)
One	possible	shape	of	an	IC	chip	or	other	component	such	as	a
resistor.	It	is	made	for	soldering	onto	a	flat	surface	without	any
legs	being	inserted	into	holes	on	a	circuit	board.

switch
A	component	that	either	disrupts	or	redirects	the	flow	of	current
in	a	circuit.

tactile	pushbutton
A	type	of	switch.	A	push-to-break	pushbutton	interrupts	the	flow
of	current	in	a	circuit	when	it	is	pressed.	A	push-to-make
pushbutton	does	the	opposite	and	interrupts	current	only	when	it
is	not	pressed.

two-dimensional	array
Data	stored	in	rows	and	columns,	like	in	a	spreadsheet.

variable
A	code	construct	that	holds	a	value	that	can	be	changed.	For
example,	the	variable	greenLED	stores	the	number	5.

voltage

The	difference	in	electrical	energy	between	two	points	in	a	circuit.
It	is	the	electrical	equivalent	of	water	pressure	in	pipes,	and	it	is
this	pressure	that	causes	a	current	to	flow	through	a	circuit.
Voltage	is	measured	in	volts	(V).

voltage	divider
A	circuit	that	outputs	a	fraction	of	the	input	voltage.	It	is	a	useful
circuit	for	translating	a	change	in	resistance	into	a	change	in
voltage.

WILEY	END	USER	LICENSE
AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	About the Author
	Introduction
	What Is an Arduino?
	What You Will Learn
	Parts You Will Need
	Tools You Will Need
	Software You Will Need
	Other Useful Materials
	What I Assume You Already Know
	How This Book Is Organised
	Conventions
	The Companion Website
	Reaching Out

	Adventure 1: Setting Up Your Arduino
	What You Need
	Downloading and Installing the Arduino Software on Your Computer
	Using Blink to Test That Everything Is Set Up Correctly
	Building an LED Circuit
	Further Adventures with Arduino

	Adventure 2: Reading from Sensors
	What You Need
	Adding More LEDs
	Printing Messages to the Computer
	Reading Data from a Potentiometer
	Making Decisions in Code
	Building a Status Message Sign
	Further Adventures with Arduino

	Adventure 3: Working with Servos
	What You Need
	Understanding Different Types of Motors
	Controlling a Servo with Arduino
	Repeating the Same Thing Over and Over
	Digital Input with a Push Button
	Building a Combination Safe
	Further Adventures with Arduino

	Adventure 4: Using Shift Registers
	What You Need
	Organising Your Code
	Getting More Outputs with Shift Registers
	Building Your Name in Lights
	Further Adventures with Shift Registers

	Adventure 5: Playing Sounds
	What You Need
	Making a List
	Making Noise
	Building an Augmented Wind Chime
	Further Adventures with Sound

	Adventure 6: Adding Libraries
	What You Need
	Analogue Out
	Capacitive Sensing
	Building a Crystal Ball
	Further Adventures with Libraries

	Adventure 7: Working with the Arduino Leonardo
	What You Need
	Introducing the Arduino Leonardo
	Sensing Light
	Building a Game Controller
	Further Adventures with the Leonardo

	Adventure 8: Working with the Lilypad Arduino USB
	What You Need
	Introducing the Lilypad Arduino USB
	Getting Clever with Arrays
	Passing Data Between Functions
	Building a POV Hoodie
	Further Adventures with the Lilypad

	Adventure 9: The Big Adventure: Building a Marble Maze Game
	What You Need
	Part One: Scoring Points
	Part Two: Designing Your Maze Game
	Part Three: Writing the Code
	Part Four: Building the Maze Game
	Further Adventures: Continuing Your Adventures with Arduino

	Adventure A: Where to Go From Here
	More Boards, Shields, Sensors and Actuators
	On the Web
	Books

	Adventure B: Where to Get Tools and Components
	Starter Kits
	Brick-and-Mortar Stores
	Online Stores

	Glossary
	End User License Agreement

