
T E C H N O L O G Y I N A C T I O N ™

Arduino Software
Internals

A Complete Guide to How Your
Arduino Language and
Hardware Work Together
—
Norman Dunbar

Arduino Software
Internals

A Complete Guide to How Your
Arduino Language

and Hardware Work Together

Norman Dunbar

Arduino Software Internals: A Complete Guide to How Your Arduino
Language and Hardware Work Together

ISBN-13 (pbk): 978-1-4842-5789-0 ISBN-13 (electronic): 978-1-4842-5790-6
https://doi.org/10.1007/978-1-4842-5790-6

Copyright © 2020 by Norman Dunbar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5789-0. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Norman Dunbar
Rawdon, West Yorkshire, UK

https://doi.org/10.1007/978-1-4842-5790-6

This book is dedicated to my wife, Alison, who sometimes
allows me to have some time to myself, programming,

attempting to build things (with or without “Internet of”),
and writing notes, articles, and/or this book.

Another person, to whom I am grateful, is Alison’s late
maternal grandmother, Minnie Trees (yes, I did call her

Bonsai!), who gifted me an Arduino Duemilanove starter kit
and rekindled my long-lost (for over 35 years) interest in

building things with electronics.

The book is also dedicated to the myriad of people and
companies or organizations around the world who freely
give their time and skills to produce open source software

and hardware, for the benefit of others or just for fun.

If I may paraphrase the words of Isaac Newton, I too stand
on the shoulders of giants, so here’s to the giants, the little

people, and all the medium-sized ones too, who may or may
not become giants themselves. Let’s hope the fun never stops.

Finally, my own motto is Don’t think! Find out!
Hopefully this book will help you do exactly that.

v

Table of Contents

Chapter 1: Introduction���1

1.1. Arduino Installation Paths ..2

1.2. Coding Style ...4

1.3. The Arduino Language ...6

1.4. Coming Up ..6

Chapter 2: Arduino Compilation ���9

2.1. Preferences.txt ...9

2.1.1. Using an ICSP for All Uploads ..12

2.1.2. Change the Action of Home and End Keys...14

2.1.3. Setting Tab Stops ...15

2.2. Globally Defined Paths ...16

2.3. Boards.txt ...18

2.3.1. Arduino Uno Example ..18

2.4. Platform.txt ..28

2.4.1. Build Recipes ...29

2.4.2. Pre- and Post-build Hooks ...34

2.5. Programmers.txt ..36

About the Author ��xv

About the Technical Reviewer ��xvii

Preface ��xix

vi

2.6. Compiling a Sketch ..39

2.6.1. Arduino Sketch (*.ino) Preprocessing ..39

2.6.2. Arduino Sketch (*.ino) Build ...41

2.7. The Arduino main() Function ..44

2.8. Header File Arduino.h ...47

2.8.1. Header File avr\pgmspace.h ..49

2.8.2. Header File avr\io.h ...49

2.8.3. Header File avr\interrupt.h ..52

2.8.4. Header File binary.h ...53

2.8.5. Header File WCharacter.h ..55

2.8.6. Header File WString.h ..56

2.8.7. Header File HardwareSerial.h ..56

2.8.8. Header File USBAPI.h...57

2.8.9. Header File pins_arduino.h..57

2.9. The init() Function ..59

2.9.1. Enabling the Global Interrupt Flag ...59

2.9.2. Enabling Timer/counter 0 .. 60

2.9.3. Timer/counter 0 Overflow Interrupt ...63

2.9.4. Configuring Timer/counter 1 and Timer/counter 2 67

2.9.5. Initializing the Analogue to Digital Converter70

2.9.6. Disabling the USART ..72

Chapter 3: Arduino Language Reference ��73

3.1. Digital Input/Output ..75

3.1.1. Function pinMode() ..75

3.1.2. Function digitalRead()..84

3.1.3. Function digitalWrite() ...87

Table of ConTenTsTable of ConTenTs

vii

3.2. Analogue Input/Output ...90

3.2.1. Function analogReference()...90

3.2.2. Function analogRead() ...93

3.2.3. Function analogWrite() ..97

3.3. Advanced Input/Output...104

3.3.1. Function tone() ..104

3.3.2. Function noTone() ..119

3.3.3. Function pulseIn() ..122

3.3.4. Function pulseInLong() ..130

3.3.5. Function shiftIn()..134

3.3.6. Function shiftOut() ...137

3.4. Time ...140

3.4.1. Function delay() ...141

3.4.2. Function delayMicroseconds() ...147

3.4.3. Function micros() ...151

3.4.4. Function millis() ...154

3.5. Interrupts ...157

3.5.1. Function interrupts() ..157

3.5.2. Function noInterrupts() ..158

3.5.3. Function attachInterrupt() ..158

3.5.4. Function detachInterrupt() ...169

3.6. Bits and Bobs ...171

3.6.1. Macro bit() ...171

3.6.2. Macro bitClear() ...173

3.6.3. Macro bitRead() ...173

3.6.4. Macro bitSet() ..174

Table of ConTenTsTable of ConTenTs

viii

3.6.5. Macro bitWrite() ...174

3.6.6. Macro highByte() ...175

3.6.7. Macro lowByte() ..175

3.6.8. Macro sbi() ...176

3.6.9. Macro cbi() ..177

Chapter 4: Arduino Classes ��179

4.1. The Print Class ...179

4.1.1. Class Members ..182

4.1.2. Using the Print Class ...184

4.2. The Printable Class ..189

4.2.1. An Example Printable Class ...191

4.3. The Stream Class ...195

4.3.1. Class Members ..197

4.4. The HardwareSerial Class ..205

4.4.1. Interrupt Handlers ...206

4.4.2. Class Functions and Macros ..212

4.5. The String Class ...242

Chapter 5: Converting to the AVR Language �������������������������������������245

5.1. Introduction ..246

5.2. Numbering Systems ...247

5.2.1. Decimal Numbering ...247

5.2.2. Binary Numbering..248

5.2.3. Hexadecimal Numbering ...248

5.3. Binary Logical Operations ..250

5.4. NOT ..250

5.5. AND ..251

5.6. OR ..251

Table of ConTenTsTable of ConTenTs

ix

5.7. XOR ..252

5.8. Replacing the Arduino Language ...253

5.8.1. The ATmega328P Pins and Ports ...253

5.9. Replacing pinMode() ..257

5.10. Replacing digitalWrite() ..260

5.10.1. Enabling Internal Pullup Resistors ...263

5.10.2. Bit Twiddling ..263

5.11. Replacing digitalRead() ..265

5.11.1. Toggling Output Pins ..267

5.11.2. Installing digitalToggle() ..269

Chapter 6: Alternatives to the Arduino IDE ���������������������������������������273

6.1. PlatformIO ..274

6.1.1. Installing PlatformIO Core ..274

6.1.2. Testing PlatformIO Core ...276

6.1.3. Burning Bootloaders ..299

6.1.4. PlatformIO in an IDE ..299

6.1.5. PlatformIO Home ...305

6.1.6. PlatformIO IDE ...308

6.2. Arduino Command Line ..315

6.2.1. Obtaining the Arduino CLI ..316

6.2.2. Installing ..316

6.2.3. Configuring the CLI ..318

6.2.4. Creating Sketches ...320

6.2.5. Installing Platforms ...323

6.2.6. Compiling Sketches ...324

6.2.7. Uploading Sketches ...327

6.2.8. Uploading Sketches with an ICSP ..329

Table of ConTenTsTable of ConTenTs

x

6.2.9. Burning Bootloaders ..333

6.2.10. Serial Usage ..338

Chapter 7: ATmega328P Configuration and Management ����������������341

7.1. ATmega328P Fuses ..342

7.1.1. Low Fuse Bits ..343

7.1.2. Low Fuse Factory Default ..345

7.1.3. Arduino Low Fuse Settings ..346

7.1.4. High Fuse Bits ...347

7.1.5. High Fuse Factory Default ...349

7.1.6. Arduino High Fuse Settings ...350

7.1.7. Extended Fuse Bits ..351

7.1.8. Extended Fuse Factory Default ..352

7.1.9. Arduino Extended Fuse Settings ..352

7.2. Brown-Out Detection ...352

7.3. The Watchdog Timer ...355

7.3.1. Watchdog Timer Modes of Operation ...355

7.3.2. Amended Sketch setup() Function ...358

7.3.3. Watchdog Timer Reset ...359

7.3.4. The Watchdog Timer Control Register ...360

7.3.5. Enabling the Watchdog Timer ..364

7.3.6. Setting the Watchdog Timer Timeout ...365

7.3.7. Disabling the Watchdog Timer ...370

7.3.8. Putting the AVR to Sleep ..372

7.3.9. Sleep Modes ..377

7.3.10. Analogue Comparator ..394

7.4. Power Reduction ..397

7.4.1. Power Consumption ..397

7.4.2. Power Reduction Register ...401

Table of ConTenTsTable of ConTenTs

xi

7.4.3. Saving Arduino Power ...403

7.4.4. The Power Functions ...406

7.5. Bootloaders ..408

7.5.1. Flash Memory ..408

7.5.2. Lock Bits ..409

7.5.3. Installing the Uno (Optiboot) Bootloader ..413

7.5.4. Optiboot Bootloader Operation ..415

Chapter 8: ATmega328P Hardware: Timers and Counters ����������������417

8.1. Timer/Counters ..417

8.1.1. Timer/Counter 0 (8 Bits)...419

8.1.2. Timer/Counter 1 (8, 9, 10, and/or 16 Bits) ..420

8.1.3. Timer/Counter 2 (8 Bits)...421

8.1.4. Timer/Counter Clock Sources ..423

8.1.5. Timer/Counter Operating Modes ..425

8.1.6. Clear Timer on Compare Match Mode ...436

8.1.7. PWM Modes ...444

8.1.8. Too Much to Remember? Try AVRAssist ..479

8.2. Counting ...480

8.2.1. Setting External Counting ..481

8.2.2. Counter Example ...482

8.3. Input Capture Unit ..487

Chapter 9: ATmega328P Hardware: ADC and USART ������������������������493

9.1. The Analogue Comparator ..493

9.1.1. Reference Voltage ..495

9.1.2. Sampled Voltage ..495

9.1.3. Digital Input ...495

9.1.4. Enable the Analogue Comparator ..496

Table of ConTenTsTable of ConTenTs

xii

9.1.5. Select Reference Voltage Source ..496

9.1.6. Select Sampled Voltage Source Pin ...497

9.1.7. Sampled Voltage Summary ...498

9.1.8. Comparator Outputs ..499

9.1.9. Comparator Example ...500

9.2. Analogue to Digital Converter (ADC) ...504

9.2.1. ADC Setup and Initiation ..505

9.2.2. Noise Reduction ..518

9.2.3. Temperature Measurement ...519

9.2.4. ADC Example ...522

9.3. USART ..528

9.3.1. Baud Rates ..529

9.3.2. Double Speed ..530

9.3.3. Baud Rate Calculations ...530

9.3.4. Baud Rate Errors ...532

9.3.5. What Is a Frame? ...533

9.3.6. Parity ...534

9.3.7. Interrupts ...535

9.3.8. Initializing the USART ..536

9.3.9. USART Checks ...544

9.3.10. USART Example ...547

Appendix A: Arduino Paths ���557

Appendix B: ATmega328P Pinout ���561

Appendix C: ATmega328P Power Restrictions����������������������������������563

C.1. Power in Total ..564

C.2. Power per Port ...564

C.3. Power per Pin...564

Table of ConTenTsTable of ConTenTs

xiii

Appendix D: Predefined Settings ��565

D.1. Global Interrupts ..565

D.2. Timer/counter 0 ... 565

D.3. Timer/counters 1 and 2 .. 566

D.4. USART ..567

D.5. Analogue to Digital Converter ..568

Appendix E: ADC Temperature Measuring ��569

Appendix F: Assembly Language: Briefly ���579

Appendix G: Smallest Blink Sketch? ���583

Appendix H: NormDuino ��589

Appendix I: No ICSP? No Problem! ���595

I.1. ArduinoISP Sketch ...595

I.2. Connections ..596

I.3. Choose Your Programmer ...598

I.4. Burn the Bootloader ..598

Appendix J: Breadboard 8 MHz Board Setup ������������������������������������599

Appendix K: AVRAssist ���603

K.1. Components ...603

K.2. In Use ...603

Index ���607

Table of ConTenTsTable of ConTenTs

xv

About the Author

Norman Dunbar is an Oracle database administrator. Norman has had a

long-running relationship with electronics since childhood and computers

since the late 1970s, and the Arduino was a perfect marriage of the two

interests. With a love of learning new things, examining and explaining the

Arduino Language and the hardware became a bit of a hobby, and as piles

of notes expanded, Norman has now decided to publish his work.

xvii

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, New York. His interests, deeply rooted in DIY

and open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to contribute to build things that improve quality of

life. You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=

xix

Preface

If I have seen further it is by standing on ye sholders of Giants.

—Sir Isaac Newton (1643–1727), Letter to Robert Hooke

There are many books which discuss the abilities of the Arduino hardware

and how best the maker can use this to their benefit. I have many of them

in my bookcase, and digital versions on my phone and tablet – in case I

get bored with life and need something interesting to read. Many of these

books explain what the hardware does; and some even dig deeper into the

hardware to explain how, in fairly easy to understand terms, it does it.

There are no books which take a similar view of the Arduino software.

There is now! This book takes you on a journey (why do we always have

to be on a journey these days?) into the world of Arduino sketches and

the various files involved in the compilation process. It will delve deep

into the supplied software and look at the specific parts of the Arduino

Language which deal with the underlying hardware, the ATmega328P (or

ATmega328AU) microcontrollers – henceforth referred to as ATmega328P.

Once the Arduino Language has been explained, the book takes a short

look at how you can strip away the Arduino hand holding and get down

and dirty with the naked hardware. It’s not easy, but equally it’s not too

difficult. Don’t worry, this is still the C/C++ language, there’s no assembly

language required. Perhaps!

1© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_1

CHAPTER 1

Introduction
The Arduino is a great system for getting people into making with

electronics and microcontrollers. I was reintroduced to a long-lost hobby

when I was gifted an Arduino Duemilanove (aka 2009) by my wife’s late

grandmother, and since then, I’ve had lots of fun learning and attempting

to build things. I’ve even built a number of Arduino clones based on just

the AVR microcontroller and a few passive components – it’s cheaper than

fitting a new Arduino into a project!

Much has changed over the intervening years. LEDs used to cost about

£10 each and came in one color, red. These days I can get a pack of 100

LEDs for about £2 in various different colors. Even better, my old faithful

Antex 15W soldering iron still worked, even after 35 years.

The Arduino, and I’m concentrating on either the Uno version 3 or the

Duemilanove here, as those are two of the ones I’ve actually purchased

(or been given), is based on an Atmel ATmega328 microcontroller. On

the Uno it’s the Atmel ATmega328P-AU, while the Duemilanove uses the

ATmega328P-PU.

Roughly, the only difference between the two is the UNO’s AU version is

a surface mount, while the PU version is a 28-pin through- hole device. They

are/should be identical to program, although the AU version does have two

additional analogue pins that are not present on the ATmega328P-PU.

Occasionally though, I may mention in passing the Mega 2560 R3 – as

I have a cheap Chinese clone of one of these – which is based on the Atmel

ATmega2560 microcontroller.

2

Some older Arduino boards had the ATmega168 microcontroller,

which also was a 28-pin through-hole version, but it only had 16 Kb of flash

memory as opposed to the 32 Kb in the later 328 chips. The EEPROM and

RAM size is also half that of the ATmega328P devices.

The Arduino was designed for ease of use, and to this end, the software

and the “Arduino Language” hides an awful lot from the maker and

developer. Hopefully, by the time you have finished reading this book, you

will understand more about what it does and why and, when necessary,

how you can bypass the Arduino Language (it’s just C or C++ after all)

and use the bare metal AVR-specific C or C++ code instead. Doing this

can lead to more space for your code, faster execution, and lower power

requirements – some projects can be run for months on a couple of

batteries.

1.1. Arduino Installation Paths
The version of the Arduino software used in this book is 1.8.5.

I used an installation on Windows 7 and another on Linux while writing

this book although Linux is my operating system of choice. Both versions

were installed by downloading the zip file version, as opposed to the

appropriate installer, and extracting it. The locations I used are as follows:

• On Linux – /home/norman/arduino-1.8.5

• On Windows 7 – c:\users\norman\arduino-1.8.5

Within this book, there are references to various files provided by the

Arduino software. Because of the way I’ve installed my software and the

fact that the installer versions of the download may install to a different

location, all paths used in this book will be relative to the preceding

locations.

Chapter 1 IntroduCtIon

3

Paths used will be as follows:

• $ARDBASE is the preceding given location where I’ve

extracted the zip file – /home/norman/arduino-1.8.5.

This is where you will find the file arduino.exe on

Windows or arduino on Linux which is the Arduino

IDE.

• $ARDINST is the location of the main Arduino files for

AVR microcontrollers. This is $ARDBASE/hardware/

arduino/avr and is where the various cores,

bootloaders, and so on can be found, beneath this

directory. On my Linux system, this is the path /home/

norman/arduino- 1.8.5/hardware/arduino/avr.

• $ARDINC is the location of many of the *.h header files

and most of the *.c and *.cpp files that comprise the

Arduino Language for AVR microcontrollers. This is

$ARDINST/cores/arduino. The expanded path is /

home/norman/arduino-1.8.5/hardware/arduino/avr/

cores/arduino on my Linux system.

• $AVRINC is where the header files for the version of the

AVR Library provided by the Arduino IDE are located.

The Arduino Language (eventually) compiles down to

calling functions within the AVR Library (henceforth

referred to as AVRLib), and the header files are to be

found in location $ARDBASE/hardware/tools/avr/

avr/include. The fully expanded path here is /home/

norman/arduino-1.8.5/hardware/tools/avr/avr/

include.

Chapter 1 IntroduCtIon

4

So, if you see $ARDINC/Arduino.h mentioned, you will know that this

means the file

• /home/norman/arduino-1.8.5/hardware/arduino/

avr/cores/arduino/Arduino.h on Linux

• c:\users\norman\arduino-1.8.5\hardware\arduino\

avr\cores\arduino\Arduino.h on Windows

You can see why I’m using abbreviations now, can’t you?

In addition, most of the file paths I refer to will be in Linux format with the

“/” as a path separator, unless I’m specifically referring to a Windows file, in

which case the file’s path will use the “\” Windows path separator character.

If you wish to examine the files that I am discussing in the book on

your system, see Appendix A for a couple of useful tips on how to avoid

always having to type the full paths.

1.2. Coding Style
Code listings in the book will be displayed as follows:

#define ledPin LED_BUILTIN

#define relayPin 2

#define sensorPin 3

...

void loop() ①
{

 // Flash heartbeat LED.

 digitalWrite(ledPin, HIGH);

 delay(100);

 digitalWrite(ledPin LOW); ②

 ...

}

Chapter 1 IntroduCtIon

5

 ① This is a callout and attempts to bring your attention

to something in the code which will be described

beneath the code listing in question.

 ② This is another callout – there can be more than one.

In the book’s main text, where you see words formatted like USCR0A or

PORTB, then these are examples of Arduino pin names, AVR microcontroller

registers, bits within those registers, and/or flags within the ATmega328P

itself, as well as references to something listed in the data sheet for the

device. Where code listings are being explained, then variables from the

code will be shown in this style too.

Arduino pin numbers will be named Dn or An as appropriate. This is

slightly different from the normal usage of the digital pins, which normally

just get a number. I prefer to be a little more formal and give the digital

pins their full title. <grin>

 tips are exactly that. they give you a clue or information about

something that may not be too well known in the arduino world, but
which might be incredibly useful (or, maybe, just slightly useful!).

 this is a note. It brings your attention to something that may

require a little more information. It could be useful to pay attention to
these notes. Maybe!

 Cautions are there to highlight potential problems with

something in the software, or just something that the data sheet
needs you to take extra care over. there may be a possibility of
damage to your arduino if you don’t pay particular attention.
occasionally, the data sheet warns against doing something – so it’s
best not to do what it says not to do!

Chapter 1 IntroduCtIon

6

1.3. The Arduino Language
I should perhaps point out that there isn’t really such a thing as the

Arduino Language. I may refer to it frequently within the pages of this

book, but technically, it doesn’t exist. What it is is simply an abstraction of

the C/C++ language, written in such a way as to make life easier for people

learning to make stuff with their Arduino. Which of the following is easier

to understand?

digitalWrite(13, HIGH);

or

PORTB |= (1 << PORTB5);

The first is definitely easier to understand; however, the latter is by far

the quicker of the two as it just does what it says – it sets pin 5, on PORTB

of the ATmega328P, to HIGH. The name, digitalWrite(), appears to be a

different language, but it isn’t; it’s that abstraction away from plain AVR

C/C++ which makes life easier for us all.

1.4. Coming Up
In Chapter 2, I explain how a sketch gets massaged into a proper C++

program and how the libraries used in the sketch are incorporated into it.

Following the brief overview of how compiling a sketch operates, I then

document the Arduino’s main() function, the various header files that it

includes, and the initialization carried out by the init() function. These

initializations are part of every sketch that you compile, so it helps if you

know what the Arduino system is doing, in the background, for you.

In Chapter 3, I explain about the features and facilities of the Arduino

Language. This will include all the commands such as pinMode(),

digitalWrite(), and so on. I talk through all the functions that relate

Chapter 1 IntroduCtIon

7

to the Arduino, with particular emphasis on the code that applies to the

standard Arduino boards, those based on the ATmega328P family of AVR

microcontrollers.

Chapter 4 looks into a number of the C++ classes (or objects) which

are supplied with, and used by, the Arduino Language. The classes of

main interest here are the HardwareSerial class which provides us with

the serial interface and its commands like Serial.begin() or Serial.

println(). However, the HardwareSerial class is not fully self-contained,

so the other, lesser known, supporting classes are also explained in this

chapter.

Chapter 5 takes a brief look at how to cast off the bonds of the Arduino

Language and delves into the brazen world of AVR C++ itself, where you

bypass the likes of pinMode() calls and talk to the AVR microcontroller in

something akin to its own language. In here you will learn how you can

set the pinMode() for up to eight pins with a single instruction or how to

digitalWrite() those same eight pins, again with one instruction, and

other efficient methods of communication with your board.

Chapter 6 demonstrates a couple of alternatives to the Arduino

IDE. Some people don’t get on with it. I myself have a sort of love-hate

relationship with it as I find the editor a little clumsy and slow for my

liking.

In this chapter, I will show you how you can write code for Arduino

boards in both the Arduino Language and plain AVR C/C++ code using

the “PlatformIO” system and, also, give you a sneak preview of the

forthcoming “Arduino Command-Line Interface (CLI).”

The Arduino Command-Line Interface is to be the basis for a

forthcoming release of the Arduino IDE, but you can also use it in make

files, the command-line environment, and so on. It does not require you to

install Java as the current IDE does.

Chapter 7 is where I delve deeper into some features of the

ATmega328P which, while not strictly software, are fundamental to

configuring the ATmega328P how you might like it and not as the Arduino

Chapter 1 IntroduCtIon

8

designers, however talented they may be, have decided. In this chapter, I’ll

be looking at the ATmega’s fuses, power reduction modes, sleep modes,

and similar features which determine how the ATmega328P works, but not

necessarily what it does.

Chapters 8 and 9 are where I delve deeper into some features of the

ATmega328P which, while not strictly software, are either important

in understanding the Arduino Language or just useful to know about.

Hardware features such as the Analogue Comparator, timer/counters,

Analogue to Digital Converter (ADC), and Universal Synchronous/

Asynchronous Receiver/Transmitter (USART) are covered in some detail.

Finally, in the appendices, there are a number of topics that may be

of interest, or are kept together in one place for reference. In here you

will find all the helpful reference material you might need such as pinout

diagrams and potentially useful (or unusual) code to upload to your

Arduino.

There’s even an index!

Without any further ado, let’s dive in to what happens when you want

to compile a sketch in the Arduino IDE.

Chapter 1 IntroduCtIon

9© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_2

CHAPTER 2

Arduino Compilation
This chapter is all about what happens when you compile an Arduino

sketch and how the various header files are used. Hopefully, by the

time you have read (and understood) this chapter of the book, you’ll

have a much better idea of what happens during the compilation of an

Arduino sketch. However, before we dive into the gory details of a sketch’s

compilation, we need to understand a bit about some of the text files that

live in and around the $ARDINST directory.

These files are used to set up the IDE’s menu options and to define

the AVR microcontroller and Arduino board to be used. Additionally, the

IDE needs to know how to compile and upload sketches, and with lots of

different boards nowadays, not just those with AVR microcontrollers, these

numerous text files help the IDE configure the build tools and so on, for

the specific board chosen from the Boards menu in the IDE.

Once we have discussed the various text files, we can then get down

and dirty in the compilation process and also take a look at the hidden C++

files that the Arduino environment keeps well away from us.

2.1. Preferences.txt
The file preferences.txt holds all the preferences for the Arduino IDE

and under recent versions of the IDE is no longer found within the location

of the various IDE files, but in a separate area so that future upgrades to the

IDE do not overwrite any changes that you make to the file. This explains

10

why, when you configure the IDE on one version, an upgrade will pick up

your preferences without you having to reapply them all every time you

upgrade.

You should find the file in one of the following locations, however,

as the file is created when you first run the IDE. If you have not yet done

so, there will not be a preferences.txt file to be found. The initial set of

defaults is defined in the file $ARDINST/lib/preferences.txt so those

are the ones that will get written to the preferences.txt file, in the

appropriate location, on first execution of the IDE. You may also delete the

preferences.txt file if your edits have rendered it unusable, and it will be

recreated by the IDE next time you open it.

You could edit $ARDINST/lib/preferences.txt to set your own

preferred default settings, but as the file will be overwritten by IDE

updates, it’s probably not a good option to consider.

The one thing about looking in $ARDINST/lib/preferences.txt is

the fact that everything is commented nicely to advise you as to what

the options are used for. The file which the IDE actually uses is not

commented at all. If you need to know what you are about to change, look

at the $ARDINST/lib/preferences.txt file but change the one that is in

the correct location for your system. The file used by the IDE is found in a

number of places, depending on your operating system of choice:

• On Linux – Look in /home/<YOUR_NAME>/.arduino15.

• On Windows 7 – Look in C:\Users\<YOUR_NAME>\

AppData\Local\Arduino15. I believe that on older

versions of Windows, the file can be found in c:\

Documents and Settings\<YOUR_NAME>\Application

Data\Arduino or even C:\Program Files (x86)\

Arduino\lib which I believe is where 32-bit

applications get installed on 64-bit machines.

Chapter 2 arduino Compilation

11

• On MacOS – I believe you can look in /Users/<YOUR_

NAME>/Library/Arduino, but I don’t have access to a

Mac to check, sorry.

The easiest way to determine the location of the preferences.txt file

is to open the IDE and select File ➤ Preferences; and on the “Settings”

tab, at the bottom, you will see the full path to the preferences.txt file

documented. Take heed of the warning to only edit the file when the IDE is

closed – the IDE writes to the file when you shut it down and will overwrite

any changes you made if the IDE was open when you changed the file.

The preferences.txt file contains all the configuration changes

that you made using the IDE. The changes you make here will be saved

between IDE upgrades. There are some additional preference changes that

you need to make by editing the preferences file directly as the IDE doesn’t

“surface” those options. A couple of examples follow.

 if you have your preferences nicely set up, beware if you
subsequently install and use the new arduino command-line utility
arduino-cli (see Chapter 6, Section 6.2, “Arduino Command
Line,” for details). it uses the same location for all its files and will
pick up whatever preferences you have configured for the ide.

 if, by some chance, you make a mistake editing the file and
things stop working (properly), you can reset everything to defaults by
simply deleting the preferences.txt file while the ide is closed
and running the ide again.

Chapter 2 arduino Compilation

12

2.1.1. Using an ICSP for All Uploads
Are you using an ICSP (In-Circuit System Programmer) to do all your

uploads? Do you get fed up having to configure it in every sketch you write

and try to upload? Wouldn’t it be nice to tell the IDE that you are always

using an ICSP? Try this:

• Close the IDE if it is open.

• Edit the preferences.txt file in your favorite text

editor. (No, do not use Microsoft Word!)

• Search for “upload.using”. It should currently look

like this:

upload.using=bootloader

• Change it to use the name of the device you are using.

The device name you change it to must match one of

the device names in the file $ARDINST/programmers.

txt. In my case, I use a USB Tiny clone, from eBay, and

I set my option to the following:

upload.using=USBtinyISP

• Save the file.

With this done, all sketches will now default to using the ICSP rather

than the bootloader. This means that I no longer have to worry about

remembering to change the programmer in the IDE, and, as a bonus, I

will always overwrite the bootloader area and regain the use of that part of

the Flash RAM for my own use. My Uno board will have an extra 512 bytes

(1.5625% of the total) of flash for my programs, while my Duemilanove will

regain an extra 2 Kb or 6.35% from the bootloader space.

Chapter 2 arduino Compilation

13

 uploading with any iCSp device does still require you to press the
Shift key when you click the upload button or to select Sketch ➤
upload using programmer, even with this preference set.

I can still set the IDE to use a bootloader though. I just have to

remember to select it from the Tools menu when I wish to create a sketch

for a system that I cannot, or don’t want to, use the ICSP for uploads.

 What’s an iCSp? normally beginners would use a uSB cable
between the computer and the arduino to upload programs. however,
look at your arduino and see if you can see a set of six pins in two
rows of three. my duemilanove has them beneath the reset switch.
those pins are where an iCSp can be plugged in to program the
arduino. using one of these frees up the space taken by the
bootloader program and gives you a bit more program space.

unfortunately, it does prevent the arduino from talking back to your
computer using the Serial monitor facility – tools ➤ Serial monitor.
You will need an iCSp if you have to replace the atmega328p on your
board, and it comes with the default fuse settings. You will need to
purchase one with an uno bootloader already programmed in or use
an iCSp to program your own.

my iCSp is from an eBay seller “finetech007” which no longer exists.
there are lots of them if you search for “usbtiny isp” – here’s one
example [www.ebay.co.uk/itm/USBTiny-USBtinyISP-AVR- ISP-
programmer-for-Arduino-bootloader-Meag2560-uno-r3- CF/
191780957944?epid=1138358692&hash=item2ca7092ef8:g:4-
UAAOSwhvpd-fY7], identical to mine. (Sorry about the length of that url!)

Chapter 2 arduino Compilation

http://www.ebay.co.uk/itm/USBTiny-USBtinyISP-AVR-ISP-programmer-for-Arduino-bootloader-Meag2560-uno-r3-CF/191780957944?epid=1138358692&hash=item2ca7092ef8:g:4-UAAOSwhvpd-fY7
http://www.ebay.co.uk/itm/USBTiny-USBtinyISP-AVR-ISP-programmer-for-Arduino-bootloader-Meag2560-uno-r3-CF/191780957944?epid=1138358692&hash=item2ca7092ef8:g:4-UAAOSwhvpd-fY7
http://www.ebay.co.uk/itm/USBTiny-USBtinyISP-AVR-ISP-programmer-for-Arduino-bootloader-Meag2560-uno-r3-CF/191780957944?epid=1138358692&hash=item2ca7092ef8:g:4-UAAOSwhvpd-fY7
http://www.ebay.co.uk/itm/USBTiny-USBtinyISP-AVR-ISP-programmer-for-Arduino-bootloader-Meag2560-uno-r3-CF/191780957944?epid=1138358692&hash=item2ca7092ef8:g:4-UAAOSwhvpd-fY7

14

2.1.2. Change the Action of Home and End Keys

 i’m reliably informed that this applies to apple mac users. it
certainly has no effect on Windows 7 or linux.

In the editor, when you press the Home key, the caret jumps to the very

start of the sketch. When you press the End key, it jumps to the very end of

the sketch. Apparently, this gets quite annoying when you expect the caret

to be positioned at the start or end of the line you are editing. This sort of

thing definitely needs changing!

There isn’t an option in File ➤ Preferences which enables this action

to be changed so that the cursor goes to the start or end of the current line

and not to the start or end of the current sketch. The preferences.txt file

must be edited directly:

• Close the IDE, if it is open.

• Edit the preferences.txt file.

• Look for the following setting:

editor.keys.home_and_end_beginning_end_of_doc = true

• Change it to the following and save the file:

editor.keys.home_and_end_beginning_end_of_doc = false

When you next open the IDE and load a sketch, the Home and End

keys should now do your bidding.

Chapter 2 arduino Compilation

15

 issue 3715 on the Github issues page for the ide has some
interesting details about this preference. it only exists from version
1.6.6 onwards. prior to that, it was called editor.keys.home_
and_end_travel_far.

in the first incarnations of version 1.6.6, the setting was coded
backward. Setting it to false meant that the home and end keys
sent the cursor to the start or end of the document. You had to set it
to true to get it to go to the beginning or end of the current line.

Since august 28, 2015, that was fixed; and it now works as it should.
You can find all the details at https://github.com/arduino/
Arduino/issues/3715.

2.1.3. Setting Tab Stops
Now, you would think that an editor, for writing code, would at least allow

you the ability to adjust the width of the tab stops and whether or not they

are to be converted into spaces. Not so the Arduino IDE!

All is not lost, as we do have that ability, but it involves editing the

preferences.txt file again:

• Close the IDE if you currently have it open.

• Edit the preferences.txt file.

• Look for the following two lines:

editor.tabs.expand=true

editor.tabs.size=2

Chapter 2 arduino Compilation

https://github.com/arduino/Arduino/issues/3715
https://github.com/arduino/Arduino/issues/3715

16

• Change the second line as per the following:

editor.tabs.expand=true

editor.tabs.size=4

• Save the file.

This causes tabs to indent four characters from the default of two

characters. I don’t know about you, but I find two-character indents quite

unreadable when looking at the structure of a sketch. I use four for just

about everything I do. The preceding first line, which was not changed,

determines if the IDE will convert tab characters into spaces. When set

to true, the IDE will convert tabs to spaces, while false will leave the tab

characters as they are, unchanged.

This makes editing in the IDE a little more comfortable, in my opinion.

2.2. Globally Defined Paths
Before the various text files are read, the Arduino IDE defines some

properties defining various paths and others for itself. These properties are

global and can be used within any of the other configuration files, including

your own. These globally defined properties are listed in Table 2- 1.

Chapter 2 arduino Compilation

17

These global settings may be used in platform.txt, boards.txt, or,

perhaps, but not very likely, programmers.txt. You may also use these

paths in your amendments to the configuration files or in the various

“local” versions that you create.

Table 2-1. Globally defined properties

Property Name Description

{runtime.hardware.path} the absolute path of the hardware directory which is the

folder containing the current platform.txt file.

{runtime.ide.path} the absolute path of the directory where the arduino (or

arduino.exe) application, the arduino ide, is found.

{runtime.ide.version} the version number of the arduino ide as a valid number.

each component of the version number will be converted

to use two digits. then all the dots are stripped out,

and finally, any leading zeros are removed leaving the

final value. For example, the arduino ide version 1.8.5

will become “01.08.05” which becomes “010805”

before finally being assigned as runtime.ide.

version=10805. ide versions prior to version 1.6.0 used

a single digit for the ide version number. For example,

version 1.5.6 was 156 as opposed to 10506.

{ide_version} Compatibility alias for runtime.ide.version.

{runtime.os} the operating system that the ide is currently executing

on. the values are “linux”, “windows”, and “macosx”.

Chapter 2 arduino Compilation

18

 Various configuration files can have a local version; boards.
txt, for example, may have boards.local.txt. this local version
allows you to make changes to the system configuration and not
have to reconfigure every time the arduino ide is updated.
unfortunately, not all of the configuration files have a local version –
programmers.txt is one that i have come across that doesn’t. See
https://github.com/arduino/Arduino/issues/8556 for
details, if you are interested.

2.3. Boards.txt
The $ARDINST/boards.txt file defines the various menu options for

different types of microcontroller devices. These options either will appear

on the Boards menu in the Arduino IDE or will be used when a specific

board is selected from that menu. The file is read, and the various options

are decoded and used by the IDE at startup. New boards can be added

quite simply, if desired, by editing this file. Let’s look inside at the entry for

the Arduino Uno.

2.3.1. Arduino Uno Example
The following is the complete listing of all entries for the Arduino Uno, in

the IDE version 1.8.5 – other releases, both older and potentially newer,

may be different:

uno.name=Arduino/Genuino Uno ①

uno.vid.0=0x2341 ②
uno.pid.0=0x0043

uno.vid.1=0x2341

Chapter 2 arduino Compilation

https://github.com/arduino/Arduino/issues/8556

19

uno.pid.1=0x0001

uno.vid.2=0x2A03

uno.pid.2=0x0043

uno.vid.3=0x2341

uno.pid.3=0x0243

uno.upload.tool=avrdude ③
uno.upload.protocol=arduino

uno.upload.maximum_size=32256

uno.upload.maximum_data_size=2048

uno.upload.speed=115200

uno.bootloader.tool=avrdude ④
uno.bootloader.low_fuses=0xFF

uno.bootloader.high_fuses=0xDE

uno.bootloader.extended_fuses=0xFD

uno.bootloader.unlock_bits=0x3F

uno.bootloader.lock_bits=0x0F

uno.bootloader.file=optiboot/optiboot_atmega328.hex

uno.build.mcu=atmega328p ⑤
uno.build.f_cpu=16000000L

uno.build.board=AVR_UNO

uno.build.core=arduino

uno.build.variant=standard

 ① Board name.

 ② This section defines identification settings used to

determine the board’s identity when it is plugged

into the USB port on your computer.

 ③ These settings define parameters used for uploading

compiled code to the board.

Chapter 2 arduino Compilation

20

 ④ Bootloader settings are listed in this section.

 ⑤ Various build options are specified here.

The Arduino Wiki at https://github.com/arduino/Arduino/wiki/

Arduino-IDE-1.5-3rd-party-Hardware-specification mentions, at least

for IDE version 1.5.3 which appears to be the most recently documented, that

This file contains definitions and meta-data for the boards sup-
ported. Every board must be referred through its short name,
the board ID. The settings for a board are defined through a set
of properties with keys having the board ID as prefix.

What it doesn’t mention is how the system is supposed to know that

“uno”, for example, refers to the Arduino/Genuino Uno device.

From the preceding listing, it is pretty obvious that the Uno’s short

name must be “uno” as that is the prefix in use for every entry in this

section of the file.

2.3.1.1. Board Identifier

The name parameter here identifies the board and defines what will be

displayed in the Boards menu in the IDE:

uno.name=Arduino/Genuino Uno

2.3.1.2. Identification Settings

This section’s settings help to identify a genuine Arduino Uno. When you

plug a device into a USB port, the device is queried to obtain a vendor and

product identifier. This helps the system load the correct drivers (mainly

Windows) or, on the very first time, to prompt you to load the appropriate

Chapter 2 arduino Compilation

https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification

21

drivers for the device. For the Uno, the following four pairs of vendors and

product identifiers are known to be genuine:

uno.vid.0=0x2341

uno.pid.0=0x0043

uno.vid.1=0x2341

uno.pid.1=0x0001

uno.vid.2=0x2A03

uno.pid.2=0x0043

uno.vid.3=0x2341

uno.pid.3=0x0243

In the settings:

• Vid is the vendor identifier.

• Pid is the product identifier for the specific vendor.

From the preceding text, we can clearly see two vendors – “0x2431”

and “0x2A03” – and the appropriate product identifiers to suit each

vendor. Bear in mind that it isn’t necessarily the actual manufacturer of

the Arduino board that is being identified; it is most likely to be the chip

that converts the data on the USB port into the correct format for the

microcontroller. Some Uno boards have another AVR microcontroller

taking care of the communications, while others have an FTDI chip – both

will register as different pids.

 Genuine boards, such as my own duemilanove, which use an
Ftdi chip for communications, will not necessarily be recognized as
the correct board. this is due to the Ftdi chip which uses a generic
pid and vid and is used by numerous different boards. however, this
is nothing to worry about.

Chapter 2 arduino Compilation

22

2.3.1.3. Upload Settings

When you click the upload button in the IDE, the settings defined in

this section of the boards.txt file are used to set various parameters as

desired, to enable proper communication with the currently chosen board:

uno.upload.tool=avrdude

uno.upload.protocol=arduino

uno.upload.maximum_size=32256

uno.upload.maximum_data_size=2048

uno.upload.speed=115200

To specify the tool to be used to carry out the upload, the upload.tool

parameter is used. In this example, the tool in use is the program named

avrdude. This tool is installed at the same time as the Arduino IDE.

The communications protocol to be used when uploading is defined

in the upload.protocol parameter, while the maximum Flash and

Static RAM (SRAM) sizes for the particular AVR microcontroller in use

are defined in upload.maximum_size and upload.maximum_data_size

parameters, respectively.

 the maximum size of an atmega328p’s Flash ram is 32,768
bytes, so why does upload.maximum_size only allow 32,256
bytes? it’s because the remaining 512 bytes are used for the
bootloader. the optiboot bootloader is 512 bytes in size, so that
amount of Flash ram needs to be reserved from the maximum
available.

Chapter 2 arduino Compilation

23

actually, the optiboot bootloader is only 500 bytes in size. You
can see this when you look at the start and end addresses in the
compilation listing file, $ARDINST/bootloaders/opitiboot/
optiboot_atmega328.lst, which are 7e00hex and 7FF3hex,
respectively. Subtracting gives 1F3hex which is 499decimal, but we need
to add one because we started counting from zero.

Communications will be carried out at the baud rate specified in

upload.speed. For this Uno example, that will be at 115,200 baud.

2.3.1.4. Bootloader Settings

This section of the boards.txt file defines various parameters to be used

when you choose Burn bootloader from the IDE menu.

It should be obvious (shouldn’t it?) that burning a bootloader will

require an In-Circuit System Programmer (ISCP) device as the AVR

microcontroller you are burning a bootloader into doesn’t yet have a

bootloader to allow uploading via the normal USB connection to the board!

 You should be very careful to ensure that you have selected the
correct board when burning a bootloader – on a good day, it will
simply fail to work. on a bad day, it will set the fuses to something
that might cause you some grief trying to unravel and get
reprogrammed. on a really bad day, it could convert your prized
arduino board into something resembling a brick.

okay, it’s probably not that bad, but you might end up with a need to
purchase a new atmega328p, and hopefully, it will be one that comes
complete with an uno bootloader burned in. otherwise, you’ll have to
do the bootloader burning exercise all over again.

Chapter 2 arduino Compilation

24

Yes, i admit it. i did brick an arduino board, so that’s how i know. it
was a digispark board with an attiny85 microcontroller, but i bricked
it anyway! investigation showed that i set the fuse to disable the
reSet pin so that it could be used as a normal i/o pin. no amount
of programming with a high-voltage programmer would rescue it, so
there must have been some other settings that i broke as well.

i still have the device, somewhere, and one day, i will find out what i
did wrong and, hopefully, fix it. perhaps.

Continuing to look at the standard settings for an Arduino Uno, we can

see the following settings:

uno.bootloader.tool=avrdude

uno.bootloader.low_fuses=0xFF

uno.bootloader.high_fuses=0xDE

uno.bootloader.extended_fuses=0xFD

uno.bootloader.unlock_bits=0x3F

uno.bootloader.lock_bits=0x0F

uno.bootloader.file=optiboot/optiboot_atmega328.hex

To specify the tool to be used to carry out the upload, the bootloader.

tool parameter is defined. In the case of the Uno we are looking at

here, the tool in use is the program named avrdude – the same as in the

preceding text for uploading compiled sketches.

As described in Chapter 7, Section 7.1, “ATmega328P Fuses,” the

AVR microcontroller has a number of fuses that can be utilized to set

various configurations of the AVR microcontroller itself. The bootloader.

low_fuses, bootloader.high_fuses, and bootloader.extended_fuses

parameters define the required hardware settings for the microcontroller

on the board.

Chapter 2 arduino Compilation

25

Finally in this section, the bootloader.file parameter defines which

of the many bootloaders supplied with the IDE is to be used for this board.

The Uno uses the file optiboot/optiboot_atmega328.hex which is to be

found in the $ARDINST/bootloader/ directory.

You can, if you wish, change the bootloader by either editing the

boards.txt file to change the appropriate parameter or duplicating an

existing section and changing the bootloader. The latter option is preferred.

It’s worth bearing in mind that any updates to the IDE will most likely

overwrite your changes to boards.txt, so how do we avoid this problem?

2.3.1.4.1. Boards.local.txt

Since release 1.6.6 of the Arduino IDE, a new file has been introduced,

boards.local.txt, in which you can define various parameters that

you wish to use instead of those in the boards.txt file. To continue the

preceding example of changing the bootloader, you could create the file, if

it doesn’t exist, and add the following to it:

uno.bootloader.file=my_new_bootloader/my_new_bootloader_

atmega328.hex

This assumes that you won’t need any additional Flash RAM space for

the bootloader over and above that required by the current bootloader. If

you do, then add the following as well:

uno.upload.maximum_size=<what ever is required>

2.3.1.5. Build Settings

uno.build.mcu=atmega328p

uno.build.f_cpu=16000000L

uno.build.board=AVR_UNO

uno.build.core=arduino

uno.build.variant=standard

Chapter 2 arduino Compilation

26

The build.mcu setting defines the name of the microcontroller for this

particular board. For the Uno, only an ATmega328P is defined. For other

boards, the Nano, for example, there are two different microcontrollers

available, the ATmega168 and the ATmega328P. Within each of those two

boards, there are two different configurations, and the boards.txt has

entries for each variant with global settings for all Nanos as well as the

specific settings for the different microcontroller boards and the variants

thereof.

The parameter build.f_cpu defines the system clock (CLKcpu) for the

board. The Uno has a 16 MHz crystal installed, so that’s the speed that is

defined in this example. This setting is used in your sketches, although

you won’t actually see it, as the F_CPU variable is used, for example, if

calculating the desired baud rate when using the Serial interface.

The build.board property is used to set a compile-time variable

ARDUINO_{build.board} to allow the use of conditional code between

#ifdefs in sketches and/or header files. The Arduino IDE automatically

generates a build.board value if not defined. In this example, the variable

defined at compile time will be ARDUINO_AVR_UNO.

To determine which file path is to be used when the compiler is

looking for various files, main.cpp, for example, the build.core setting

is used. The parameter is used to build a path to the files in $ARDINST/

cores/<uno.build.core>/, which, for the Uno in this example, will be

$ARDINST/cores/arduino/.

The variant of the board is then defined using the build.variant

setting. This is used to build a path to the files that live in $ARDINST/

variants/<uno.build.variant>/ and is where you will find the file

named pins_arduino.h which defines any variations over the standard

settings that apply to this particular board. For this example of an Uno, the

path defined will be $ARDINST/variants/standard/.

Chapter 2 arduino Compilation

27

 the ide defines a number of global settings for the various
paths to the cores and variants. these are available in other
configuration files, but they don’t have the board’s prefix, so uno.
build.core would correspond to the ide’s global setting of build.
core. if the board doesn’t specify a setting, the global one will be
used; however, where a board does have an appropriate setting, that
will override the global one created by the ide, when the appropriate
board is selected from the Boards menu in the ide.

You can see some of these global settings in the file platform.txt.

2.3.1.6. Configuring an ICSP

If you always want to use an ICSP (In-Circuit System Programmer)

to program a particular board, you can add the following line to the

$ARDINST/boards.txt or $ARDINST/boards.local.txt file, probably as

part of the build settings as detailed earlier, for example:

uno.upload.using=USBtinyISP

The name you use here is one of the ones that are to be found in the

$ARDINST/programmers.txt file which is itself described later in this

chapter, in Section 2.5, “Programmers.txt.”

You should make this change while the IDE is closed. When you next

open the IDE, any time you select the Uno device as your board, it will

automatically select the USB Tiny ISP device, in this case, to perform the

uploads, rather than the bootloader.

If you wish to make this change as the default for all boards, then

you should edit the preferences.txt file, as documented in Section 2.1,

“Preferences.txt,” earlier in this chapter.

Chapter 2 arduino Compilation

28

2.4. Platform.txt
The $ARDINST/platform.txt file defines platform-specific features and

command-line tools, where libraries live and what they are called, and

so on. It contains the various recipes used by the IDE in order to compile,

build, upload, and/or program various devices and boards according to

their different needs.

What is a platform? Well, in the case of the ATmega328P, or other AVR

microcontrollers, the platform defines all the tools, compilers, linkers,

command lines to be used and so on, for Atmel AVR microcontrollers.

Other non-AVR microcontroller boards will have their own platform to

define the specific tools and others for that particular microcontroller.

Arduino boards with, for example, an ARM chip on them will use a

different platform from those with the AVR microcontrollers.

Using this method allows for a fairly simple manner in updating the

system to cope with new boards.

The Arduino system requires that this file define the following

meta- data:

name=<platform name>

version=<platform version>

The name will be shown in the Tools ➤ Boards menu of the Arduino

IDE, in grayed-out text, above the list of boards that conform to this

particular platform. According to the documentation on the Arduino web

site at https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-

3rd- party-Hardware-specification, the version is currently unused and

is reserved for future use.

For the Arduino IDE version 1.8.5, we see this at the top of the file:

name=Arduino AVR Boards

version=1.6.22

Chapter 2 arduino Compilation

https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification

29

Obviously, the version number of the platform can, and does, differ

from the version of the IDE. Don’t be confused if you see something

different.

2.4.1. Build Recipes
The platform.txt file, as mentioned earlier, contains a large amount

of meta-data that configures the IDE to be able to compile sketches and

upload them, among other things, for the Arduino boards running with

AVR microcontrollers. It does this using recipes. Having different recipes

for all the different platforms allows the IDE to be used for a myriad of

different devices.

When you select a build in the IDE, a small number of settings are

created automatically for you. These are as follows:

• build.path – The path to the temporary folder to store

various files created by the build process.

• build.project_name – The project (sketch) name.

• build.arch – The microcontroller architecture, which

in our case is “avr” but, depending on the board, may

be “sam”, “arm” and so on. The IDE gets this from the

paths to $ARDINST.

On my system, $ARDINST is defined as $ARDBASE/

hardware/arduino/avr – and the path portions

define the hardware folder location, $ARDBASE/

hardware; then the vendor name, arduino; and

finally the architecture, avr for boards with the

ATmega328P. For Arduino SAM boards, the path

would be $ARDBASE/hardware/arduino/sam instead.

The final part of the path gives the build.arch name.

Chapter 2 arduino Compilation

30

A number of additional settings are defined within the $ARDINST\

boards.txt file based on the particular board chosen on the Tools ➤

Boards menu – see Section 2.3, “Boards.txt,” for those details – and the IDE

global variables can be used within this file too. You can find more details

on those variables in Section 2.2, “Globally Defined Paths.”

The compilation process can read source files written in plain C – these

are the .c source files, C++ (.cpp), or even assembly language (.S). It

has to know how to convert these files into object files (.o) which can be

gathered together by the linker to create an executable file. The way this

happens is by using the recipes within the platform.txt file.

The recipes are variables in the format

recipe.<source_format>.o.pattern

And the “source_format” is simply the file extension for the files in

question. This gives us the following variables:

• recipe.c.o.pattern – To convert C files to object files

• recipe.cpp.o.pattern – To convert C++ files to

object files

• recipe.S.o.pattern – To convert assembly language

files to object files

You will notice, I hope, that the source format in each is case sensitive.

Assembly language files must have an upper case .S extension.

Taking one of them as an example, this is what I found in my

platform.txt file for the Arduino IDE version 1.8.5:

Compile c files

recipe.c.o.pattern="{compiler.path}{compiler.c.cmd}"

{compiler.c.flags}

-mmcu={build.mcu} -DF_CPU={build.f_cpu} -DARDUINO={runtime.ide.

version}

Chapter 2 arduino Compilation

31

-DARDUINO_{build.board} -DARDUINO_ARCH_{build.arch}

{compiler.c.extra_flags}

{build.extra_flags} {includes} "{source_file}" -o "{object_file}"

If we break the preceding recipe down into its constituent parts, we see

the following variables and command-line options:

• "{compiler.path}{compiler.c.cmd}" defines where the

compiler tool can be found – {compiler.path} – and

what it is called, {compiler.c.cmd}. The use of double

quotes allows for spaces and other non-alphanumeric

characters in the path or command name.

In the IDE, I see that {compiler.path} is defined

as {runtime.tools.avr-gcc.path}/bin/; and

as you can see, these recipes can refer to other

variables defined in this file or elsewhere. The

{compiler.c.cmd} is defined as avr-gcc, and this

is not actually the compiler, but a front end to all

phases of the compilation process and which can be

used to control the whole process.

• {compiler.c.flags} defines a list of flags and options

to be passed to the {compiler.c.cmd} utility to define

how the build should progress, what outputs are

required and so on. There are numerous options in IDE

1.8.5; but one in particular, -c, tells the compiler front

end to stop compiling after the object file has been

created and not to run the link phase.

• -mmcu={build.mcu} defines another compiler option.

It tells the C compiler which microcontroller is in use

on the board. It comes from $ARDINST/boards.txt and,

for the Uno, is defined as uno.build.mcu=atmega328p.

The name part, uno, is stripped off first.

Chapter 2 arduino Compilation

32

• -DF_CPU={build.f_cpu} is very useful when writing

code for multiple boards. The speed of the AVR

microcontroller clock is defined in the compilation

process, as opposed to being hardcoded in the actual

source files, for example, #define F_CPU 16000000L.

This would require editing before running on a board

with a different clock speed.

The variable is defined in $ARDINST/boards.txt

and, for the Uno, is uno.build.f_cpu=16000000L.

The name part, “uno.”, is stripped off first.

• -DARDUINO={runtime.ide.version} defines a numeric

value for the Arduino IDE version in use. It is created

automatically by the IDE and is described in Section

2.2, “Globally Defined Paths.” For IDE version 1.8.5, for

example, it becomes 10805.

• -DARDUINO_{build.board} references the uno.build.

board=AVR_UNO variable from the $ARDINST/boards.

txt – the example shown is, once more, for the Uno.

This can be used in conditional code to determine the

board in use and, from that, whether certain features

are available or otherwise. In this example, it would

define a variable named ARDUINO_AVR_UNO.

• -DARDUINO_ARCH_{build.arch}, as described earlier,

defines the architecture we are building for. For the

purposes of this book, this will be “avr” giving ARDUINO_

ARCH_avr.

• {compiler.c.extra_flags} are some additional flags

that you or I can define in $ARDINST/platform.local.

txt to be added to the command line for this recipe. By

default, these are blank.

Chapter 2 arduino Compilation

33

• {build.extra_flags} are some additional flags that

you or I can define in $ARDINST/boards.local.txt

to be added to the command line for this recipe. By

default, these are blank.

• {includes} is the list of paths that the compiler will use

to search for files #included in the various source files.

The format is -I/include/path and so on. You can

have more than one path. The documentation online

has this to say:

Note that older IDE versions used the recipe.preproc.

includes recipe to determine includes, which is

undocumented here. Since Arduino IDE 1.6.7 (arduino-

builder 1.2.0) this was changed and recipe.preproc.

includes is no longer used.

This is not really very helpful, as includes remains

undocumented, and even the “no longer used”

recipe recipe.preproc.includes actually has

{includes} as part of its definition.

• "{source_file}" is the path to the single source file

being compiled. The double quotes allow for spaces

and other non-alphanumeric characters in the file

name.

• -o "{object_file}" is the path to the single

object file which will be created by the compilation

phase. The double quotes allow for spaces and other

non-alphanumeric characters in the file name.

Chapter 2 arduino Compilation

34

2.4.2. Pre- and Post-build Hooks
Pre- and post-build hooks were introduced in Arduino version 1.6.5

and are found in the $ARDINST/platform.txt file. In version 1.8.5, the

following hooks are available for your use:

• recipe.hooks.sketch.prebuild.NUMBER.pattern –

Called before sketch compilation

• recipe.hooks.sketch.postbuild.NUMBER.pattern –

Called after sketch compilation

• recipe.hooks.libraries.prebuild.NUMBER.

pattern – Called before libraries compilation

• recipe.hooks.libraries.postbuild.NUMBER.

pattern – Called after libraries compilation

• recipe.hooks.core.prebuild.NUMBER.pattern –

Called before core compilation

• recipe.hooks.core.postbuild.NUMBER.pattern –

Called after core compilation

• recipe.hooks.linking.prelink.NUMBER.pattern –

Called before linking

• recipe.hooks.linking.postlink.NUMBER.pattern –

Called after linking

• recipe.hooks.objcopy.preobjcopy.NUMBER.

pattern – Called before objcopy recipe execution

• recipe.hooks.objcopy.postobjcopy.NUMBER.

pattern – Called after objcopy recipe execution

Chapter 2 arduino Compilation

35

• recipe.hooks.savehex.presavehex.NUMBER.

pattern – Called before savehex recipe execution

• recipe.hooks.savehex.postsavehex.NUMBER.

pattern – Called after savehex recipe execution

These are identified by the recipe.hooks part. The next part

determines which stage in the compilation the hook will be called.

Prexxxxx and postxxxxx indicate that the pattern will be called before the

appropriate stage or afterward.

In order that multiple hooks can be called at any stage, the NUMBER part

is a sequence number which should be 1, 2, 3, 4, and so on – there’s one

number for each hook to execute at a given stage in proceedings. The end

of the recipe is always the word pattern.

 if you find that you require ten or more hooks, then your
numBer parts should be 01, 02, ..., 10, 11, and so on.

Following the equals sign are the commands you want to execute. For

example, in $ARDINST/platform.local.txt, you could add the following

on Linux:

recipe.hooks.sketch.prebuild.1.pattern=echo Compiling sketch:

{build.source.path}

recipe.hooks.sketch.postbuild.1.pattern=echo Compiled

Or the following on Windows:

recipe.hooks.sketch.prebuild.1.pattern=cmd /C echo Compiling sketch:

{build.source.path}

recipe.hooks.sketch.postbuild.1.pattern=cmd /C echo Compiled"

Chapter 2 arduino Compilation

36

I noticed that some, but not all, variables do not get expanded. Using

"{source_file}", for example, doesn’t expand, but {build.source.

path} does. Also, the entire text after the equals sign becomes part of the

message, not just the command’s output. The preceding code, on Linux,

displays the text “echo Compiling sketch: /full/path/to/my/sketch/here”

rather than just “Compiling sketch:

/full/path/to/my/sketch/here”. A similar thing happens with Windows.

 the command used cannot be a built-in command and must be
found on your system’s path ($PATH on linux and macoS, %path%
on Windows.)

on Windows, the echo command is a built-in command. it cannot
be found on %path% when the compilation is started, so the whole
compilation fails because echo can’t be found. this is because of the
way that the Java command exec, from Runtime.getRuntime(),
works.

So how did the preceding echo command work for Windows? i
created an echo.bat file and put it on my Windows %PATH%.

Commands to be executed in the hooks must be found on the $PATH;
if not, they will not be executed, and the recipe will fail.

2.5. Programmers.txt
The programmers.txt file is very much the least documented of the

various text files used by the Arduino IDE. The Wiki pages describe the

other files, but nothing at all, other than a brief mention of its name, for

programmers.txt.

Chapter 2 arduino Compilation

37

It is assumed, possibly incorrectly, that people creating and building

new ICSP devices know what all the parameters mean and will supply a list

of required entries, for their device, to be added to programmers.txt.

It is also likely that whenever anyone creates or updates a

programming device, or settings, it would be submitted to the Arduino

maintainers for inclusion in the next release of software.

 the programmers.txt file will be overwritten by each new
ide update, so if you have made any changes, you really should keep
a record of them prior to upgrading.

$ARDINST/programmers.txt holds details about the various

programming devices that the Arduino IDE can use to upload code to your

Arduino board. Unlike boards.txt and platform.txt, the IDE doesn’t

seem to recognize a local variant, programmers.local.txt, even if one

exists. Therefore, any changes that you make to your own installation will

need to be made to the supplied $ARDINST/programmers.txt file, and this

will be overwritten when the IDE is upgraded.

As this is a bit of a nuisance, I logged issue 8556 about it

at https://github.com/arduino/Arduino/issues/8556. It could be that

this is by design and not an actual problem. We shall see what transpires.

The file contains parameters that are relevant to the various

programming devices that can be used, and depending on the settings,

these may appear in the various menu options under the Tools menu in

the IDE.

An example of an entry in the file is as follows:

usbtinyisp.name=USBtinyISP

usbtinyisp.protocol=usbtiny

usbtinyisp.program.tool=avrdude

usbtinyisp.program.extra_params=

Chapter 2 arduino Compilation

https://github.com/arduino/Arduino/issues/8556

38

This is for the “USB Tiny” ICSP (In-Circuit System Programmer) and

shows the following:

• The device name, as it will appear in the Tools ➤

Programmer menu. In this case, it is “USBtinyISP.” You

can change this if you prefer to use a different name.

• The protocol to be used when executing the IDE option

to “Upload using programmer.”

• The tool that will be used when uploading. Here we can

see that it is defined as using the avrdude utility.

• Any extra parameters that may be needed to do the

upload. In this example, there are none. However, if any

were needed, they would be required to be consistent

with the syntax of the programming tool in use.

If, for example, the device required a serial port to be used for the

upload, then you could add the following:

usbtinyisp.program.extra_params=-P{serial.port}

This would allow the command line passed to avrdude to be supplied

with the -P option, to select a serial port, and it would be set to the value

chosen in the IDE on the Tools ➤ Port menu option.

 this is obviously just an example; the uSB tiny device doesn’t
need a serial port.

Chapter 2 arduino Compilation

39

2.6. Compiling a Sketch
When you open a project in the Arduino IDE, you will notice that all files in

the project directory with an .ino, .h, .c, or .cpp extension get placed on

a tab of their own. These are assumed to be all the source files that make

up your project. You can, if you wish, open other files within the IDE, but

these will not automatically open in separate tabs when you subsequently

reopen the project. They will have to be manually opened if editing or

viewing is required.

You should also be aware that there is not a function called main() in

any of the files open in the project. Anyone who has programmed in C or

C++ will know that main() is the program’s entry point. What’s going on?

The Arduino IDE supplies its own main() function, so that you don’t

have to. In order to make life easier for budding microcontroller makers

and developers, the Arduino system hides a lot of stuff from you. I’ll be

taking a look at the main() function soon.

When you compile a project in the Arduino IDE, a number of things

take place, and these separate processes are described in the remainder of

this chapter. Your sketch will be converted into a C++ file by the Arduino

Preprocessor.

2.6.1. Arduino Sketch (*.ino) Preprocessing
An Arduino sketch is a very much simplified C++ source file which may be

composed of many files with the extension .ino and, occasionally, some

additional files with the extension .cpp. To convert the sketch into a valid

C++ file, a number of actions are carried out:

• Maybe create a temporary compiler working folder in

the system’s main temporary folder or directory. This

will be within /tmp on Linux and something along

the lines of c:\users\<your_name>\AppData\Local\

Temp\arduino_build_<some_number>\ on Windows.

Chapter 2 arduino Compilation

40

This happens only on the very first compilation of this

particular sketch. For the rest of this discussion, I shall

refer to this folder as $TMP.

• If your sketch is composed of a number of .ino files,

those files are concatenated into a single .ino.cpp

file, in the $TMP/sketch subfolder, starting with the

main sketch file which is the .ino file with the same

name as the sketch’s folder name. The remainder of

the .ino files are appended to the end of the main

one, in alphabetical order. If your sketch was named

Blink.ino, then the generated file would be named

$TMP/sketch/Blink.ino.cpp.

• The line #include <Arduino.h> is added at the

beginning of the .ino.cpp file, if not already present.

• All libraries used in the sketch are detected, and the

include paths for those libraries are discovered. This is

done by running a dummy compilation with the output

being discarded (to the null device on Windows and

/dev/null on Linux) and processing any relevant error

messages.

• Prototypes for all functions in the .ino.cpp file are

generated. If, as occasionally happens, a valid function

prototype cannot be automatically generated, you will

need to add one explicitly to the .ino file that defines

the failing function.

• The .ino.cpp file is processed so that there are relevant

compiler preprocessor #line and #file directives so that

error reporting will be accurate and refer to the correct

lines in the correct source files, as opposed to referencing

the lines within the concatenated .ino.cpp file.

Chapter 2 arduino Compilation

41

These actions are performed by the arduino-preprocessor tool which

lives on GitHub at https://github.com/arduino/arduino-preprocessor.

2.6.2. Arduino Sketch (*.ino) Build
After preprocessing, the build is then completed by the arduino-builder

tool, found at https://github.com/arduino/arduino-builder, which

• Compiles the .ino.cpp file, created by the

preprocessing stage, into a module with a .ino.cpp.o

extension. This module file is stored in the $TMP/sketch

subfolder created by the Arduino Preprocessor tool

described earlier.

• Compiles all other .c or .cpp files, including main.cpp,

into separate modules in the $TMP/sketch subfolder.

 if the sketch’s configuration – the board and so on – has not
changed since the previous compilation, then some of these modules
may be reused rather than recompiled. this saves time on the second
and subsequent compilations. this is only done if the source file(s) for
the module to be reused has not been edited or changed of course.

• Any libraries used by the sketch will be compiled as

separate modules too. Once again, these will be written

as .o files in the $TMP/libraries subfolder.

• The Arduino core files are compiled as .o files into

$TMP/core. These core files are the like of wiring_

analog.c, wiring_digital.c and so on, as installed

under the IDE.

Chapter 2 arduino Compilation

https://github.com/arduino/arduino-preprocessor
https://github.com/arduino/arduino-builder

42

• The individual core modules (*.o) are then built

into a single static library, core.a, in the $TMP/

core subfolder – for example, on Windows, c:\

users\<your_name>\AppData\Local\Temp\arduino_

build_<some_number>\core\core.a.

• After all the modules have been created, the linker

combines them all into a single elf format binary file.

This file lives in the main temporary folder created

earlier and will be named $TMP/<sketch_name>.ino.

elf, $TMP/Blink.ino.elf, for example.

• The $TMP/<sketch_name>.ino.elf file is then used

to create a file named $TMP/<sketch_name>.ino.

eep which contains data to be written to the AVR

microcontroller’s EEPROM area.

• The $TMP/<sketch_name>.ino.elf file is also used

to create a file named $TMP/<sketch_name>.ino.

hex which contains the code used to flash the AVR

microcontroller with your sketch. This code is in “Intel

Hex” format.

This ends the compilation process. If the upload button is clicked

in the IDE, rather than the compile (or verify) button, then the

$TMP/<sketch_name>.ino.hex file is uploaded to the AVR microcontroller,

using an Arduino-specific version of the avrdude tool which can be found

on GitHub at https://github.com/arduino/avrdude-build-script.

Chapter 2 arduino Compilation

https://github.com/arduino/avrdude-build-script

43

There’s a menu option, Sketch ➤ Export Compiled Binary, which will

export the compiled hex files to the sketch’s folder. This could be used

for passing copies of your application for your friends to upload, without

letting them see your source code. There are two files created:

• Sketch_name.ino.standard.hex – This is the hex file

to upload your code and only your code.

• Sketch_name.ino.with_bootloader.standard.hex –

This file, if uploaded, will write both the bootloader and

your application code.

If you have a bootloader installed on your ATmega328P, then you can

use it to upload the files using avrdude. Normally, when using an ICSP to

program your device, the bootloader will be overwritten when the chip

is wiped. However, if you use the ICSP to upload the preceding file with

the bootloader, then you effectively burn a bootloader as well as your

application’s code into the Arduino board.

Either file can be uploaded using the bootloader – if it is still installed

on your device – and after doing so, regardless of which of the two files you

upload, the bootloader will still be present afterward.

All this “just works” and it makes life easy; however, what is the

Arduino system hiding from you?

 You can see all of this happening, before your very eyes, if you
edit the preferences in the ide to show verbose compiling and/or
upload messages.

The following chapters describe the various files that your sketch ends

up including when the compilation process has completed.

Chapter 2 arduino Compilation

44

2.7. The Arduino main() Function
As previously noted, the main() function is where all C or C++ applications

start executing. As an Arduino developer though, you don’t have to

supply one as the system does it for you. The Arduino main() function in

version 1.8.5 is found in the file $ARDINC/main.cpp beneath the Arduino

installation directory and is shown in Listing 2-1.

Listing 2-1. The Arduino main() function

#include <Arduino.h> ①

// Declared weak in Arduino.h to allow user redefinitions.

int atexit(void (* /*func*/)()) { return 0; }

// Weak empty variant initialization function.

// May be redefined by variant files.

void initVariant() __attribute__((weak));

void initVariant() { }

void setupUSB() __attribute__((weak));

void setupUSB() { }

int main(void)

{

 init(); ②

 initVariant(); ③

#if defined(USBCON) ④
 USBDevice.attach();

#endif

 setup(); ⑤

 for (;;) { ⑥

Chapter 2 arduino Compilation

45

 loop();

 if (serialEventRun) serialEventRun(); ⑦
 }

 return 0;

}

 ① The first point to note is the inclusion of the file

Arduino.h (found in the folder $ARDINC), and

this is where numerous constants and other

definitions specific to the Arduino are declared. If

you look at this file, it makes interesting reading;

there are numerous tests to determine which

board is in use and which features of the AVR

microcontroller can be used. The Arduino.h

header file is described in Section 2.8, “Header

File Arduino.h.”

 ② Within the main() function itself, there is a call

to init() which is found in $ARDINC/wiring.c.

This initializes a whole raft of features for the

Arduino and carries out this based on the actual

microcontroller in use on the board. If you decide

to dive into this function, make sure that you are

armed with a copy of the data sheet for your specific

microcontroller; otherwise, nothing much will make

sense.

 ③ The next function call, initVariant(), carries out

any special initialization for boards that are possibly

not covered by the standard initialization. The

function defaults to doing nothing (you can see it at

the top of main.cpp); but as it is declared as weak, it

can be overridden, as required, in a sketch.

Chapter 2 arduino Compilation

46

 ④ Some boards like the Leonardo use USB for serial

communications and thus require USB setting up,

so there is a test to see if this is required. If so, then

the USBDevice.attach() function is called to do the

needful.

 ⑤ The sketch’s setup() function is called next.

This is where the sketch’s own initialization gets

carried out.

 ⑥ After the call to setup(), an endless loop is entered

where the sketch’s loop() function is called once on

every pass through the loop.

 ⑦ The function serialEventRun() is called each time

through the loop as well. This in itself calls out to

another (weak) function named serialEvent(), if it

exists in the sketch, and this is used to collect up any

data that has been received into the Serial input

buffer but not yet read by the sketch.

There is an example of its use on the Arduino

Tutorials web site at www.arduino.cc/en/Tutorial/

SerialEvent.

This is how the sketch’s ino file fits into the real world: the setup()

function is called once, and the loop() gets called repeatedly until the

Arduino runs out of power or is turned off.

Calling the loop() function many times in this manner will impart

some overhead to each execution. There is the stack frame setup prior to

the function call and the stack teardown at the end prior to the function

returning. These housekeeping instructions take time to execute and can

slow down your code. You can avoid this by defining your own loop with

a for, while, or do block within the loop() function, so that loop() only

Chapter 2 arduino Compilation

http://www.arduino.cc/en/Tutorial/SerialEvent
http://www.arduino.cc/en/Tutorial/SerialEvent

47

ever gets called once and never has to return to main(). Listing 2-2 shows a

brief example.

Listing 2-2. A “never returning” loop() function

void loop() {

 while (1) {

 // Do your loop code here.

 }

}

 Bear in mind that if you do decide to create your own loop in
the manner described earlier, you might cause problems with any
serial communications that would have been processed by the call to
serialEventRun() in the main() function.

Check the documentation on the arduino tutorials web site at www.
arduino.cc/en/Tutorial/SerialEvent to be sure that you will
not be causing yourself any worries.

2.8. Header File Arduino.h
As mentioned previously, when you compile a sketch in the Arduino

IDE, there is a certain amount of reorganization taking place to convert

your sketch into something resembling a proper C/C++ program. The file

Arduino.h, which can be found in $ARDINC as can all the other Arduino-

specific header files, is included at the top of the converted source code. It

is in, or from, this file that much of the initialization of a sketch takes place.

Chapter 2 arduino Compilation

http://www.arduino.cc/en/Tutorial/SerialEvent
http://www.arduino.cc/en/Tutorial/SerialEvent

48

The following list outlines the actions of the Arduino.h file:

• Various standard C/C++ header files are included. I will

not be discussing those here.

• A number of AVR-specific header files are included

from the AVRLib sources, in $AVRINC. These are as

follows:

• avr/pgmspace.h

• avr/io.h

• avr/interrupt.h

• A strange header file, binary.h, is included next.

• All the Arduino-specific function headers are defined,

for example, pinMode(), digitalWrite() and so on,

along with a number of useful constants such as HIGH,

LOW, INPUT, OUTPUT amongst others.

• If the compilation is using the C++ compiler (avr-g++)

as opposed to the C compiler (avr-gcc), then

• WCharacter.h is included.

• WString.h is included.

• HardwareSerial.h is included.

• USBAPI.h is included.

• If the compiler discovers that the microcontroller in

use has both hardware serial and CDC serial, then

it cannot continue with the compilation, so an error

is displayed and the compilation ends.

• Finally, the header file pins_arduino.h is included.

Chapter 2 arduino Compilation

49

The relevant header files are described in the following sections, as are

any other headers that they themselves include.

2.8.1. Header File avr\pgmspace.h
This header file is included from $AVRINC, to allow pins_arduino.h, as

described in the following, to create lookup tables within the program

space – in flash memory, as opposed to in the scarce Static RAM (SRAM)

on the device. It defines a number of typdefs and functions to copy data

between the program space, in flash, and the variable space in RAM. It

doesn’t make for very interesting reading I’m afraid.

2.8.2. Header File avr\io.h
This file, from $AVRINC, sets up all the AVR-specific stuff for the appropriate

AVR microcontroller that is in use on the Arduino board. The settings you

chose in the IDE for Tools ➤ Boards will determine the specific device

file that will be included. In the majority of cases, and for our purposes

here, this will be the ATmega328P, and so this file simply causes the AVR

definitions for that microcontroller to be read in from the file

avr/iom328p.h.

This file also includes sfr_defs.h to set up numerous macros for

memory address simplification, some functions to handle looping until a

bit is clear (or set) and so on. These are not discussed here.

Other files included by avr/io.h are as follows:

• <avr/portpins.h>

• <avr/common.h>

• <avr/version.h>

Chapter 2 arduino Compilation

50

• <avr/xmega.h> (only if we are compiling for an XMega

device, which we are not, so this header will not be

discussed further)

• <avr/fuse.h>

• <avr/lock.h>

The AVRLib header files are to be found in $AVRINC, under your

Arduino 1.8.5 installation, unless otherwise stated. These header files are

not part of the Arduino IDE per se, but are supplied as part of the AVRLib,

which the IDE uses.

2.8.2.1. Header File avr/iom328p.h

If you’ve ever looked at the data sheet for the ATmega328P, then you will

notice that the various registers, and the bits thereof, have strange- sounding

acronyms. This header file, from $AVRINC, is the one which creates all the

constants so that you can refer to those acronyms in your code. In addition

to these acronyms, various other constants are defined to manage RAM

sizes, fuse bits, sleep modes, interrupt vectors and so on. This is another

important header file, but it really doesn’t make for good bedtime reading.

If your Arduino board uses a different AVR microcontroller device,

then a different iomxxx.h file will be included, rather than this one, so the

definitions will be suitable for the board and/or microcontroller in use.

The exact file which will be included is defined by the IDE’s Tools ➤

Boards settings.

2.8.2.2. Header File avr/portpins.h

This header file, from $AVRINC, is a continuation of the device-specific

avr/iom328p.h file and defines some additional constants which are

common to all of the other devices. Some of the definitions in this file

will not be relevant to all devices, but the code in this file does do some

Chapter 2 arduino Compilation

51

checks to see if a definition will be relevant, before defining it. It does this

by checking for constants defined in the avr/iom328p.h header file and, if

defined, sets up the additional constants.

 obviously, if the board in use is not based on the atmega328p,
then the reference to avr/iom328p.h in the preceding text would of
course be to a different header file for the device actually in use on
the board.

2.8.2.3. Header File <avr/common.h>

According to the comments in this header, This [sic] purpose of this header

is to define registers that have not been previously defined in the individual

device IO header files, and to define other symbols that are common across

AVR device families.

I think that about covers it!

The file can be found in $AVRINC.

2.8.2.4. Header File <avr/version.h>

This is a header file specific to the AVRLib code and not to the AVR devices.

It defines various constants to indicate which version of the AVRLib is in

use. For example, for a version 2.0.0 AVRLib, we see the constants shown in

Listing 2-3.

Listing 2-3. AVRLib constants

#define __AVR_LIBC_VERSION_STRING__ "2.0.0"

#define __AVR_LIBC_VERSION__ 20000UL

#define __AVR_LIBC_DATE_STRING__ "20150208"

#define __AVR_LIBC_DATE_ 20150208UL

#define __AVR_LIBC_MAJOR__ 2

Chapter 2 arduino Compilation

52

#define __AVR_LIBC_MINOR__ 0

#define __AVR_LIBC_REVISION__ 0

You could use these constants to check whether a specific version of

the library is in use and, from that, determine if some function can be used

or otherwise.

Once again, the file can be found in $AVRINC.

2.8.2.5. Header File <avr/fuse.h>

Fuses are programmable bits in 1, 2, or 3 bytes inside the AVR

microcontroller. These are used to set various features of the hardware

and are covered in some detail in Chapter 7, Section 7.1, “ATmega328P

Fuses.” The data sheet for the appropriate AVR device has full details, and

warnings!

This header file, from $AVRINC, sets up a structure type (__fuse_t) that

corresponds to the fuse bits for the appropriate board.

2.8.2.6. Header File <avr/lock.h>

This header file, from $AVRINC, sets up lock bit details for the specific AVR

microcontroller in use. This will not be discussed further here, so see the

data sheet for full details.

2.8.3. Header File avr\interrupt.h
Because the init() function, as described in the following, sets up Timer

0 with an interrupt routine to keep track of the number of milliseconds

(millis) that have passed since a sketch started, this header file is

required. In essence, and among many checks, it creates the ISR() macro

which allows you to create interrupt handlers when using AVR-specific

C/C++ code. The Arduino Language uses a slightly different system,

Chapter 2 arduino Compilation

53

attachInterrupt(), for example, for external interrupts. Arduino

interrupts will be described in Chapter 3, Section 3.5, “Interrupts.”

This file is also part of the AVRLib and is found in $AVRINC.

2.8.4. Header File binary.h
This header file defines a constant for every numeric value from 0 through

to 255, in the value’s binary number format. The constants defined, using

#define, are of the format

#define B0 0

#define B00 0

#define B000 0

#define B0000 0

#define B00000 0

#define B000000 0

#define B0000000 0

#define B00000000 0

#define B1 1

#define B01 1

#define B001 1

#define B0001 1

#define B00001 1

#define B000001 1

#define B0000001 1

#define B00000001 1

...

...

#define B11111110 254

#define B11111111 255

Chapter 2 arduino Compilation

54

It looks strange, yes? The header is defining as many different binary

style constants for every number between 0 and 255. Why does 0 get

so many different constants while 255 only has one? This allows the

programmer to specify zero in as many ways as there are leading zeros

in the binary representation of the number zero. This applies to all the

numbers, but once you reach 128, there are no more leading zeros, so

those values only have a single constant defined.

As I said, a little strange, but it allows you to write code such as

DDRD = B11110000;

Set the D port on the AVR microcontroller to have the top 4 bits as

OUTPUT and the bottom 4 as INPUT, equivalent to the following Arduino

code:

pinMode(7, OUTPUT); // Port D, pin 7.

pinMode(6, OUTPUT); // Port D, pin 6.

pinMode(5, OUTPUT); // Port D, pin 5.

pinMode(4, OUTPUT); // Port D, pin 4.

pinMode(3, INPUT); // Port D, pin 3.

pinMode(2, INPUT); // Port D, pin 2.

pinMode(1, INPUT); // Port D, pin 1.

pinMode(0, INPUT); // Port D, pin 0.

 only one line of code? to do all that? Yes, one line of aVr code
can correspond to numerous lines of arduino code. this is another
example of how the arduino makes life easier for the beginner –
which of the two preceding code sections is the easier to read and
understand?

Chapter 2 arduino Compilation

55

2.8.5. Header File WCharacter.h
This header file defines a number of inlined functions which can be used

to determine if a character is numeric, alphanumeric, and so on. This is

not specific to the Arduino software and will not be discussed further.

What are inlined functions?

inlined functions get copied verbatim into the code where they are
called. normally, functions are set up in the executable once and
called from many places. inlining them improves runtime efficiency
but at the expense of code size.

have a look at the header file, and if you are short of space in your
device, try not to use the functions defined here too often; or if you
have to use them, do something similar to the code in listing 2-4.

Listing 2-4. Avoiding inlined code to save space

// Define my own function to avoid too many copies of

// 'isAlphaNumeric()' which is always inlined.

// See 'WCharacter.h' for details.

boolean isAlphaNum(int c)

{

 return isAlphaNumeric(int c);

}

then call the isAlphaNum() function frequently from your
own code, rather than calling the isAlphaNumeric() function
frequently.

Chapter 2 arduino Compilation

56

2.8.6. Header File WString.h
The WString.h header file defines a C++ class named String. I have to

admit to not seeing any Arduino code that uses this class, but maybe I

haven’t been reading enough code. As this isn’t specifically Arduino code,

even though the class has been written for Arduino, it will not be discussed

further.

Okay, I lied. String is used by the Serial class, but deep down. Serial

inherits from Stream which inherits from Print, and Print uses String

internally.

 using this class will seriously increase the size of your
sketches and may result in very difficult to diagnose runtime errors if
too much dynamic memory is allocated – which this class does
internally.

2.8.7. Header File HardwareSerial.h
This is the header file that defines the Serial interface whereby your

Arduino board can talk back to your main computer over the USB cable.

There’s a lot going on in this file, and it makes interesting reading to see

how the Arduino library works.

If your device has less than 1024 bytes of RAM, then two buffers of 16

characters each are created. One is for serial receiving and the other is for

serial transmission. The buffer sizes are increased to 64 characters if you

have more than 1024 bytes of RAM available. The ATmega328P has 2048

bytes, so the larger-sized buffers are created.

The buffers are set up as what is known as circular buffers. They have a

pointer to the first free character for insertion into the buffer and a pointer

to the next character to be removed from the buffer. Hopefully, never the

Chapter 2 arduino Compilation

57

twain shall meet, but if they do happen to meet, the sketch will suspend

for a while until some data has been removed from the buffer allowing the

new data to be inserted.

Circular buffers are described in some detail at https://

en.wikipedia.org/wiki/Circular_buffer.

Also set up in this file are a couple of interrupt routines which are

called automatically by the AVR microcontroller whenever there is an

empty transmit or a full receive buffer for the built-in USART device. The

Serial class will, in the case of a transmission, read the next character

from the Arduino transmit buffer and write it into the hardware register

as appropriate to have it transmitted out via the USART. A similar process

takes place for the receive interrupt. The hardware buffers on the AVR

microcontroller are a single byte in size.

In the case where the AVR device has more than one USART, the Mega

2560 series, for example, then these are also set up from other header files

included by this one. These additional hardware serial devices are not

discussed further as the default Arduino board using the ATmega328P only

has a single USART and they are all similar.

2.8.8. Header File USBAPI.h
This is a header specifically for devices which have built-in hardware

USB features – these being boards based around the ATmega32U4

microcontroller which is on board the Arduino Leonardo, Pro Micro,

Micro, and a few other models. As the ATmega328P doesn’t have hardware

USB on board, this file will not be discussed any further.

2.8.9. Header File pins_arduino.h
The version of pins_arduino.h that is included is dependent on the

Arduino board in use and, thus, the AVR microcontroller in use on that

specific board. For the default board, the file is located in $ARDINST/

Chapter 2 arduino Compilation

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Circular_buffer

58

variants/standard, using an ATmega328P, while the Adafruit Gemma

board has its pins_arduino.h in $ARDINST/variants/gemma and uses

an ATtiny85 device. The included file sets up the pin assignments for the

appropriate device.

The board is chosen by the developer using the IDE’s Tools ➤ Boards

menu option.

It is this header file that defines constants for the analogue pins, A0

which has the value 14 through A7 which is defined as 21, for example.

Also created within the program space on the AVR device are a number

of small lookup tables that are used to

• Convert an AVR port name (Px) to the Data Direction

Register for that port (DDRx). This is table port_to_

mode_PGM.

• Convert an AVR port name (Px) to the output port

register for that port (PORTx). This is table port_to_

output_PGM.

• Convert an AVR port name (Px) to the input port

register for that port (PINx). This is table port_to_

input_PGM.

• Convert a digital pin number (0–13) to the AVR port

(PORTB, PORTC, or PORTD). This is table digital_pin_

to_port_PGM.

• Convert a digital pin number (0–13) to the specific

pin number (or bit number) on the AVR port (PORTB,

PORTC, or PORTD). This is table digital_pin_to_bit_

mask_PGM. The entry stored in this table is a bitmask

with only 1 bit set, the bit that corresponds to the pin

number.

Chapter 2 arduino Compilation

59

• Convert a digital pin number (0–13) to one of the timer

outputs on the device (6 on the standard Arduino

board). This is table digital_pin_to_timer_PGM and is

used in the analogueWrite() function for pulse width

modulation (PWM).

2.9. The init() Function
This function is located within the file $ARDINC/wiring.c.

At the start of every Arduino sketch, the init() function is

responsible for

• Enabling the global interrupt flag

• Configuring Timer/counter 0 to provide PWM on pins

D5 and D6 and initiating the millis() counter facility

by setting up the Timer/counter 0 Overflow interrupt

handler

• Configuring Timer/counter 1 to provide PWM on pins

D9 and D10

• Configuring Timer/counter 2 to provide PWM on pins

D3 and D11

• Initializing the Analogue to Digital Converter

• Disabling the USART from pins D0 and D1

2.9.1. Enabling the Global Interrupt Flag
The function init() begins by enabling interrupts globally as shown in

Listing 2-5. Arduino boards require interrupts to be enabled so that the

millis() function can begin counting, once the appropriate timer

(Timer/counter 0) is configured and started.

Chapter 2 arduino Compilation

60

 in the following walk-through of the source code for the
init() function, and as with many other code listings in this book,
the code that is not relevant to the atmega328p has been removed to
reduce the amount of source code listed and to avoid confusing this
author!

Listing 2-5. Setting interrupts on

void init()

{

 // this needs to be called before setup() or some

 // functions won't work there

 sei(); ①

 ① Turns on global interrupts. This is required to make

functions such as millis() and micros() work.

The code continues to enable Timer/counter 0 next.

2.9.2. Enabling Timer/counter 0
Timer/counter 0 is used to count the milliseconds which have passed

since the sketch began operating after power on, system reset, or

uploading a sketch. It does this by setting up the following for Timer/

counter 0:

• The prescaler for Timer/counter 0 is set to divide the

system clock (16 MHz) by 64 so that every 64 ticks of the

system clock, the timer/counter’s own clock will tick

once and increment the counter value by 1. As this is

an 8-bit timer, it can only count from 0 to 255 and then

roll over, or overflow, to 0 again and so on. The overflow

Chapter 2 arduino Compilation

61

will occur every 256 timer/counter clock ticks which

equates to 64 * 256 system clock ticks.

• The interrupt on Timer/counter 0 overflow is set up

and enabled. The interrupt will fire every time the

timer/counter’s value overflows from 255 to 0. The

Timer/counter 0 Overflow interrupt will update the

millis counter once every 256 timer clock ticks (256

Timer/counter 0 clock ticks.) This is calculated as

 1/ (CPU Frequency / prescaler) * Timer ticks until

overflow

= 1/(F_CPU / 64) * 256

= 1/(16000000 / 64) * 256

= 1/250000 * 256

= 4 microseconds * 256

= 1024 microseconds

= 1 millisecond plus 24 microseconds.

The interrupt takes account of those extra

24 microseconds and will adjust the millis() result

to account for them whenever they accumulate

enough to add an extra millisecond to the timer.

Timer/counter 0 is also used to provide 8-bit PWM (pulse width

modulation for analogueWrite()) on pins D5 and D6.

The init() function code walk-through continues in Listing 2-6.

Listing 2-6. Timer/counter 0 configuration

 // on the ATmega168, timer 0 is also used for fast

 // hardware PWM (using phase-correct PWM would mean

 // that timer 0 overflowed half as often resulting in

 // different millis() behavior on the ATmega8 and

 // ATmega168)

Chapter 2 arduino Compilation

62

#if defined(TCCR0A) && defined(WGM01)

 sbi(TCCR0A, WGM01); ①
 sbi(TCCR0A, WGM00);

#endif

 // set timer 0 prescale factor to 64

 ...

#elif defined(TCCR0B) && defined(CS01) && defined(CS00)

 // this combination is for the standard

 // 168/328/1280/2560.

 sbi(TCCR0B, CS01); ②
 sbi(TCCR0B, CS00);

 ...

#else

 #error Timer 0 prescale factor 64 not set correctly

#endif

 // enable timer 0 overflow interrupt

 ...

#elif defined(TIMSK0) && defined(TOIE0)

 sbi(TIMSK0, TOIE0); ③
#else

 #error Timer 0 overflow interrupt not set correctly

#endif

 ① Setting these 2 bits in the TCCR0A register ensures

that the PWM waveform generator is running in

Fast Hardware PWM mode, instead of Phase Correct

PWM mode, which would interfere with the timer

for the millis() function.

Chapter 2 arduino Compilation

63

 ② Setting these 2 bits in register TCCR0B sets the timer

clock to be the system clock divided by 64.

That equates to 16 MHz for the system clock,

divided down to 250 MHz, or one tick of the timer

clock for every 64 ticks of the system clock.

 ③ Setting this bit in the TIMSK0 register enables the

Timer 0 Overflow interrupt. Now every time the

timer goes from 255 to 0, the interrupt routine will

be called to accumulate counts for millis() and

micros().

Listing 2-7 shows the source for the Timer 0 Overflow interrupt routine,

which is separate from the code in the init() function. The remainder of

the init() function walk-through follows later.

2.9.3. Timer/counter 0 Overflow Interrupt
The Timer 0 Overflow interrupt is used to update the millis() count.

It does this every 1.024 milliseconds, and, as this is slightly over

1 millisecond, it accumulates these extra fractions; and when there are

enough accumulated, the millis count gets incremented by an extra

leap millisecond. This takes place roughly every 42 interrupt handler

executions – it’s actually every 41.666 (recurring) executions, but you

cannot have a fraction of an execution!

The code to do all this is shown in Listing 2-7, taken from $ARDINC/

wiring.c.

Chapter 2 arduino Compilation

64

Listing 2-7. Timer/counter 0 Overflow interrupt handler

#if defined(TIM0_OVF_vect)

ISR(TIM0_OVF_vect)

#else

ISR(TIMER0_OVF_vect)

#endif

{

 // copy these to local variables so they can be

 // stored in registers (volatile variables must be

 // read from memory on every access)

 unsigned long m = timer0_millis; ①
 unsigned char f = timer0_fract;

 m += MILLIS_INC; ②
 f += FRACT_INC;

 if (f >= FRACT_MAX) {

 f -= FRACT_MAX;

 m += 1;

 }

 timer0_fract = f; ③
 timer0_millis = m;

 timer0_overflow_count++; ④
}

 ① The current values of the variables timer0_millis

and timer0_fract are copied locally from memory

(Static RAM) so that they can be used in registers for

faster processing.

Chapter 2 arduino Compilation

65

 ② The current timer0_millis count, in m, is

incremented by MILLIS_INC. The current

accumulated fractions of a millisecond, timer0_

fract used locally in variable f, are incremented by

FRACT_INC. If f is then larger than FRACT_MAX, then

an extra “leap” millisecond is accumulated and the

counts adjusted accordingly.

 ③ The new values are copied back to the original two

variables.

 ④ A counter, timer0_overflow_count, keeps track of

the number of times the ISR has been fired. This

counter is used in the millis() function, and that is

itself used in the delay() function.

“What are MILLIS_INC, FRACT_INC, and FRACT_MAX?”, I hear you ask.

These are defined in $ARDINC/wiring.c, and an extract is shown in

Listing 2-8.

Listing 2-8. Variables used in counting millis

// the whole number of milliseconds per timer0 overflow

#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)

// the fractional number of milliseconds per timer0 overflow.

// we shift right by three to fit these numbers into a byte.

// For the clock speeds we care about - 8 and 16 MHz - this

// doesn't lose precision.)

#define FRACT_INC

 ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)

#define FRACT_MAX (1000 >> 3)

Chapter 2 arduino Compilation

66

The other helper definitions we need here are as follows. The first is

also defined in $ARDINC/wiring.c:

// the prescaler is set so that timer0 ticks every 64

// clock cycles, and the overflow handler is called

// every 256 ticks.

#define MICROSECONDS_PER_TIMER0_OVERFLOW \

 (clockCyclesToMicroseconds(64 * 256))

From $ARDINC/Arduino.h, we have

#define clockCyclesToMicroseconds(a) \

 ((a) / clockCyclesPerMicrosecond())

and also

#define clockCyclesPerMicrosecond() (F_CPU / 1000000L)

So, working backward, we see that the number of

clockCyclesPerMicrosecond is 16e6/1e6 or 16. From that, we can then

see that MICROSECONDS_PER_TIMER0_OVERFLOW is (64 * 256)/16, which

gives us 1024.

This then allows MILLIS_INC to be calculated as 1024/1000 which is

a solitary one, as this is integer division, not floating point. And, finally,

FRACT_INC is 1024 – (1024/16) >> 3 or 24/8 which gives us 3.

FRACT_MAX is easy; it’s effectively 1000/8 or 125.

So, every 256 Timer/counter 0 clock ticks, we increment the number of

millis by 1 and add 3 to the fractions accumulator, and if that is more than

125, we add an extra 1 to millis and reduce the fractions accumulator by

125, thus holding on to any spare fractions. Eventually, these will add up

and generate another millisecond.

If you are wondering why we add 3 and check for 125, then consider

that there are 24 microseconds spare each time through the interrupt

handler – that’s 41.666 (recurring) to gain an extra millisecond. 125/3 is

exactly the same value – 41.666 (recurring) – so it works out the same.

Chapter 2 arduino Compilation

67

 is adding 3 and checking against 125 more efficient than
adding 24 and checking against 1000? Yes, indeed, the former
method fits a byte, while the latter requires a 16-bit value, and the
atmega328p is an 8-bit device without a 16-bit compare instruction.

2.9.4. Configuring Timer/counter 1 and Timer/
counter 2
On the ATmega328P, Timer/counter 1 is a 16-bit timer; however, the

Arduino system sets it up so that it appears as an 8-bit timer which makes

it similar to Timer/counter 0 and Timer/counter 2.

Timer/counters 1 and 2 are used to provide PWM on four of the six

pins that are PWM enabled on an ATmega328P.

Both timers have their prescaler set to divide the system clock by 64

and are set up in 8-bit Phase Correct PWM mode.

Timer/counter 1 provides PWM on pins D9 and D10, while Timer/

counter 2 provides PWM on pins D3 and D11.

The init() function source code continues in Listing 2-9, where it

configures Timer/counter 1.

Listing 2-9. Timer/counter 1 configuration

 // timers 1 and 2 are used for phase-correct

 // hardware PWM. this is better for motors as it

 // ensures an even waveform

 // note, however, that fast PWM mode can achieve a

 // frequency of up 8 MHz (with a 16 MHz clock) at

 // 50% duty cycle

#if defined(TCCR1B) && defined(CS11) && defined(CS10)

 TCCR1B = 0; ①

Chapter 2 arduino Compilation

68

 // set timer 1 prescale factor to 64

 sbi(TCCR1B, CS11); ②

#if F_CPU >= 8000000L

 sbi(TCCR1B, CS10); ③
#endif

 ...

#endif

 // put timer 1 in 8-bit phase correct PWM mode

#if defined(TCCR1A) && defined(WGM10)

 sbi(TCCR1A, WGM10); ④
#endif

 ① This shouldn’t be necessary as init() is called at

the start of a sketch, after a reset, or on power on,

so the default for register TCCR1B is zero anyway.

However, sometimes it’s best to be explicit.

 ② Setting only the CS11 bit sets the timer’s prescaler

to divide by 8, which is fine for slow system clock

speeds. This would give a standard Arduino board a

2 MHz timer clock speed – a tad excessive perhaps!

 ③ For faster clock speeds, setting CS10, plus the

preceding CS11, finally sets the prescaler to divide by

64, giving the required 250 KHz timer clock speed.

 ④ The WGM10 bit, in the TCCR1A register, sets the PWM

waveform generator to run in 8-bit Phase Correct

PWM mode.

After configuring Timer/counter 1, the next part of the init() function

sets up Timer/counter 2 as shown in Listing 2-10.

Chapter 2 arduino Compilation

69

Listing 2-10. Timer/counter 2 configuration

 // set timer 2 prescale factor to 64

#if defined(TCCR2) && defined(CS22)

 ...

#elif defined(TCCR2B) && defined(CS22)

 sbi(TCCR2B, CS22); ①

//#else

 // Timer 2 not finished (may not be present on this CPU)

#endif

 // configure timer 2 for phase correct PWM (8-bit)

#if defined(TCCR2) && defined(WGM20)

 ...

#elif defined(TCCR2A) && defined(WGM20)

 sbi(TCCR2A, WGM20); ②

//#else

 // Timer 2 not finished (may not be present on this CPU)

#endif

 ...

 ① Setting bit CS22 in register TCCR2B sets the timer’s

prescaler to divide the system clock by 64. This

results in a 250 KHz timer clock.

 ② Setting the WGM20 bit, in the TCCR2A register, sets

the PWM waveform generator to run in 8-bit Phase

Correct PWM mode.

The function continues, now that all three timers are configured,

to set up the Analogue to Digital Converter (ADC) so that the Arduino

analogRead() function will work.

Chapter 2 arduino Compilation

70

2.9.5. Initializing the Analogue to Digital
Converter
According to the data sheet for the ATmega328P, the ADC (Analogue to

Digital Converter) runs best, and most accurately, when it is running at a

speed between 50 and 200 KHz. The system clock on the microcontroller is

running at 16 MHz, so is a little on the speedy side.

In order to get the ADC into a valid speed range, it has its prescaler set

to divide the system clock by 128. This puts the speed at 125 KHz, which is

within the desired range specified by the data sheet.

The ADC is then enabled, as shown in Listing 2-11, which is a

continuation of the init() function.

Listing 2-11. ADC configuration

#if defined(ADCSRA)

 // set a2d prescaler so we are inside the

 // desired 50-200 KHz range.

 #if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz

 sbi(ADCSRA, ADPS2); ①
 sbi(ADCSRA, ADPS1);

 sbi(ADCSRA, ADPS0);

 // Code removed - not relevant.

 #endif

 // enable a2d conversions

 sbi(ADCSRA, ADEN); ②
#endif

 ① The system clock needs to be divided down to

obtain an ADC clock speed in the range 50–200 KHz

which, according to the data sheet, is the optimal

Chapter 2 arduino Compilation

71

clock range for the ADC. For the standard Arduino

boards, this requires a divisor of 128 to get the

16 MHz system clock into this range. The resulting

ADC clock speed is 125 KHz, which is well within

the requirement.

 ② Setting the ADEN bit in the ADCSRA register ensures

that the ADC is enabled. It will not start converting

until it is told to do so by analogRead().

The preceding code implies that even if you don’t want the ADC in

your sketches, it is active and consuming additional power that might be

better used keeping your batteries from running down!

If you are sure that you don’t need or want analogRead() in your

sketch, and you are running on batteries, then perhaps adding the

following line to your setup() function could help:

#include <wiring_private.h>

...

cbi(ADCSRA, ADEN);

This disables the ADC. If you also add

sbi(PRR, PRADC);

then you will also stop power reaching the ADC clock, saving a few more

microAmps, alternatively:

#include <avr/power.h>

...

void setup()

{

 ...

 power_adc_disable();

}

Chapter 2 arduino Compilation

72

This uses the AVRLib facility to turn off the power to the ADC clock

and, in my opinion, is a lot more readable, and understandable, than the

preceding one.

2.9.6. Disabling the USART
The final task for the init() function is to disable the Universal

Synchronous/Asynchronous Receiver/Transmitter or USART for short.

This is left attached to Arduino pins D0 and D1 by the bootloader, and

the two pins used need to be disconnected so that they can be reused for

digitalRead() and/or digitalWrite() in sketches. On the ATmega328P,

these digital pins are the physical pins 2 and 3.

If the USART is required for the Serial Monitor tool, for example, then

the two USART pins will be reconnected by a call to Serial.begin() in the

sketch. Listing 2-12 shows the pins being disconnected from the USART.

Listing 2-12. USART configuration

 // the bootloader connects pins 0 and 1 to the

 // USART; disconnect them here so they can be used

 // as normal digital i/o; they will be reconnected

 // in Serial.begin()

#if defined(UCSRB)

 ...

#elif defined(UCSR0B)

 UCSR0B = 0;

#endif

} // End of init().

This concludes the initialization that occurs at the start of every sketch

and the walk-through of the init() function’s source code.

Chapter 2 arduino Compilation

73© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_3

CHAPTER 3

Arduino Language
Reference
In this chapter, I look at the Arduino-specific features of the C/C++

language which relate to the AVR microcontroller and how it operates, as

opposed to looking at the C/C++ language in general.

 This chapter, and the following one, are long chapters, my
apologies for that. I would advise that you do not try to get through
them both in one sitting. Take a break every so often and go and do
something with your Arduino – to take your mind off it! Sorry!

The features of the Arduino that I will be covering in the next two

chapters of the book are those that the Arduino Reference site

(www.arduino.cc/reference/en/) refers to as

• Digital I/O – meaning pinMode(), digitalRead(), and

digitalWrite(). These functions can be found in the

file $ARDINC/wiring_digital.c.

• Analogue I/O – meaning analogReference(),

analogRead(), and analogWrite(). These functions

can be found in the file $ARDINC/wiring_analog.c.

https://www.arduino.cc/reference/en/

74

• Advanced I/O – meaning tone(), noTone(), pulseIn(),

pulseInLong(), shiftIn(), and shiftOut(). These

functions can be found in the file $ARDINC/wiring_

shift.c.

• Time – meaning delay(), delayMicroseconds(),

micros(), and millis(). These functions can be found

in the file $ARDINC/wiring.c.

• Interrupt-related language features such as

interrupts(), noInterrupts(), attachInterrupt(),

and detachInterrupt() which can be found in the file

$ARDINC/WInterrupts.c.

• Various bit manipulation functions as found in the

header files $ARDINC/Arduino.h and $ARDINC/wiring_

private.h.

I will not be discussing the general C/C++ language functions, only

those related to the Arduino Language. For the general ones, you should

arm yourself with a good book on the subject.

Where possible, each function mentioned in the preceding text

will be listed here in full, then dissected, and explained. If there are

any foibles to be aware of, those will be discussed too. However, as the

Arduino software for AVR microcontrollers covers many different types

of AVR microcontrollers, I shall restrict the discussion of the software

to that pertaining to the ATmega328P, and I will not be covering other

microcontrollers – unless absolutely necessary.

Finally in the next chapter, I discuss the various C++ classes declared

by the Arduino software that are included in almost every sketch. These

are the Print, Printable, Stream, HardwareSerial, and String classes –

although I don’t have much to say on the latter, apart from avoid!

Read on…

ChApTer 3 ArduIno LAnguAge referenCe

75

3.1. Digital Input/Output
This section takes a look at the functions which carry out digital input and

output within the Arduino Language. These functions are pinMode() to set

the pin’s mode and direction; digitalRead() to read the voltage state, HIGH

or LOW, on a pin; and digitalWrite() to set the pin’s voltage, HIGH or LOW.

3.1.1. Function pinMode()
In Arduino sketches, you will often see code such as that shown in Listing 3-1.

Listing 3-1. Example pinMode() usage

#define switchPin 2;

#define sensorPin 3;

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(switchPin, INPUT_PULLUP);

 pinMode(sensorPin, INPUT);

 ...

}

The pinMode() function sets the direction of a specific pin so that it

can be used for input or output depending on what purpose the project is

designed for. The three modes shown in the preceding example code are the

only three that are available. These allow that particular pin to be used for

• Input, where the pin state is determined by the voltage

applied to it. The pin’s state would be read using

digitalRead() and will result in a returned value of HIGH

or LOW according to whatever voltage is currently being

applied to the pin by external devices or components.

ChApTer 3 ArduIno LAnguAge referenCe

76

• Input with the internal pullup resistor enabled,

where the pin is used again for input, but the default

state is pulled to HIGH when nothing else attached

to the pin is attempting to pull it LOW. Using pullup

resistors in this way can be done internally, as with

the pinMode(switchPin, INPUT_PULLUP) example

in Listing 3-1, or externally where there would be a

resistor of about 10 K connected to the pin and to 5 V or

3.3 V depending on your Arduino board.

• Output, where the pin state is set to HIGH or LOW by a

call to digitalWrite(). Output pins, when set to HIGH

or LOW by a call to digitalWrite(), will see the supply

voltage 5 V or 3.3 V on the pin if set to HIGH or 0 V if set

to LOW.

 A pin may be configured as an INPUT pin, but then written to, as
if it was an OUTPUT pin, with digitalWrite() to set it HIGH. This
will enable the internal pullup resistor which means that a
digitalRead() on the pin will now see a HIGH unless the pin is
being pulled to ground by some external influence.

This is exactly how the INTERNAL_PULLUP setting for pinMode()
works.

When reading or writing a digital pin, the pin can take one of two

different values. These are defined in $ARDINC/Arduino.h as HIGH and LOW,

but what does this mean in relation to the voltage applied to, or seen on,

the pin itself?

ChApTer 3 ArduIno LAnguAge referenCe

77

For Arduino boards running on a 5 V supply, a call to digitalRead()

will return HIGH if the voltage on the appropriate pin is 3 V or higher. A LOW

will be returned if the voltage on the pin is less than 1.5 V.

For Arduino boards running on a 3.3 V supply, a call to digitalRead()

will return HIGH if the voltage on the appropriate pin is 2 V or higher. A LOW

will be returned if the voltage on the pin is less than 1 V.

What about voltages in between? These are considered to be floating

voltages, and the call to digitalRead() could return either a HIGH or a LOW

depending on other circumstances and not necessarily the same result

each time it is called for the same voltage. For this reason, it is best to

avoid having input pins floating – so either use pullup resistors (internal or

external) or, alternatively, pulldown resistors, which are external only.

 floating pins are a really bad thing to have. A pin that is not
electrically connected to supply or ground is a problem waiting to
happen. how does your code see the value on the pin? It could be
seen as HIGH sometimes, or LOW, and the code thinks that it is a
valid reading – it is not. The value seen on the pin may be affected by
many things – temperature, stray capacitance on the board, induced
currents from external sources, or even you walking past. Never leave
a pin floating.

It may not be a major problem on a project designed to flash an Led
from time to time, but for a high-powered laser cutter, for example,
you really don’t want the laser turning on because the Arduino board
thought a button had been pressed!

ChApTer 3 ArduIno LAnguAge referenCe

78

The file $ARDINC/Wiring_digital.c is where the source code for

the digital functions pinMode(), digitalRead(), and digitalWrite()

can be found. Additionally, there is one other function in this file, but it

can only be called from the three functions listed. This helper function

is turnOffPWM(), which is not discussed further, is declared static, and

is there simply to turn off any PWM on a pin that is about to be used for

digitalRead() or digitalWrite() purposes.

The pinMode() function takes two input parameters, a pin number

and a mode, and sets the requested pin to the mode given. The modes are

as discussed in the preceding text, while the pin number is just a number

corresponding to the actual pin required.

You may not be aware, but the eight analogue pins A0–A7 on your

Arduino board can also be used for digital I/O. They are numbered from

D14, for pin A0, to D21 for pin A7. So a call to digitalWrite(14, HIGH) will

set pin A0 to HIGH. This is useful when you need more digital pins than

apparently supplied on the Arduino board.

Hang on! What do I mean A7? Surely I mean A5?

Some Arduino boards have been built with the surface mount versions

of the ATmega328 device. These surface mount devices have a couple of

extra pins connected to the ADC input, these being A6 and A7. Many clone

boards have added two extra connectors to allow the boards to use these

two additional pins, while some have not.

If you have an Arduino Nano, for example, then look carefully at the

pin labels and you will see A6 and A7. These extra pins are not present on

the 28-pin through-hole ATmega328P devices.

Sometimes you might see code referencing an additional ADC input

pin, pin A8, which is an internal connection for the temperature sensor

built in to the AVR microcontroller itself. You can read this input and get

an idea of how hot the AVR microcontroller is running. Sadly, the Arduino

Language does not make this visible using analogRead(). See the sketch in

Appendix A for details on how to use this internal feature.

ChApTer 3 ArduIno LAnguAge referenCe

79

Getting back to pinMode(), we need to be aware first of all that the

Arduino pin numbering system is completely different from that used by

Atmel (now Microchip) who manufactures the AVR devices. What we call

D1 is known to Atmel/Microchip as PD1, and the built- in LED on pin D13 is

attached to the ATmega328P’s PB5 pin.

It helps if there’s a pinout diagram for our specific AVR microcontroller.

Look at Figure 3-1 which shows the pin functions and names for an

ATmega328P.

Figure 3-1. Pin names on the ATmega328P

The Arduino pin numbers are easily enough recognized as they are

listed by name, in the two columns labeled Arduino, and there you will

see names like D0 or A5 and so on. The Arduino Language has given these

names to the various pins that are accessible using that language. However,

Atmel/Microchip named the pins differently, and the Atmel/Microchip pin

names can be seen in the AVR columns. Here you see names like PB2 or

PD4 and so on. These are the actual pins that are used for digital input and

output, or analogue input.

ChApTer 3 ArduIno LAnguAge referenCe

80

On an AVR microcontroller, pins are arranged in banks of up to

eight pins, which happily is the same number of bits in a byte. On the

ATmega328P, there are three banks of pins – these are B, C, and D. In order

to use pinMode() on an Arduino pin, you need three things:

• The bank’s Data Direction Register or DDR

• The bank’s Pin Input Register or PIN

• The bank’s Pin Output Register or PORT

On the ATmega328P, we have

• DDRB, DDRC, and DDRD

• PORTB, PORTC, and PORTD

• PINB, PINC, and PIND

On the pinout image, when a pin is named PCn, where “n” is a number,

then that particular pin belongs to bank C and uses DDRC, PORTC, and PINC.

The pinMode() function, among others, has to convert between the

Arduino pin naming convention and the AVR’s own names. If, for example,

pin D2 is being set to OUTPUT, the pinMode() function needs to convert D2

to DDRD, PORTD, and PIND2 so that manipulating that pin in Arduino code

manipulates the PD2 pin on the ATmega328P.

Getting from D2, which is nothing more than the value 2, to a PORT,

PIN, and DDR is done with the help of a few small data tables, set up in

$ARDINST/variants/standard/pins_arduino.h.

Listing 3-2 is the code which makes up the pinMode() function.

Listing 3-2. The pinMode() function

void pinMode(uint8_t pin, uint8_t mode)

{

 uint8_t bit = digitalPinToBitMask(pin); ①
 uint8_t port = digitalPinToPort(pin); ②
 volatile uint8_t *reg, *out;

ChApTer 3 ArduIno LAnguAge referenCe

81

 if (port == NOT_A_PIN) return; ③

 // JWS: can I let the optimizer do this?

 reg = portModeRegister(port); ④
 out = portOutputRegister(port);

 if (mode == INPUT) { ⑤
 uint8_t oldSREG = SREG;

 cli();

 *reg &= ~bit;

 *out &= ~bit;

 SREG = oldSREG;

 } else if (mode == INPUT_PULLUP) { ⑥
 uint8_t oldSREG = SREG;

 cli();

 *reg &= ~bit;

 *out |= bit;

 SREG = oldSREG;

 } else { ⑦
 uint8_t oldSREG = SREG;

 cli();

 *reg |= bit;

 SREG = oldSREG;

 }

}

 ① If we continue the preceding example with

D2, then this pin has the value 2. This call to

digitalPinToBitMask() converts D2 into an 8-bit

value in which only bit 2 is set. This is therefore the

value 4 as bit 2 in a byte indicates whether there are

any 4s present in the value. The bitmask returned

will look like 0000 0100binary with only bit 2 set.

ChApTer 3 ArduIno LAnguAge referenCe

82

 ② D2’s value, 2, is used again in a call to

digitalPinToPort() which returns a value known

as PD from the table digital_pin_to_port_PGM. PD

is defined in Arduino.h to be the value 4. We now

have the bitmask in bit and the port in reg. These

are still not AVR microcontroller register names yet;

they are still just numbers – both of them 4 in this

example.

 ③ The port is validated; and if it is NOT_A_PIN, which

has the value -1, we exit from the function.

 ④ The value for our port, 4, is then converted to a

Data Direction Register and a PORT register using

portModeRegister() and portOutputRegister().

These two functions read the tables port_to_mode_

PGM and port_to_output_PGM and return pointers to

the internal registers named DDRx and PORTx for the

appropriate pin. In this example, these will be DDRD

and PORTD. At this stage, pointers to the desired DDR

and PORT registers are available in reg and out and

can be manipulated to set a single pin to output

mode.

 ⑤ If the requested mode is INPUT, we have to clear

the appropriate bit in the DDR to configure an

input pin, and as pullup has not been requested,

the appropriate bit in the PORT register is also

cleared to turn off the input pullup resistor for the

pin. The current state of the status register is saved,

and interrupts are turned off for the duration of

the preceding changes. When the status register

ChApTer 3 ArduIno LAnguAge referenCe

83

is restored, interrupts are reset to how they were

before being disabled.

 ⑥ If the requested mode is INPUT_PULLUP, we have to

clear the appropriate bit in the DDR to configure

an input pin as in the preceding text, and as pullup

has been requested, the appropriate bit in the PORT

register is set to turn on the input pullup resistor

for the pin. As earlier, the current state of the status

register is saved, and interrupts are turned off for the

duration of the preceding changes. When the status

register is restored, interrupts are reset to how they

were before being disabled.

 ⑦ If the requested mode is OUTPUT, we have to set the

appropriate bit in the DDR to configure an output

pin. There is no pullup on output pins. As before,

when these changes are being made, the current

state of the status register is saved and interrupts

are turned off. When the status register is restored,

interrupts are reset to their previous setting.

In the AVR microcontroller, writing a one to the DDRx register sets the

pin to output, while writing a zero sets the pin to input. Input is the default

when the AVR microcontroller is reset or powered on.

 even though the default mode for a pin is INPUT in Arduino code,
it is always beneficial to ensure that you explicitly set the pin in your
code. It isn’t mandatory, but it can help make your code more
readable and self-documenting.

ChApTer 3 ArduIno LAnguAge referenCe

84

As the example needs to set PORTD, bit 2, to output, then a one is

required in the third bit of the bitmask – remember bits number from

zero – and that is all. The code line *reg |= bit; does exactly that; it takes

the bitmask 0000 0100binary and ORs it with whatever is currently in the

register DDRD. This sets the pin to output, as required, and does not change

the direction of any other pins on PORTD.

Had the mode requested been INPUT, then bit 2 in the DDRD register

would need to be set to zero. The code *reg &= ~bit; does this by

inverting the bitmask from 0000 0100binary to 1111 1011binary and then

ANDing that with the current contents in the DDRD register. That would

change only the third bit to a zero and would not affect any other pin. *out

&= ~bit; then ensures that the pullup resistor is disabled for this pin.

If the mode is INPUT_PULLUP, then the *out |= bit; code makes sure

that the pin is set to have its internal pullup resistor enabled by writing a

1binary to the PORTD register.

3.1.2. Function digitalRead()
Once a pin has been set for INPUT with pinMode(), then you can read

the voltage on that pin with the digitalRead() function and change the

behavior of your project according to the result obtained. The function will

return either HIGH or LOW according to the voltage on the pin at the time of

the function call.

Listing 3-3 shows the source code for the digitalRead() function.

Listing 3-3. The digitalRead() function

int digitalRead(uint8_t pin)

{

 uint8_t timer = digitalPinToTimer(pin); ①
 uint8_t bit = digitalPinToBitMask(pin); ②
 uint8_t port = digitalPinToPort(pin); ③

ChApTer 3 ArduIno LAnguAge referenCe

85

 if (port == NOT_A_PIN) return LOW;

 // If the pin supports PWM output, we need to turn it off

 // before getting a digital reading.

 if (timer != NOT_ON_TIMER) turnOffPWM(timer); ④

 if (*portInputRegister(port) & bit) return HIGH; ⑤
 return LOW; ⑥
}

 ① This converts the pin’s number to a timer/counter

number. This will be 0, 1, or 2. Timer/counters are

used on pins that we can use analogWrite() upon.

This is required as any pin which can be used for

analogWrite() may be set to a value which is not a

HIGH and not a LOW – a floating value in other words –

and we need to avoid floating values.

 ② The pin’s number is converted to an 8-bit value

where the only bit set will correspond to this pin’s

position in the PINx register. Given the D2 example

from earlier, this would be a bitmask of 0000

0100binary with only bit 2 set.

 ③ The pin is now also converted to the correct PINx

register.

 ④ In order to read a digital value, LOW or HIGH, the pin

should not be carrying out PWM. If the pin is one of

the six that can be used with analogWrite(), then

its ability to do so is temporarily disabled.

 ⑤ The correct PINx register is read and ANDed with the

pin’s bitmask. If the result of the AND operation leaves

the pin’s bit set in the PINx register, then HIGH is returned.

 ⑥ The pin must be at GND potential, so return a value of LOW.

ChApTer 3 ArduIno LAnguAge referenCe

86

 Timers, or, more correctly, timer/counters, are internal hardware
features of the ATmega328p. These will be discussed in great detail
in Chapter 8, along with many other useful features of the AVr
microcontroller. What follows here is a brief discussion with only as
much information as necessary to help understand the
digitalRead() and digitalWrite() functions.

The timer/counters in the ATmega328P are named Timer/counter 0,

Timer/counter 1, and Timer/counter 2. As described previously, Timer/

counter 0 is used to ensure that the millis() count is incremented

correctly (see Chapter 2, Section 2.9, “The init() Function,” for details). All

three timer/counters are used to provide PWM facilities (analogWrite())

on two pins each. If there is a call to digitalWrite() for pins D3, D5–D6,

or D9–D11, then the PWM must be turned off. This is done by finding out

if the pin in question is connected to a timer/counter and, if so, calling

turnOffPWM() for the particular timer.

The timer/counter in question is converted from a pin number by

accessing the table digital_pin_to_timer_PGM which is defined in

$ARDINST/variants/standard/pi s_arduino.h.

As with pinMode(), the port and bitmask are worked out from the two

tables set up in $ARDINST/variants/standard/pins_arduino.h, and the

port name (e.g., PD) is converted to an actual PINx register and the current

value of that register is read. To continue the D2 example, this would be

PIND, and the bitmask would be 0000 0100binary; bit 2 is set.

The PINx registers are connected to the physical pins on the AVR

microcontroller, and reading those registers returns an 8-bit value where

any external pin connected to a high enough voltage will be set to 1 and

the others will be set to 0, if they are seeing a low enough voltage. Floating

pins, always a bad idea, will return a fairly random value in the bit, which

cannot be relied upon.

ChApTer 3 ArduIno LAnguAge referenCe

87

As digitalRead() is only interested in one single pin’s value, all the

other bits are masked out by ANDing the returned value with the bitmask

holding the correct pin. The function returns the result according to

whether or not the bit in the PINx register was set to one or zero.

3.1.3. Function digitalWrite()
Once a pin has been set for OUTPUT with pinMode(), then you can set the

voltage on that pin with the digitalWrite() function and change the

behavior of your project by lighting up LEDs, activating relays and so on.

Listing 3-4 shows the source code for the digitalWrite() function.

Listing 3-4. The digitalWrite() function

void digitalWrite(uint8_t pin, uint8_t val)

{

 uint8_t timer = digitalPinToTimer(pin); ①
 uint8_t bit = digitalPinToBitMask(pin); ②
 uint8_t port = digitalPinToPort(pin); ③
 volatile uint8_t *out;

 if (port == NOT_A_PIN) return; ④

 // If the pin supports PWM output, we need to turn it

 // off before doing a digital write.

 if (timer != NOT_ON_TIMER) turnOffPWM(timer); ⑤

 out = portOutputRegister(port); ⑥

 uint8_t oldSREG = SREG; ⑦
 cli();

ChApTer 3 ArduIno LAnguAge referenCe

88

 if (val == LOW) { ⑧
 *out &= ~bit;

 } else {

 *out |= bit;

 }

 SREG = oldSREG; ⑨
}

 ① The pin number is converted to a timer number,

0, 1, or 2. As with digitalRead(), this is required

in case the pin is capable of being used with the

analogWrite() function call.

 ② The pin number is also converted to an 8-bit value

where the only bit set will correspond to this pin’s

position in the PORTx register.

 ③ The pin number is converted to a port number.

 ④ If the port number is discovered to be invalid,

digitalWrite() will quietly exit without changing

the requested pin and without error. Your sketch will

be none the wiser!

 ⑤ If the requested pin supports PWM, then the pin has

PWM turned off.

 ⑥ The port number returned is converted to an actual

PORTx register address and stored in a pointer

variable, out.

 ⑦ The current value of the status register is saved

to preserve the current state of global interrupts.

Interrupts are then disabled globally. This will affect

the status register and stops millis() from being

accumulated.

ChApTer 3 ArduIno LAnguAge referenCe

89

 ⑧ If the value to be written to the pin is LOW, then the

appropriate bit in the PORTx register is cleared

to zero; otherwise, it is set to one. This turns the

physical pin on the AVR microcontroller LOW or HIGH

as appropriate.

 ⑨ The status register is restored which restores the

previous state of the global interrupts.

As previously mentioned, all three timer/counters available in the

ATmega328P are used to provide PWM facilities on two pins each. If

there is a call to digitalWrite() for pins D3, D5–D6, or D9–D11, then the

PWM on the requested pin must be turned off. This is done by finding out

if the pin in question is connected to a timer/counter and, if so, calling

turnOffPWM() for the particular timer/counter.

As with digitalRead(), the port and bitmask are worked out from

the two tables set up in $ARDINST/variants/standard/pins_arduino.h,

and the port name (e.g., PD) is converted to an actual PORTx register. To

continue the D2 example, this would be PORTD, and the bitmask would be

0000 0100binary in binary; bit 2 is set.

The PORTx registers are, like the PINx registers, connected to the

physical pins on the AVR microcontroller; and writing to those registers

will cause the voltage on the physical pin to change to supply or ground

potential, depending on whether the bit in the PORTx register is a one or a

zero.

As digitalWrite() is only interested in setting a single pin’s value, all

the other bits are masked out by ANDing or ORing the bitmask holding the

correct pin with the current contents of the PORTD register. This affects only

the bit that is set in the bitmask, and none of the other pins change. AND is

used to clear the bit, while OR is used to set it.

ChApTer 3 ArduIno LAnguAge referenCe

90

3.2. Analogue Input/Output
This section takes a look at the functions which carry out analogue

input and output within the Arduino Language. These functions are

analogReference() to set the reference voltage for the analogue circuitry

in the ATmega328P , analogRead() to read a voltage between 0 V and the

reference voltage on a pin, and analogWrite() to set a pin’s voltage to

somewhere between 0 V and the reference voltage.

3.2.1. Function analogReference()
The AVR microcontroller, in this case, the ATmega328P, has the ability to

read analogue voltages – those that are not just defined as HIGH or LOW –

using the analogRead() function. In order to do this, the comparator built

in to the device needs a reference voltage to compare the unknown voltage

against. This can be supplied from a number of different sources, these

being the following:

• The default, which is to use the supply voltage of 5 V

or 3.3 V depending on the device. The ATmega328P on

Arduino boards uses a 5 V supply.

• An internally generated 1.1 V reference voltage. This

must be used if the internal temperature sensor is being

used as the ADC input. See Appendix E for a small

sketch showing how this can be done.

• An external reference voltage on the AREF pin. This

must be between 0 V and 5 V, or damage to the AVR

microcontroller will occur.

ChApTer 3 ArduIno LAnguAge referenCe

91

 The data sheet for the ATmega328p warns that If the user has
a fixed voltage source connected to the AREF pin, the user may not
use the other reference voltage options in the application, as they will
be shorted to the external voltage. If no external voltage is applied to
the AREF pin, the user may switch between AVCC and 1.1V as
reference selection.

The preceding warning must be noted. On my own Arduino boards,

AREF isn’t connected at all (according to the schematics), and the

temperature measuring sketch mentioned earlier works fine. There is a

location on one of the headers labeled “AREF” where the maker can supply

a voltage to the AREF pin. I have never connected anything to that pin, so

I’m safe.

 There are many, many places on YouTube, on the Internet in
general, and in some books where there are circuit diagrams, usually
created in fritzing, which show how you can remove all the
extraneous gubbins from an Arduino board and create your own
pseudo-Arduino on a breadboard. These usually show that there are
three connections to the 5 V supply – VCC, AVCC, and AREF.

This connection of AREF to VCC is completely wrong as it prevents
you from being able to select the internal 1.1 V reference for the AdC
or the Analogue Comparator and will have the result, if you upload a
program that does select the internal reference voltage, of potentially
bricking your AVr microcontroller. not a good idea.

ChApTer 3 ArduIno LAnguAge referenCe

92

My advice is to treat those circuits with disdain and never connect
AREF to any supply voltage, unless you absolutely need to do so, as
this will help your AVr microcontroller live long and prosper. (This,
I think, is a phrase taken from some 1960s space exploration series
on TV!)

The source code for the analogReference() function follows in

Listing 3-5. This code can be found in the file $ARDINC/wiring_analog.c.

Listing 3-5. The analogReference() function

uint8_t analog_reference = DEFAULT;

void analogReference(uint8_t mode)

{

 // can't actually set the register here because

 // the default setting will connect AVCC and the

 // AREF pin, which would cause a short if there's

 // something connected to AREF.

 analog_reference = mode;

}

As you can see, it just changes the value in the analog_reference

variable, which will be used later by analogRead(). The values that can be

passed to this function, for the ATmega328P, are

• DEFAULT which has value 1.

• INTERNAL which has value 3.

• EXTERNAL which has value 0.

All of these are defined as constants in the $ARDINC/Arduino.h header

file. You may be wondering about why those exact values have been used.

The description of analogRead() will tell all!

ChApTer 3 ArduIno LAnguAge referenCe

93

3.2.2. Function analogRead()
The analogRead() function connects the pins A0–A5, or A0–A7 if your board

has the surface mount version of the ATmega328 and the manufacturer

chose to connect A6 and A7 to header pins, to the multiplexed inputs of the

AVR microcontroller’s Analogue to Digital Converter (ADC).

The ADC can read a voltage on those pins; and using a method called

successive approximation, it can work out, with reasonable accuracy,

what the voltage was. Wikipedia has a good explanation of how successive

approximation works at https://en.wikipedia.org/wiki/Successive_

approximation_ADC if you are interested further.

If you think back to the previous section on the analogReference()

function, you may remember I asked why the constants defined for

DEFAULT, INTERNAL, and EXTERNAL had the values 0, 3, or 1? The simple

reason is because when they are shifted left by six places, they take up

position in the REFS1 and REFS0 bits of the ADMUX register and are ready to

go without any further processing being required. Sneaky! (And efficient.)

 The register names may not be very meaningful to you at this
stage; however, in Chapters 7, 8, and 9 where I look at the hardware
features of the ATmega328p, which the code here depends upon, all
will, hopefully, become clear. You may, if you wish, skip to Chapter 9
and read all about the AdC or just take my word for it until then!

Basically, there are two bits in the control registers for the AdC which
tell it where to obtain the reference voltage it needs to convert from
an analogue voltage to a digital value representing the voltage. Those
two bits are named REFS1 and REFS0. By shifting the DEFAULT,
EXTERNAL, or INTERNAL values into those bits, the correct
reference voltage is selected.

ChApTer 3 ArduIno LAnguAge referenCe

https://en.wikipedia.org/wiki/Successive_approximation_ADC
https://en.wikipedia.org/wiki/Successive_approximation_ADC

94

Table 3-1 shows the different values allowed and how they relate to the

analogue reference voltage used by the ADC.

Table 3-1. AnalogReference values and sources

Name Value Binary REFS1 REFS0 Reference Used

defAuLT 0 00 0 0 default reference is the supply

voltage, 5 V or 3.3 V depending on

the device.

eXTernAL 1 01 0 1 default reference is the voltage

supplied on the AVCC pin, 5 V or

3.3 V depending on the device.

InTernAL 3 11 1 1 default reference is the internally

generated 1.1 V voltage.

 The data sheet notes that the value 2 or 10binary is reserved and
should not be used.

It should be noted that the data sheet for the ATmega328P states that

if INTERNAL or EXTERNAL references are being used, there should be a small

capacitor between the AREF pin and ground. The Duemilanove and Uno

boards use a 100 nF capacitor according to the schematics.

Listing 3-6 shows the source code for the analogRead() function.

Listing 3-6. The analogRead() function

int analogRead(uint8_t pin)

{

 uint8_t low, high;

 if (pin >= 14) pin -= 14; ①

ChApTer 3 ArduIno LAnguAge referenCe

95

 // set the analog reference (high two bits of

 // ADMUX) and select the channel (low 4 bits).

 // this also sets ADLAR (left-adjust result)

 // to 0 (the default).

 ADMUX = (analog_reference << 6) | (pin & 0x07); ②

 // without a delay, we seem to read from the ③
 // wrong channel

 //delay(1);

#if defined(ADCSRA) && defined(ADCL)

 // start the conversion

 sbi(ADCSRA, ADSC); ④

 // ADSC is cleared when the conversion finishes

 while (bit_is_set(ADCSRA, ADSC)); ⑤

 // we have to read ADCL first; doing so locks both ADCL

 // and ADCH until ADCH is read. reading ADCL second

 // would cause the results of each conversion to be

 // discarded, as ADCL and ADCH would be locked when

 // it completed.

 low = ADCL; ⑥
 high = ADCH;

#else

 ...

#endif

 // combine the two bytes

 return (high << 8) | low; ⑦
}

ChApTer 3 ArduIno LAnguAge referenCe

96

 ① Here, the pin number passed in is adjusted to

ensure that it is between 0 and 7. In case anyone

passed D14, or 14, for A0, which is perfectly valid,

this adjustment ensures D14 becomes A0 which has

the numeric value of zero.

 ② Whatever the user sets as the desired value for

analog_reference is copied up into the appropriate

bits of the ADMUX register, alongside the correct three

bits for the desired analogue pin.

 ③ This comment is obviously incorrect in this version

of the Arduino IDE, as the desired delay(1) is itself

commented out!

 ④ Ask the ADC to initiate a conversion of the voltage

on the requested pin to a digital value. ADSC is the

“ADC Start Conversion” bit.

 ⑤ Hang around here, burning CPU cycles, while the

ADC does its conversion. When it is complete and a

result is available, bit ADSC in the ADCSRA register will

be cleared. The result of the ADC’s conversion will

be available in the ADCL and ADCH registers.

 ⑥ As per the comment, and the data sheet, we must

read the low value first and then the high value;

otherwise, we would potentially get an incorrect

reading. Reading ADCL locks the result until ADCH

is read; it is then unlocked again. The ADC can be

configured in other modes which make repeated

readings – you would not want to have read the ADCL

and get a different reading’s value in ADCH!

ChApTer 3 ArduIno LAnguAge referenCe

97

 ⑦ The highest 2 bits of the value are in high, while the

lower 8 bits are in low – here we combine these into

a 16-bit value to return as the result.

 The source code shown in the preceding text is not exactly as it
appears in $ARDINC/wiring_analog.c. I have stripped out a lot of
checks, function calls, and assignments which are not relevant to the
ATmega328p. hopefully, this makes things a lot easier to understand.
It certainly saves space on the page!

3.2.3. Function analogWrite()
The code for the analogWrite() function is found in the file $ARDINC/

wiring_analog.c.

The analogWrite() function is used to write an 8-bit data value to one

of the six pins that support pulse width modulation (PWM) which allows the

voltage read on the pin to appear as a value between GND and VCC. Chapter 8

 explains the various timer/counter features, including the various forms

of PWM that are available, how PWM works, and how a supposedly digital

device is able to make analogue voltages appear on its pins.

The analogWrite() function takes a value between 0 and 255 and uses

it to define the duty cycle (see Chapter 8, Section 8.1.7.1, “Duty Cycle”) of

the PWM timer/counter connected to the appropriate pin. The higher this

value is, the longer the duty cycle of the PWM signal on the pin will be and,

therefore, the higher the apparent voltage on the pin will appear to be.

The analogWrite() function will always set the appropriate pin to

be in OUTPUT mode, and if the pin requested is not one that allows PWM,

then a digitalWrite() takes place on the pin, with values less than 128

indicating that the pin should be set to LOW and higher values setting the

pin to HIGH.

ChApTer 3 ArduIno LAnguAge referenCe

98

As you will see from Listing 3-7, all that the analogWrite() function

does is decide which timer/counter and channel that the requested pin

number should be connected to, connects it to that timer/counter and

channel, and sets the duty cycle. Each timer/counter has two separate

channels available for PWM output, and as there are three timer/counters

on the ATmega328P, we have PWM on six pins.

The pins with PWM are D3, D5–D6, and D9–D11; and Table 3-2 shows

which pin is controlled by which timer/counter and the timer/counter’s

channel. The timer/counters have two channels each, hence why there are

only six PWM pins on an ATmega328P.

Table 3-2. PWM pins, timers, and channels

PWM Pin Timer Used Timer Channel

D3 Timer 2 Channel B

D5 Timer 0 Channel B

D6 Timer 0 Channel A

D9 Timer 1 Channel A

D10 Timer 1 Channel B

D11 Timer 2 Channel A

The various timer/counters are separate parts of the ATmega328P and

operate separately from the brain of the microcontroller – the CPU. This

allows the timer/counters to be set and left to get on with timing or

counting while the CPU continues running the program.

ChApTer 3 ArduIno LAnguAge referenCe

99

 The two channels of each timer/counter operate independently
of each other. This allows pin D5 to have one value written by
analogWrite() and pin D10 to have another, different value. This
applies because of the pWM mode chosen by the designers of the
Arduino Language and system and is explained in some detail in
Chapter 8 which deals with the timer/counter hardware in the
ATmega328p.

The source code for the analogWrite() function is shown in Listing 3-7

and, as usual, has had all nonrelevant sections removed.

Listing 3-7. The analogWrite() function

void analogWrite(uint8_t pin, int val)

{

 // We need to make sure the PWM output is enabled for

 // those pins that support it, as we turn it off when

 // digitally reading or writing with them. Also, make

 // sure the pin is in output mode for consistently with

 // Wiring, which doesn't require a pinMode call for the

 // analog output pins.

 pinMode(pin, OUTPUT); ①
 if (val == 0)

 {

 digitalWrite(pin, LOW);

 }

 else if (val == 255)

 {

 digitalWrite(pin, HIGH);

 }

ChApTer 3 ArduIno LAnguAge referenCe

100

 else

 {

 switch(digitalPinToTimer(pin)) ②
 {

 ...

 #if defined(TCCR0A) && defined(COM0A1) ③
 case TIMER0A:

 // connect PWM to pin on timer 0, channel A

 sbi(TCCR0A, COM0A1);

 OCR0A = val; // set PWM duty

 break;

 #endif

 #if defined(TCCR0A) && defined(COM0B1) ④
 case TIMER0B:

 // connect PWM to pin on timer 0, channel B

 sbi(TCCR0A, COM0B1);

 OCR0B = val; // set PWM duty

 break;

 #endif

 #if defined(TCCR1A) && defined(COM1A1) ⑤
 case TIMER1A:

 // connect PWM to pin on timer 1, channel A

 sbi(TCCR1A, COM1A1);

 OCR1A = val; // set PWM duty

 break;

 #endif

 #if defined(TCCR1A) && defined(COM1B1) ⑥
 case TIMER1B:

 // connect PWM to pin on timer 1, channel B

ChApTer 3 ArduIno LAnguAge referenCe

101

 sbi(TCCR1A, COM1B1);

 OCR1B = val; // set PWM duty

 break;

 #endif

 ...

 #if defined(TCCR2A) && defined(COM2A1) ⑦
 case TIMER2A:

 // connect PWM to pin on timer 2, channel A

 sbi(TCCR2A, COM2A1);

 OCR2A = val; // set PWM duty

 break;

 #endif

 #if defined(TCCR2A) && defined(COM2B1) ⑧
 case TIMER2B:

 // connect PWM to pin on timer 2, channel B

 sbi(TCCR2A, COM2B1);

 OCR2B = val; // set PWM duty

 break;

 #endif

 ...

 case NOT_ON_TIMER: ⑨
 default:

 if (val < 128) {

 digitalWrite(pin, LOW);

 } else {

 digitalWrite(pin, HIGH);

 }

 }

 }

}

ChApTer 3 ArduIno LAnguAge referenCe

102

 ① The pin is made an output pin, and as a quick test

and return, if the value is either 0 or 255, the two

limits for analogWrite(), then the pin is simply set to

ground or supply voltage using digitalWrite(). This

avoids a slight timing error when the timer/counter is

in PWM mode and is set to one of its limits. The data

sheet has details, if you wish to investigate further.

 ② The pin is converted to a timer/counter and channel

by way of a call to digitalPinToTimer() which uses

the table digital_pin_to_timer_PGM created in

$ARDINST/variants/standard/pins_arduino.h to

determine if the pin is a PWM pin or otherwise. This

returns a value of NOT_ON_TIMER if the pin is purely

digital, and that will be handled by the default case.

 ③ This is where pin D6 is configured. The pin is

connected to the timer/counter, and the OCR0A register

is loaded with the value passed to analogWrite() to

enable the correct duty cycle for the timer/counter’s

PWM output. D6 is on Timer/counter 0, channel A.

 ④ Configuration of pin D5 is performed here and sets

up D5 on Timer/counter 0, channel B.

 ⑤ This is where pin D9 is configured to use Timer/

counter 1, channel A.

 ⑥ Pin D10 configuration happens here. Pin D10 uses

Timer/counter 1, channel B.

 ⑦ Pin D11 is configured here and uses channel A on

Timer/counter 2.

 ⑧ Pin D3 is configured here. D3 is configured to use

channel B on Timer/counter 2.

ChApTer 3 ArduIno LAnguAge referenCe

103

 ⑨ In the event that the supplied pin number is not able

to output PWM, this part of the code digitally sets

the pin LOW or HIGH according to the requested PWM

value passed to analogWrite().

The Arduino Reference web site at www.arduino.cc/reference/en/

language/functions/analog-io/analogwrite/ warns that

The PWM outputs generated on pins 5 and 6 will have higher-
than-expected duty cycles. This is because of interactions with
the millis() and delay() functions, which share the same
internal timer used to generate those PWM outputs. This will
be noticed mostly on low duty-cycle settings (e.g. 0–10) and
may result in a value of 0 not fully turning off the output on
pins 5 and 6.

Looking at the code in Listing 3-7, a value of zero will ignore PWM altogether

and simply use digitalWrite() to turn off the pin. I suspect the warning may

refer to older types of Arduino boards. The ATmega328P data sheet also advises

against PWM values of zero or TOP where TOP is the configured highest value for

the timer/counter in use. I would say that the checks in Listing 3-7 which test for

0 or 255 are obviously there to get around the problem.

 A pin can be HIGH or LOW. pWM turns a pin HIGH and LOW, and
the sum of one HIGH plus one LOW is the period. This is related to the
pWM frequency which is defined by the timer/counter’s prescaler –
Chapter 8, Section 8.1.7.2, “PWM Frequencies”, has all the gory details.

duty cycle is usually expressed as a percentage. It defines the time
that the pin is HIGH as a percentage of the period. A duty cycle of
10% means that the pin is HIGH for 10% of its period and LOW for
the remaining 90%. A 10% duty cycle would appear as a voltage very
close to 10% of VCC on the pWM pin.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
http://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/

104

3.3. Advanced Input/Output
In this section, I take you through the advanced input/output functions

which allow you to make sounds and measure logic levels on pins to

determine how long a specific state was held for and an easy way to shift a

byte value from a variable out onto a digital pin and vice versa.

3.3.1. Function tone()
The code for the tone() function is found in the file $ARDINC/Tone.cpp.

The tone() function generates a square wave of the specified

frequency, with a 50% duty cycle, on any pin. A duration can be specified;

otherwise, the wave continues until a call to noTone(). The pin can be

connected to a piezo buzzer or another speaker to play tones.

If tone() has been called, then PWM on pins D3 and D11 will be

affected. These analogue pins are maintained by Timer/counter 2, and it is

Timer/counter 2 that the tone() function uses to generate a square wave.

If you have, for example, a pair of LEDs, fading in and out, on pins D3

and D11, then whenever the tone() function is called, and while sounding

a tone, the LEDs will be off. Fading LEDs, on the other pins available for

analogWrite(), will not be affected. Those are pins D5, D6, D9, and D10.

Only pins D3 and D11 are affected by this problem.

Brett Hagman’s GitHub site, https://github.com/bhagman/

Tone#ugly-details, which is linked to the Arduino Reference web site,

www.arduino.cc/reference/en/language/functions/advanced-io/

tone/, has the following to say, as a warning:

ChApTer 3 ArduIno LAnguAge referenCe

https://github.com/bhagman/Tone#ugly-details
https://github.com/bhagman/Tone#ugly-details
http://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
http://www.arduino.cc/reference/en/language/functions/advanced-io/tone/

105

 do not connect the pin directly to some sort of audio input. The
voltage on the output pin will be 5 V or 3.3 V and is considerably
higher than a standard line-level voltage (usually around 1 V peak to
peak) and can damage sound card inputs and others. You could use
a voltage divider to bring the voltage down, but you have been warned.

You must have a resistor in line with the speaker, or you will damage
your microcontroller.

The resistor mentioned is shown on Brett’s circuit diagram as having a

value of 1 K. That should, if I can do the calculations properly, restrict the

current to 5 milliAmps.

 Brett is the author of the Tone Library, a simplified version of
which has been included with the Arduino Ide, since version 0018.

Listing 3-8 shows how the tone() function can be called in one of two

ways.

Listing 3-8. Example tone() function calls

tone(pin, frequency)

// or

tone(pin, frequency, duration)

The duration, if it is omitted or zero, causes the tone to sound forever or

until noTone() is called.

ChApTer 3 ArduIno LAnguAge referenCe

106

On the Arduino boards based around the ATmega328P, only one pin

can be generating a tone at any time. If a tone is already playing on a pin,

a call to tone() with a different pin number will have no effect unless

noTone() was called first. If the call is made for the same pin as the one

currently playing, the call will set the tone’s frequency to that specified in

the most recent call.

In order for tone() to function correctly, a couple of tables are required

to be set up to control which timer/counter will be used to generate a tone

and to keep a record of all the pins that are currently generating. This code

is shown in Listing 3-9.

As with other listings in this book, I have removed any code that is not

relevant to the ATmega328P.

Listing 3-9. Variables used by the tone() function

#define AVAILABLE_TONE_PINS 1 ①
#define USE_TIMER2 ②

const uint8_t PROGMEM tone_pin_to_timer_PGM[] =

 { 2 /*, 1, 0 */ }; ③

static uint8_t tone_pins[AVAILABLE_TONE_PINS] =

 { 255 /*, 255, 255 */ }; ④

 ① This shows that the ATmega328 family has only one

pin that can play at any one time – at least on the

version of the code included with the Arduino IDE

version 1.8.5.

 ② This tells the code, later on, which interrupt routine

to use, to do the actual tone generation.

 ③ This array, which is created in the AVR

microcontroller’s flash memory, holds a list of the

various timer/counters that can be used to generate

ChApTer 3 ArduIno LAnguAge referenCe

107

tones. As the tone() function is a cut-down version

of Brett’s library, only a single timer/counter is used;

currently, this is Timer/counter 2.

 ④ This array, which is created in the AVR

microcontroller’s Static RAM, holds a list of all the

pin numbers that are currently playing a tone, or

255 if nothing is playing. There is one entry in the

table for each timer/counter that can be used to

generate tones. That means there is one entry in

total for the ATmega328P boards. There can be only

one (www.imdb.com/title/tt0091203/ – well, I am

a Highlander!).

As you can see from the preceding text, the ATmega328P-based boards

only have a single timer/counter in use to generate tones, this being

Timer/counter 2.

In addition to the tables listed in Listing 3-9, the variables in Listing 3-10

are also required by the tone() function, specifically, in the interrupt

service routine (ISR) which does the actual sound generation.

Listing 3-10. Variables used by the tone() function ISR

volatile long timer2_toggle_count;

volatile uint8_t *timer2_pin_port;

volatile uint8_t timer2_pin_mask;

 You will note that all of these are declared volatile. This is
because they will be used in an interrupt service routine (ISr), and
any variable you wish to read or write during an interrupt must be
declared as being volatile. If you forget, your code may not work
because the compiler optimized the variable away.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.imdb.com/title/tt0091203/

108

The variable timer2_toggle_count holds the number of times that the

interrupt routine will be called, if a duration for the tone is requested. If no

duration is requested, this is unused.

Timer2_pin_port is related to the internal register to be used for the

PORTx port for the pin which will be generating the sound, while timer2_

pin_mask is a bitmask with a single bit, corresponding to the required pin,

set to one. This indicates which bit in the PORTx register is being used to

generate the sound.

The tone() function works by working out a suitable prescaler for

the timer/counter clock so that the number of ticks to be counted per

transition (LOW to HIGH or HIGH to LOW) of the pin falls into the range 0–255.

This is required because Timer/counter 2 is only 8 bits wide and can only

count within this range.

If the frequency chosen is such that even with a prescaler of 1024 in use

the value still cannot fall in the range required, the code simply attempts

to carry on regardless. This may render the tone generated to be the wrong

frequency.

The first part of the source code for the tone() function is shown in

Listing 3-11, and the code continues in Listing 3-12. Sections which are not

relevant to ATmega328P devices have been removed for clarity.

Listing 3-11. The tone() function

// frequency (in hertz) and duration (in milliseconds).

void tone(uint8_t _pin,

 unsigned int frequency,

 unsigned long duration)

{

uint8_t prescalarbits = 0b001;

long toggle_count = 0;

uint32_t ocr = 0;

int8_t _timer;

ChApTer 3 ArduIno LAnguAge referenCe

109

_timer = toneBegin(_pin); ①

if (_timer >= 0)

{

 // Set the pinMode as OUTPUT

 pinMode(_pin, OUTPUT);

 // if we are using an 8 bit timer, scan through prescalars

 // to find the best fit

 if (_timer == 0 || _timer == 2)

 {

 ocr = F_CPU / frequency / 2 - 1; ②
 prescalarbits = 0b001; // ck/1: same for both timers

 if (ocr > 255)

 {

 ocr = F_CPU / frequency / 2 / 8 - 1;

 prescalarbits = 0b010; // ck/8: same for both timers

 if (_timer == 2 && ocr > 255)

 {

 ocr = F_CPU / frequency / 2 / 32 - 1;

 prescalarbits = 0b011;

 }

 if (ocr > 255)

 {

 ocr = F_CPU / frequency / 2 / 64 - 1;

 prescalarbits = _timer == 0 ? 0b011 : 0b100;

 if (_timer == 2 && ocr > 255)

 {

 ocr = F_CPU / frequency / 2 / 128 - 1;

 prescalarbits = 0b101;

 }

ChApTer 3 ArduIno LAnguAge referenCe

110

 if (ocr > 255)

 {

 ocr = F_CPU / frequency / 2 / 256 - 1;

 prescalarbits = _timer == 0 ? 0b100 : 0b110;

 if (ocr > 255)

 {

 // can't do any better than /1024

 ocr = F_CPU / frequency / 2 / 1024 - 1; ③
 prescalarbits = _timer == 0 ? 0b101 : 0b111;

 }

 }

 }

 }

 ...

 TCCR2B = (TCCR2B & 0b11111000) | prescalarbits; ④
 }

 ① The call to toneBegin() returns a timer/counter

number. On the standard Arduino boards,

based around the ATmega328 family of AVR

microcontrollers, this will be Timer/counter 2. The

toneBegin() function is discussed in Listing 3-13.

 ② These lines onward attempt to fit the required

frequency into the range 0–255 using any of the

available Timer/counter 2 prescaler values.

The frequency of the system clock, 16 MHz, is

divided by twice the required frequency – because

in order to make a tone, the pin must be raised and

lowered – LOW ➤ HIGH ➤ LOW. This is then divided

by the prescaler value being considered. The

subtraction of one from the result is because the

AVR microcontroller counts from zero.

ChApTer 3 ArduIno LAnguAge referenCe

111

If the result fits into an 8-bit value, then the current

prescaler value will be used.

 ③ This is the last resort at fitting the frequency

into range. If the prescaler set to divide by 1024

still cannot fit, then the code simply carries on

regardless. This could result in the frequency being

a tad wrong.

 ④ After the call to toneBegin() – see in the following –

Timer/counter 2 is set up to run with no prescaling,

so the calculated prescaler bits must be set up in the

TCCR2B register, in bits CS22–CS20. See Chapter 8 for

a full description of prescalers.

These bits will be set to whatever is in the lowest

3 bits of the prescalarbits variable. This sets the

timer/counter to the correct prescaler value for the

frequency that is required to be generated.

For example, if we assume that the system clock is 16 MHz and we

wish to produce a tone of 440 Hz for the note A4 above middle C, then the

repeated tests earlier will result in the following:

• With a prescaler of 1, the value calculated is 18,180

which cannot be used in an 8-bit timer/counter.

• With a prescaler of 8, the value calculated is 2,271

which cannot be used in an 8-bit timer/counter.

• With a prescaler of 32, the value calculated is 567 which

cannot be used in an 8-bit timer/counter.

• With a prescaler of 64, the value calculated is 283 which

cannot be used in an 8-bit timer/counter.

ChApTer 3 ArduIno LAnguAge referenCe

112

• With a prescaler of 128, the value calculated is 141

which can be used in an 8-bit timer/counter.

• With a prescaler of 256, the value calculated is 70 which

could be used but won’t be as prescaler 128 was found

to fit.

• With a prescaler of 1024, the value calculated is 16

which could be used but won’t be as prescaler 128 was

found to fit.

Of these, the first one to fit into the range 0–255 is a prescaler of 128.

So the ocr variable is set to 141, and the prescalarbits variable is set to

101binary to select a divide-by-128 prescaler.

The source code for tone() continues in the following.

Listing 3-12. The tone() function, continued

 ...

 // Calculate the toggle count

 if (duration > 0)

 {

 toggle_count = 2 * frequency * duration / 1000; ①
 }

 else

 {

 toggle_count = -1;

 }

 // Set the OCR for the given timer,

 // set the toggle count,

 // then turn on the interrupts

 switch (_timer)

 {

ChApTer 3 ArduIno LAnguAge referenCe

113

 ...

#if defined(OCR2A) && defined(TIMSK2) && defined(OCIE2A)

 case 2:

 OCR2A = ocr; ②
 timer2_toggle_count = toggle_count; ③
 bitWrite(TIMSK2, OCIE2A, 1); ④
 break;

#endif

 ...

 } // end switch (_timer)

 } // End if (_timer >= 0)

}

 ① The duration is checked, and if it is specified, then

the tone must only be generated for that length of

time. The duration supplied to tone() is specified in

milliseconds; however, as frequency is measured in

cycles per second, the value is converted to seconds.

Continuing the preceding example of a 440 Hz tone,

if the duration is required to be 1.5 seconds, then the

toggle_count variable is set to 2 * 440 * 1.5 or 1320. This

is the number of times in 1.5 seconds that the pin must

be toggled, to ensure that a 440 Hz tone is generated.

 ② The ocr value is the maximum count that the timer/

counter counts up to before it clears to zero and

causes an interrupt. Unlike the millis() interrupt

routine, which counts from 0 to 255 (on Timer/

counter 0), the maximum value for this timer/

counter, when generating tones, is based on the

frequency and the calculated prescaler value.

ChApTer 3 ArduIno LAnguAge referenCe

114

Once more, with the current example, the timer/

counter will count from 0 to 141 and toggle the pin,

then again from 0 to 141 and again toggle the pin,

and so on, for the desired duration.

 ③ If a duration was specified, the number of times

the pin must be toggled is written to the timer2_

toggle_count variable which will be used to disable

the tone, in the interrupt routine, when the duration

has passed. This is -1 if no duration was requested.

 ④ The setting of the bit OCIE2A in register TIMSK2

enables the Timer/counter 2 Compare Match A

interrupt. That interrupt routine is the code that

actually toggles the pin to cause the sound to be

generated and is discussed in Listing 3-14.

The tone() function begins by calling toneBegin() to obtain a timer/

counter number to use. Listing 3-13 shows the relevant parts of the

toneBegin() function. As before, parts of the code that are not relevant to

ATmega328P devices have been removed for clarity.

Listing 3-13. The toneBegin() function

static int8_t toneBegin(uint8_t _pin)

{

 int8_t _timer = -1;

 // if we're already using the pin, the timer

 // should be configured.

 for (int i = 0; i < AVAILABLE_TONE_PINS; i++) { ①
 if (tone_pins[i] == _pin) {

 return pgm_read_byte(tone_pin_to_timer_PGM + i);

 }

 }

ChApTer 3 ArduIno LAnguAge referenCe

115

 // search for an unused timer.

 for (int i = 0; i < AVAILABLE_TONE_PINS; i++) { ②
 if (tone_pins[i] == 255) {

 tone_pins[i] = _pin;

 _timer = pgm_read_byte(tone_pin_to_timer_PGM + i);

 break;

 }

 }

 if (_timer != -1) ③
 {

 // Set timer specific stuff

 // All timers in CTC mode

 // 8 bit timers will require changing prescalar values,

 // whereas 16 bit timers are set to either ck/1

 // or ck/64 prescalar

 switch (_timer)

 {

 // Code removed - not relevant.

 #if defined(TCCR2A) && defined(TCCR2B)

 case 2: ④
 // 8 bit timer

 TCCR2A = 0;

 TCCR2B = 0;

 bitWrite(TCCR2A, WGM21, 1);

 bitWrite(TCCR2B, CS20, 1);

 timer2_pin_port =

 portOutputRegister(digitalPinToPort(_pin));

 timer2_pin_mask =

 digitalPinToBitMask(_pin);

 break;

 #endif

ChApTer 3 ArduIno LAnguAge referenCe

116

 // Code removed - not relevant.

 } // End switch (_timer)

 } // End if (_timer != -1)

 return _timer;

}

 ① The toneBegin() code starts by checking the tone_

pin_to_timer_PGM array to see if the requested pin

is currently generating a tone. If it is, the code simply

returns the timer/counter number to tone() – on an

ATmega328P-based Arduino board, this is always

Timer/counter 2.

 ② The tone_pins array is searched for an unused pin.

If an entry is found, the tone_pin_to_timer_PGM

array is read to determine the timer/counter

number that can be used. There’s only one timer/

counter on Arduino boards, Timer/counter 2.

 ③ If there were no free slot(s) in the tone_pins array,

toneBegin() exits, returning -1 to the calling code in

tone().

 ④ Much bit twiddling then ensues to initialize Timer/

counter 2 with

• Bit WGM21 set in register TCCR2A to put the timer/

counter into “Clear Timer on Compare” mode. The

counter value will reset to zero whenever it reaches

the value in OCR2A.

• Bit CS20 set in register TCCR2B to put the timer/

counter into “no prescaling” mode – the timer/

counter’s clock will run at the system clock speed,

ChApTer 3 ArduIno LAnguAge referenCe

117

16 MHz. This will be amended on return to tone()

when the frequency-dependent prescaler value is

calculated.

• The variable timer_pin_port is determined next.

This is based on the pin requested and will be

PORTB, PORTC, or PORTD on the ATmega328P.

• The required pin’s bitmask, in timer2_pin_mask,

is calculated next. This will be an 8-bit value, with

a single bit set to indicate the required pin, on the

just calculated PORTx register.

Most of the setup for tone() is now complete. All that is required is an

interrupt service routine to do the actual tone generation. The interrupt

in use is the “Timer/counter 2 Compare Match A” interrupt, which is

discussed in Listing 3-14.

Listing 3-14. The ISR for the tone() function

#ifdef USE_TIMER2

ISR(TIMER2_COMPA_vect)

{

 if (timer2_toggle_count != 0) ①
 {

 // toggle the pin

 *timer2_pin_port ^= timer2_pin_mask; ②

 if (timer2_toggle_count > 0) ③
 timer2_toggle_count--;

 }

 else

 {

ChApTer 3 ArduIno LAnguAge referenCe

118

 // need to call noTone() so that the tone_pins[]

 // entry is reset, so the timer gets initialized

 // next time we call tone().

 // XXX: this assumes timer 2 is always the first

 // one used.

 noTone(tone_pins[0]); ④
 // disableTimer(2);

 // *timer2_pin_port &= ~(timer2_pin_mask);

 }

 }

 #endif

 ① If there are still toggles to be done, then the pin must

be toggled.

 ② The appropriate PORTx register has its bits XORd

with the pin’s bitmask. This toggles just the bit that

is set to indicate which pin is being used to generate

a tone. If the bit is currently a one, then XORing with

the 1 bit in the mask will set the PORTx register’s bit

to a zero and vice versa. This sets the physical pin

HIGH or LOW accordingly.

 ③ The number of toggles remaining for the required

duration is reduced.

 ④ If there were no more toggles to be done, then a

call is made to the noTone() function to silence the

sound.

The old code following this line has been

commented out. This is now because noTone()

disables the timer/counter and sets the pin to LOW.

ChApTer 3 ArduIno LAnguAge referenCe

119

The Arduino Reference web site, www.arduino.cc/reference/en/

language/functions/advanced-io/tone/, has the following to say about

tone():

If you want to play different pitches on multiple pins, you need to
call noTone() on one pin before calling tone() on the next pin.

It is not possible to generate tones lower than 31Hz. For techni-
cal details, see Brett Hagman’s notes. (https://github.com/
bhagman/Tone#ugly-details)

Use of the tone() function will interfere with PWM output on
pins 3 and 11 (on boards other than the Mega).

3.3.2. Function noTone()
The code for the noTone() function is found in the file $ARDINC/Tone.cpp.

The noTone() function, as discussed in Listing 3-15, should be called

to stop the generation of a square wave triggered by the tone() function.

When the function is called, it turns off tone generation on the supplied

pin, assuming that it was generating a tone, and then sets the pin’s state to

LOW regardless of whether or not it was previously generating a tone.

Listing 3-15. The noTone() function

void noTone(uint8_t _pin)

{

 int8_t _timer = -1;

 for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {

 if (tone_pins[i] == _pin) {

 _timer = pgm_read_byte(tone_pin_to_timer_PGM + i); ①
 tone_pins[i] = 255; ②
 break;

 }

 }

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
http://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://github.com/bhagman/Tone#ugly-details
https://github.com/bhagman/Tone#ugly-details

120

 disableTimer(_timer); ③

 digitalWrite(_pin, 0); ④
}

 ① If the pin number supplied is currently generating

a tone, then it is converted to a timer/counter

number. In ATmega328P variants of the Arduino

board, this will always be Timer/counter 2 – that’s

the only timer/counter currently used for tone

generation.

 ② This indicates that no pins are generating a tone.

 ③ If the pin was not generating a tone, the _timer

variable will be set to -1, and that will have no effect

in disableTimer(). Otherwise, Timer/counter 2 will

be disabled, stopping the generation.

 ④ The pin is set LOW, regardless of whether it was

generating a tone or not. This contradicts the

documentation for noTone() at www.arduino.cc/

reference/en/language/functions/advanced-io/

notone/ where it states that this has no effect if no

tone is being generated on the specified pin when

called. This is definitely not the case if the pin was

actually HIGH when noTone() was called on it.

The disableTimer() function, called from noTone(), is discussed in

Listing 3-16. As with other listings, those parts of the code not relevant to

the ATmega328P have been removed.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/notone/
http://www.arduino.cc/reference/en/language/functions/advanced-io/notone/
http://www.arduino.cc/reference/en/language/functions/advanced-io/notone/

121

Listing 3-16. The disableTimer() function

// XXX: this function only works properly for timer 2 (the only

one we use

// currently). for the others, it should end the tone, but

won't restore

// proper PWM functionality for the timer.

void disableTimer(uint8_t _timer)

{

 switch (_timer)

 {

 ...

 case 2: ①
 #if defined(TIMSK2) && defined(OCIE2A)

 bitWrite(TIMSK2, OCIE2A, 0);

 #endif

 #if defined(TCCR2A) && defined(WGM20) ②
 TCCR2A = (1 << WGM20);

 #endif

 #if defined(TCCR2B) && defined(CS22) ③
 TCCR2B = (TCCR2B & 0b11111000) | (1 << CS22);

 #endif

 #if defined(OCR2A) ④
 OCR2A = 0;

 #endif

 break;

 ...

 }

}

ChApTer 3 ArduIno LAnguAge referenCe

122

 ① Setting bit OCIE2A in register PIMSK2 turns off the

“Timer/counter 2 Compare Match A” interrupt

which had been turned on by the toneBegin()

function, itself called from the tone() function.

 ② This resets Timer/counter 2 into “Phase Correct

PWM” mode originally set up in init() but which

was changed to “Clear Timer on Compare” mode by

the toneBegin() function, called from tone().

 ③ This resets the prescaler back to divide by 64 for

Timer/counter 2. The tone() function changed that

setting according to the frequency of the tone that

was requested.

 ④ This resets the “Output Compare A” value for the

timer/counter.

The effect of the preceding code is to restore the state of Timer/

counter 2, its interrupts and so on, back to those configured in the initial

setup within the init() function as described in Chapter 2, Section 2.9,

“The init() Function.”

The Arduino Reference web site at www.arduino.cc/reference/en/

language/functions/advanced-io/notone/ has the following to say on

noTone():

If you want to play different pitches on multiple pins, you need to
call noTone() on one pin before calling tone() on the next pin.

3.3.3. Function pulseIn()
The pulseIn() function, found in the file $ARDINC/wiring_pulse.c, is

used to measure the period of a pulse on any pin. There is an alternative

function, pulseInLong(), which is discussed later, which is better at

handling long-duration pulses than pulseIn(); however, pulseIn() can

be used in sketches where interrupts are disabled.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/notone/
http://www.arduino.cc/reference/en/language/functions/advanced-io/notone/

123

The function reads a pulse – HIGH or LOW – on any pin and returns the

length of the pulse in microseconds. There are two methods of calling this

function as shown in Listing 3-17.

Listing 3-17. Calling the pulseIn() function

unsigned long microSeconds = 0;

microSeconds = pulseIn(pin, state, timeout);

// or

microSeconds = pulseIn(pin, state); // Timeout defaults to 1 second

The return value is an unsigned long.

If no timeout is specified, the default is one second. The timeout is

specified in microseconds – millionths of a second.

If the function is called with a LOW state to be measured, it will

• Wait for the pin in question to become HIGH if it

currently is LOW. If the timeout expires before the pin

goes HIGH, the function returns zero. Thus, the code is

waiting for the current pulse to end.

• Wait for the pin to go LOW again – this is the start of the

pulse to be measured. Once more, if the remaining time

left in the timeout expires, the function returns zero.

• Wait for the pin to go HIGH again – this is the end of the

pulse to be measured. If the remaining time left in the

timeout expires, then the function again returns zero;

otherwise, it returns the time, in microseconds, that the

pin remained LOW.

ChApTer 3 ArduIno LAnguAge referenCe

124

 To be absolutely clear, the timeout you pass to the function is
used for all of the function – waiting for the current pulse to finish,
waiting for the new pulse to start, and then waiting for the new pulse
to complete – one timeout to rule them all.

Similar, but opposite, actions take place when pulseIn() is called with

a state of HIGH.

Unlike the function pulseInLong(), pulseIn() can be executed when

interrupts are disabled as it does not require the micros() function.

It measures the pulse length by calling an assembly language function,

countPulseASM(), which can be seen in the file $ARDINC/wiring_pulse.S

and, according to the source code, it started life as a C routine, similar to

that shown in Listing 3-18. I will not be discussing the assembly language

version of countPulseASM() here – looking at compiler output is quite

tedious it has to be said.

Listing 3-18. C code version of countPulseASM()

unsigned long pulseInSimpl(volatile uint8_t *port,

 uint8_t bit,

 uint8_t stateMask,

 unsigned long maxloops)

{

 unsigned long width = 0; ①

 // wait for any previous pulse to end

 while ((*port & bit) == stateMask)

 if (--maxloops == 0)

 return 0; ②

ChApTer 3 ArduIno LAnguAge referenCe

125

 // wait for the pulse to start

 while ((*port & bit) != stateMask)

 if (--maxloops == 0)

 return 0; ③

 // wait for the pulse to stop

 while ((*port & bit) == stateMask) {

 if (++width == maxloops)

 return 0; ④
 }

 return width; ⑤
}

 ① The pulse length will be returned in the width

variable; here, it is initialized to zero.

 ② The function returns zero if the timeout expired

while waiting for the current pulse to end.

 ③ The function returns zero if the timeout remaining

expired while waiting for the new pulse to begin.

 ④ The function returns zero if the timeout remaining

expired while the new pulse was being measured.

 ⑤ The pulse has been successfully measured, and

the variable width holds its width as the number of

while loops which were executed while measuring

the pulse length.

Listing 3-19 shows the source code for the current version of the

pulseIn().

ChApTer 3 ArduIno LAnguAge referenCe

126

Listing 3-19. The pulseIn() function

/* Measures the length (in microseconds) of a pulse on the pin;

state is HIGH

 * or LOW, the type of pulse to measure. Works on pulses from

2-3 microseconds

 * to 3 minutes in length, but must be called at least a few

dozen microseconds

 * before the start of the pulse.

 *
 * This function performs better with short pulses in

noInterrupt() context

 */

unsigned long pulseIn(uint8_t pin,

 uint8_t state,

 unsigned long timeout)

{

 // cache the port and bit of the pin in order to speed

 // up the pulse width measuring loop and achieve finer

 // resolution. calling digitalRead() instead yields

 // much coarser resolution.

 uint8_t bit = digitalPinToBitMask(pin); ①
 uint8_t port = digitalPinToPort(pin); ②
 uint8_t stateMask = (state ? bit : 0); ③

 // convert the timeout from microseconds to a number

 // of times through the initial loop; it takes

 // approximately 16 clock cycles per iteration

 unsigned long maxloops =

 microsecondsToClockCycles(timeout)/16; ④

ChApTer 3 ArduIno LAnguAge referenCe

127

 unsigned long width =

 countPulseASM(portInputRegister(port),

 bit, stateMask, maxloops); ⑤

 // prevent clockCyclesToMicroseconds to return

 // bogus values if countPulseASM timed out

 if (width) ⑥
 return clockCyclesToMicroseconds(width * 16 + 16);

 else

 return 0;

}

 ① The supplied pin number is converted to a bitmask.

As with all calls to digitalPinToBitMask(), the

bitmask returned is an 8-bit binary value, with a

single bit set to one. This bit represents the desired

physical pin on the AVR microcontroller and

its appropriate position in the PORTx and PINx

registers.

 ② The appropriate port (PB, PC, or PD) is obtained from

the pin number.

 ③ The stateMask variable is set to zero for LOW or to the

pin’s bitmask for HIGH.

 ④ The timeout counter is initialized to the required

number of microseconds multiplied by 16 as the

assembly code will loop in system clock cycles as

opposed to microseconds.

 ⑤ The assembly language code is called to

• Wait for the current pulse on the pin to end or the

timeout to expire.

ChApTer 3 ArduIno LAnguAge referenCe

128

• Wait for the pin to begin a new pulse or the timeout

to expire.

• Wait for the pulse to end or the timeout to expire.

The call to portInputRegister() will convert the

pin’s port number, PB, PC, or PD, to the appropriate

PINx register in the AVR microcontroller; and this

will be passed to the assembly code.

 ⑥ The width value is converted from the number of

while loops executed while measuring the pulse to

microseconds. Each loop takes 16 microseconds, so

width is multiplied by 16. It now holds the number

of clock cycles it spent in the loop. An additional 16

is added for the overhead of calling and returning

from the countPulseASM() function. These clock

cycles are then converted to microseconds by the

clockCyclesToMicroseconds() function.

 The reason that the code calls out to an assembly language
routine is at first a little mysterious, especially as the assembly code
was, it appears, created from C code originally. Why not just call the C
code again?

Well, what happens to the timings in the C code if, somehow, a
compiler version that is later used by the Ide implements a new
optimization that makes the generated code run much more quickly?
The timings will be off somewhat.

ChApTer 3 ArduIno LAnguAge referenCe

129

running a standard assembly language routine, where the actual
timings of each and every instruction are known, means that no
matter what improvements are made in the compiler, the existing
countPulseASM() function will continue to run at exactly the same
speed, thus keeping the results of pulseIn() consistent.

The Arduino Reference web site (www.arduino.cc/reference/en/

language/functions/advanced-io/pulsein/) gives the following notes

about the pulseIn() function:

The timing of this function has been determined empirically
and will probably show errors in longer pulses. Works on
pulses from 10 microseconds to 3 minutes in length.

There is also an example of the function’s use on the web site, as

shown in Listing 3-20.

Listing 3-20. Example usage of pulseIn()

int pin = 7;

unsigned long duration;

void setup()

{

 pinMode(pin, INPUT);

}

void loop()

{

 duration = pulseIn(pin, HIGH);

}

However, the example code doesn’t do anything with the returned

result!

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/pulsein/
http://www.arduino.cc/reference/en/language/functions/advanced-io/pulsein/

130

3.3.4. Function pulseInLong()
The pulseInLong() function is found in the file $ARDINC/wiring_pulse.c.

It is an alternative to the pulseIn() function previously described and is

better at handling long-duration pulses. It cannot, however, be used in

sketches where interrupts are disabled.

The function reads a pulse – HIGH or LOW – on any pin and returns the

length of the pulse in microseconds. There are two methods of calling this

function as shown in Listing 3-21.

Listing 3-21. Calling the pulseInLong() function

unsigned long microSeconds = 0;

microSeconds = pulseInLong(pin, state, timeout);

// or

microSeconds = pulseInLong(pin, state); // Timeout defaults

to 1 second

The return value is an unsigned long.

If no timeout is specified, the default is one second. The timeout

should be specified in microseconds – millionths of a second.

If the function is called with a HIGH state to be measured, it will

• Wait for the pin in question to become LOW if it currently

is HIGH. If the timeout expires before the pin goes LOW,

the function returns zero. Thus, the code is waiting for

the current pulse to end.

• Wait for the pin to go HIGH again – this is the start of the

pulse to be measured. Once more, if the remaining time

left in the timeout expires, the function returns zero.

ChApTer 3 ArduIno LAnguAge referenCe

131

• Wait for the pin to go LOW again – this is the end of the

pulse to be measured. If the remaining time left in the

timeout expires, then the function again returns zero;

otherwise, it returns the time, in microseconds, that the

pin remained HIGH.

Similar, but opposite, actions take place when called with a state of LOW.

The source code for the pulseinLong() function is discussed in Listing 3-22,

which has been slightly reformatted so that it can fit on the page.

Listing 3-22. The pulseInLong() function

/* Measures the length (in microseconds) of a pulse on the

 * pin; state is HIGH or LOW, the type of pulse to measure.

 * Works on pulses from 2-3 microseconds to 3 minutes in

 * length, but must be called at least a few dozen

 * microseconds before the start of the pulse.

 *
 * ATTENTION: ①
 * this function relies on micros() so cannot be

 * used in noInterrupt() context

 */

unsigned long pulseInLong(uint8_t pin,

 uint8_t state,

 unsigned long timeout)

{

 // cache the port and bit of the pin in order to speed

 // up the pulse width measuring loop and achieve finer

 // resolution. Calling digitalRead() instead yields much

 // coarser resolution.

ChApTer 3 ArduIno LAnguAge referenCe

132

 uint8_t bit = digitalPinToBitMask(pin); ②
 uint8_t port = digitalPinToPort(pin); ③
 uint8_t stateMask = (state ? bit : 0);

 unsigned long startMicros = micros(); ④

 // wait for any previous pulse to end ⑤
 while ((*portInputRegister(port) & bit) == stateMask) {

 if (micros() - startMicros > timeout)

 return 0;

 }

 // wait for the pulse to start ⑥
 while ((*portInputRegister(port) & bit) != stateMask) {

 if (micros() - startMicros > timeout)

 return 0;

 }

 unsigned long start = micros(); ⑦
 // wait for the pulse to stop ⑧
 while ((*portInputRegister(port) & bit) == stateMask) {

 if (micros() - startMicros > timeout)

 return 0;

 }

 return micros() - start; ⑨
}

 ① Your attention is drawn to this comment. Because

the code uses the micros() function, it cannot be

used if the global interrupts have been turned off,

as the call to micros() will not change without

interrupts, specifically, the Timer/counter 0

Overflow interrupt. The micros() function is

discussed in Section 3.4.3, “The micros() Function.”

ChApTer 3 ArduIno LAnguAge referenCe

133

 ② The supplied pin number is converted to a bitmask.

 ③ The appropriate port (PB, PC, or PD) is obtained from

the pin number.

 ④ The timeout counter is initialized. Because this

uses micros(), interrupts must be enabled, and

the default interrupt handler for the Timer/counter

0 Overflow interrupt must be configured. (This is

done at startup in the init() function as discussed

in Chapter 2.)

 ⑤ The wait for the pin to stop being in the state we are

considering happens here. If the timeout expires

during the wait, the function returns zero. The pulse

did not occur.

The call to portInputRegister() will convert the

pin’s port number, PB, PC, or PD, to the appropriate

PINx register in the AVR microcontroller.

 ⑥ The wait for the pin to start the next pulse happens

here. If the remaining timeout expires during the wait,

the function returns zero. The pulse did not occur.

 ⑦ A new pulse has started, so the time that it started is

recorded in start.

 ⑧ The function waits while the pulse continues. If the

timeout expires while waiting, the function will once

again return zero to indicate that the pulse did not

get measured completely within the timeout period.

 ⑨ If the pulse did complete before the timeout expired,

the function returns the time that the pin was in the

state that the sketch was interested in.

ChApTer 3 ArduIno LAnguAge referenCe

134

The description of pulseinLong() at www.arduino.cc/reference/

en/language/functions/advanced-io/pulseinlong/ gives the following

notes about the function:

The timing of this function has been determined empirically
and will probably show errors in shorter pulses. Works on
pulses from 10 microseconds to 3 minutes in length. This rou-
tine can be used only if interrupts are activated. Furthermore
the highest resolution is obtained with large intervals.

This function relies on micros() so cannot be used in the
noInterrupts() context.

There is also an example of the function’s use on the Arduino web site,

reproduced in Listing 3-23.

Listing 3-23. Example usage of pulseInLong()

int pin = 7;

unsigned long duration;

void setup() {

 pinMode(pin, INPUT);

}

void loop() {

 duration = pulseInLong(pin, HIGH);

}

However, the example doesn’t do anything with the returned result!

3.3.5. Function shiftIn()
The code for the shiftIn() function is found in the file $ARDINC/wiring_

shift.c.

The shiftIn() function is used to read an 8-bit data value, 1 bit at a

time, from an external device, for example, a shift register.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/pulseinlong/
http://www.arduino.cc/reference/en/language/functions/advanced-io/pulseinlong/

135

The operation may be carried out with the most significant bit (MSB)

being shifted in first, or with the least significant bit (LSB) first, according

to how the external device sending the data is sending it.

The Arduino only requires two pins and can read 8 bits or more,

depending on the number of bits the device wishes to send to the Arduino.

The pins required are

• A data pin, which is the pin that the bits in the external

device will be presented on, ready to be read by the Arduino.

• A clock pin, which is set HIGH to signal the external

device that the Arduino is ready to receive a single bit

of data and held LOW when the Arduino doesn’t wish to

read the data or has just finished reading a bit.

The source code for the shiftIn() function is shown in Listing 3-24.

Listing 3-24. The shiftIn() function

uint8_t shiftIn(uint8_t dataPin,

 uint8_t clockPin,

 uint8_t bitOrder) {

 uint8_t value = 0;

 uint8_t i;

 for (i = 0; i < 8; ++i) {

 digitalWrite(clockPin, HIGH); ①
 if (bitOrder == LSBFIRST) ②
 value |= digitalRead(dataPin) << i; ③
 else

 value |= digitalRead(dataPin) << (7 - i); ③
 digitalWrite(clockPin, LOW); ④
 }

 return value; ⑤
}

ChApTer 3 ArduIno LAnguAge referenCe

136

The function works by reading 8 separate bits, one at a time, by

 ① Raising the clock pin HIGH to signal the external

device that the Arduino is ready to receive data.

 ② Reading a one or zero from the data pin. The

external device should have placed its data bit on

the pin when the clock pin was raised.

 ③ Accumulating the newly read bit into the value

variable. Yes, there are two places where this

happens – it depends on whether the code is being

called with LSBFIRST or MSBFIRST and which of the

two lines is actually executed.

 ④ Bringing the clock pin LOW to end the reading of this

1 bit.

 ⑤ The data is returned as a single 8-bit, unsigned

value.

The documentation for the shiftIn() function, at www.arduino.cc/

reference/en/language/functions/advanced-io/shiftin/, has the

following to say about shiftIn():

If you are interfacing with a device that is clocked by rising
edges, you’ll need to make sure that the clock pin is LOW before
the first call to shiftIn(), e.g. with a call to digitalWrite
(clockPin, LOW).

This is a software implementation; see also the Arduino SPI
library that uses a hardware implementation, which is faster
but only works on specific pins.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/shiftin/
http://www.arduino.cc/reference/en/language/functions/advanced-io/shiftin/

137

3.3.6. Function shiftOut()
The code for the shiftOut() function is found in the file $ARDINC/wiring_

shift.c.

The shiftOut() function is used to pass an 8-bit data value, 1 bit at a

time, from the AVR microcontroller to an external device such as a shift

register. This is carried out in software so that any Arduino pin can be used

for the data pin. There is also the ability to use the hardware of the AVR

microcontroller itself, which uses the Arduino’s SPI library, but can only be

used with certain pins on the ATmega328P.

The operation can be carried out with the most significant bit (MSB)

being shifted out first, or with the least significant bit (LSB) shifting first,

according to how the device receiving the data desires it.

Shift registers, for example, are useful devices for reducing the number

of pins required by the Arduino board for certain purposes. For example,

to flash eight LEDs would require eight data pins on the Arduino, but with

a shift register in place, this is reduced to two, possibly three, depending on

the shift register type. The pins required are

• A data pin, which is the pin that the bits in the data to

be shifted out are sent on.

• A clock pin, which is toggled HIGH and then LOW to latch

the data bit into the external device.

• Optionally, but not used in shiftOut(), some shift

register devices have an enable pin, so that the output

pins on the shift registers are all set to the desired state

at once, when all the bits have been received, and not

as and when each bit is latched into the device.

ChApTer 3 ArduIno LAnguAge referenCe

138

 A benefit of shift registers is that they can be cascaded together.
With two in a circuit, 16 Leds can be flashed, for only two or three
data pins on the Arduino. This can be extended up to 24, 32, and so
on for as many shift registers, and Leds, as you have handy.

I have also seen shift registers being used to reduce the number
of Arduino pins required to drive a pair of stepper motors (www.
youtube.com/watch?v=OeqQPlD3mNA&index=16&list=PLyE5
6WXw0_5QrkEwXZ2AXwh6A-s0iQoVl).

There are tutorials on using the shiftOut() function, with a shift

register, on the Arduino Tutorials web site at https://arduino.cc/en/

Tutorial/ShiftOut.

The function works by looking at each individual bit in the value to be

shifted out, starting at the appropriate end, and raising the data pin HIGH if

the bit is a one or LOW if it is a zero.

Once the bit has been presented on the data pin, the clock pin is

toggled HIGH and then LOW to signal the external device that the data bit is

valid and should be “clocked in” to the device.

On some devices, this will have the side effect of changing the output

state, not always a good thing. On others, the data are buffered internally

by the devices until they receive an “enable” signal, and then all the data

are presented on the devices’ output pins simultaneously. This version of

shiftOut() does not have this ability.

The source code for the shiftOut() function is as shown in Listing 3-25.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.youtube.com/watch?v=OeqQPlD3mNA&index=16&list=PLyE56WXw0_5QrkEwXZ2AXwh6A-s0iQoVl
http://www.youtube.com/watch?v=OeqQPlD3mNA&index=16&list=PLyE56WXw0_5QrkEwXZ2AXwh6A-s0iQoVl
http://www.youtube.com/watch?v=OeqQPlD3mNA&index=16&list=PLyE56WXw0_5QrkEwXZ2AXwh6A-s0iQoVl
https://arduino.cc/en/Tutorial/ShiftOut
https://arduino.cc/en/Tutorial/ShiftOut

139

Listing 3-25. The shiftOut() function

void shiftOut(uint8_t dataPin,

 uint8_t clockPin,

 uint8_t bitOrder,

 uint8_t val)

{

 uint8_t i;

 for (i = 0; i < 8; i++) {

 if (bitOrder == LSBFIRST)

 digitalWrite(dataPin, !!(val & (1 << i)));

 else

 digitalWrite(dataPin, !!(val & (1 << (7 - i))));

 digitalWrite(clockPin, HIGH);

 digitalWrite(clockPin, LOW);

 }

}

The preceding code shows the use of an interesting technique, one

that I had never come across previously. Let’s take the following line as the

example:

digitalWrite(dataPin, !!(val & (1 << i)));

The (val & (1 << i)) part isolates a single bit of val and returns its

value as the appropriate power of two. For example, if i is 5 and val is 250,

then (val & (1 << i)) returns 25 which is 32.

In binary, this is

250 = 11111010

 32 = 00100000

AND = 00100000

ChApTer 3 ArduIno LAnguAge referenCe

140

The interesting part is the !! part, which means, for this example,

not not 32. To my initial eye, that simply means 32, which confused me.

However, in C, it’s a little different:

 32 = 32

 !32 = 0

!!32 = 1

Try it and see! You get a one or a zero according to whether the bit is

set or not. In the past, I’ve only ever seen this style of code:

(val & (1 << i)) >> i;

This does give the same answer, one or zero. However, this variant

requires a shift right operation in addition to the bitwise AND operation, and

I suspect that the !! variant is a little quicker. I need to do some testing!

The shiftOut() reference at www.arduino.cc/reference/en/

language/functions/advanced-io/shiftout/ has the following to say:

If you are interfacing with a device that’s clocked by rising
edges, you’ll need to make sure that the clock pin is LOW before
the call to shiftOut(), e.g. with a call to digitalWrite
(clockPin, LOW).

This is a software implementation; see also the SPI library,
which provides a hardware implementation that is faster but
works only on specific pins.

3.4. Time
This section looks into those functions which deal with timings on the

Arduino. Here, we investigate the delay() function which holds up

processing for a few milliseconds, delayMicroseconds() which delays for

a few microseconds, and the two functions which return details of how

long the sketch has been running since power on, reset, or upload time –

micros() and millis().

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/
http://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/

141

3.4.1. Function delay()
This function causes the sketch to pause, and do almost nothing, for a

certain number of milliseconds. According to the reference guide at www.

arduino.cc/reference/en/language/functions/time/delay/, while the

delay() function is running, you cannot:

• Call digitalRead(), digitalWrite(), pinMode(),

analogRead(), analogWrite(), etc., to manipulate

the board’s pins, to read sensors and so on.

• Carry out any calculations.

• Transmit data to Serial.

 I’m interested in that last point. Transmission of data to the
uSArT (the Serial interface) is carried out under an interrupt service
routine, just like the receipt of serial data, so should still work. I
assume – always a bad idea – that what they are meaning is simply
that while delay() is running, your sketch cannot call the Serial.
print() functions.

You can be sure, however, that the following will still work:

• Receipt of data from Serial, which will be saved for

later use.

• Values written to PWM pins with analogWrite() will be

maintained, but cannot be changed. Motors attached

to PWM pins will still run, and LEDs will remain lit;

however, their speed and/or brightness during the

delay() will remain constant.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/time/delay/
http://www.arduino.cc/reference/en/language/functions/time/delay/

142

• Interrupt routines will work. This includes the Timer/

counter 0 Overflow interrupt which keeps the millis

counter up to date. Calls to millis() or micros(), after

a call to delay(), will accurately reflect the passage of

time for the sketch.

 Interestingly, delay() calls micros() to measure the delay
period. The micros() function does disable interrupts while it reads
timer0_overflow_count which is updated every time that Timer/
counter 0’s 8-bit counter overflows (every 1024 microseconds). So,
technically, while delay() itself doesn’t disable interrupts, it does
cause interrupts to be disabled and enabled quite frequently within
the delay loop.

The maximum delay period that can be requested is 232 – 1

milliseconds, or 4,294,967.295 seconds. This is almost 50 days – 49 days,

17 hours, 2 minutes, 47 seconds, and 294.87424 milliseconds! I imagine a

sketch that delays for that long should really consider being put to sleep –

see Chapter 7, Section 7.3.8, “Putting the AVR to Sleep,” for details.

Listing 3-26 shows the source code for the delay() function which has

been extracted from the file $ARDINC/wiring.c.

Listing 3-26. The delay() function

void delay(unsigned long ms)

{

 uint32_t start = micros();

 while (ms > 0) {

 yield(); ①

 while (ms > 0 && (micros() - start) >= 1000) {

ChApTer 3 ArduIno LAnguAge referenCe

143

 ms--;

 start += 1000;

 }

 }

}

 ① The call to the yield() function, as shown in

Listing 3-27, is interesting.

All that delay() is doing is fetching the current micros() value and then

entering a busy loop to waste time until the required number of milliseconds

have elapsed. This is why you are almost unable to carry out anything else

in your sketch while there is a delay() – because the call to delay() uses all

the time and CPU cycles until the delay period has finished.

In the ATmega328P-based versions of Arduino boards, this doesn’t do

much; in fact, it’s defined as an empty function in the file $ARDINC/hooks.c.

Listing 3-27. The yield() function

/**
 * Empty yield() hook.

 *
 * This function is intended to be used by library writers to

 * build libraries or sketches that support cooperative

 * threads.

 *
 * Its defined as a weak symbol and it can be redefined to

 * implement a real cooperative scheduler.

 */

static void __empty() {

 // Empty

}

void yield(void) __attribute__ ((weak, alias("__empty")));

ChApTer 3 ArduIno LAnguAge referenCe

144

So, in these boards, calling delay() has an overhead of calling this

empty function, but the calculation in the delay() function’s loop takes

this into account.

Other boards that can use the Arduino IDE and language, such as

those based around the ESP8266, have internal schedulers that must be

kept active during long-running code; otherwise, the microcontroller may

reset itself, assuming that something has hung. The AVR microcontroller

has a similar feature known as the Watchdog Timer which will be

discussed later, in Chapter 7, Section 7.3, “The Watchdog Timer.”

Because the delay() function could take too long and starve these

devices of scheduler time, the yield() function is defined as weak, and this

allows the developers to define their own yield() function in sketches so

that the processor doesn’t suffer from random or strange resets.

I presume that a maker could, if they were so inclined, write a yield()

function in an AVR microcontroller–based Arduino board and do some

processing during the delay; however, it would need to be carefully

considered, and whatever was being executed in the yield() function

should be kept as short and quick as possible to avoid affecting any

delay() loops that require reasonably accurate delay periods.

The Arduino Reference web site (www.arduino.cc/reference/en/

language/functions/time/delay/) gives the following notes about the

delay() function:

While it is easy to create a blinking LED with the delay()
function, and many sketches use short delays for such tasks as
switch debouncing, the use of delay() in a sketch has signifi-
cant drawbacks.

No other reading of sensors, mathematical calculations, or
pin manipulation can go on during the delay() function, so
in effect, it brings most other activity to a halt.

For alternative approaches to controlling timing see the mil-
lis() function and the sketch listed below (in Listing 3-28).

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/time/delay/
http://www.arduino.cc/reference/en/language/functions/time/delay/

145

More knowledgeable programmers usually avoid the use of
delay() for timing of events longer than 10’s of milliseconds
unless the Arduino sketch is very simple.

Certain things do go on while the delay() function is control-
ling the Atmega chip however, because the delay() function
does not disable interrupts. Serial communication that
appears at the RX pin is recorded, PWM (analogWrite()) val-
ues and pin states are maintained, and interrupts will work as
they should.

Listing 3-28 is the sketch mentioned in the notes. It uses the millis()

function to time the blinking of the LED, rather than calling the delay()

function.

 please note I have removed most comments and wrapped
longer lines of code in Listing 3-28 to preserve space on the page
and to avoid the code running off the edge of the page. The original
code on the Web is very well commented.

Listing 3-28. Blink without using delay()

/*
 Blink without Delay

 created 2005 by David A. Mellis

 modified 8 Feb 2010 by Paul Stoffregen

 modified 11 Nov 2013 by Scott Fitzgerald

 modified 9 Jan 2017 by Arturo Guadalupi

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/BlinkWithoutDelay

*/

ChApTer 3 ArduIno LAnguAge referenCe

146

const int ledPin = LED_BUILTIN; // the number of the LED pin

int ledState = LOW; // ledState used to set the LED

unsigned long previousMillis = 0; ①

const long interval = 1000; ②

void setup() {

 pinMode(ledPin, OUTPUT);

}

void loop() {

 unsigned long currentMillis = millis(); ③

 if (currentMillis - previousMillis >= interval) { ④
 previousMillis = currentMillis; ⑤

 if (ledState == LOW) { ⑥
 ledState = HIGH;

 } else {

 ledState = LOW;

 }

 digitalWrite(ledPin, ledState); ⑦
 }

}

 ① The variable previousMillis holds the previous

time that the LED was toggled.

 ② The delay between blinks is set here, in interval.

 ③ The current time is obtained into currentMillis.

 ④ Check here to see if the required interval has passed.

 ⑤ If the LED is to be toggled, record the current time.

 ⑥ Calculate the LED’s new state – HIGH or LOW.

 ⑦ Finally, toggle the LED.

ChApTer 3 ArduIno LAnguAge referenCe

147

3.4.2. Function delayMicroseconds()
This function, like the delay() function, causes your sketch to pause, and

do almost nothing, for a certain number of microseconds – millionths of a

second. While the delayMicroseconds() function is running, you cannot

• Call digitalRead(), digitalWrite(), pinMode(),

analogRead(), analogWrite(), etc., to manipulate

the board’s pins.

• Carry out any calculations.

• Transmit data to Serial.

The following will still work while the function is delaying:

• Receipt of data from Serial, which will be saved for

later use.

• Values written to PWM pins with analogWrite() will be

maintained, but cannot be changed. Motors attached

to PWM pins will still run, and LEDs will remain lit;

however, their speed and/or brightness during the

delayMicroseconds() will remain constant.

• Interrupt routines will work. This includes the Timer/

counter 0 Interrupt which keeps the millis() counter

up to date. Calls to millis() or micros(), after a call

to delayMicroseconds(), will accurately reflect the

passage of time for the sketch.

Unlike the delay() function, delayMicroseconds() has no call to

yield() as the delay period is most likely far too short to cause those

Arduino boards, with potential scheduler problems, resulting in a reset.

It is assumed that this function will only be used for fairly small delays;

otherwise, the developer would be advised to call delay() instead.

ChApTer 3 ArduIno LAnguAge referenCe

148

As with delay(), this function simply burns CPU cycles, time, and

power until the required delay period has passed; however, unlike delay()

which allows a delay period of up to nearly 50 days, delayMicroseconds()

takes an unsigned int parameter for the delay period. This is only a 16-bit

variable (delay() uses 32 bits) so the maximum delay period is 65,536

microseconds, or 0.065536 seconds.

Listing 3-29 shows most of the source code for the

delayMicroseconds() function which has been extracted from the file

$ARDINC/wiring.c. Similarly to other listings, I have removed some (large)

comments and all the parts of the code which are not relevant to the

ATmega328P on standard Arduino boards.

Listing 3-29. The delayMicroseconds() function

/*
 * Delay for the given number of microseconds.

 * Assumes a 1, 8, 12, 16, 20 or 24 MHz clock.

 */

void delayMicroseconds(unsigned int us)

{

 // call = 4 cycles + 2 to 4 cycles to init us

 // (2 for constant delay, 4 for variable)

 // calling avrlib's delay_us() function with low

 // values (e.g. 1 or 2 microseconds) gives delays

 // longer than desired.

 //delay_us(us); ①

#if F_CPU >= 24000000L

#elif F_CPU >= 16000000L

 // for the 16 MHz clock on most Arduino boards

ChApTer 3 ArduIno LAnguAge referenCe

149

 if (us <= 1) return; // = 3 cycles, (4 when true) ②
 us <<= 2; // x4 us, = 4 cycles ③
 us -= 5; // = 2 cycles, ④

 ...

#endif

 // busy wait

 __asm__ __volatile__ (⑤ ⑥
 "1: sbiw %0,1" "\n\t" // 2 cycles

 "brne 1b" : "=w" (us) : "0" (us) // 2 cycles

);

 // return = 4 cycles

}

 ① Interesting! It appears, from this comment, that

the delayMicroseconds() function used to call the

delay_us() function in the AVRLib. It’s therefore

worth noting that the comment matches exactly

with a warning on www.arduino.cc/reference/en/

language/functions/time/delaymicroseconds/

about inaccuracies when called with low values for

the delay.

I rather suspect that the problem with periods below

3 microseconds only applies to the old versions of

the Arduino Language where that call to delay_us()

is still being made.

The warnings from the Arduino Reference site are

reproduced in the following for your information.

 ② The function begins by returning if the delay

is 1 microsecond, or less, as that period will

have elapsed by the time it gets to that point

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/time/delaymicroseconds/
http://www.arduino.cc/reference/en/language/functions/time/delaymicroseconds/

150

in the function. Calling the function takes one

microsecond, so there’s nothing more to be done.

 ③ Because the actual delay is carried out by an

assembly language routine, and as each iteration

of the loop takes only a quarter of a microsecond,

the delay period, in the variable us, needs to

be multiplied by 4 to get the correct delay in

microseconds.

 ④ The us variable now needs to be adjusted to take

account of the time that has passed doing all the

preceding checks. As either 19 or 21 cycles (19

or 21 quarters of a microsecond) have gone by, 5

(microseconds) is subtracted from us to account for

those values. This is almost correct as it equates to

20 cycles rather than the observed 19 or 21.

 ⑤ The adjusted value in us is then passed to the

assembly code and the loop executed us times. All

that the assembly function does is to subtract one

from the value in a register pair, which started off

with the us variable’s value, and then loop around

doing that subtraction over and over until the us

value reduces to zero. The compiler will pick a

suitable register pair to hold the initial us value and

to be decremented in the code.

 ⑥ The assembly routine is declared volatile to

prevent the compiler from optimizing the routine

away completely – as it appears to do nothing.

The following notes about the delayMicroseconds() function can be

found online at www.arduino.cc/reference/en/language/functions/

time/delaymicroseconds/:

ChApTer 3 ArduIno LAnguAge referenCe

https://www.arduino.cc/reference/en/language/functions/time/delaymicroseconds/
https://www.arduino.cc/reference/en/language/functions/time/delaymicroseconds/

151

This function works very accurately in the range 3 microsec-
onds and up. We cannot assure that delayMicroseconds()
will perform precisely for smaller delay-times.

As of Arduino 0018, delayMicroseconds() no longer disables
interrupts.

 I am certain that the preceding warning about very small delays
is no longer applicable and only applied to previous versions of the
function which called delay_us() – which the current version no
longer does.

3.4.3. Function micros()
The micros() function returns the number of microseconds since

• The Arduino board was powered on.

• The board was reset.

• The board was reprogrammed with a new sketch and

began execution.

The return value, an unsigned long, can hold up to 32 bits and will

overflow to zero after approximately 70 minutes according to the reference

notes for this function. On 16 MHz Arduino boards, the value returned

by the micros() function is always a multiple of four microseconds. On

8 MHz Arduinos, the result is always a multiple of eight microseconds.

I wonder how approximate that 70-minute overflow period is. We

know that the variable m can hold up to 232 – 1 microseconds, so

2^32 – 1 = 4,294,967,295 microseconds

/ 1,000,000 = 4,294.967295 Seconds

/ 60 = 71.58278827 Minutes

 = 71 minutes 34 seconds 967295 microseconds.

ChApTer 3 ArduIno LAnguAge referenCe

152

So the counter has a wee bit more than 70 minutes before it overflows

on standard Arduinos.

Listing 3-30 shows the source code for the micros() function which

has been extracted from the file $ARDINC/wiring.c.

Listing 3-30. The micros() function

unsigned long micros() {

 unsigned long m;

 uint8_t oldSREG = SREG, t; ①

 cli(); ②
 m = timer0_overflow_count; ③

#if defined(TCNT0)

 t = TCNT0; ④
 ...

#endif

#ifdef TIFR0

 if ((TIFR0 & _BV(TOV0)) && (t < 255)) ⑤
 m++;

 ...

#endif

 SREG = oldSREG; ⑥

 return ((m << 8) + t)

 * (64 / clockCyclesPerMicrosecond()); ⑦
}

 ① The status register is copied to preserve the current

state of the interrupts and other flag bits.

ChApTer 3 ArduIno LAnguAge referenCe

153

 ② Global interrupts are disabled. This stops the

interrupt routine that calculates millis() from

executing and updating the variable timer0_

overflow_count while it is being copied.

 ③ The current Timer/counter 0 overflow count is

copied from timer0_overflow_count into the

variable m. There are 256 timer clock ticks per

overflow, so there is one overflow every 1024

microseconds.

 ④ The current count for Timer/counter 0 is read from

the register TCNT0 into variable t. This register is

incremented once every 16,000,000/64 system clock

ticks, or every 4 microseconds.

 ⑤ If Timer/counter 0 has just overflowed from 255 to 0,

the TOV0 bit will be set unless the interrupt handler

has completed, so the copy of timer0_overflow_

count is incremented because the timer/counter

has just overflowed again while we were messing

about with the current values.

 ⑥ The status register is restored, thus re-enabling

interrupts if they were running previously.

 ⑦ The return value is calculated by multiplying the

timer0_overflow_count by 256, adding the fraction,

and multiplying that result by 4, the number of

microseconds in each timer clock tick. See the

following for the actual calculation. (I had to wrap

this line to fit the page.)

ChApTer 3 ArduIno LAnguAge referenCe

154

The result is required to be the number of microseconds since the time

began for the sketch, so we have the following:

• The value in variable m is the count of Timer/counter 0

overflows, which we already know from init() occurs

every 256 system clock ticks.

• The value in variable t is the count of the Timer/

counter 0 clock ticks since the last overflow.

• The total number of clock ticks since the sketch began

is therefore (256 * m) + t. Shifting m left by eight places is

the same as multiplying by 28 which is 256.

• The prescaler, 64, is the number of system clock ticks

which occur for each timer clock tick.

• The function clockCyclesPerMicrosecond(), defined in

the file $ARDINC/Arduino.h as F_CPU / 1000000, returns

16; and the 64 is the system clock prescaler amount. This

calculation gives us 4 microseconds per timer clock tick.

So we need to return the value equivalent to ((m * 256) + t) * 4

microseconds, and that’s exactly what the final line does. For a standard

Arduino at 16 MHz, the function clockCyclesPerMicrosecond() returns

16. The clockCyclesPerMicrosecond() function is based on the board’s

F_CPU (system clock speed) and will return the correct result for micros()

regardless of the actual speed of the board this code is running on.

3.4.4. Function millis()
This function returns the number of milliseconds since

• The Arduino board was powered on.

• The board was reset.

• The board was reprogrammed with a new sketch and

began execution.

ChApTer 3 ArduIno LAnguAge referenCe

155

The source code for the function can be seen in Listing 3-31 or, if you

wish, by examining the file $ARDINC/wiring.c on your system.

The init() function, which is executed at the start of any sketch,

initializes the ATmega328P’s Timer/counter 0 so that every time it

overflows from 255 to 0, it executes an interrupt routine to count up the

milliseconds. When a sketch calls the millis() function, it simply reads

the return value from a global variable named timer0_millis.

Listing 3-31. The millis() function

unsigned long millis()

{

 unsigned long m;

 uint8_t oldSREG = SREG; ①

 // disable interrupts while we read timer0_millis or

 // we might get an inconsistent value (e.g. in the

 // middle of a write to timer0_millis)

 cli(); ②
 m = timer0_millis; ③
 SREG = oldSREG; ④

 return m; ⑤
}

 ① A copy of the status register is taken to preserve the

current interrupt flag, plus other flags, stored there.

 ② Global interrupts must be disabled – see the

comment in the code for the reason.

 ③ The current value of the millis counter is read.

 ④ The status register is restored, turning interrupts

back on, if they were originally on.

 ⑤ The result of the millis() function is returned.

ChApTer 3 ArduIno LAnguAge referenCe

156

The code must disable global interrupts before reading the value from

timer0_millis. This is to prevent the counter being incremented while

this code is in the middle of reading the current value. As disabling the

interrupts changes the status register in the AVR microcontroller, a copy

is taken so that it can be restored later. After retrieving the current value,

the status register is restored, and the value is returned to the calling code.

This minimizes the time that interrupts are disabled.

You should be aware that whenever the interrupts are disabled, and

other functions such as digitalRead() will disable interrupts, then the

millis() count will stop incrementing. This implies that some normal

Arduino code can affect the millis() and micros() function results,

however briefly.

For further information, you can read about the init() function in

Chapter 2, Section 2.9, “The init() Function.”

 According to the Arduino reference for millis() at www.
arduino.cc/reference/en/language/functions/time/
millis/, the value returned from millis() will roll over to zero if
the Arduino has been running for approximately 50 days. You may
need to be aware of this if you are using millis() for anything
important and make sure that your code handles situations where the
value read from millis() at the start of something is greater than
the value at the end. This would indicate a rollover has taken place.

remember it is only when the Arduino has been powered on or a
sketch has been running for around 50 days, not a particular part of
your sketch’s code.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/time/millis/
http://www.arduino.cc/reference/en/language/functions/time/millis/
http://www.arduino.cc/reference/en/language/functions/time/millis/

157

How approximate is the value 50 days quoted?

An unsigned long stores data in 32 bits and so has a maximum value

of 232 – 1 or 4,294,967,295 milliseconds. Divide that by the number of

milliseconds in one day (24 * 60 * 60 * 1000 = 86,400,000); and the result

is 49.71026962 days, which works out at 49 days, 17 hours, 2 minutes, and

47.29487424 seconds (plus one solitary millisecond to cause the rollover).

So it appears that the rollover isn’t quite as long as 50 days; it’s short by

7 hours, 22 minutes, and 53.0819328 seconds.

A warning from www.arduino.cc/reference/en/language/

functions/time/millis/:

Please note that the return value for millis() is an unsigned
long. Logic errors may occur if a programmer tries to do arith-
metic with smaller data types such as ints. Even signed long
may encounter errors as its maximum value is half that of its
unsigned counterpart.

3.5. Interrupts
The Arduino Language allows your sketches to set up functions which will

be called automatically, whenever a certain type of event happens.

These are called interrupt service routines, or ISRs, and there are

some functions in the Arduino Language which help you in setting up

and using these ISRs. These are interrupts() and noInterrupts() to

enable and disable interrupts for the whole board and attachInterrupt()

and detachInterrupt() to link and unlink your sketch’s functions to the

interrupt handling system of the ATmega328P.

3.5.1. Function interrupts()
The interrupts() function is defined in the file $ARDINC/Arduino.h as per

Listing 3-32.

ChApTer 3 ArduIno LAnguAge referenCe

https://www.arduino.cc/reference/en/language/functions/time/millis/
https://www.arduino.cc/reference/en/language/functions/time/millis/

158

Listing 3-32. The interrupts() function

#define interrupts() sei()

Its purpose is to enable global interrupts which is done by calling

the sei() function. This itself is defined in $AVRINC/interrupt.h as the

assembly language instruction sei, which sets the interrupt flag in the

status register, thus enabling interrupts.

3.5.2. Function noInterrupts()
The noInterrupts() function is defined in the file $ARDINC/Arduino.h as

per Listing 3-33.

Listing 3-33. The interrupts() function

#define noInterrupts() cli()

Its purpose is to disable global interrupts which it does by calling

the cli() function. This itself is defined in $AVRINC/interrupt.h as the

assembly language instruction cli, which clears the interrupt flag in the

status register and, thus, disables global interrupts.

3.5.3. Function attachInterrupt()
The code for the attachInterrupt() function is found in the file $ARDINC/

WInterrupts.c and also extracted in Listing 3-34.

This function is used to attach an external interrupt to a function

within a sketch. Each time the interrupt fires, the function will be called.

The function must be defined as shown in Listing 3-34.

Listing 3-34. A skeleton interrupt handling function

void myInterruptRoutine() {

 ...

}

ChApTer 3 ArduIno LAnguAge referenCe

159

The function must not return any value, nor does it receive any

parameters. The processing it carries out should be kept as short as

possible. If it requires to access any variables in the main part of the sketch,

then these must be defined as volatile, as follows:

volatile int interruptFlag = 0;

External interrupts are limited in number on some AVR

microcontrollers, and on the ATmega328P family, there are only two of

these. The two pins that can be used on the ATmega328P are Arduino pins

D2 and D3 only. These pins, corresponding to ATmega328P pins PD2 and

PD3, are the physical pins 4 and 5 on the device. They are able to respond

to external stimulus even if they are configured as OUTPUT. In addition, if

they are OUTPUT pins, and a sketch changes the state of the pin, then the

change may cause the interrupt to be fired.

Arduino pin D2 is connected to the AVR microcontroller’s INT0

interrupt, and Arduino pin D3 is connected to the INT1 interrupt. These are

high-priority interrupts, only a RESET is higher, and INT0 takes priority if

two arrive together.

The documentation states that the function should be called as shown

in Listing 3-35.

Listing 3-35. Example usage of attachInterrupt()

attachInterrupt(digitalPinToInterrupt(pin), ISR, mode);

However, attachInterrupt() takes the first parameter, the interrupt,

as an unsigned 8-bit value, but digitalPinToInterrupt() returns

a signed value when the pin passed to it is not D2 or D3. In this case,

it returns -1 which is defined as NOT_AN_INTERRUPT. Passing -1 to an

unsigned will convert it to 255.

This is not a major bug or problem. It’s just inconsistent and, as

purists would probably say, wrong! (And I tend to agree, this time, with the

purists.)

ChApTer 3 ArduIno LAnguAge referenCe

160

The parameters required are as follows:

• Pin must be either 2 for D2 or 3 for D3 and should be

passed via digitalPinToInterrupt() and not passed

directly to attachInterrupt() on the ATmega328P-

based boards.

• ISR is the name of a void function, taking no

parameters, to be called when the interrupt fires.

• mode is the definition of the external stimulus which will

cause the interrupt to fire. It can be one of the following:

• LOW to trigger the interrupt whenever the pin is low,

which will fire constantly for as long as the pin is

held LOW. Also, if a sketch sets the pin LOW, then the

interrupt routine will keep firing until the pin is

taken HIGH again.

• CHANGE to trigger the interrupt whenever the pin

changes value from HIGH to LOW or from LOW to

HIGH. This can be in response to an external device

or to a sketch changing the state of the pin with

digitalWrite(), for example.

• RISING to trigger the interrupt whenever the pin

goes from LOW to HIGH.

• FALLING to trigger the interrupt whenever the pin

goes from HIGH to LOW.

If the function is called with a pin value other than 2 or 3, nothing will

happen. It is advisable to use the helper function digitalPinToInterrupt(),

because not all boards have the same pins connected to the same external

interrupts. Using the helper function in this way ensures that the sketch

could be run, with the code unchanged, on other boards with different AVR

microcontrollers. Some other wiring changes may be necessary of course.

ChApTer 3 ArduIno LAnguAge referenCe

161

The helper function digitalPinToInterrupt() is defined in

$ARDINST/variants/standard/pins_arduino.h as follows in Listing 3-36.

Listing 3-36. The digitalPinToInterrupt() function

#define digitalPinToInterrupt(p) \

 ((p) == 2 ? 0 : ((p) == 3 ? 1 : NOT_AN_INTERRUPT))

It can be seen that passing pin 2 will return zero, passing pin 3 will

return one, and any other value will return NOT_AN_INTERRUPT which is -1 –

thus, INT0 for pin 2 and INT1 for pin 3 (Arduino pin numbering).

NOT_AN_INTERRUPT is defined in $ARDINC/Arduino.h as

#define NOT_AN_INTERRUPT -1

An example from the Arduino Reference web site on the use of the

attachInterrupt() function is shown in Listing 3-37, while Figure 3-2

shows one possible breadboard circuit to use the sketch. It’s a simple circuit

to turn an LED on when a switch is pressed and off again when it is released.

Listing 3-37. Example sketch using attachInterrupt()

const byte ledPin = 13;

const byte interruptPin = 2;

volatile byte state = LOW;

void setup() {

 pinMode(ledPin, OUTPUT);

 pinMode(interruptPin, INPUT_PULLUP); ①
 attachInterrupt(digitalPinToInterrupt(interruptPin),

 blink, CHANGE);

}

ChApTer 3 ArduIno LAnguAge referenCe

162

void loop() {

 digitalWrite(ledPin, state); ②
}

void blink() {

 state = !state; ③
}

 ① The pin, which the switch and interrupt are attached

to, is pulled HIGH by the internal pullup resistor.

 ② The main loop simply sets the built-in LED to the

current value of state. This will be LOW until the

switch is pressed once, whereupon it will toggle.

 ③ The interrupt service routine (ISR) changes the

value of state from LOW to HIGH or from HIGH to LOW

each time that pin D2 changes its state. The state

variable is always the opposite of the state on pin D2.

Figure 3-2. Breadboard layout for the attachInterrupt() sketch

ChApTer 3 ArduIno LAnguAge referenCe

163

In Figure 3-2, the resistor R1 is 330 Ohms and is there to limit the

current drawn by the LED and is connected from the cathode to ground.

The anode (the longest lead) is attached to D13 as the built-in LED is not

very bright.

Given that switches bounce quite a lot, I suspected that Listing 3-37

was unlikely to work correctly, and indeed, it did not. The LED’s state is at

best described as “random,” regardless of what you do with the switch.

In theory, when the switch is pressed or held down, it connects D2

to ground. This registers as a change in state for D2, and the ISR fires to

change the state variable to HIGH. After the ISR has finished executing,

the loop() code then turns the LED on. When the switch is released,

the internal pullup resistors pull pin D2 HIGH again, which registers as a

change of state, so the ISR executes again and the state variable toggles to

LOW. This then results in the loop() code turning off the LED.

In practice, I have tested this code, and it’s very difficult to get it to be

consistent due to switch bounce. It makes and breaks numerous times

before settling to a steady state. I’ve seen the LED remain lit while the

switch was released and go out when it was pressed. This code needs a

good debouncing routine; or, if necessary, a couple of extra components

need to be added to the breadboard to debounce the switch in hardware.

I used a hardware solution and added the “MC14490 Hex Contact

Bounce Eliminator” chip you can see in Figure 3-2. I connected the

switch’s output pin to pin 1, the Ain pin, on the MC14490, and pin 15, the

Aout pin, to Arduino pin D2. Once the circuit was debounced, the code

worked perfectly. The fully debounced circuit is shown in Figure 3-2. The

MC14490 allows up to six switches to be debounced, and they are very

cheap on eBay – plus, they debounce on “make” as well as “break.”

Without debouncing of some kind, problems would occur if, for

example, the switch changed state only once, so the ISR was called. While the

ISR was executing, however short a time that was, interrupts were disabled

and, thus, no further interrupts were able to be actioned. However, if other

interrupts were received, a flag bit was set each time to show that one or

ChApTer 3 ArduIno LAnguAge referenCe

164

more interrupts had occurred during the execution of the ISR. When the ISR

finishes executing and returns to the main code, one instruction would be

executed, and then the ISR would be executed again due to the flag bit being

set. Regardless of how many interrupts were received during the first ISR’s

execution, it would only be executed again once.

If state was LOW and the switch was pressed, then the ISR would

change the value of state to HIGH, and the LED would come on. However,

if any number of bounces, let’s say 4, occurred while the ISR was executing,

then state should have changed four more times, so from HIGH – as

currently set by the ISR – to LOW ➤ HIGH ➤ LOW ➤ HIGH, and the LED

should remain on.

Unfortunately, those four changes only got recorded as having

occurred at least once, not how many actually occurred, so the ISR would

execute once and change state from HIGH to LOW and the LED would go off

even though the button was still being pressed.

In order for the LED to follow the state of the switch, there must be no

bouncing, or the ISR must be executed an even number of times, hence the

requirement for a good debouncing function, or my solution in hardware,

as it’s almost impossible for a switch to only bounce an even number of

times!

After all that excitement, the source code for the attachInterrupt()

function follows in Listing 3-38. As with most other listings, large comment

blocks and sections of code have been removed if they are not relevant

to the ATmega328P devices. I have also wrapped some of the longer code

lines to fit on the page.

Listing 3-38. The attachInterrupt() function

void attachInterrupt(uint8_t interruptNum,

 void (*userFunc)(void), int mode) {

 if(interruptNum < EXTERNAL_NUM_INTERRUPTS) { ①

 intFunc[interruptNum] = userFunc; ②

ChApTer 3 ArduIno LAnguAge referenCe

165

 switch (interruptNum) {

 ...

 case 0: ③

 #if defined(EICRA) && defined(ISC00) && defined(EIMSK)

 EICRA = (EICRA &

 ~((1 << ISC00) | (1 << ISC01))) |

 (mode << ISC00);

 EIMSK |= (1 << INT0);

 ...

 #endif

 break;

 case 1: ④
 #if defined(EICRA) && defined(ISC10) && \

 defined(ISC11) && defined(EIMSK)

 EICRA = (EICRA &

 ~((1 << ISC10) | (1 << ISC11))) |

 (mode << ISC10);

 EIMSK |= (1 << INT1);

 #endif

 ...

 break;

 ...

 } // End switch (interruptNum)

 } // End if(interruptNum ...

}

ChApTer 3 ArduIno LAnguAge referenCe

166

 ① EXTERNAL_NUM_INTERRUPTS is defined as 2, in

$ARDINC/wiring_private.h, and is the total

number of external interrupts available on an

ATmega328P. You should note that interruptNum is

unsigned here; however, digitalPinToInterrupt()

can, if passed an invalid pin number, return NOT_AN_

INTERRUPT which is negative. However, this code will

still work correctly as NOT_AN_INTERRUPT converts to

255 when passed as -1 to an unsigned variable.

 ② The supplied pointer to the interrupt function in the

sketch is saved in a table. There are EXTERNAL_NUM_

INTERRUPTS slots in the table.

 ③ This sets up the INT0 external interrupt and enables it.

 ④ This sets up the INT1 external interrupt and enables it.

The attachInterrupt() function is quite simple in operation. It saves

the sketch’s function addresses in a table, set up for just this reason, and

then, depending on the interrupt requested, sets the bits in the EICRA and

EIMSK registers so that the interrupt will fire on the appropriate stimulus.

You should be aware that the functions passed to attachInterrupt()

are not interrupt service routines. They are merely a function that will be

called from the actual ISR. The real ISR is set up as per the source code in

Listing 3-39, extracted from the file $ARDINC/WInterrupts.c.

Listing 3-39. The real ISR for attachInterrupt()

#define IMPLEMENT_ISR(vect, interrupt) \

 ISR(vect) { \

 intFunc[interrupt](); \

 }

ChApTer 3 ArduIno LAnguAge referenCe

167

IMPLEMENT_ISR(INT0_vect, EXTERNAL_INT_0)

IMPLEMENT_ISR(INT1_vect, EXTERNAL_INT_1)

This code connects the function INT0_vect with INT0 and INT1_vect

with INT1. It is these two functions that get called when the appropriate

interrupt fires. The brief snippet of code in Listing 3-40 is that generated

for the INT0 interrupt handler.

Listing 3-40. ISR for the INT0 interrupt

ISR(INT0_vect) {

 intFunc[0](); ①
}

 ① This one line accesses the user-supplied ISR

function in the table and executes it.

The documentation for attachInterrupt() at www.arduino.cc/

reference/en/language/functions/external-interrupts/attachinterrupt/

on the Arduino Reference web site has the following to say:

The first parameter to attachInterrupt is an interrupt number.
Normally you should use digitalPinToInterrupt(pin) to
translate the actual digital pin to the specific interrupt number.
For example, if you connect to pin 3, use digitalPinToInterrupt(3)
as the first parameter to attachInterrupt().

Inside the attached function, delay() won’t work and the
value returned by millis() will not increment as millis()
relies on interrupts to count, so it will never increment inside
an ISR. Since delay() also requires interrupts to work, it will
not work if called inside an ISR – because interrupts are dis-
abled while processing an ISR.

The micros() function will work initially, but will start behav-
ing erratically after 1-2 milliseconds.

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
http://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

168

However, the delayMicroseconds() function does not use
any counter/interrupt, so it will work as normal.

Serial data received while in the function may be lost.

You should declare as volatile any variables that you modify
within the attached function. Typically global variables are
used to pass data between an ISR and the main program. To
make sure variables shared between an ISR and the main pro-
gram are updated correctly, declare them as volatile.

Generally, an ISR should be as short and fast as possible. If
your sketch uses multiple ISRs, only one can run at a time,
other interrupts will be executed after the current one finishes
in an order that depends on the priority they have.

Regarding the potential loss of serial data received, you should be

aware that serial data is copied from the USART to the serial receive

buffer under control of an interrupt handler. Obviously, when processing

your interrupt function, interrupts are off, but the USART still runs in the

background as it is not controlled by the main CPU. There is room in the

USART for 2 bytes only, so if your interrupt function takes too long and

data are being received by the USART, it will buffer up the first 2 bytes and

then suffer a buffer overrun error. Subsequent bytes received will be lost.

You must always remember the following when dealing with interrupts

either in your own interrupt functions or in an ISR to handle interrupts

that the Arduino Language doesn’t:

• Keep the ISR or interrupt functions physically as

short as possible. If you must do work as a result of an

interrupt, use the ISR or function to simply set a flag,

a variable value or similar, and have the main loop()

code check it and execute the desired actions.

• Do not call delay() or any of the Serial.print()

functions from inside an ISR or interrupt function. That

way, dragons lie!

ChApTer 3 ArduIno LAnguAge referenCe

169

• All variables you wish to share with the main code

should be declared volatile and, if necessary, when

being accessed, may require to be wrapped in a “critical

section” which means calling noInterrupts() before

accessing the shared data and calling interrupts()

afterwards This, obviously, is required within the main

code, not in the interrupt function.

• Finally, don’t enable interrupts within an ISR or

interrupt function unless you really, really know what

you are doing.

3.5.4. Function detachInterrupt()
The code for the detachInterrupt() function is found in the file $ARDINC/

WInterrupts.c and also in Listing 3-41.

This function detaches an interrupt function, in a sketch, from an

external interrupt. The function will have been previously attached to the

interrupt by a call to the attachInterrupt() function. There isn’t always

a need to call detachInterrupt() unless your sketch is finished with

the ability to process the appropriate interrupt and wants to prevent any

further processing of the interrupt function from taking place.

This function works by disabling the INT0 and/or INT1 interrupt bits in

the EIMSK register and blanks out the entry for the function in the function

pointer table populated in attachInterrupt().

The source code for detachInterrupt() is shown in Listing 3-41, and,

as with previous listings, sections of the source that are not relevant to the

standard Arduino boards have been omitted for clarity.

ChApTer 3 ArduIno LAnguAge referenCe

170

Listing 3-41. The detachInterrupt() function

void detachInterrupt(uint8_t interruptNum) {

 if(interruptNum < EXTERNAL_NUM_INTERRUPTS) { ①

 switch (interruptNum) {

 ...

 case 0:

 EIMSK &= ~(1 << INT0); ②
 break;

 case 1:

 EIMSK &= ~(1 << INT1); ③
 break;

 ...

 }

 intFunc[interruptNum] = nothing; ④
 }

}

 ① Passing an invalid pin number to

digitalPinToInterrupt() will return NOT_AN_

INTERRUPT (-1) which is a signed value, as previously

discussed. The detachInterrupt() function will still

act correctly in that case and do nothing at all.

 ② Disable the INT0 interrupt handler from Arduino pin D2.

 ③ Disable the INT1 interrupt handler from Arduino pin D3.

 ④ The sketch’s interrupt function pointer is removed

from the array of interrupt functions.

ChApTer 3 ArduIno LAnguAge referenCe

171

The value nothing is defined in $ARDINC/WInterrupts.c as shown in

Listing 3-42 and defines an empty interrupt function so that its address

can be used in the interrupt function table as an “empty” value. NULL could

have been used, but in that case detaching an interrupt function would have

caused the NULL pointer to be dereferenced if a subsequent interrupt occurred

on the appropriate pin. Dereferencing a NULL pointer is a bad thing to do!

Listing 3-42. The nothing() interrupt handler function

static void nothing(void) {

}

The documentation for detachInterrupt() at www.arduino.cc/

reference/en/language/functions/external-interrupts/

detachinterrupt/incorrectly states that this function should be called as

detachInterrupt();

However, this is a bug, as it should be called as follows:

detachInterrupt(interruptNumber);

This is where the interruptNumber parameter is the one returned

from digitalPinToInterrupt() when called previously when calling

attachInterrupt() for this pin.

3.6. Bits and Bobs
This section deals with a few “bits and bobs” – macros which allow you to

do bit handling at the lowest level.

3.6.1. Macro bit()
The bit() macro is defined in the file $ARDINC/Arduino.h as follows:

#define bit(b) (1UL << (b))

ChApTer 3 ArduIno LAnguAge referenCe

http://www.arduino.cc/reference/en/language/functions/external-interrupts/detachinterrupt/
http://www.arduino.cc/reference/en/language/functions/external-interrupts/detachinterrupt/
http://www.arduino.cc/reference/en/language/functions/external-interrupts/detachinterrupt/

172

It returns the value of 2b where b is the bit number. For example, calling

bit(5) will return 32 as 25 is 32. You will hopefully notice that the returned

value is an unsigned long from the initializer 1UL, so there are 32 bits to

play with, but remember to number the bits from 0 through to 31.

Listing 3-43 shows an example of how to use the bit() macro.

Listing 3-43. Example usage of the bit() macro

...

Serial.print("2 to the power 10 is: ");

Serial.println(bit(10));

...

This will display “2 to the power 10 is: 1024” on the Serial Monitor.

Table 3-3 lists the powers of two corresponding to an unsigned long

variable, and these are the values that the bit() function will return.

Table 3-3. Bits and their values

Bit Value
Returned

Bit Value
Returned

Bit Value
Returned

Bit Value
Returned

0 1 1 2 2 4 3 8

4 16 5 32 6 64 7 128

8 256 9 512 10 1,024 11 2,048

12 4,096 13 8,192 14 16,384 15 32,768

16 65,536 17 131,072 18 262,144 19 524,288

20 1,048,576 21 2,097,152 22 4,194,304 23 8,388,608

24 16,777,216 25 33,554,432 26 67,108,864 27 143,217,728

28 268,435,456 29 536,870,912 30 1,073,741,824 31 2,147,483,648

ChApTer 3 ArduIno LAnguAge referenCe

173

3.6.2. Macro bitClear()
The bitClear() macro is defined in the file $ARDINC/Arduino.h as follows:

#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))

The macro simply clears the requested bit, in the value passed,

to zero and returns the resulting new value. For example, you could

lowercase a character by clearing bit 5, as shown in Listing 3-44.

Listing 3-44. Example usage of the bitClear() macro

char lowerCaseA = bitClear('A', 5);

However, there are probably much better ways to achieve this!

3.6.3. Macro bitRead()
The bitRead() macro is defined in the file $ARDINC/Arduino.h as follows:

#define bitRead(value, bit) (((value) >> (bit)) & 0x01)

This macro returns a one or a zero depending on the state of the bit

requested in the value passed. Listing 3-45 continues the rather absurd

example from the preceding text.

Listing 3-45. Example usage of the bitRead() macro

char upperCaseA = 'A';

char lowerCaseA;

if (bitRead(upperCaseA, 5)) {

 lowerCaseA = bitClear('A', 5);

}

ChApTer 3 ArduIno LAnguAge referenCe

174

3.6.4. Macro bitSet()
The bitSet() macro is defined in the file $ARDINC/Arduino.h as follows:

#define bitSet(value, bit) ((value) |= (1UL << (bit)))

This macro can be called to set a specific bit in a variable or value to a

one. Listing 3-46 is an example of the use of bitSet().

Listing 3-46. Example usage of the bitSet() macro

char lowerCaseA = 'a';

char upperCaseA;

upperCaseA = bitSet(lowerCaseA, 5);

3.6.5. Macro bitWrite()
The bitWrite() macro is defined in the file $ARDINC/Arduino.h as follows:

#define bitWrite(value, bit, bitvalue) \

 (bitvalue ? bitSet(value, bit) : bitClear(value, bit))

The purpose of this macro is to call either bitSet() or bitClear() for

the appropriate bit, in a value or variable, depending on whether it is to be

set to a one or a zero. An example is shown in Listing 3-47.

Listing 3-47. Example usage of the bitWrite() macro

char someCharacter = 'H';

char lowerCase = bitWrite(someCharacter, 5, 0);

char upperCase = bitWrite(someCharacter, 5, 1);

ChApTer 3 ArduIno LAnguAge referenCe

175

3.6.6. Macro highByte()
The highByte() macro is defined in the file $ARDINC/Arduino.h as follows:

#define highByte(w) ((uint8_t) ((w) >> 8))

This macro returns the value in the higher 8 bits of a value or variable.

It returns a uint8_t which is guaranteed to be an unsigned, 8-bit value.

Listing 3-48 shows how to use the highByte() macro to extract the top 8

bits from the value 513.

Listing 3-48. Example usage of the highByte() macro

Serial.println(highByte(513));

The code in Listing 3-48 will print “2” on the Serial Monitor. 513decimal is

201hex which converts to 0000 0010 0000 0001binary. The high 8 bits are 0000

0010binary which is 2 in decimal.

3.6.7. Macro lowByte()
The lowByte() macro is defined in the file $ARDINC/Arduino.h as follows:

#define lowByte(w) ((uint8_t) ((w) & 0xff))

This macro returns the value in the lower 8 bits of a value or variable.

It returns a uint8_t which is guaranteed to be an unsigned, 8-bit value.

Listing 3-49 shows how to use the lowByte() macro to extract the bottom 8

bits from the value 513.

Listing 3-49. Example usage of the lowByte() macro

Serial.println(lowByte(513));

The code in Listing 3-49 will print “1” on the Serial Monitor. 513decimal is

201hex which converts to 0000 0010 0000 0001binary. The low 8 bits are 0000

0001binary which is 2 in decimal.

ChApTer 3 ArduIno LAnguAge referenCe

176

3.6.8. Macro sbi()
The sbi() macro is defined in the file $ARDINC/wiring_private.h as

follows:

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

#endif

In order to use this macro, you must include the header file wiring_

private.h, as shown in Listing 3-50.

The macro sets the requested bit, in the register, to one. You cannot call

this with a value or a variable; it must be one of the lowest 32 I/O registers,

as defined in the file $AVRINC/iom328p.h which is included automatically

for you by $AVRINC/io.h, itself included by $ARDINC/Arduino.h.

For example, to ensure that Arduino pin D13, the built-in LED pin, was

set to OUTPUT, but without using pinMode(), you would do this in a sketch

as shown in Listing 3-50, given that Arduino pin D13 is AVR pin PB5 which

corresponds to bit PORTB5 in register PORTB.

Listing 3-50. Example sbi() macro call

#include <wiring_private.h>

void setup() {

 // Avoid pinMode() and make D13 OUTPUT.

 sbi(PORTB, PORTB5);

 ...

}

ChApTer 3 ArduIno LAnguAge referenCe

177

 The two macros described here, the preceding sbi() and the
following cbi(), should probably not be used as they may fail to do
what is required in some circumstances. This is because the
ATmega328p has some of its I/o registers outside the range of
addresses that these two instructions can access. Both sbi() and
cbi() can only access the lowest 32 of the various I/o registers in
the ATmega328p.

You might get away with it, but then again, you might not. You have
been warned. It is especially galling that the compiler doesn’t give
any error messages if you do try to access a register that is out of
range. Be careful.

3.6.9. Macro cbi()
The cbi() macro is defined in the file $ARDINC/wiring_private.h as

follows:

#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#endif

In order to use this macro, you must include the header file, as shown

in Listing 3-51.

The macro clears the requested bit, in the register, to zero. You cannot

call this with a value or a variable; it must be a register, as defined in the file

$AVRINC/iom328p.h which is included automatically for you by $AVRINC/

io.h, itself included by $ARDINC/Arduino.h.

ChApTer 3 ArduIno LAnguAge referenCe

178

For example, to ensure that Arduino pin D13, the built-in LED pin, was

set to INPUT, but without using pinMode(), you would do this as shown in

Listing 3-51, given that Arduino pin D13 is actually AVR pin PB5 which is

PORTB5 on register PORTB.

Listing 3-51. Example cbi() macro call

#include <wiring_private.h>

void setup() {

 // Avoid pinMode() and make D13 INPUT.

 cbi(PORTB, PORTB5);

 ...

}

The definition of PORTB5 (and others from PORTB0 to PORTB7) allows

you to refer to the individual bits in the PORTB register. Similar definitions

exist for PORTC and PORTD, as well as the three DDRx and PINx registers.

All the bits in all the registers are predefined for you when you compile a

sketch. This means that you don’t have to use the Arduino Language all

the time, especially if there is an ATmega328P feature that isn’t available

from the Arduino Language. The Analogue Comparator, for example, as

discussed in Chapter 9, must be accessed using the registers directly.

ChApTer 3 ArduIno LAnguAge referenCe

179© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_4

CHAPTER 4

Arduino Classes
This chapter investigates the various C++ classes supplied as part

of the Arduino Language and which help, in most cases, to make the

programmer’s life easier when using features of the Arduino board (and

the ATmega328P) such as the Serial interface.

 In the remainder of this chapter, I will not be showing all the
source code for the various Arduino classes. Some of these classes
have a large amount of code, and the book would become very large
and unwieldy as a result. I will be explaining the important parts though.

4.1. The Print Class
The Print class is found in the two files Print.h and Print.cpp both

located in the $ARDINC directory. A tutorial on implementing your own

classes which inherit from Print can be found online at https://

playground.arduino.cc/Code/Printclass/.

The Print class will be inherited by descendant classes and provides

the ability to call print() and println() in those classes. It is used by,

among others, the Serial interface and the Printable class. By far, the

vast majority of the functions exposed by this class boil down to internal

calls to a virtual function named write() which has to be provided by

the descendant class as it is declared pure virtual in the Print class.

https://playground.arduino.cc/Code/Printclass/
https://playground.arduino.cc/Code/Printclass/

180

Descendants of the Print class inherit from Print the ability to call

print() and println() to “print” some information from within the

descendant class. The Print class allows the following data types to be

“printed” using print():

• String class variables

• Data stored in flash memory

• char variables and char arrays

• int variables

• long variables

• double variables

• Class variables descending from the Printable class

The println() function allows all of the preceding data types, plus

void parameters, which simply means a call to println() without passing

any parameters. This simply “prints” a linefeed to the interface. A linefeed

in this case is a Windows-style linefeed consisting of a carriage return and

a linefeed – ASCII characters 13 and 10.

 I use “prints” in quotes as the descendant class in the hierarchy
will output the bytes as appropriate. The Serial interface, for
example, “prints” bytes to a buffer which will then be sent to the
USART for transmission, while the LiquidCrystal library class
displays the characters on screen. Other interfaces will most likely have
their own manner of “printing,” which could mean sending the data
down the network cable to the Internet, to a file on an SD card and so on.

ChApTeR 4 ARDUInO ClASSeS

181

Listing 4-1 shows the four virtual functions defined in the Print class.

Listing 4-1. The Print class virtual functions

virtual size_t write(uint8_t) = 0; ①

virtual size_t write(const uint8_t *buffer, size_t size); ②
virtual int availableForWrite() { return 0; } ③
virtual void flush() { /* Empty */ } ④

 ① Only the write(uint8_t) is a pure virtual

function and, as such, must be implemented

by a descendant class. In the file $ARDINC/

HardwareSerial.cpp, for example, the

write(uint8_t) function sends a single unsigned

char to the USART. The Serial interface descends

from the Stream class, which itself descends from

the Print class; and as long as at least one class

in the hierarchy implements the write(uint8_t)

function, the code should compile.

 ② If required, descendant classes may implement

this function which should be called to provide a

manner of “printing” entire char arrays. The Print

class provides a default implementation of this

function, which simply sends each character in the

array to the write(uint8_t) function.

 ③ This function defaults to returning zero to indicate

that a single call to write() may block. This

obviously depends on the interface in use. The

descendant classes may wish to reimplement

this function if, for example, they use some form

of buffering which helps prevent blocking. Other

ChApTeR 4 ARDUInO ClASSeS

182

non-zero values indicate that the call to write()

may not block. The Serial class has done this in

file $ARDINC/HardwareSerial.cpp as it buffers data

for transmission, and also for receipt, and uses

interrupts to transmit and receive data from/to the

buffers.

 ④ The flush() function is provided for backward

compatibility with older versions of the Arduino

Language. In the current version, 1.8.5, it is an

empty function which does nothing. Classes may

reimplement this function if necessary – as the

Serial class does.

4.1.1. Class Members
The Print class defines the following public members. They are used

when outputting numeric data in bases other than the default, base 10.

• BIN – Defined as the value 2 and used when outputting

data in binary, or base 2

• OCT – Defined as the value 8 and used when outputting

data in octal, or base 8

• DEC – Defined as the value 10 and used when

outputting data in decimal, or base 10, the default

• HEX – Defined as the value 16 and used when

outputting data in hexadecimal, or base 16

ChApTeR 4 ARDUInO ClASSeS

183

The following functions are exposed by this class:

• Print() – Constructor. This does very little other than

setting the error flag to show that, so far, no errors have

occurred.

• size_t print() – Sends data to the output without

a trailing newline. It can be used to “print” many

different data types.

• size_t println() – Similar to print() but terminates

the output with a Windows-style carriage return and

linefeed.

• int getWriteError() – Returns any error code from a

write() function call.

• void clearWriteError() – Clears any existing write

error code.

• size_t write(const char *str) – May be overridden

by descendant classes. This is the default function to

“print” a character array.

• size_t write(const uint8_t *buffer, size_t

size) – May be overridden by descendant classes. This

function “prints” an array, of known size, of unsigned

characters.

• size_t write(const char *buffer, size_t size) -

Calls the write(const uint8_t *buffer, size_t

size) function to “print” a signed character array.

• int availableForWrite() – May be overridden by

descendant classes. This function returns zero if the

descendent class’s write() function will, or may, block.

ChApTeR 4 ARDUInO ClASSeS

184

• void flush() – May be overridden by descendant

classes. This function flushes the output buffer to

ensure that all data are correctly written.

 If your own class which inherits from the Print class has
defined, as it must, the pure virtual function write(), then your
class can send bytes to whatever it needs to. If your class header file
includes

using Print::write;

it will be also able to use the Print class’s functions which write
other data types. As these all call down to the virtual write()
function eventually, it will call your class’s own write() function, so
you get the ability to “print” data types other than a single unsigned
char, for free.

4.1.2. Using the Print Class
An example of the use of the Print class is in the library for the

LiquidCrystal display as supplied with the Arduino IDE. The library can be

found in the two files LiquidCrystal.h and LiquidCrystal.cpp located

in the $ARDBASE/libraries/LiquidCrystal/src directory. The following

description includes only the relevant parts of the code – those which show

the use of the Print class by the LiquidCrystal library.

In the header file LiquidCrystal.h, we see the code shown in

Listing 4-2.

ChApTeR 4 ARDUInO ClASSeS

185

Listing 4-2. LiquidCrystal.h

#include <Print.h> ①

 ...

class LiquidCrystal : public Print { ②
public:

 ...

 virtual size_t write(uint8_t); ③
 ...

 using Print::write; ④
 ...

}

 ① When writing a library, you are responsible for

including all the required header files. The IDE

doesn’t do this for you anymore! The Print.h file is

required as we are inheriting from the Print class.

 ② The LiquidCrystal class inherits from the Print

class. This gives objects of the LiquidCrystal class

the ability to call print() and println() which are

member functions in the base class, Print.

 ③ Descendant classes, inheriting from Print, must

define the write() function as it is declared as pure

virtual in the Print class.

 ④ Descendant classes don’t need to redefine all the

other write() functions which “print” different data

types if they use this line of code. This gives access

to all the functions in the Print class, but each will

call out to the descendant class’s write() function.

ChApTeR 4 ARDUInO ClASSeS

186

We now need to look into the LiquidCrystal.cpp file to see how this

class has implemented the requirements of the Print class. Listings 4-3,

4-4, and 4-5 show the relevant extracts from the source code.

Listing 4-3. LiquidCrystal’s write() function

inline size_t LiquidCrystal::write(uint8_t value) {

 send(value, HIGH);

 return 1; // assume success

}

This is the function that all of Print’s descendant classes must

implement themselves. In the LiquidCrystal class, this simply makes a

call to the send() function – see Listing 4-4, which is declared as private

in the header file LiquidCrystal.h. I note from the comment that this

function always assumes that nothing went wrong. Hmmm.

Listing 4-4. LiquidCrystal’s send() function

void LiquidCrystal::send(uint8_t value, uint8_t mode) {

 digitalWrite(_rs_pin, mode);

 // if there is a RW pin indicated, set it low to Write

 if (_rw_pin != 255) {

 digitalWrite(_rw_pin, LOW);

 }

 if (_displayfunction & LCD_8BITMODE) {

 write8bits(value);

 } else {

 write4bits(value>>4);

 write4bits(value);

 }

}

ChApTeR 4 ARDUInO ClASSeS

187

If we ignore the code that’s setting up the pins to enable the sketch

to write to the display, we eventually end up at the calls to write8bits()

and write4bits(). LiquidCrystal displays can be configured to receive

8 bits of data from the Arduino, or just 4 bits – some displays only cope

with 4 bits. For this explanation, I shall concentrate on 8-bit displays – the

main difference being that 4-bit displays need two data writes to receive a

character, while 8-bit displays get the whole character in one write.

We can easily see from Listing 4-4 that the send() function sets the

display to receive data and then calls out to the write8bits() function,

passing over the data which is to be displayed. Listing 4-5 shows the full

code for the called write8bits() function.

Listing 4-5. LiquidCrystal’s write8bits() function

void LiquidCrystal::write8bits(uint8_t value) {

 for (int i = 0; i < 8; i++) {

 digitalWrite(_data_pins[i], (value >> i) & 0x01);

 }

 pulseEnable();

}

That’s all there is to it! The passed data, in parameter value, is used to

set the bits on the eight data lines for the display. (Other displays can use

the I2C interface which uses a lot fewer data lines; see the LiquidCrystal_

I2C library for details.)

The preceding code sets a data pin HIGH if the corresponding bit in

value is a 1binary and LOW if it is a 0binary. Once all eight data pins have been

set correctly, pulseEnable() is called to, ahem, pulse the enable pin for the

display and latch the data into the display whereupon it will be “printed”

to the screen.

The LiquidCrystal library provides an example. Go to File ➤ Examples

➤ LiquidCrystal ➤ HelloWorld in the Arduino IDE to load the example

sketch which is shown, in full but minus all comments, in Listing 4-6

ChApTeR 4 ARDUInO ClASSeS

188

and also online with circuit diagrams at www.arduino.cc/en/Tutorial/

HelloWorld.

Listing 4-6. The HelloWorld example sketch

#include <LiquidCrystal.h> ①

const int rs = 12, en = 11,

 d4 = 5, d5 = 4,

 d6 = 3, d7 = 2; ②

LiquidCrystal lcd(rs, en, d4, d5, d6, d7); ③

void setup() {

 lcd.begin(16, 2); ④
 lcd.print("hello, world!"); ⑤
}

void loop() {

 lcd.setCursor(0, 1); ⑥
 lcd.print(millis() / 1000);

}

 ① We must include the library’s header file; normally

this is done with the Sketch ➤ Include Library ➤

LiquidCrystal menu option. In my case, this line was

included twice by the menu. I removed the extra line.

 ② Here, some constants are defined for the various

pins that the LiquidCrystal objects require. In this

case, we are only using 4 bits of data, not 8. The

rs pin is the display’s register select pin, en is the

enable pin – used to latch data onto the display –

and d4, d5, d6, and d7 are the four data pins.

ChApTeR 4 ARDUInO ClASSeS

http://www.arduino.cc/en/Tutorial/HelloWorld
http://www.arduino.cc/en/Tutorial/HelloWorld

189

 ③ An object of type LiquidCrystal is declared and

initialized here. The various pins to be used are

passed in the constructor. On return, lcd is our

object through which we can manipulate the display.

 ④ The display is further initialized to two rows of 16

characters. Other options are available. My own

display has four rows.

 ⑤ This is what we have been working up to. The lcd

object can call the Print class’s print() function.

Within the Print class, the function which prints

an array of char will be called, and that will pass

each character to the LiquidCrystal class’s write()

function. The characters in the array are then

printed to the display using the code in Listings 4-3

through 4-5.

 ⑥ The loop() code just sets the cursor to the start of

the second line (rows number from 0) and uses the

print() function to print the number of millis()

that have passed since the sketch began. Here the

value to be printed is an unsigned long, and within

the Print base class, that call will work its way down

to the LiquidCrystal class’s write() function in the

manner described earlier.

4.2. The Printable Class
The Printable class can be used by your own classes, using inheritance, so

that they can print themselves using the Print class functions print() and

println(), to interfaces which themselves inherit from the Print class, for

ChApTeR 4 ARDUInO ClASSeS

190

example, the Serial interface. This is different from calling the print() or

println() function as we saw in the previous chapter, for example

lcd.print(12345);

where you pass a data value to be “printed.” The Printable class allows the

entire object to be “printed” with a single call:

Serial.print(aPerson);

In this case, the PrintTo() function would handle the streaming of the

aPerson object’s data. For example, it might print the name, address, and

phone numbers of the specific person. We are, of course, assuming that

aPerson is an object of some class that describes a person.

The Printable class has no implementation, or cpp file, only the

header file, $ARDINC/Printable.h, which can be seen in Listing 4-7 and

which is all that is required to make it possible for your own classes to print

themselves. The code in Listing 4-7 is the entire source code of the header

file, but as usual, I have removed a few comments for brevity.

Listing 4-7. The Printable.h header file

#ifndef Printable_h

#define Printable_h

#include <stdlib.h>

class Print; ①

class Printable

{

 public:

 virtual size_t printTo(Print& p) const = 0; ②
};

#endif

ChApTeR 4 ARDUInO ClASSeS

191

 ① This is a forward declaration of the Print class. It

can be done without including the Print.h header

file as we don’t need anything from it within this

file, other than the fact that it exists and is a class

named Print. In the case being examined here, the

print.h header isn’t that large, so the time saved by

not having to read it in is insignificant. Other class

header files may not be so forgiving.

 ② The Printable class cannot be instantiated by itself

as it has only pure virtual members. It must be

used as an ancestor class, and the descendant classes

must implement the printTo() function. To use the

Printable class, therefore, your classes have to

• Include the Printable.h header file

• Inherit from the Printable class

• Implement a function named printTo which takes

a reference to a Print class and returns a size_t

value which is the number of bytes printed

That’s all there is to it. Your class can now be printed over the Serial

interface, or similar, provided that the specific interface inherits from the

Print class.

4.2.1. An Example Printable Class
The source code shown in Listings 4-8 and 4-9 is that of a very simple

class which has been set up to allow itself to be sent over, for example,

the Serial interface. For a more useful, but more complicated, example,

have a look at the files $ARDINC/IPAddress.h and $ARDINC/IPAddress.

cpp which are used by Arduino boards that have, for example, Ethernet

interfaces built in.

ChApTeR 4 ARDUInO ClASSeS

192

Listing 4-8 is the header file Person.h, for a simple class named

Person, which has Printable as an ancestor class. You can clearly see that

it has included the Printable.h header file, as required, and declares a

public member function printTo().

Listing 4-8. Printable example class header

#ifndef Person_h

#define Person_h

#include <Printable.h>

class Person : public Printable {

 private:

 String _foreName;

 String _surName;

 public:

 // Constructors:

 Person(const String foreName, const String surName);

 Person(const char *foreName, const char *surName);

 Person();

 // Printable requires this:

 virtual size_t printTo(Print& p) const;

};

#endif // Person_h

I’ve given this simple class a set of three constructors so that objects

of this type can be instantiated by passing char arrays or String values.

If nothing is passed, then a default will be used. This is explained in

Listing 4-9 which shows the file Person.cpp which implements the new

class. It simply copies any supplied parameters, String or char arrays,

into the class member Strings and implements the code to facilitate the

ChApTeR 4 ARDUInO ClASSeS

193

mandatory printTo() function. If nothing is passed to the constructor, you

will get my name as the default.

Listing 4-9. Printable example class implementation

#include <Print.h>

#include "Person.h"

// Constructor 1:

Person::Person(const String foreName, const String surName) :

 _foreName(foreName),

 _surName(surName) {

};

// Constructor 2:

Person::Person(const char *foreName, const char *surName) :

 _foreName(String(foreName)),

 _surName(String(surName)) {

};

// Constructor 3:

Person::Person() :

 _foreName("Norman"),

 _surName("Dunbar") {

};

// This is for Printable:

size_t Person::printTo(Print &p) const {

 size_t bytesPrinted = 0;

 bytesPrinted += p.print(_surName);

 bytesPrinted += p.print(", ");

 bytesPrinted += p.print(_foreName);

 return bytesPrinted;

}

ChApTeR 4 ARDUInO ClASSeS

194

 In the preceding constructors, the initialization of the member
variables might look strange; however, I’m reliably informed by those
in the know about C++ that this is deemed the correct way to
initialize member variables. Who am I to argue?

We can see from the preceding code that the printTo() function

accepts a Print class object, which is required to be a descendant of a

Print class, and calls its print() function three times passing over data

from the private members of the class. The function returns the number

of bytes printed, which is a requirement.

Now that the class has been defined, it can be used as shown

in Listing 4-10. This is a brief sketch showing how Printable class

descendants can stream themselves over the interface to any Print class

descendants. In this case, I’m using the Serial interface. In the example

in Listing 4-10, the Serial object is passed to the me and wife objects’

printTo() function as the Print class descendant. C++ can at times mess

with your head! This line of code

Serial.println(me);

is effectively equivalent to this line:

me.printTo(Serial);

However, the first version is how it should be done.

Listing 4-10. Printable example class usage

#include "Person.h"

// Declare a class object.

Person me;

Person wife("Alison", "Dunbar");

ChApTeR 4 ARDUInO ClASSeS

195

void setup() {

 Serial.begin(9600);

}

void loop() {

 Serial.print(me);

 Serial.print(" + ");

 Serial.println(wife);

 delay(1000);

}

If you upload the preceding code to an Arduino board, then you

should see “Dunbar, Norman + Dunbar, Alison” written back to the serial

monitor – over and over again. You can, if you wish, substitute your own

name in the code shown in Listing 4-10.

It is not mandatory to use Serial. Any ancestor of a Print class will

suffice. In the previous discussions, we saw how the LiquidCrystal library

descended from Print which means that the me and wife objects in the

preceding code could be passed to a LiquidCrystal class object,

such as lcd.

4.3. The Stream Class
The Stream class is the base class which defines the data reading

functions (e.g., Serial.read()). Stream supplies the reading features

complementary to the Print class’s writing features.

The Stream class, like Printable, is designed to be used as a base class

and allows character, or binary, “streaming” of data into a descendant

class’s variables and so on. It cannot be instantiated on its own. The

descendent classes are expected to implement the three pure virtual

functions detailed in Listing 4-11.

ChApTeR 4 ARDUInO ClASSeS

196

Listing 4-11. The Stream class’s pure virtual functions

virtual int available() = 0; ①
virtual int read() = 0; ②
virtual int peek() = 0; ③

 ① The available() function is required to inform

the descendant class, Serial, for example, that the

underlying stream has data available to be read.

The function returns the number of bytes that have

already been received by the underlying stream but

which have yet to be read by the sketch.

 ② The read() function is implemented to allow the

descendant classes to physically read the available

data. This function will remove the data it reads

from the input stream.

 ③ The peek() function is implemented to allow the

descendant classes to take a sneaky peek at the

available data, but in a nondestructive manner.

The data may subsequently be read by the read()

function.

As Stream descends from the Print class, any class that inherits from

Stream also inherits the features of the Print class. This will require the

descendant class to implement the pure virtual function write() from the

Print class, in addition to the requirements of the Stream class.

Examples of Arduino classes which descend from Stream are as follows:

• HardwareSerial – The standard Serial interface.

• USBAPI – Serial interface for the Leonardo boards.

These use USB serial as opposed to the ATmega328P’s

TX and RX pins.

ChApTeR 4 ARDUInO ClASSeS

197

• Client – Part of the software for the various Ethernet

shields.

• Ethernet – A networking library.

• SD – A third-party library for accessing SD cards.

4.3.1. Class Members
Listing 4-12 shows how the Stream class defines the LookaheadEnum

enumeration, which is used in some of the following functions, when

scanning for numeric values.

Listing 4-12. The Stream class’s LookaheadMode enumeration

enum LookaheadMode{

 // All invalid characters are ignored.

 SKIP_ALL,

 // Nothing is skipped, and the stream is not

 // touched unless the first waiting character is valid.

 SKIP_NONE,

 // Only tabs, spaces, line feeds & carriage returns

 //are skipped.

 SKIP_WHITESPACE

};

The class also defines the following public functions, in addition to the

definitions and functions exposed by the Print class, from which it inherits.

• Stream() – Constructor. It sets the default timeout to

one second (1000 milliseconds). The timeout is used in

many of the following functions to limit the scanning

process – to prevent code hangups or blocking if the

data in the stream, for example, has not fully arrived.

ChApTeR 4 ARDUInO ClASSeS

198

• void setTimeout(unsigned long timeout) – Sets the

maximum timeout, in milliseconds, to wait for stream

data.

• unsigned long getTimeout(void) – Returns the

current timeout for the stream.

• int available() – This function must be overridden

in descendant classes. It returns the number of bytes

which have been received by the stream, but which

have yet to be read by the sketch.

The following Stream functions return TRUE if the required target was

found and FALSE if not, or if the scan timed out. The scan is destructive in

that it removes data from the stream’s internal buffers while scanning:

• bool find(char *target)

• bool find(uint8_t *target)

• bool find(char *target, size_t length)

• bool find(uint8_t *target, size_t length)

• bool find(char target)

The following Stream functions return TRUE if the required target was

found and FALSE if not, or if the scan timed out. The scan is destructive

in that it removes data from the stream’s internal buffers while scanning;

however, these scans end at the first occurrence of the terminator string.

Characters beyond the terminating string will be safe, for now!

• bool findUntil(char *target, char *terminator)

• bool findUntil(uint8_t *target, char

*terminator)

• bool findUntil(char *target, size_t targetLen,

char *terminate, size_t termLen)

ChApTeR 4 ARDUInO ClASSeS

199

• bool findUntil(uint8_t *target, size_t

targetLen, char *terminate, size_t termLen)

The following Stream functions return numeric values from the

stream:

• long parseInt(LookaheadMode lookahead = SKIP_

ALL, char ignore = NO_IGNORE_CHAR)

• float parseFloat(LookaheadMode lookahead =

SKIP_ALL, char ignore = NO_IGNORE_CHAR)

The following Stream functions return -1 if there was a timeout, or

they return a single character from the stream. Both of these functions are

required to be implemented in a Stream’s descendant class:

• int peek() – Returns characters from the stream

without removing them from the internal buffer for the

stream.

• int read() – Returns characters from the stream and

removes them from the internal buffer for the stream.

The following functions return the number of characters read from the

stream while copying the data read into a buffer. If a timeout occurs, -1 will

be returned, and the contents of the buffer will be undefined. Only length

characters maximum will be copied into the buffer. If no valid data are

found, then zero will be returned.

The until versions of the functions stop scanning the stream’s buffer

when the terminator character is read:

• size_t readBytes(char *buffer, size_t length)

• size_t readBytes(uint8_t *buffer, size_t

length)

ChApTeR 4 ARDUInO ClASSeS

200

• size_t readBytesUntil(char terminator, char

*buffer, size_t length)

• size_t readBytesUntil(char terminator, uint8_t

*buffer, size_t length)

The following two functions read an Arduino String class variable

from the stream. The until version stops scanning the stream’s buffer

when the terminator character is read:

• String readString()

• String readStringUntil(char terminator)

In the Stream class, the vast majority of the public functions

eventually find their way down to the descendant class’s read(), peek(),

or available() function. For this reason, I will not be describing all of the

preceding functions – I suspect you would get bored very quickly – only the

ones which do the actual work.

Most of these functions are simply wrappers around a slightly lower-

level function which does a similar thing or takes slightly different

parameters. For example, Listing 4-13 shows the two separate find()

functions.

Listing 4-13. Various Stream class cascading find() functions

// find returns true if the target string is found

bool Stream::find(char *target)

{

 return findUntil(target, strlen(target), NULL, 0); ①
}

// reads data from the stream until the target string of

// given length is found returns true if target string is

// found, false if timed out

bool Stream::find(char *target, size_t length)

ChApTeR 4 ARDUInO ClASSeS

201

{

 return findUntil(target, length, NULL, 0); ②
}

 ① Starting with a simple find() with a single char

array parameter, it does nothing except call down

to findUntil() passing a few more parameters.

FindUntil() is shown in Listing 4-14.

 ② This is a different find() function which takes an

additional length parameter to limit the search to

that number of characters. Again, it passes control

down the ladder to the same findUntil() as noted

earlier.

So far, so good. The called findUntil() functions from the preceding

code are listed in Listing 4-14. We are not done climbing the ladder yet!

Listing 4-14. Various Stream class cascading findUntil() functions

// as find but search ends if the terminator string is found

bool Stream::findUntil(char *target, char *terminator)

{

 return findUntil(target, strlen(target),

 terminator, strlen(terminator)); ①
}

// reads data from the stream until the target string of

// the given length is found search terminated if the

// terminator string is found.

// returns true if target string is found, false if terminated

// or timed out

bool Stream::findUntil(char *target, size_t targetLen, ②
 char *terminator, size_t termLen)

ChApTeR 4 ARDUInO ClASSeS

202

{

 if (terminator == NULL) { ③
 MultiTarget t[1] = {{target, targetLen, 0}};

 return findMulti(t, 1) == 0 ? true : false;

 } else { ④
 MultiTarget t[2] = {{target, targetLen, 0},

 {terminator, termLen, 0}};

 return findMulti(t, 2) == 0 ? true : false;

 }

}

 ① This version of findUntil() accepts a pair of

parameters, so is not called from the find()

functions in Listing 4-14. It does, however, pass

control down to the same findUntil() as the

find() functions do. Nearly there! This variant ends

the search at the given terminator character or

string.

 ② Here we are, finally – perhaps. We have reached the

findUntil() function that everyone eventually gets

to. Regardless of which find() or findUntil() we

originally called, here is where we arrive.

 ③ If the terminator is NULL, then we have arrived

from find() (or perhaps the first findUntil()). In

this case, we create a MultiTarget array in variable

t, with a single entry, and call yet another function,

findMulti(), to do the actual searching.

ChApTeR 4 ARDUInO ClASSeS

203

 ④ If the terminator is not NULL, we have been passed

some text to use as the end of search marker. In this

case, we create a MultiTarget array in variable t,

with a pair of entries, and again call findMulti() to

do the actual searching.

The MultiTarget structure is defined in Stream.h as a protected

structure, alongside the findMulti() function; and so, as internal-only

helpers, they are not described here.

The various read() functions are quite simple in that they call down

to a protected timedRead() function as shown by the example in Listing

4-15, which shows the readBytes(char *buffer, size_t length).

Listing 4-15. One of the readBytes() functions

// read characters from stream into buffer

// terminates if length characters have been read, or

// timeout (see setTimeout)

// returns the number of characters placed in the buffer

// the buffer is NOT null terminated.

//

size_t Stream::readBytes(char *buffer, size_t length)

{

 size_t count = 0;

 while (count < length) {

 int c = timedRead(); ①
 if (c < 0) break;

 *buffer++ = (char)c;

 count++;

 }

 return count;

}

ChApTeR 4 ARDUInO ClASSeS

204

 ① All of the various read() functions call out to the

protected function timedRead(). That function,

although protected, is quite small and is discussed

in Listing 4-16 as it does require more investigation

as it uses timeouts and it is where your Stream

descendant class finally gets accessed! The purpose

is to return a single character from the underlying

stream within a given timeout period.

Listing 4-16. The protected timedRead() function

// protected method to read stream with timeout

int Stream::timedRead()

{

 int c;

 _startMillis = millis(); ①
 do { ②
 c = read(); ③
 if (c >= 0) return c; ④
 } while(millis() - _startMillis < _timeout); ⑤
 return -1; // -1 indicates timeout ⑥
}

 ① The function has to use the millis() counter

because calling delay() would not act as a timeout,

but more of a block on any processing. The timeout

is required to prevent the sketch hanging up, or

blocking, because the underlying stream hasn’t

sent enough data or is running too slowly. The error

code passed back can be used to loop around, if

necessary, and try reading data again.

ChApTeR 4 ARDUInO ClASSeS

205

 ② This do loop will execute for as long as the timeout

has not expired.

 ③ This is where your class gets to earn a living. The

Stream class is now, finally, calling down to the

descendant class’s implementation of the read()

function to fetch a single character from the stream.

 ④ We have received a valid character, so we can exit

the do loop and return the character to the calling

function.

 ⑤ On return from the descendant class’s read()

function, if nothing was retrieved, the tail end of

the loop checks that the timeout has not yet expired

and, if not, will resume the do loop for another

iteration.

 ⑥ If the timeout expired and we fell through the

bottom of the do loop, -1 is returned to indicate

the fact that we couldn’t read any data from the

underlying stream within the current timeout

period.

4.4. The HardwareSerial Class
The Serial interface, in the Arduino Language, is an instance of a class

known as HardwareSerial and provides the ability to read and write

from the hardware serial port built into the ATmega328P. Other AVR

microcontrollers such as the Mega 2560 have more than one hardware

serial port, up to four in some devices. Only the code relating to the Uno’s

Serial port will be discussed here as the others are very similar.

ChApTeR 4 ARDUInO ClASSeS

206

Other devices have serial ports that connect directly to the USB port –

the Leonardo, for example. These boards are not discussed here.

The HardwareSerial class is defined in $ARDINC/HardwareSerial.h

and implemented in

• $ARDINC/HardwareSerial_private.h where the

constructor and the USART Receive Complete interrupt

handler helper function _rx_complete_irq() can be

found.

• $ARDINC/HardwareSerial.cpp where most of the

public functions are implemented, alongside the

USART Data Register Empty interrupt handler helper

function _tx_udr_empty_irq().

• $ARDINC/HardwareSerial0.cpp where the actual

interrupt handlers USART_RX_vect() and USART_UDRE_

vect() are found. These two, when fired, call out

to _rx_complete_irq() and _tx_udr_empty_irq(),

respectively, to do the actual work. This is also the file

where the instantiation of Serial as an instance of the

HardwareSerial class is carried out.

The HardwareSerial class inherits from the Stream class and from

Stream’s ancestor class, Print, and this inheritance is the reason that the

Serial object can read from and write to the ATmega328P’s USART device.

The USART is described in detail in Chapter 9, Section 9.3, “USART.”

4.4.1. Interrupt Handlers
The HardwareSerial class has two interrupt handlers, one of which

will be fired whenever the USART receives a single byte, the “USART

Receive Complete interrupt.” The other will fire whenever the USART’s

ChApTeR 4 ARDUInO ClASSeS

207

transmit buffer is empty and ready to be reloaded with the next byte to be

transmitted. This is the “<<”USART Data Register Empty interrupt.”

The two interrupt handlers are created simply to call the two helper

routines. Both are implemented in the file $ARDINC/HardwareSerial0.cpp

as the functions _rx_complete_irq() and _tx_udr_empty_irq().

In the code listings that follow, only those parts relevant to the

ATmega328P are listed.

4.4.1.1. USART Receive Complete Interrupt

The source code for the USART Receive Complete interrupt is as

per Listing 4-17, and that listing is extracted from the file $ARDINC/

HardwareSerial0.cpp.

Listing 4-17. USART Receive Data interrupt handler

ISR(USART_RX_vect)

{

 Serial._rx_complete_irq();

}

As can be seen, it simply calls out to the appropriate helper

function. That function, _rx_complete_irq(), is found in $ARDINC/

HardwareSerial_private.h and is extracted in Listing 4-18. I’ve slightly

massaged the code to get it to fit on the page.

Listing 4-18. USART Receive Data interrupt helper

void HardwareSerial::_rx_complete_irq(void)

{

 if (bit_is_clear(*_ucsra, UPE0)) { ①
 unsigned char c = *_udr; ②

 rx_buffer_index_t i = ③

ChApTeR 4 ARDUInO ClASSeS

208

 (unsigned int)(_rx_buffer_head + 1) %

 SERIAL_RX_BUFFER_SIZE;

 if (i != _rx_buffer_tail) { ④
 _rx_buffer[_rx_buffer_head] = c;

 _rx_buffer_head = i;

 }

 } else {

 // Parity error, read byte but discard it

 *_udr; ⑤
 };

}

 ① This line of code checks to see if the character

received had a parity error. If not, processing will be

allowed to continue.

 ② The received byte is read from the USART Data

Register UDR0. This clears the data received flag,

RXC0 in register UCSR0A, and readies the USART

to receive the next byte. The USART has a 2-byte

internal buffer which, if it fills and another character

is received, causes an error.

 ③ The receive buffer head pointer is advanced by 1

byte. This might cause it to wrap around to the start

again as this is a circular buffer. This new position is

where the just received byte will be stored.

 ④ If the new receive buffer head pointer is not yet the

same as the current tail pointer, the byte received

can be stored and the head pointer updated to the

most recently stored byte in the receive buffer. If, on

ChApTeR 4 ARDUInO ClASSeS

209

the other hand, the two pointers are equal, the byte

just received is quietly lost.

 ⑤ If there was a parity error, then the byte must still be

read from the USART Data Register UDR0. This will

clear the data received flag, RXC0 in register UCSR0A.

The character read is discarded and not written to

the buffer.

 The head pointer is the first free location in the buffer where
new received data will be stored. The tail pointer is the next data byte
to be read by the sketch. If the head pointer equals the tail pointer,
then the buffer must be full, and there is nowhere to store any further
data without overwriting currently unread data.

4.4.1.2. USART Data Register Empty Interrupt

The source code for the USART Data Register Empty interrupt is as per

Listing 4-19, which is extracted from $ARDINC/HardwareSerial0.cpp.

Listing 4-19. USART Data Register Empty interrupt handler

ISR(USART_UDRE_vect)

{

 Serial._tx_udr_empty_irq();

}

As with the preceding receive handling code, it calls out to the

appropriate helper function. That function, _tx_udr_empty_irq(), is

located in the file $ARDINC/HardwareSerial.cpp and can be seen in

Listing 4-20. I have reformatted the code slightly to fit on the page.

ChApTeR 4 ARDUInO ClASSeS

210

Listing 4-20. USART Data Register Empty interrupt helper

void HardwareSerial::_tx_udr_empty_irq(void)

{

 unsigned char c = _tx_buffer[_tx_buffer_tail]; ①
 _tx_buffer_tail = (_tx_buffer_tail + 1) % ②
 SERIAL_TX_BUFFER_SIZE;

 *_udr = c; ③

 *_ucsra = ((*_ucsra) & ((1 << U2X0) | ④
 (1 << MPCM0))) |

 (1 << TXC0);

 if (_tx_buffer_head == _tx_buffer_tail) { ⑤
 cbi(*_ucsrb, UDRIE0);

 }

}

 ① The next byte to be transmitted is retrieved from the

tail end of the transmit buffer. As this is an interrupt

handler, then interrupts must be enabled which is

only true when there are data in the transmit buffer

ready to be sent through the USART.

 ② The buffer tail pointer is updated to point at the next

character in the buffer. This may cause it to wrap

around to the start again.

 ③ The next byte to be transmitted is stored in the

USART Data Register UDR0, in the case of the

ATmega328P. Storing a byte here automatically

starts the transmission – when the previous byte has

been transmitted.

ChApTeR 4 ARDUInO ClASSeS

211

 ④ The Transmit Complete (TXC0) flag is cleared in

register UCSR0A. This bit is automatically cleared

when the USART Transmit Complete interrupt fires,

but the Arduino doesn’t use that interrupt – it uses

the USART Data Register Empty interrupt instead,

so the code must clear it manually. This line of

code also preserves the U2X0 and the MPCM0 flags –

the USART Double Speed and Multi-processor

Communications flags. (See the ATmega328P data

sheet for details.)

The clearing of the TXC0 bit looks strange. It is

already set to a 1binary; so if it is ANDed with another

1binary, it will remain as it is. Then when written back

to UCSR0A, it will clear it to zero. Weird? Really weird?

The other bits and flags in the UCSR0A register will be

cleared to 0binary by this line of code, unless they too

need to be cleared – by writing a 1binary of course. You

should note that the bits for Frame Error, FE0; Data

Overrun, DOR0; and Parity Error, UPE0, must all be

0binary when writing any value to the UCSR0A register.

See the data sheet for details.

 ⑤ If the transmit buffer’s head and tail pointers are the

same, then it is empty, interrupts are disabled, and

this stops transmission attempts.

The choice of interrupt handler is interesting here. Why not use the

USART Transmit Complete interrupt rather than the USART Data Register

Empty interrupt? There is much confusion about this it seems; however,

the answer is relatively simple.

ChApTeR 4 ARDUInO ClASSeS

212

The UDR0 register can be empty while the transmission is still in

progress. The register contains a single byte, or 8 bits. The USART has to

transmit a frame of more than 8 bits – there are the start and stop bits,

the parity bit if required, as well as the 8 bits of data – so the USART Data

Register Empty interrupt will fire and allow the next byte to be loaded into

UDR0 while the previous byte is still in the process of being transmitted.

This should increase performance a tiny bit, depending on how many

actual bits are in a frame.

4.4.2. Class Functions and Macros
The HardwareSerial class defines the following in the file $ARDINC/

HardwareSerial.h.

4.4.2.1. Macro SERIAL_TX_BUFFER_SIZE

This is the number of bytes to be used in the transmit buffer for the Serial

interface. It is defined, provided it doesn’t already have a definition, as

in Listing 4-21. The buffer is set to be 16 bytes if there is less than 1 Kb of

Static RAM in the AVR microcontroller or 64 bytes if there is more. The

Arduino boards with the ATmega328P will use 64-byte buffers for both

transmit and receive.

Listing 4-21. Definition of SERIAL_TX_BUFFER_SIZE

#if !defined(SERIAL_TX_BUFFER_SIZE)

 #if ((RAMEND - RAMSTART) < 1023)

 #define SERIAL_TX_BUFFER_SIZE 16

 #else

 #define SERIAL_TX_BUFFER_SIZE 64

 #endif

#endif

ChApTeR 4 ARDUInO ClASSeS

213

If you need to change the buffer size, there is no simple way –

currently at least – to do this. You will need to edit the file $ARDINC/

HardwareSerial.h and add your new buffer size above the lines shown in

Listing 4-21, as follows:

#define SERIAL_TX_BUFFER_SIZE 128

Remember to make the new value a power of two.

4.4.2.2. Macro SERIAL_RX_BUFFER_SIZE

This is the number of bytes to be used in the receive buffer for the Serial

interface. It is defined, provided it doesn’t already have a definition, as per

the code in Listing 4-22. The buffer is set to be 16 bytes if there is less than

1 Kb of Static RAM in the AVR microcontroller or 64 bytes if there is more.

Listing 4-22. Definition of SERIAL_RX_BUFFER_SIZE

#if !defined(SERIAL_RX_BUFFER_SIZE)

 #if ((RAMEND - RAMSTART) < 1023)

 #define SERIAL_RX_BUFFER_SIZE 16

 #else

 #define SERIAL_RX_BUFFER_SIZE 64

 #endif

#endif

If you need to change the buffer size, there is no simple way –

currently at least – to do this. You will need to edit the file $ARDINC/

HardwareSerial.h and add your new buffer size above the lines shown in

Listing 4-22, as follows:

#define SERIAL_RX_BUFFER_SIZE 128

Don’t forget, the new value needs to be a power of two.

ChApTeR 4 ARDUInO ClASSeS

214

4.4.2.3. Typedefs tx_buffer_index_t and
rx_buffer_index_t

These are typedefs for the data type of the head and tail pointers into the

transmit and receive buffers. By default these are 8 bits wide (uint8_t);

however, if the appropriate buffer is larger than 256 bytes, then the index data

types are increased to 16 bits (uint16_t) to cope with the larger-sized buffer.

The definition of the transmit buffer index type is shown in Listing 4-23,

while the receive buffer definition is shown in Listing 4-24.

Listing 4-23. Definition of tx_buffer_index_t

#if (SERIAL_TX_BUFFER_SIZE>256)

 typedef uint16_t tx_buffer_index_t;

#else

 typedef uint8_t tx_buffer_index_t;

#endif

Listing 4-24. Definition of rx_buffer_index_t

#if (SERIAL_RX_BUFFER_SIZE>256)

 typedef uint16_t rx_buffer_index_t;

#else

 typedef uint8_t rx_buffer_index_t;

#endif

4.4.2.4. Serial Communications Parameters

There are numerous configuration definitions for Serial.begin(). These

are named “SERIAL_bps” where “b” is the number of bits , 5, 6, 7, or 8; “p”

is “N,” “O,” or “E” for none, odd, or even parity; and “s” is the number of

stop bits which can be 1 or 2. The complete set of config options is listed

in Table 4-1.

ChApTeR 4 ARDUInO ClASSeS

215

Table 4-1. Configuration parameters for the Serial.begin() function

Define Value Description

SeRIAl_5n1 0x00 5 bits, no parity, 1 stop bit

SeRIAl_6n1 0x02 6 bits, no parity, 1 stop bit

SeRIAl_7n1 0x04 7 bits, no parity, 1 stop bit

SeRIAl_8n1 0x06 8 bits, no parity, 1 stop bit (Default)

SeRIAl_5n2 0x08 5 bits, no parity, 2 stop bits

SeRIAl_6n2 0x0A 6 bits, no parity, 2 stop bits

SeRIAl_7n2 0x0C 7 bits, no parity, 2 stop bits

SeRIAl_8n2 0x0e 8 bits, no parity, 2 stop bits

SeRIAl_5e1 0x20 5 bits, even parity, 1 stop bit

SeRIAl_6e1 0x22 6 bits, even parity, 1 stop bit

SeRIAl_7e1 0x24 7 bits, even parity, 1 stop bit

SeRIAl_8e1 0x26 8 bits, even parity, 1 stop bit

SeRIAl_5e2 0x28 5 bits, even parity, 1 stop bit

SeRIAl_6e2 0x2A 6 bits, even parity, 1 stop bit

SeRIAl_7e2 0x2C 7 bits, even parity, 1 stop bit

SeRIAl_8e2 0x2e 8 bits, even parity, 1 stop bit

SeRIAl_5O1 0x30 5 bits, odd parity, 1 stop bit

SeRIAl_6O1 0x32 6 bits, odd parity, 1 stop bit

SeRIAl_7O1 0x34 7 bits, odd parity, 1 stop bit

SeRIAl_8O1 0x36 8 bits, odd parity, 1 stop bit

SeRIAl_5O2 0x38 5 bits, odd parity, 2 stop bits

(continued)

ChApTeR 4 ARDUInO ClASSeS

216

If Serial.begin() is called with no config, only a baud rate, then

the default is 8 bits, no parity, and 1 stop bit (SERIAL_8N1). There are two

versions of the begin() function in the file $ARDINC/HardwareSerial.h.

The default variant is shown in Listing 4-25, while Listing 4-29 shows the

actual begin() function which does the hard work of initializing the Serial

interface.

Listing 4-25. Default Serial.begin() function

void begin(unsigned long baud) { begin(baud, SERIAL_8N1); }

You can see it simply calls the overloaded begin() function – see

Listing 4-29 – with the required two parameters.

4.4.2.5. Macro HAVE_HWSERIAL0

In the case of the standard Arduino board, this will always be defined.

There are up to three additional serial interfaces that may exist, on

the Mega boards, for example, but these are not discussed here. HAVE_

HWSERIALn defines are able to be used in code to determine whether or

not the microcontroller has the specific serial port as numbered. The

ATmega328P has only one serial port, so HAVE_HWSERIAL0 will return

true. The Mega 2560 Arduino boards have four serial ports, so all of HAVE_

HWSERIAL0 through HAVE_HWSERIAL3 will return true.

Define Value Description

SeRIAl_6O2 0x3A 6 bits, odd parity, 2 stop bits

SeRIAl_7O2 0x3C 7 bits, odd parity, 2 stop bits

SeRIAl_8O2 0x3e 8 bits, odd parity, 2 stop bits

Table 4-1. (continued)

ChApTeR 4 ARDUInO ClASSeS

217

Listing 4-26. Defining Serial as extern.

#if defined(UBRRH) || defined(UBRR0H)

 extern HardwareSerial Serial;

 #define HAVE_HWSERIAL0

#endif

Listing 4-26 shows how the first serial port on the Atmega328P is

defined, and also, the actual Serial interface (actually, an instance of a

HardwareSerial object) is declared extern. This is required as Serial is

actually declared as an object in the file $ARDINC/HardwareSerial0.cpp,

shown in Listing 4-27.

Listing 4-27. Actual definition of Serial

#if defined(UBRRH) && defined(UBRRL)

 ...

#else

 HardwareSerial Serial(&UBRR0H,

 &UBRR0L,

 &UCSR0A,

 &UCSR0B,

 &UCSR0C,

 &UDR0);

#endif

The Serial variable is an object of type HardwareSerial. The following

functions are exposed by this class.

4.4.2.6. Constructor HardwareSerial()

This is the class constructor. Because of the different internal AVR

microcontroller register names on different boards and microcontrollers,

the constructor takes pointers to the registers required for serial

ChApTeR 4 ARDUInO ClASSeS

218

communications. Listing 4-28 is extracted from the file $ARDINC/

HardwareSerial_private.h and shows the constructor.

Listing 4-28. HardwareSerial constructor()

HardwareSerial::HardwareSerial(

 volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,

 volatile uint8_t *ucsra, volatile uint8_t *ucsrb,

 volatile uint8_t *ucsrc, volatile uint8_t *udr) : ①
 _ubrrh(ubrrh), _ubrrl(ubrrl),

 _ucsra(ucsra), _ucsrb(ucsrb), _ucsrc(ucsrc),

 _udr(udr),

 _rx_buffer_head(0), _rx_buffer_tail(0),

 _tx_buffer_head(0), _tx_buffer_tail(0)

{ ②
}

 ① This constructor is using the “colon” manner

of initializing the member variables from the

parameters passed to the constructor.

 ② All the initialization has been done; the body of the

constructor is empty.

This manner of initializing an object in the constructor is considered

the correct method in modern versions of the C++ standards.

4.4.2.7. Function begin(unsigned long baud)

This function is called to commence serial communications at the

specified baud rate, with a config of SERIAL_8N1 for 8-bit, no parity,

and 1 stop bit communications. This function calls the overridden

begin(unsigned long, uint8_t) function in Listing 4-29, passing the

desired baud rate and SERIAL_8N1.

ChApTeR 4 ARDUInO ClASSeS

219

4.4.2.8. Function begin(unsigned long, uint8_t)

The begin() function is called to initialize serial communications at the

desired baud rate and configuration. Listing 4-29 shows the code that

performs the actual initialization. There are other overloaded versions

of the begin() function which take fewer parameters; however, they all

eventually arrive at the following code.

The code in Listing 4-29 has been massaged slightly to fit the page.

Listing 4-29. The HardwareSerial::begin() function

void HardwareSerial::begin(unsigned long baud, byte config)

{

 // Try u2x mode first ①
 uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;

 *_ucsra = 1 << U2X0;

 if (((F_CPU == 16000000UL) && ②
 (baud == 57600)) || (baud_setting > 4095))

 {

 *_ucsra = 0;

 baud_setting = (F_CPU / 8 / baud - 1) / 2;

 }

 *_ubrrh = baud_setting >> 8; ③
 *_ubrrl = baud_setting;

 _written = false; ④

 *_ucsrc = config; ⑤

 sbi(*_ucsrb, RXEN0); ⑥
 sbi(*_ucsrb, TXEN0);

ChApTeR 4 ARDUInO ClASSeS

220

 sbi(*_ucsrb, RXCIE0); ⑦
 cbi(*_ucsrb, UDRIE0);

}

 ① This assumes that high-speed communications will

be used and sets bit U2X0 in the UCSR0A register to

enable high-speed communications mode. All other

bits are cleared. The baud_setting variable here

is not the actual baud rate desired – that’s in baud.

The calculation here is working out a value for the

USART Baud Rate Register 0 or UBRR0, which will

define the actual baud rate for communications.

 ② If an older board is in use, with a clock speed of 16

MHz, and a baud rate of 57600 is chosen, or if the

baud_setting calculated above is 4096 or higher on

any board, then the high-speed mode is disabled

and baud_setting recalculated for the low-speed

mode. There is a comment in the code which states

that this line is a

Hardcoded exception for 57600 for compatibility

with the bootloader shipped with the Duemilanove

and previous boards and the firmware on the 8U2

on the Uno and Mega 2560. Also, The baud_setting

cannot be > 4095, so switch back to non-u2x mode if

the baud rate is too low.

 ③ UBRR0 is a 12-bit register – well, it’s a 16-bit register,

but the top 4 bits of the high byte are ignored. It

is used as a counter for the serial clock generator.

Every time that it counts down to zero, it will be reset

to the value calculated in baud_setting. This is the

ChApTeR 4 ARDUInO ClASSeS

221

baud rate generator for the USART. The calculated

baud_setting is split into two parts and loaded into

the high and low bytes of the UBRR0 register. 16-bit

registers in the ATmega328P must, usually, be

loaded high byte first and then low byte.

 ④ The _written flag is set whenever a byte is

transmitted. This is used as a simple shortcut, so

that calls to flush() can return quickly if no actual

transmissions have taken place.

 ⑤ The desired data width, parity, and stop bits are set

up here. The default is 8 bits, no parity, and 1 stop

bit.

 ⑥ These two lines enable data receipt and

transmission. This has the effect of removing

Arduino pins D0 and D1 from general use – they are

now in the care of the USART.

 ⑦ The final two lines enable the interrupts for

receiving and transmitting data. This is why the

Serial interface cannot be used within an interrupt

handler because interrupt handlers disable

interrupts while executing. The interrupts enabled

are the USART Receive Complete interrupt and the

USART Data Register Empty interrupt.

ChApTeR 4 ARDUInO ClASSeS

222

 The Arduino code calculates the UBRR0 value (in baud_
setting) differently from the data sheet. In the data sheet, the
formula for high-speed communications is given as this:

 (F_CPU / (8 * baud)) -1
= (F_CPU / 8 / baud) -1

while the Arduino code calculates the “minus 1” as part of the division,
not after the division, which it performs in two parts, as follows:

F_CPU / 4 / (baud -1) / 2

however, both the Arduino and the data sheet usually agree on
the final, integer, result. This applies to both low- and high-speed
communications calculations. Figures 4-1 and 4-2 show the
calculated values and error rates.

In addition to the slightly different calculation, the Arduino code works
with unsigned integers, unsigned long and uint16_t, while
the data sheet appears to calculate using floating point arithmetic
with rounding up or down carried out at the very end. At least, that’s
the only way I could get the same answers as the data sheet. I am
therefore of the opinion that the data sheet is incorrect!

A similar discrepancy exists between how the Arduino and the data
sheet calculate low-speed UBBR0 settings and also error rates for the
various settings. (See in the following.)

ChApTeR 4 ARDUInO ClASSeS

223

Figure 4-1. Low-speed baud rate calculations

4.4.2.8.1. Notes on Baud Rate Calculations

The images in Figures 4-1 and 4-2 show the required values for the UBRR0

register as calculated by the data sheet and by the Arduino code. There are

separate images for the low-speed and high-speed modes. Both images are

from a spreadsheet which I used to perform the calculations.

ChApTeR 4 ARDUInO ClASSeS

224

The areas highlighted show discrepancies between what the data

sheet calculates and the Arduino’s result for the same calculation due to

rounding. In the figures, the following apply:

• The clock speed for the AVR microcontroller is 16 MHz.

• The data sheet figures use floating point calculations and

are rounded at the very end. Rounding is up or down

according to where the fractional parts are in relation to

0.5 – equal or higher rounds up and lower down.

• The data sheet baud rates are again calculated from the

floating point values with rounding at the end. This,

to my mind at least, is incorrect as the value in UBRR0

cannot possibly be a floating point value!

Figure 4-2. High-speed baud rate calculations

ChApTeR 4 ARDUInO ClASSeS

225

• The Arduino figures use unsigned integer values

throughout with truncation downward as opposed to

rounding up or down as appropriate.

• The difference between floats with fractions and

unsigned integers accounts for the variances

highlighted – even when it appears that the data sheet

and the Arduino code have the same UBRR0 figures.

The low-speed baud rates are calculated as

F_CPU / 16 * (UBRR0 + 1)

This means that the baud rate, in low-speed mode, ranges from 16 MHz/

(16 * (0 + 1)) which is 1,000,000 baud down to 16 MHz/(16 * (4,095 + 1))

which equals 244 baud.

The high-speed baud rate is calculated as

F_CPU / 8 * (UBRR0 + 1)

This means that the baud rate, in high-speed mode, ranges from 16 MHz/

(8 * (0 + 1)) which is 2,000,000 baud down to 16 MHz/(8 * (4,095 + 1)) which

equals 488 baud.

 You should be aware that you are not limited to the baud rates
in the preceding images. The Arduino code will accept any value for
the requested baud rate and attempt to calculate a suitable value for
UBRR0.

The value written to UBRR0 is used as a divider of the system clock
and can be anything between 0 and 4095. It is not the baud rate. It is
used to calculate the correct timings to give the required baud rate by
prescaling the system clock.

ChApTeR 4 ARDUInO ClASSeS

226

4.4.2.8.2. Notes on Baud Rate Errors

Just about all desired baud rates are not quite exactly achievable. This is

because calculating the UBRR0 value loses accuracy when the fractional

parts are lost – registers don’t have room for fractions after all. This

means that the USART may not quite be running at exactly the baud rate

requested by the sketch.

Because the UBRR0 value may not always be exactly as calculated,

then the actual baud rate calculation will not match up to the baud rate

requested. The preceding spreadsheet images show error rates using the

calculation from the data sheet, which is

Error% = (Actual Baud/Desired Baud - 1) * 100

 The new ATmega328p data sheet from Microchip appears to
have a bug in the calculation. It states that the error rate is “error% =
(Actual Baud / Desired Baud -1)2 100.”

In this formula, instead of a multiplication by 100, the 100 just sits
there by itself while the result of preceding division is squared. The
superscripted “2” in the data sheet could be a footnote number, but
as there is only a single footnote on the page, this doesn’t look likely.
The old Atmel data sheet has the correct formula.

The data sheet figures for the error rate appear to be rounded to a

single decimal place at the end of the calculation.

The data sheet advises avoiding those baud rates where the calculated

error rate is plus or minus 0.5% or higher.

The data sheet figures should be taken with a pinch of salt! You cannot

count with register values holding floating point values – unless you are

using a floating point unit (FPU) of course, but the AVR microcontroller

doesn’t have one.

ChApTeR 4 ARDUInO ClASSeS

227

4.4.2.8.3. Notes on Low- and High-Speed Communications

According to the data sheet, setting U2X0 in register UCSR0A to 1binary will

reduce the divisor of the baud rate divider from 16 to 8 effectively doubling

the transfer rate for asynchronous communication.

It goes on to state that

Setting this bit will reduce the divisor of the baud rate divider
from 16 to 8, effectively doubling the transfer rate for asyn-
chronous communication. Note however that the Receiver
will in this case only use half the number of samples (reduced
from 16 to 8) for data sampling and clock recovery, and there-
fore a more accurate baud rate setting and system clock are
required when this mode is used. For the Transmitter, there
are no downsides.

So it appears that this bit may affect data receipt while not affecting

data transmission.

4.4.2.9. Function end()

Calling the serial.end() function disables serial communication and

flushes the transmission buffer so that any bytes which were in the

process of being transmitted will be allowed to complete. Interrupts for

transmission and receipt of data are then disabled, and finally, Arduino

pins D0 and D1 are disconnected from the USART and can now be used

for normal input/output operations. The code for the end() function is as

shown in Listing 4-30.

Listing 4-30. The HardwareSerial::end() function

void HardwareSerial::end()

{

 // wait for transmission of outgoing data

 flush(); ①

ChApTeR 4 ARDUInO ClASSeS

228

 cbi(*_ucsrb, RXEN0); ②
 cbi(*_ucsrb, TXEN0);

 cbi(*_ucsrb, RXCIE0); ③
 cbi(*_ucsrb, UDRIE0);

 // clear any received data

 _rx_buffer_head = _rx_buffer_tail; ④
}

 ① Any data currently in the transmission buffer is

allowed to complete its transmission.

 ② The USART transmit and receive functions are

disabled. Pins D0 and D1 return to normal Arduino

input/output mode.

 ③ Transmit and Receive interrupts are disabled.

 ④ The receive buffer is emptied ready for subsequent

receipt of data. The data may not have been read by

the sketch yet, but it is now gone.

4.4.2.10. Operator bool()

The bool() function, in Listing 4-31, will return true if the specified serial

port is available. It is called, for example, as in if (Serial) ..., and will

only ever return false if called in a sketch which is running on a Leonardo

board, for example, and the USB CDC serial connection is not yet ready.

On the standard Arduino boards, the function always returns true

which can clearly be seen in Listing 4-31.

ChApTeR 4 ARDUInO ClASSeS

229

Listing 4-31. The HardwareSerial::operator bool() function

operator bool() {

 return true;

}

The preceding code is from a standard Arduino, obviously!

4.4.2.11. Function available(void)

This function overrides the virtual one in the ancestor class Stream and

returns the number of bytes available, in the receive buffer, which have

yet to be read by the sketch. Listing 4-32 shows the full code for the

available() function, and it was reformatted slightly to fit on the page.

Listing 4-32. The HardwareSerial::available() function

int HardwareSerial::available(void)

{

 return ((unsigned int)(SERIAL_RX_BUFFER_SIZE +

 _rx_buffer_head - _rx_buffer_tail)) %

 SERIAL_RX_BUFFER_SIZE;

}

The head is where the next byte received by the USART will be

placed; the tail is the next byte to be read into the sketch. The difference

between the two is the number of bytes available. The preceding

calculation accounts for any wraparound that takes place when the

addition of new bytes to the buffer by the USART causes the head pointer

to point back at the start of the buffer while the tail pointer is still at a

(now) higher address.

ChApTeR 4 ARDUInO ClASSeS

230

If, for example, the buffer was 64 bytes long at address 100 and the

head pointer has wrapped around and is now pointing at address 105,

while the tail pointer is pointing at address 155, the amount of data

available to read is

 (64 + head - tail) % 64

=> (64 + 105 - 155) % 64

=> (169 - 155) % 64

=> 14 % 64

= 14

So there are 14 bytes of data not yet read by the sketch. These are in

the buffer at addresses 155–163 and bytes 100–105, which, if you use your

fingers like I just did, is exactly 14 bytes. Remember the tail pointer is the

first byte to be read from the buffer and passed to the sketch, while the

head pointer is where the next byte read in from the USART will be stored –

it is the first free location in the sketch’s receive buffer.

4.4.2.12. Function peek(void)

Listing 4-33 shows the peek() function. This function overrides the virtual

one in the ancestor class Stream and returns the next character that will

be returned when the read() function – see Listing 4-34 – is called. The

character remains in the buffer, so this is a nondestructive read. If there are

no characters in the buffer, -1 is returned.

Listing 4-33. The HardwareSerial::peek() function

int HardwareSerial::peek(void)

{

 if (_rx_buffer_head == _rx_buffer_tail) { ①
 return -1;

ChApTeR 4 ARDUInO ClASSeS

231

 } else {

 return _rx_buffer[_rx_buffer_tail]; ②
 }

}

 ① If the head and tail are equal, there’s nothing in the

buffer. An invalid character code, -1, is returned.

 ② The character at the tail end of the buffer is

returned, without changing the tail pointer.

4.4.2.13. Function read(void)

The function read(), as shown in Listing 4-34, overrides the virtual

function in the ancestor class Stream and returns the next character from

the receive buffer and adjusts the tail pointer to remove the character

read from the buffer. If there are no characters in the buffer, -1 is returned.

Listing 4-34 has had to be reformatted slightly to fit on the page.

Listing 4-34. The HardwareSerial::read() function

int HardwareSerial::read(void)

{

 if (_rx_buffer_head == _rx_buffer_tail) { ①
 return -1;

 } else {

 unsigned char c = _rx_buffer[_rx_buffer_tail]; ②
 _rx_buffer_tail = (rx_buffer_index_t)

(_rx_buffer_tail + 1) % ③
 SERIAL_RX_BUFFER_SIZE;

 return c; ④
 }

}

ChApTeR 4 ARDUInO ClASSeS

232

 ① If the head and tail are equal, there’s nothing in the

buffer. An invalid character code, -1, is returned.

 ② The next, unread, character is extracted from the

buffer.

 ③ The tail pointer is adjusted to the next character in

the buffer, which may cause the tail pointer to wrap

around to the first character in the buffer.

 ④ The extracted character is returned to the sketch.

4.4.2.14. Function availableForWrite(void)

This function, shown in Listing 4-35, overrides the virtual one in the Print

ancestor class and returns the number of bytes of free space remaining in

the Serial interface’s transmit buffer.

Listing 4-35. The HardwareSerial::availableForWrite() function

int HardwareSerial::availableForWrite(void)

{

 tx_buffer_index_t head; ①
 tx_buffer_index_t tail;

 TX_BUFFER_ATOMIC { ②
 head = _tx_buffer_head;

 tail = _tx_buffer_tail;

 }

 if (head >= tail)

 return SERIAL_TX_BUFFER_SIZE - 1 - head + tail; ③

 return tail - head - 1; ④
}

ChApTeR 4 ARDUInO ClASSeS

233

 ① The transmit buffer’s head and tail pointers will be

copied to these two variables, so they are declared

with the same data type as the actual head and tail

pointers for the buffer.

 ② Wrapping these two lines in TX_BUFFER_ATOMIC

is necessary if the buffer size is bigger than 256

bytes as reading an 8-bit value is atomic – cannot

be interrupted – but reading a 16-bit value could

be interrupted, and the value may be updated

in between reading the low and high bytes. The

TX_BUFFER_ATOMIC macro is defined as shown in

Listing 4-36.

The protected code block simply copies the current

values for the head and tail pointers into the two

local variables. The tail pointer is the next location

in the sketch’s transmit buffer that will be copied to

the USART’s transmit register, while the head pointer

is where the sketch will store the next byte sent from

the sketch.

 ③ If the head is ahead of the tail, this calculation

returns the bytes between head and tail. If head

equals tail, then the buffer is empty, and this

calculation returns SERIAL_TX_BUFFER_SIZE - 1.

 ④ If the head has wrapped back to the start of the

buffer and is now behind the tail, this calculation

returns the difference between them accounting for

the wraparound.

The TX_BUFFER_ATOMIC macro is defined as shown in Listing 4-36.

ChApTeR 4 ARDUInO ClASSeS

234

Listing 4-36. The TX_BUFFER_ATOMIC macro

#if (SERIAL_TX_BUFFER_SIZE>256)

#define TX_BUFFER_ATOMIC ATOMIC_BLOCK(ATOMIC_RESTORESTATE)

#else

#define TX_BUFFER_ATOMIC

#endif

ATOMIC_BLOCK(ATOMIC_RESTORESTATE) is from the AVRLib and means

that whatever state the interrupts were before this block, they should be

restored after the block. The block will disable interrupts for the duration.

If the buffer size is less than 256 bytes, the TX_BUFFER_ATOMIC macro

expands to nothing as no special handling is required for transferring 8-bit

values – they cannot be interrupted.

4.4.2.15. Function flush(void)

The flush() function in Listing 4-37 overrides the virtual function in the

ancestor class Print and ensures that any data currently in the process of

being transmitted is allowed to continue until completion. This empties

the sketch’s transmit buffer and ensures that the entire contents are,

indeed, transmitted.

Listing 4-37 has been slightly reformatted to fit on the page.

Listing 4-37. The HardwareSerial::flush() function

void HardwareSerial::flush()

{

 if (!_written) ①
 return;

 while (bit_is_set(*_ucsrb, UDRIE0) || ②
 bit_is_clear(*_ucsra, TXC0)) {

 if (bit_is_clear(SREG, SREG_I) && ③
 bit_is_set(*_ucsrb, UDRIE0))

ChApTeR 4 ARDUInO ClASSeS

235

 // Interrupts are globally disabled, but the DR

 // empty interrupt should be enabled, so poll the

 // DR empty flag to prevent deadlock

 if (bit_is_set(*_ucsra, UDRE0)) ④
 _tx_udr_empty_irq();

 }

 // If we get here, nothing is queued anymore (DRIE is

 // disabled) and the hardware finished transmission

 // (TXC is set).

}

 ① If we have never transmitted a byte, since Serial.

begin(), then there is no need to flush. This special

check is needed since there is no way to force the

TXC0 – transmit complete – bit to 1binary during

initialization of the USART which could cause

flush() to block forever if called when no data had

ever been transmitted.

 ② The while loop will execute as long as the USART

Data Register Empty interrupt remains enabled

or if data is currently being transmitted by the

USART. The comment at the bottom of the function

shows the conditions that will be in force when the

while loop exits:

• The sketch’s transmit buffer is empty.

• The transmit complete bit, TXC0, in the UCSR0A

register has been set.

• The UDRIE bit in UCSR0B is clear to disable the

USART Data Register Empty interrupt.

ChApTeR 4 ARDUInO ClASSeS

236

 ③ If global interrupts are currently disabled but

the USART Data Register Empty interrupt is still

enabled, then we must still have data in the transmit

buffer waiting to be sent.

 ④ This line explicitly calls the helper function for the

USART Data Register Empty interrupt handler if

the UDR0 register is currently empty and waiting for

another byte.

In other words, the preceding code ensures that even if global

interrupts are not enabled, as long as data remains to be transmitted to the

USART and beyond, it will indeed be transmitted.

4.4.2.16. Function write(uint8_t)

This function overrides the virtual one in the ancestor class Print and

defines how a single unsigned char will be transmitted to the Serial

interface. The write() function is split into two separate parts. The first

part, the code which follows in Listing 4-38, deals with those occasions

when both the transmit buffer in the sketch and the USART Data Register,

UDR0, are also empty.

Rather than adding the byte to be transmitted to the sketch’s transmit

buffer and waiting for the interrupt handler to forward it to the USART, the

code in Listing 4-38 cuts out the middleman and writes the byte directly

into the USART Data Register for transmission. The function then returns

the number of bytes written – which will always be one.

The code in Listings 4-38 and 4-38 have been reformatted to fit the page.

ChApTeR 4 ARDUInO ClASSeS

237

Listing 4-38. The HardwareSerial::write() function

size_t HardwareSerial::write(uint8_t c)

{

 _written = true; ①

 if (_tx_buffer_head == _tx_buffer_tail && ②
 bit_is_set(*_ucsra, UDRE0)) {

 // If TXC is cleared before writing UDR and the

 // previous byte completes before writing to UDR,

 // TXC will be set but a byte is still being

 // transmitted causing flush() to return too soon.

 // So writing UDR must happen first.

 // Writing UDR and clearing TC must be done atomically,

 // otherwise interrupts might delay the TXC clear so the

 // byte written to UDR is transmitted (setting TXC)

 // before clearing TXC. Then TXC will be cleared when

 // no bytes are left, causing flush() to hang.

 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { ③
 *_udr = c; ④
 *_ucsra = ((*_ucsra) & ((1 << U2X0) |

 (1 << MPCM0))

) | (1 << TXC0); ⑤
 }

 return 1; ⑥
}

 ① This flag is used by flush() to determine if anything

has been written yet, so it must be set any time a

byte is supplied to be transmitted. In flush() – see

Listing 4-37 – this flag is used as a “quick exit” as it

tells flush() whether or not it has work to do.

ChApTeR 4 ARDUInO ClASSeS

238

 ② This is a performance shortcut to load the passed

byte directly into the USART Data Register if the

sketch’s transmit buffer is empty – _tx_buffer_head

equals _tx_buffer_tail – and the USART Data

Register is also currently empty. This reduces

overhead and makes higher baud rates more reliable.

 ③ The comment above this line explains it all. The

code must be careful to not get interrupted, so is

wrapped in an atomic block which will disable

interrupts if necessary, make the required

changes, and re-enable interrupts if they were

previously enabled. The ATOMIC_BLOCK and ATOMIC_

RESTORESTATE macros are defined in the depths of

the AVRLib code.

 ④ The code here simply writes the data byte to the

USART Data Register ready to be transmitted.

 ⑤ This line updates the USCR0A register to preserve the

state of the high-speed (U2X0) and Multi- processor

(MPCM0) flags while clearing the Transmit Complete

flag (TXC0) by writing a 1binary to its location. If it was

not set, this change would have no effect; if it was

previously set, then ANDing it with a 1binary would

cause a new 1binary to be written back, thus clearing

the flag. This is required because with an empty

transmit buffer, USART interrupts are disabled so

this bit will not be cleared automatically.

 ⑥ The function exits, returning the number of bytes

written to the buffer, always one, which is not quite

true as the code has completely bypassed the

sketch’s transmit buffer.

ChApTeR 4 ARDUInO ClASSeS

239

The write() function continues in Listing 4-39 if the sketch’s transmit

buffer and the USART’s UDR0 register were not both found to be empty on

entry to the write() function.

Listing 4-39. The HardwareSerial::write() function – continued

tx_buffer_index_t i =

 (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE; ①

 // If the output buffer is full, there's nothing

 // for it other than to wait for the interrupt

 // handler to empty it a bit

 while (i == _tx_buffer_tail) { ②
 if (bit_is_clear(SREG, SREG_I)) {

 // Interrupts are disabled, so we'll have to poll

 // the data register empty flag ourselves. If it is

 // set, pretend an interrupt has happened and call

 // the handler to free up space for us.

 if(bit_is_set(*_ucsra, UDRE0))

 _tx_udr_empty_irq(); ③

 } else { ④
 // nop, the interrupt handler will free up

 // space for us

 }

 }

 _tx_buffer[_tx_buffer_head] = c; ⑤

 // make atomic to prevent execution of ISR between

 // setting the head pointer and setting the interrupt

 // flag resulting in buffer retransmission.

ChApTeR 4 ARDUInO ClASSeS

240

 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { ⑥
 _tx_buffer_head = i;

 sbi(*_ucsrb, UDRIE0); ⑦
 }

 return 1;

}

 ① The first free location in the sketch’s transmit

buffer is found. This will be used later to update the

head pointer and also to determine if the buffer is

currently full up. The head pointer is the first free

byte in the transmit buffer.

 ② The while loop will execute for as long as the buffer

remains full. Obviously, the variable i will never

be updated, so the code depends on the sketch’s

transmit buffer tail pointer – the location in the

buffer where bytes are removed and copied to the

USART – to change, as it will be when the buffer

is being emptied by the interrupt handler; if the

interrupt and global interrupts are enabled.

 ③ The helper function for the USART’s transmission

code is called manually here as interrupts are not

enabled so the transmit buffer will not empty under

interrupt control.

 ④ If global interrupts are enabled, so the buffer will

eventually empty by itself (no, actually, by the

interrupt handler) – so there is nothing that needs to

be done here.

ChApTeR 4 ARDUInO ClASSeS

241

 ⑤ The new data byte is stored in the buffer at the

current head location as there is finally some space

in the buffer to do so.

 ⑥ This block of code is wrapped in an atomic block

to ensure that interrupts do not adjust the head

pointer while this block is doing so. This could

cause the same byte to be transmitted twice.

Whenever there are data in the buffer, then the

USART’s transmit interrupt is enabled to ensure

that they are written out to the Serial interface.

The interrupt is disabled when end() is called or

when the interrupt handler’s helper, _tx_udr_

empty_irq, has emptied the buffer.

 ⑦ This sets the USART Data Register Empty interrupt

enable bit to configure the USART to send bytes over

the serial link while there are some left to transmit.

It will be disabled when no more bytes are left in the

sketch’s transmit buffer.

The following functions facilitate the transmission of different numeric

data types:

• write(unsigned long n)

• write(long n)

• write(unsigned int n)

• write(int n)

ChApTeR 4 ARDUInO ClASSeS

242

The following using call allows the Serial interface to transmit String

class variables:

• using Print::write;

The various write() functions will all eventually call down to the write()

function in Listings 4-38 and 4-39 to do the actual transmission via the USART.

4.4.2.17. Function _rx_complete_irq(void)

This is the receive data interrupt helper function. It is not to be called from

sketches directly.

4.4.2.18. Function _tx_udr_empty_irq(void)

This is the transmit data interrupt helper. It is not to be called from

sketches directly.

 The two interrupt handler helper functions are visible as they
are declared public, but are most definitely not intended to be
called by sketch code, only by the interrupt ISRs themselves or other
internal code in the HardwareSerial class.

4.5. The String Class
The String class provides a simple C++ method of creating C++ strings,

as opposed to C’s old-fashioned char arrays. Strings can be added together,

converted to and from numbers and so on. They are quite useful in this

respect. However, they do use a lot of dynamic memory allocation and

reallocation, and this has certain drawbacks – mainly the ability to use up

your scarce Static RAM causing all sorts of possible corruptions and hard

to find crashes.

ChApTeR 4 ARDUInO ClASSeS

243

 The String class uses a lot of dynamic memory allocation.
This means that there could be runtime errors when used on AVR
microcontrollers with minimal available RAM. The author of the
Arduino JSOn library, Benoit Blanchon, has a few warnings and
pointers as to why you should never use the String class. You can
read the article, or at least the “Disclaimer,” at https://blog.
benoitblanchon.fr/arduino-json-v5-0/#disclaimer and
then, if you so wish, avoid the use of the String class in your
Arduino code.

As a simple example, when making a string longer, there must be
enough free Static RAM to allocate the existing allocated space plus
the new amount that is required – this can, briefly, double the amount
of Static RAM required and, under certain circumstances, exceed the
amount available, leading to corruption.

Just because it compiles okay doesn’t mean that it will (always) run
okay. Beware.

Interestingly enough, I don’t know of anyone who uses this class in

their sketches. I’ve never seen one used either – but that doesn’t mean

there are no sketches out there in the wild which use String variables of

course.

In this chapter, when describing the Printable class, I showed how a

class, named Person, could be streamed by inheriting from the Printable

class. That particular example did use the String class (because it was

easier to type in!); however, it did take up a lot more Flash RAM than had

I written the class to use char arrays rather than Strings. However, I did

a quick experiment and created another class using plain old-fashioned

char arrays instead of Strings.

ChApTeR 4 ARDUInO ClASSeS

https://blog.benoitblanchon.fr/arduino-json-v5-0/#disclaimer
https://blog.benoitblanchon.fr/arduino-json-v5-0/#disclaimer

244

With Strings, the example consumed 3,222 bytes of Flash and 234

bytes of Static RAM. When converted to use plain char buffers, the Flash

RAM usage dropped to 1,808 bytes, and Static RAM usage dropped to

232 bytes. This was for a pair of char[10] buffers instead of the String

variables, and Flash RAM usage was only 56% that of the String version

for the same features. Obviously, bigger buffers will result in more Static

RAM usage.

Given the simplicity of the Person class, String variables were a valid

option. Apart from streaming them, nothing else was done with them at all.

With only that sort of usage, String variables are perfectly acceptable. Had

I perhaps written the class in such a way that it was required to manipulate

those String variables, for example, changing data within them, adding

extra characters, or other changes, then those actions would each be a

potential source of random crashes if and when the various dynamic

allocations and copying of String data around in Static RAM exceeded the

amount of RAM available.

The ATmega328P has 32 Kb of Flash RAM, but only a paltry 2 Kb (2024

bytes) of Static RAM. Static RAM is where your sketch’s variables get kept,

while the sketch code goes into the Flash RAM. You see the memory used

in each area at the end of a compilation and upload.

 Because the use of String variables is fraught with potential
danger, I strongly advise against their usage. however, should you
wish to use them, so be it. The Arduino Reference web site has all the
details that you will need to create Strings from various other data
types, and there is a full explanation of the various functions and
methods that are available to operate on Strings there too. You can
find all the documentation at www.arduino.cc/reference/en/
language/variables/data-types/stringobject/.

ChApTeR 4 ARDUInO ClASSeS

http://www.arduino.cc/reference/en/language/variables/data-types/stringobject/
http://www.arduino.cc/reference/en/language/variables/data-types/stringobject/

245© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_5

CHAPTER 5

Converting to the
AVR Language
This chapter briefly explains how you can begin to wean yourself off of

the helpful features of the Arduino Language and write code that is in

the AVR’s own variant of C/C++ which can greatly reduce the size of your

compiled code and could make the difference in fitting your project into

an ATtiny85, for example, rather than needing a full-blown ATmega328P.

Writing AVR C/C++ also turns off all the hand holding that the Arduino

gives you. You are talking directly to the device, rather than having your

needs and wishes interpreted by an intermediary and passed along to the

device, eventually.

You should be warned, writing in AVR C/C++ will entail frequent

reading of the data sheet for the AVR microcontroller in your Arduino

board and writing code that is – initially at least – a lot harder to

understand than the Arduino Language that you are used to. However, you

will find yourself writing small code libraries that get used frequently in

your own code, which make life easier again. In addition, these libraries

will be written in AVR C/C++ and will be far more efficient than the

Arduino equivalent.

This chapter covers the simple things that you can do right now, even

within your existing sketches to save a bit of Flash RAM, time, and battery

power for those projects you want to power from batteries. Chapters 7, 8,

246

and 9 of this book delve a lot deeper into the hardware of the ATmega328P,

and in those chapters, there’s a lot more low-level information.

5.1. Introduction
In this chapter, I will be looking at how you can convert, fairly easily, some

of the Arduino Language features to AVR-specific C++. AVR-specific C++

is actually what the Arduino Language maps down on to anyway – as you

will see later in Chapters 7, 8, and 9. Using AVR C++, the “middleman” gets

cut out and things become smaller and faster, with less power required

too. The information in this chapter should give you ideas on how to

start migrating from the Arduino Language to talking directly to the

microcontroller.

Having said that it is “fairly easy,” you should also be reminded that

the Arduino Language is very readable and this is extremely helpful for

beginners and experienced makers alike. Plain AVR C/C++ is, how shall

I put it, not quite so user-friendly. It’s not impossible, but you should be

aware that commenting your code is probably a must from now on.

Later on, in Chapter 6, I shall introduce you to an application named

PlatformIO which allows you to code in pure AVR C/C++ without needing

the Arduino Language or IDE. This really allows you to get down and dirty

in the code. It also allows you to continue to create Arduino Language

sketches, if you so desire, and can be used as an alternative to the Arduino

IDE. PlatformIO allows you to use your preferred editor to write Arduino

code.

PlatformIO is cross-platform and runs on Windows, Linux, and Mac,

just like the Arduino IDE. It is also able to write and compile code for

numerous different development boards, not just Arduino.

However, I shall start gently and continue using the Arduino IDE.

Chapter 5 Converting to the avr Language

247

The rest of this chapter assumes that you

• Have a reasonable level of understanding of C/C++

code. I’ll try to keep things as simple as I can though.

• Know about binary and hexadecimal number systems.

• Understand logical operations on binary values, AND,

OR, NOT, and XOR specifically.

Just in case, here’s a recap.

5.2. Numbering Systems
Writing code involves knowing a little about various numbering systems.

It’s not all decimal – although that’s the one we are most used to, having

ten digits on our hands and feet. Computers and microcontrollers work in

binary, base 2, where something is on or off, or a 1 or a 0. There is nothing

else. I’ll start this chapter with a recap of the various numbering systems.

5.2.1. Decimal Numbering
It makes sense to start with something familiar!

In decimal, a digit’s position in the number represents the count of the

power of 10 at that point, counting from zero upward and from right to left.

The third digit from the right is 102, the second is 101, the first is 100, and so

on, for example, thinking back to my primary school days:

100 10 1

 1 2 3

This number counts the number of 100s that we have, plus the number

of 10s, plus the number of 1s. That’s (1 ∗ 100) + (2 ∗ 10) plus (3 ∗ 1) giving

123. Simple? Too easy? Let’s move on.

Chapter 5 Converting to the avr Language

248

5.2.2. Binary Numbering
Binary numbers use only the digits 0 and 1. This is another positional

numbering system, similar to decimal, in that the rightmost digit, or bit,

represents the units or 20, the next the 21, then the 22, and so on, doubling

each time. Again, we see increasing powers of two as we move right to left.

In binary, the value 0111 1011binary is therefore

128 64 32 16 8 4 2 1

 0 1 1 1 1 0 1 1

This is (1 ∗ 64) + (1 ∗ 32) + (1 ∗ 16) + (1 ∗ 8) + (1 ∗ 2) + (1 ∗ 1), which is

123decimal.

The problem with binary is that it easily gets unwieldy. Up to about

255 is fine – there are 8 bits (binary digits) to cope with. After that, it tends

to get a bit hard to follow. Hexadecimal is a good way to keep things easily

understandable, but reduces the number of digits required by a factor of 4

compared with binary.

5.2.3. Hexadecimal Numbering
Hexadecimal is based on powers of 16. And straight away, we can see a

problem as we only have ten digits, 0–9. To get around this, hexadecimal

uses all the digits, plus the letters A–F so that there are 16 hexadecimal

digits in use to represent hexadecimal numbers. The digits represent

themselves, as they do in decimal, and the letters A–F represent 10–15.

As with decimal, this is a positional numbering system, where the

columns show multiples of 16, starting on the far right with 1s, then 16s,

then 256s, then 4096s, and so on. Once again, each column is a power of 16

greater than the one to the right.

Chapter 5 Converting to the avr Language

249

For the value 7Bhex, we have

16 1

 7 B

This value represents (7 ∗ 16) plus (11 ∗ 1) and is, once again, exactly

123decimal.

Hexadecimal is extremely useful when there are lots of binary digits to

deal with. Binary can be confusing and has far too many bits to be visually

useful, except in a few cases. Hexadecimal is a good way to represent

binary values, with fewer digits, and is simple to convert to and from.

To represent 16 in binary requires only 4 bits = 8, 4, 2, and 1. There are

16 different values that can be created using just those bits, 0–15. If then

the binary number is split into groups of 4, starting at the right, each of

those groups can be converted to a hexadecimal digit using Table 5-1.

Table 5-1. Binary, hexadecimal, and decimal conversion

Binary Hex Decimal Binary Hex Decimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 a 10

0011 3 3 1011 B 11

0100 4 4 1100 C 12

0101 5 5 1101 D 13

0110 6 6 1110 e 14

0111 7 7 1111 F 15

Chapter 5 Converting to the avr Language

250

Using the preceding example, we can split the 8 bits of 0111 1011binary

into two groups of 4 bits – this is 0111binary and 1011binary. Converting to

hexadecimal using the preceding table results in 7hex and Bhex, or 7Bhex.

Instead of requiring a table to convert, it’s easy to convert the binary

bits in each 4-bit group into a decimal number and then make that into

hexadecimal by adjusting the digits if the result is 10 or more.

0111binary is (0 ∗ 8) + (1 ∗ 4) + (1 ∗ 2) + 1 and gives the answer 7. 1011binary

is (1 ∗ 8) + (0 ∗ 4) + (1 ∗ 2) + 1 and gives the answer 11. 11 is not a valid

hexadecimal digit, but its equivalent is Bhex. Once more, the result is 7Bhex.

That’s about all there is to it. Hexadecimal is a much better way to

represent values in computer registers, memory, etc., rather than binary.

Decimal could be used but, for some reason, isn’t often.

5.3. Binary Logical Operations
Computers use binary. The various digital logic gates that computers and

microcontrollers are built from rely on logic to work. There are only a few

basic gates known or used, and many of them are actually made up from

something called a NAND gate, or sometimes a NOR gate. The following

sections deal with the most used gates in microcontroller construction.

Now you might be wondering what this has to do with the Arduino.

Fear not. The following truth tables for hardware gates are exactly the same

as the truth tables for those bitwise operations done in a sketch. There will

be more on this later on in this chapter, so for now, consider the following

a short reminder.

5.4. NOT
The NOT operation takes a single binary bit as input and results in its

opposite value as the output. It inverts the bit, in other words.

Chapter 5 Converting to the avr Language

251

The truth table for the NOT operation is thus

A Output

0 1

1 0

5.5. AND
Given any two, or more, binary digits, or bits, they can be ANDed together

to give a result which depends on the two (or more) inputs. AND works as

follows:

• If all inputs are 1binary, then the result will also be 1binary.

• Otherwise, the result will be 0binary.

The truth table for the AND operation, with two inputs, is thus

A B Output

0 0 0

0 1 0

1 0 0

1 1 1

5.6. OR
Given any two, or more, binary digits, or bits, they can be ORd together to

give a result which operates as follows:

• If any of the inputs are 1binary, then the result will also be

1binary.

• Otherwise, the result will be 0binary.

Chapter 5 Converting to the avr Language

252

The truth table for the OR operation, with two inputs, is thus

A B Output

0 0 0

0 1 1

1 0 1

1 1 1

5.7. XOR
Given any two, or more, binary digits, or bits, they can be XORd together to

give a result which operates as follows:

• If all the inputs are 1binary, then the result will be 0binary.

• If all the inputs are 0binary, then, again, the result will be

0binary.

• Otherwise, the result will be 1binary.

The truth table for the XOR operation, with two inputs, is thus

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

The remainder of this chapter will require you to be at least slightly

familiar with the truth tables listed here. Panic not. It will be explained as

required. Now we are about ready to start looking at losing the Arduino

Language hand holding, but in a gentle manner.

Chapter 5 Converting to the avr Language

253

5.8. Replacing the Arduino Language
As I introduced in Chapter 2, the Arduino IDE does a fair amount of hand

holding to make life easy for the beginner. It sets up various stuff in the

background, it provides easy to understand function names and so on in the

language, and you never need to see what’s happening. If you wish to carry

on in this manner, then I’m afraid that this section of the book is not for you!

Still here? Good!

Read on, and prepare to cast off the shackles of an easy life!

5.8.1. The ATmega328P Pins and Ports
On the ATmega328P, there are numerous pins, as you are aware, and

these pins live in three different “banks” – each bank consisting of up to

a maximum of eight pins. The pins in each bank are named, by Atmel/

Microchip, “Pxn” where “x” is the bank and “n” is the pin number on

that bank – PB5, for example, which corresponds to the Arduino D13 pin.

On the ATmega328P, the banks are not all the same – not all have the full

complement of eight pins:

• Bank B has eight pins, PB0–PB7. Most of the pins in this

bank are usable on an Arduino board apart from pins

PB6 and PB7 as these are used for the 16 MHz crystal

oscillator, so there are only six available pins on Bank B.

• Bank C only has seven pins, PC0–PC6. Pin PC6 is special

in that normally it is used as the RESET pin. It can also

be used as an additional I/O pin if the appropriate fuse

bit (see Chapter 7, Section 7.1, “ATmega328P Fuses,”

for details), RSTDISBL, is programmed. Doing this,

however, prevents the device from being programmed

(or reset); and if further programming is required, a

Chapter 5 Converting to the avr Language

254

special high voltage or a parallel programmer must be

used instead. In normal use, Bank C therefore has six

pins available.

• Bank D has all eight pins, PD0–PD7, available for use on

the Arduino.

See Figure 5-1 for a pinout diagram of the ATmega328P. You will find

the Arduino and AVR pin labeling names on the diagram.

To summarize, the following pins are the only ones available to us on

an ATmega328P-based Arduino board:

• PB0–PB5. Pins PB6 and PB7 are used for the 16 MHz

crystal oscillator and so are unavailable on Arduino

boards.

• PC0–PC5. Pin PC6 is the RESET pin and should really be

left well alone!

• PD0–PD7.

Figure 5-1. Atmega328P pinout

Chapter 5 Converting to the avr Language

255

 regarding pins PB6 and PB7, you can configure the

atmega328p to use its own internal 8 Mhz oscillator rather than the
external one and free up these two pins for general i/o use. Sadly,
this cannot easily be done when the device is embedded in an
arduino board as there are no headers on an arduino board that
connect these pins to the outside world.

this works best if the microcontroller is used in a breadboard or in a
circuit board of your own design, for example. See appendix h for a
breadboarded arduino doing exactly that – running at 8 Mhz without
a crystal and able to use PB6 and PB7 as extra pins.

Figure 5-1 shows the location of the various banks of pins. The

numbers in the columns labeled “Pin” are the physical pin numbers. The

columns labeled “AVR” are the Atmel/Microchip pin names. The “PCInt”

columns list the names used when processing Pin Change Interrupts, and

next to those are the “Arduino” pin names like D3 and so on. Finally, on the

outermost columns, we have the “ALT” or alternative functions for the pins

as some pins can be configured for multiple – but separate – tasks.

You can see from Figure 5-1 that all the pins in a bank are not necessarily

located adjacent to each other. Look at where PB6 and PB7 (physical pins 9

and 10) are to be found, slap bang within the pins of Bank D.

There are three ATmega328P registers which control the numerous

pins in the three banks. These are

• The Data Direction Register, DDRx, which is used to

configure a pin as either an INPUT, the default, or an

OUTPUT. Each bank of pins has its own DDRx, and “x” is

the bank name. DDRB for Bank B, for example.

Chapter 5 Converting to the avr Language

256

• The bank’s Data Register, PORTx, which is used to set

the associated pins HIGH or LOW when configured as an

OUTPUT. Each bank of pins has its own PORTx, and “x”

is again the bank name. PORTC for Bank C, for example.

The PORTx register can also be used with INPUT pins

but only for one specific reason which is covered in the

next section on replacing the pinMode() function.

• The bank’s Input Pin Register, PINx, which is used to

read the state of a pin that has been configured for

INPUT. Each bank of pins has its own PINx where “x” is

the bank name. PIND for Bank D, for example. As with

the PORTx registers, the PINx registers can be used

with pins configured as OUTPUT; and again, this is for

one specific reason only. This will be discussed in the

section dealing with replacing digitalWrite().

 each pin in a bank corresponds to a single bit in the preceding
three registers. pin PD0, for example, is bit zero in the DDRD, PORTD,
and PIND registers. it might have been nice if atmel/Microchip had
allowed code to use the same name as the pins, but no, they didn’t.
instead of setting bit PD5 in the DDRD register, for example, you have
to set bit DDD5. the other two registers have their own names too;
the same bit in PORTD is named PORTD5, and in the PIND register, it
is PIND5.

Chapter 5 Converting to the avr Language

257

5.9. Replacing pinMode()
One of the first things any sketch does, usually, is to set up pins for input or

output as required. In the Arduino Language, this is accomplished using

the pinMode() function, similar to the example in Listing 5-1.

Listing 5-1. Using pinMode() in a sketch

#define LED LED_BUILTIN

#define BUTTON 2

#define SENSOR 3

#define RELAY 7

void setup() {

 pinMode(LED, OUTPUT);

 pinMode(RELAY, OUTPUT);

 pinMode(BUTTON, INPUT_PULLUP);

 pinMode(SENSOR, INPUT);

}

Here we can see the three different modes that an Arduino pin can be

configured, INPUT, OUTPUT, and INPUT_PULLUP.

In the end, after much processing and checks, the prime purpose of

pinMode() is simply to set or clear one single bit in the DDRx register for

the bank that the pin is located on.

If the bit in the DDRx register is a zero, the corresponding pin is an

INPUT pin. A 1binary bit in the DDRx register configures the pin as an OUTPUT.

When an AVR microcontroller is reset, or powered on, all pins are

configured internally as input pins. Alternatively, you can be 100%

certain that a pin is correctly configured as input if you explicitly do it

yourself – just write a zero to the appropriate bit in the DDRx register to

make it an input pin.

Chapter 5 Converting to the avr Language

258

Because input is the default state for all the pins, you are not required

to explicitly configure any pins as input. It is helpful, from a code

readability point of view, to do so. Bear in mind, however, that doing so will

use up some additional space in the flash area on the microcontroller. If

program space is really at a premium, you could omit configuring the input

pins and save a little space. The ATmega328P has 32 Kb of Flash RAM, so

there should be ample. The Arduino bootloader takes around 2 Kb of that –

on my Duemilanove – but only 512 bytes on my Uno.

 When you are really stuck for space in a sketch, you might be
surprised at how many bytes of Flash raM you can save by omitting
the pinMode() calls and writing directly to the DDrx registers
instead.

 When an arduino resets or powers up, all the pins are configured
as INPUT. the init() function described way back in Chapter 2
does not change this configuration.

Setting pins as OUTPUT, on the other hand, must be explicitly specified.

This requires writing a 1binary to the appropriate bit in the DDRx register.

The example in Listing 5-2 shows how all of Bank D, PD0–PD7, could

be set as input pins, while four pins on bank C, PC0–PC3, could be set as

output pins.

Listing 5-2. Replacing pinMode()

#include <avr/io.h>

#define ALL_INPUT 0

#define HALF_OUTPUT 0x0F

Chapter 5 Converting to the avr Language

259

void setup() {

 DDRD = ALL_INPUT;

 DDRC = HALF_OUTPUT;

}

Now, it should be obvious from the preceding code, that setting multiple

bits in DDRx can easily be done in a single instruction, rather than having to

set each pin individually using pinMode(). To perform the equivalent of this in

Arduino code would require a minimum of four pinMode() calls to configure

D14–D17 as OUTPUT and, optionally, a further eight calls to configure D0–D7 as

INPUT followed by a further two pinMode() calls to configure the D18 and D19

as INPUT pins. Fourteen pinMode() calls in total – that’s a lot of overhead.

 From Figure 5-1 you will realize, i hope, that pins PC0–PC5 are
arduino pins A0–A5 which can be used as digital pins if necessary.
these are pins D14–D19. Likewise, pins PD0–PD7 are arduino pins
D0–D7.

There are three different states that a pin can be configured as, INPUT

and OUTPUT we now know about, but what about INPUT_PULLUP? The

Arduino allows this mode, so what does the DDRx register do as it only has

two states for a bit?

Given that a single bit in the DDR registers can only be a one or a

zero, does this mean that we have a problem with INPUT_PULLUP? There’s

no other value that can be written to the DDRx register to make the

pin take on the desired mode. How then is it possible to set up a pin as

INPUT_PULLUP? In the previous section, I mentioned that when a pin is an

INPUT pin, we can still use the corresponding PORTx register for a special

purpose – this is that purpose.

It appears that the designers of the ATmega328P decided that as the

PORTx register has no use normally with input pins, it could be used to

Chapter 5 Converting to the avr Language

260

enable the internal pullup resistors for the pin. If you write a 1binary to any of

the PORTx register bits, then input pins will be configured with pullups.

 i have seen it advised, in examples in books, on the Web, and in
the data sheets, to set the portx bits to pullup before configuring the
DDrx register to set the pins as input. i’m not 100% convinced to be
honest. if the microcontroller has been reset, the pins are already
input pins by default, so just the pullup is required. if the pins have
already been used as outputs, writing a 1binary to the portx register
will set the pins HIGH and might, briefly, enable some feature of the
project into a dangerous state. if the arduino (or the microcontroller)
is running a high-power laser cutter, enabling something, however
briefly, is not always going to be a safe option.

that’s just my opinion.

In my sketches, I configure the pins as INPUT and then write to the

PORTx register to enable the pullups which is also what the Arduino

Language does deep in the code for pinMode().

5.10. Replacing digitalWrite()
The digitalWrite() function, as described in Chapter 3, and much loved

by users of the Blink sketch, is used to set a physical pin on the Arduino

board to either supply voltage, when set HIGH, or to ground, when set LOW.

The function does a lot of checking and so on before getting down to the

real purpose of its existence. This is, quite simply, setting or clearing a bit

in one of the PORTx registers.

One of the failings of digitalWrite() is that it can only be applied to

a single pin at a time, so if you wanted to simultaneously set a number of

Chapter 5 Converting to the avr Language

261

pins – perhaps connected to LEDs – to HIGH, then you cannot do that with

digitalWrite() as it affects a single pin.

When using AVR C/C++ and avoiding the helpfulness of the Arduino

Language, you can set a number of pins to a given state at the same

time. This relies rely on the pins all being on the same bank. Bank D, for

example, allows up to eight separate pins to be set high together, using the

AVR C/C++ language, whereas this would require eight separate calls to

the digitalWrite() function and, obviously, would not set all eight pins at

exactly the same instant.

 although i said earlier that “you can set a number of pins to a
high state at the same time,” that obviously applies to all the pins on
the same bank. it would not be possible to set all pins on bank C and
also those on bank D to high, together; it would have to be one bank’s
pins first and then the other bank.

To set an output pin HIGH, simply set the appropriate bit in the PORTx

register corresponding to the bank that the pin is in, to a 1binary. To set the

pin LOW instead, the bit should be cleared to a 0binary. If you need to set

multiple pins high or low, set or clear the appropriate bits – perhaps in an

8-bit variable, such as a uint8_t – and write the variable’s resulting value

to the PORTx register. Some examples follow in Listing 5-3.

Listing 5-3. Replacing digitalWrite() examples

#define ALL_OUTPUT 0xFF // All pins are output pins

#define ALL_ON 0xFF // 11111111 Binary

#define ALL_OFF 0 // 00000000 Binary

void setup() {

 // Set banks B, C and D to all outputs.

 DDRB = ALL_OUTPUT;

Chapter 5 Converting to the avr Language

262

 DDRC = ALL_OUTPUT;

 DDRD = ALL_OUTPUT;

 ...

}

void loop() {

...

 // Set all pins on Bank B to low.

 PORTB = ALL_OFF; ①

 // Set all pins on Bank D to high.

 PORTD = ALL_ON; ②

 // Set pin PC5 to high.

 // Leave all other Bank C pins unchanged.

 PORTC |= (1 << PORTC5); ③

 // Now, turn pin PD0 low.

 // Leave all other Bank D pins unchanged.

 PORTD &= ~(1 << PORTD0); ④
...

}

 ① This turns off all pins in Bank B. Pins in the bank

which are nonfunctional, or not present, are simply

ignored. PB6 and PB7, used for the crystal oscillator,

would not be affected.

 ② This turns on all pins in Bank D.

 ③ This turns on pin PC5 (Arduino D19 also known as A5)

in Bank C, but without affecting any other pin in that

bank.

 ④ This turns off pin PD0 (Arduino D0) in Bank D

without affecting any other pin in that bank.

Chapter 5 Converting to the avr Language

263

In normal circumstances, you may wish to set a pin high or low

without affecting any other pins in the same bank, as per the preceding

third example. This is where binary bit twiddling comes to the fore.

5.10.1. Enabling Internal Pullup Resistors
I previously mentioned the use of the PORTx register with pins configured

as inputs which was described in Section 5.9, “Replacing pinMode().” I’m

including it here as it is relevant to the PORTx registers. If you write a 1binary

to a bit in the PORTx register for a pin configured as input, then you will

enable that pin’s pullup resistor.

5.10.2. Bit Twiddling
The introductory section in this chapter discussed various binary logic

operations. When using PORTs, PINs, and DDRs, a certain amount

of binary logic is required. It is considered impolite, and sometimes

dangerous, to simply set all the bits in a register when you only need to

change one. To that end, the following will explain how individual bits can

be turned on or off at will.

To turn on a single bit in a value or register, use the bitwise OR operator,

“|”, with a mask holding the appropriate bit set to 1binary, and only that single

bit will be affected. You can see this in the preceding third example PORTC

|= (1 << PORTC5).

If you need more than one bit, then just keep adding bits in. For

example, to turn on bits PC1–PC3, simply use ((1 << PORTC3) | (1 <<

PORTC2) | (1 << PORTC1)) as the mask and OR that with the current

contents of the PORTC register.

To turn off a single bit in a value, use the bitwise AND operator, “&”, with

a mask holding the appropriate bit cleared to 0binary, and only that single

bit will be affected. To set a single bit to zero easily, create a mask with the

required bit set to a 1binary initially, and then invert it with the “~” operator.

Chapter 5 Converting to the avr Language

264

That creates the desired mask. This is what is done in the final example –

PORTD &= ~(1 << PORTD0);.

If you need more than one bit, then as in the preceding text, just keep

adding bits in. For example, to turn off bits PC1–PC3, simply use ~((1 <<

PORTC3) | (1 << PORTC2) | (1 << PORTC1)) as the mask and AND that

with the current contents of the PORTC register.

So much typing, so much to get wrong! If you are setting up some

multibit bitmasks, you may wish to #define them, similar to Listing 5-4.

Listing 5-4. Defining and using multibit bitmasks

#define PORTC_1_2_3_ON ((1 << PORTC3) | \

 (1 << PORTC2) | \

 (1 << PORTC1))

#define PORTC_1_2_3_OFF ~(PORTC1TO3_ON)

...

 // Pins PC1 - PC3 go high.

 // Other pins unchanged.

 PORTC |= PORTC_1_2_3_ON;

 // Pins PC1 - PC3 go low.

 // Other pins unchanged.

 PORTC &= PORTC_1_2_3_OFF;

...

When using these types of shifts and inverts, the compiler does all the

work, so any bit shifting and/or inverting is done once at compile time and

not frequently at runtime.

When you are getting down and dirty in some of the internals of the

ATmega328P, or looking at code which does so, you might see code that

shifts a 0 bit such as

PORTC |= ((1 << PORTC0) | (0 << PORTC2) ...);

Chapter 5 Converting to the avr Language

265

This is quite a good idea as it explicitly shows the state of all the bits. It’s

perhaps not so useful in the PORTx register as all the bits have pretty much

the same meaning, but in Timer/counter control registers, for example,

where each bit has vastly different functions, and there are numerous

configuration options, it can be a lot more useful to see all the bits.

It’s also a lot easier later when you realize that you got it wrong first

time and have to add in a bit or two extra!

5.11. Replacing digitalRead()
The digitalRead() function is used to read the voltage present on a

physical pin on the Arduino board. It will return either a HIGH or a LOW

depending on the voltage on the pin. When a pin is left floating, then the

value returned will be untrustworthy to say the least.

 Never, ever let input pins float. You have been warned!

When you wish to read the state of a pin, or pins, you read the PINx

register for the bank appropriate to those pins. You can only read the state

of multiple pins when they are on the same bank. If a specific bit in the

PINx register is a 1binary, then the pin is HIGH; otherwise, it is LOW. There is a

PINx register for each bank of pins on the ATmega328P.

As with digitalWrite(), you can only digitalRead() a single pin at a

time in the Arduino Language.

When you are talking directly with the ATmega328P, bypassing the

Arduino’s “hand holding,” you can read up to eight pins simultaneously.

They do have to be on the same bank of course. For example, Listing 5-5

shows how to read eight pin states in a single instruction.

Chapter 5 Converting to the avr Language

266

Listing 5-5. Reading multiple pin states simultaneously

void setup() {

 DDRD = 0; // All of bank D are inputs.

 ...

}

void loop() {

 ...

 uint8_t bankD = PIND;

 ...

}

That’s it. You just read the state of all eight pins in Bank D in one

operation, by reading the PINx register for the bank in question. Reading

the register returns an unsigned 8-bit value (uint8_t) which has a 0binary

for every LOW pin and a 1binary for every HIGH pin. If you only need to read a

single pin, or perhaps a few, you can set up a bitmask with a 1binary in the

positions representing the pins you wish to interrogate. Then read the PINx

register and use the bitwise AND operator (&) to mask out the unwanted

bits, as shown in Listing 5-6.

Listing 5-6. Reading a single pin’s state

// I'm interested in Pin PD1 only (Arduino D1).

#define PIN_D1 (1 << PIND1)

void setup() {

 DDRD = 0; // All of bank D are inputs.

 ...

}

void loop() {

 ...

 // Read PIND and extract PD1 only.

 uint8_t pin_d1 = (PIND & PIN_D1);

Chapter 5 Converting to the avr Language

267

 if (pin_d1) {

 // PD1 was HIGH.

 ...

 } else {

 // PD1 was LOW.

 ...

 }

 ...

}

You can also extract the values for more than one pin by ANDing the

PINx value with a suitable bitmask.

5.11.1. Toggling Output Pins
Back in the introduction to this chapter, I promised to tell you about the

special use of the PINx register with pins configured as outputs. If you

write, yes, write, a 1binary to a bit in the PINx register for an output pin,

then whatever state the pin is currently in will toggle. Given how simple

this is, I’m mildly surprised that the Arduino Language doesn’t include a

digitalToggle() function, especially as the Blink sketch appears to be

extremely popular! Listing 5-7 would work for digitalToggle() and uses

the features of writing to the PINx register to toggle an output pin.

Listing 5-7. The digitalToggle() function

void digitalToggle(uint8_t pin)

{

 uint8_t timer = digitalPinToTimer(pin); ①
 uint8_t bit = digitalPinToBitMask(pin);

 uint8_t port = digitalPinToPort(pin);

 volatile uint8_t ∗in;

Chapter 5 Converting to the avr Language

268

 if (port == NOT_A_PIN) return;

 // If the pin supports PWM output, we need to turn it off

 // before doing a digital write.

 if (timer != NOT_ON_TIMER) turnOffPWM(timer);

in = portInputRegister(port); ②

 uint8_t oldSREG = SREG; ③
 cli();

 *in |= bit; ④
 SREG = oldSREG; ⑤
}

 ① The code begins by converting the pin number,

in the usual Arduino manner, to a timer/counter

number, a bitmask with a single bit set representing

the pin, and a port name. The function quietly

exits if the pin turns out to be invalid. This is in

keeping with the actions of digitalRead() and

digitalWrite().

 ② This is where we get the PINx register for the pin in

question.

 ③ From here, the code saves the status register and

disables interrupts. Is this actually necessary? In

digitalWrite() it is required because the operation

to change the bit is not atomic and could be

interrupted, so I am playing safe here too. See issue

146 at https://github.com/arduino/Arduino/

issues/146 which appears to be why it was added

to the digitalWrite() function.

Chapter 5 Converting to the avr Language

https://github.com/arduino/Arduino/issues/146
https://github.com/arduino/Arduino/issues/146

269

 ④ Writing a 1binary to the bit in the PINx register will

toggle the pin, regardless of the current state.

 ⑤ Restore the status register and, by implication, turn

interrupts back on – if they were previously on.

5.11.2. Installing digitalToggle()
You unfortunately cannot simply add the preceding code to any sketch

you write that needs to toggle a pin, either in the sketch itself or in

a separate tab in the IDE. This is down to the fact that the function

turnOffPWM() is declared static in the file wiring_digital.c and, as

such, cannot be called from anywhere outside that file. If you wish to use

the digitalToggle() function I’ve described in Listing 5-7, you will have

to add it to that very same file.

To install the function, proceed as follows:

• Close the Arduino IDE.

• Add the code in Listing 5-8 to Arduino.h.

Listing 5-8. Adding digitalToggle() to Arduino.h

void digitalToggle(uint8_t);

• Save the file.

• Add the code for digitalToggle() in Listing 5-7 to the

file wiring_digital.c.

• Save the file.

Chapter 5 Converting to the avr Language

270

 if you do decide to go ahead and install this function, be aware
that you will have to reinstall it every time you upgrade the arduino
iDe and software. Maybe, just maybe, i’ll submit this as a patch and
see if it can be included in the official releases.

Once installed, you can test it with a sketch containing the code shown

in Listing 5-9.

Listing 5-9. Example digitalToggle() sketch

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 digitalToggle(LED_BUILTIN);

 delay(1000);

}

After compiling and uploading the preceding sketch, the built-in

LED is yet again flashing every second, and as a bonus, it was only 890

bytes compiled rather than the standard blink sketch’s 928 bytes. That’s

96% of the standard blink, which doesn’t sound much, but it could be the

difference between getting a sketch to upload and not.

As we are considering casting off some parts of the Arduino Language

to save on resources and potentially increase performance, we can do even

better than Listing 5-9. As we all now know all about the DDRx, PORTx,

and PINx registers, we can rewrite the Blink sketch in a much more precise

way, as shown in Listing 5-10.

Chapter 5 Converting to the avr Language

271

Listing 5-10. Hard-core Blink sketch

void setup() {

 DDRB = (1 << DDB5);

}

void loop() {

 PINB |= (1 << PINB5);

 delay(1000);

}

This version compiled down to a size of only 598 bytes, or 64% of the

original. Yes, I know, blink isn’t representative, but you get the idea – the

hand holding and helpfulness of the Arduino Language can lead to slightly

bloated programs.

That’s a very brief introduction to replacing some of the Arduino

Language with less resource-intensive (but less readable) code. You

can carry on using the Arduino IDE and simply replace your pinMode(),

digitalRead(), and digitalWrite() calls with code similar to that shown

earlier and reap the benefits of losing a bit of weight from your sketches

and gaining a few milliseconds of better performance.

In order to start replacing functions like analogRead() or

analogWrite(), for example, you need a better understanding of the

Atmega328P’s internals. That comes in Chapters 7, 8, and 9 of this book.

Before that, however, I thought I would introduce you to a couple of

alternatives to the Arduino IDE. Chapter 6 is next and covers a couple of

replacements – should you be interested.

Chapter 5 Converting to the avr Language

273© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_6

CHAPTER 6

Alternatives
to the Arduino IDE
A number of alternatives to the Arduino IDE exist. Some are massive overkill

such as the Atmel Studio 7 (www.microchip.com/mplab/avr- support/

atmel-studio-7), based on Microsoft Visual Studio and which only

runs on Windows, and MPLAB-X (www.microchip.com/mplab/mplab-

x- ide). Others such as the AVR Eclipse Plugin (http://avr-eclipse.

sourceforge.net/wiki/index.php/The_AVR_Eclipse_Plugin) are plugins

for the Eclipse IDE, a Java-based IDE on steroids, and again quite large.

This chapter looks at two other, smaller, alternatives and the two which I

will be investigating here are

• PlatformIO (https://platformio.org/), which is both

a command-line version and can be used to convert

your favorite text editor into an IDE to develop Arduino

software – if your favorite editor is Atom or VSCode/

VSCodium, that is, but fear not. It can also be used to

create project files for a number of popular IDEs.

• The all-new Arduino CLI, (https://github.com/

arduino/arduino-cli), which is still in its alpha release

status but which is available and surprisingly usable.

This is proposed as a compilation replacement for the

current Java-based IDE in a forthcoming version, but is

specifically designed to be used in make files.

https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.microchip.com/mplab/avr-support/atmel-studio-7
http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/mplab/mplab-x-ide
http://avr-eclipse.sourceforge.net/wiki/index.php/The_AVR_Eclipse_Plugin
http://avr-eclipse.sourceforge.net/wiki/index.php/The_AVR_Eclipse_Plugin
https://platformio.org/
https://github.com/arduino/arduino-cli
https://github.com/arduino/arduino-cli

274

Bear in mind that the latter is in its alpha release status, so is likely to

change as time passes.

6.1. PlatformIO
PlatformIO is a system which allows you to write, compile, and upload

programs to your Arduino board, either in plain Arduino format – as you

are used to in the Arduino IDE – or in plain vanilla AVR C/C++ format,

which removes the hand holding that you get from the Arduino IDE

and only sets up and runs the code that you write. There is no millis()

function, for example – you are on your own.

The PlatformIO package comes in two flavors:

• PlatformIO Core – Which installs command-line

utilities.

• PlatformIO IDE – Which installs an IDE-style plugin for

the Atom editor and also for the Visual Studio Code

editor. Other IDE systems, Eclipse or Code::Blocks,

for example, don’t have plugins as such, but the pio

command can generate project files for those IDEs

to allow you to develop AVR code in a familiar IDE

environment.

6.1.1. Installing PlatformIO Core
PlatformIO Core runs in a bash shell, but don’t panic. There are IDE

versions if you wish to use one; however, I think it’s better to understand

what is happening before heading off to a GUI tool – you never know when

you will be without a GUI.

This requires Python 2.7 as, currently, no other versions are able to be

used. If you have Linux, as I do, the chances are that Python 2.7 is already

installed alongside Python 3.

Chapter 6 alternatives to the arduino ide

275

 the following instructions apply to debian-based systems such
as debian itself, ubuntu, or linux Mint, which i’m using.

python --version

The response needs to be something like Python 2.7.x; Python3 does

not yet work.

If this gives something like python not found, then install it:

sudo apt install python

Don’t worry if you already have Python version 3.x installed. This

command shouldn’t overwrite your Python 3 installation as, on all the

systems I’ve looked at, it is known as python3 when installing and when

executing code written in version 3 syntax.

Next, make sure that pip is installed:

pip --version

The response should print the text pip 9.0.1 from /usr/lib/

python2.7/dist-packages (python 2.7) or similar. Look for python 2.7

in the text. If pip is not installed, install it as follows:

sudo apt install python-pip

Then install the setuptools package using pip:

pip install -U setuptools

Now, install platformio:

pip install -U platformio

Chapter 6 alternatives to the arduino ide

276

 You might see warnings informing you that the bottle and/or
symantic-version wheels cannot be built. don’t worry about this.
as long as you see the following, or something remarkably similar at
the end, you are good to go:

Successfully installed bottle-0.12.13 certifi-
2018.8.24chardet-3.0.4 click-5.1 colorama-0.3.9
idna-2.7platformio-3.6.0 pyserial-3.4 requests-
2.19.1semantic-version-2.6.0 urllib3-1.23

You can see that both bottle and symantic-version were
installed, regardless of the errors listed.

6.1.2. Testing PlatformIO Core
The commands pio and platformio are now installed, in my case to

/home/norman/.local/bin, and both are actually the same thing. Because

I’m lazy, I use the shorter version, pio. Feel free to use the longer version if

this appeals to you.

6.1.2.1. Set Up Your Environment

On Linux, in order for your user to upload code to the Arduino, they must

be a member of the dialout group. On Debian-based Linux systems, it

appears that you may require to be in the group plugdev too if you wish to

use an ICSP device. These rules apply to the PlatformIO system as well, so

first of all, check that you do indeed have membership of the group(s). You

must do this while logged in as your normal account:

groups

Chapter 6 alternatives to the arduino ide

277

In my case, I received the following response:

norman adm dialout cdrom sudo dip plugdev lpadmin sambashare vboxsf

I am already a member of dialout and plugdev as I’ve been using

the Arduino IDE and an ICSP device previously. If your account shows

that you are not a member of one or the other of the two groups, then run

the following commands, as appropriate, making sure to enter the “G” in

upper case and substitute your login name where indicated:

sudo usermod -a -G dialout your_user_name

sudo usermod -a -G plugdev your_user_name

This will add you to the desired group when you next log in, so log

out and log back in again. This isn’t Windows, so you don’t have to

reboot! Once logged in, make sure you are now a member of dialout as

mentioned.

Using an ICSP Programming Device
If you intend to use an ICSP device, rather than the Arduino

bootloader, then you will need to download the appropriate udev rules

file from https://github.com/platformio/platformio-core/blob/

develop/scripts/99-platformio-udev.rules and copy it, as root with

sudo, to /etc/udev/rules.d so that the programmer will be recognized

and permissions given to allow your user (any user actually) to upload

programs to the Arduino board.

In my setup, I originally had a few difficulties with the ICSP device,

both in the Arduino IDE and using PlatformIO, so I had to edit the

downloaded rules file as follows for my USBtiny ICSP device.

The original line for my device was this, all on one line:

USBtiny

SUBSYSTEMS=="usb", ATTRS{idProduct}=="0c9f",

 ATTRS{idVendor}=="1781", MODE="0666"

Chapter 6 alternatives to the arduino ide

https://github.com/platformio/platformio-core/blob/develop/scripts/99-platformio-udev.rules
https://github.com/platformio/platformio-core/blob/develop/scripts/99-platformio-udev.rules

278

I changed it to the following, again, all on one line:

USBtiny

SUBSYSTEMS=="usb", ATTRS{idProduct}=="0c9f",

 ATTRS{idVendor}=="1781", MODE="0666", GROUP="plugdev"

Setting the group to plugdev allows anyone in that group to use the

device. I could have set it to dialout I suppose, but I’m sure that the

relevant document outlining the solution to my (long forgotten) problem

said to use plugdev.

 it is a minor annoyance that if you have to make changes to this
file, every time that you compile some code with platformio, it will
warn you that the file is missing or out of date and must be
reinstalled. this appears in the output for the compilation and not,
thankfully, as a pop-up.

Once the file is installed, you may be required to restart the udev

service – I didn’t – however, just in case, other systems do require this:

sudo service udev restart

If that gives errors because systemd is not in use, then these

commands should suffice:

sudo udevadm control --reload-rules

sudo udevadm trigger

Now, if your Arduino board is connected to the computer, you must

unplug it and plug it back in to pick up the changes.

Chapter 6 alternatives to the arduino ide

279

 none of this is necessary if you only intend to use the
bootloader built in to the arduino.

if you do intend to use a programmer, then you must be aware
that any time you program the arduino with such a device, the avr
microcontroller will be erased completely and you can no longer use
the bootloader as it has been overwritten.

You can, thankfully, restore the bootloader, either with platformio
(see in the following) or with the arduino ide – just pick your board
and programmer in the normal manner and then go to tools ➤ Burn
Bootloader, and it will be restored. You will, of course, have to use the
iCsp device to burn the bootloader, for obvious reasons!

6.1.2.2. Set Up a New Project

Find out where PlatformIO expects to find your projects. The default will

be displayed using the following command which displays all the current

settings:

pio settings get

A more specific command, to display only the projects_dir setting, is

the following:

pio settings get projects_dir

On my Linux system, it returns the following:

Name Value [Default]

projects_dir /home/norman/Documents/PlatformIO/Projects

Chapter 6 alternatives to the arduino ide

280

 in order to save wrapping text around, i’ve trimmed the excess
from the preceding output. the output also lists a description of the
setting name, which is useful.

If you don’t like the default location, you can easily change it:

mkdir -p ~/SourceCode/PlatformIO/Projects

pio settings set projects_dir ~/SourceCode/PlatformIO/Projects

The result of executing this command is

The new value for the setting has been set!

Name Value [Default]

--

projects_dir /home/norman/SourceCode/PlatformIO/Projects

The previous setting is listed, at the end of the line, in square brackets,

but is not shown here.

 platformio has the idea of a default location for projects, but
strangely, it is not used except in platformio home which is a
browser- based pseudo-ide, which is discussed later on in section
6.1.5, “PlatformIO Home.”

When creating new projects, you must be located in the folder or
directory where you wish to create the new project. the pio init
command creates all its files right where you are currently located –
so beware.

Chapter 6 alternatives to the arduino ide

281

Change to the project directory, as listed, and create a new folder to

house the project:

cd ~/SourceCode/PlatformIO/Projects

mkdir TestProject

cd TestProject

Determine the name to be used for your specific board. In my case, it’s

a Duemilanove:

pio boards duemil

This gives me two options:

Platform: atmelavr

ID MCU ... Name

diecimilaatmega168 ATMEGA168 ... Arduino Duemilanove ...

diecimilaatmega328 ATMEGA328P ... Arduino Duemilanove ...

The output text has a lot more information – but it’s far too wide for the

page, so I’ve trimmed it of irrelevant detail.

As I’m using the latter version with the ATmega328P, I need to initialize

the new project with the diecimilaatmega328 board name. If you have an

Arduino Uno, the process is similar, but has many more results. You should

be looking under the Platform: atmelavr for your Uno, which will be

called uno.

 there is no need to install any tools, compilers, etc. for the
various boards as platformio will do this automatically for you if it
detects that you are using a board for which no tools yet exist.

Chapter 6 alternatives to the arduino ide

282

unfortunately, it doesn’t use the existing tools that were installed by
the arduino ide, so you may end up with two separate versions of
the avr compiler and so on. this is not a major problem and does
mean that when you decide to continue writing arduino code using
platformio, instead of the arduino ide, you can simply uninstall the
arduino stuff and still be able to compile with platformio.

6.1.2.3. Initialize the Project

The following example sets up a new project for the Duemilanove board

which I’m using. You can also create the same project for numerous

boards. To show how this can be done, I’ll create the project for an Arduino

Uno as well as my Duemilanove.

 if you accidentally forget to initialize a second or subsequent
board, you can easily do it by making another call to pio init
--board with the additional board(s). those new boards will be
added to the current project.

pio init --board diecimilaatmega328 --board uno

After a very short delay, the screen will be filled with useful

information about the new project and a list of commands to compile,

upload, and clean the project files.

As the messages indicate, some files and directories have been created.

These are as follows:

• platformio.ini is a file that holds all the configuration

for the project. Any changes you make to this file will

only affect the project in the current directory – but all

Chapter 6 alternatives to the arduino ide

283

environments may be involved. The file itself contains

settings for all the boards with which the project was

initialized. Listing 6-1 shows the default file in full.

• include is a folder expected to be used for any header

files for your project. These are the *.h files.

• src is a folder where you are expected to save all the

C/C++ files that make up the project.

• lib is a folder where any libraries, private to this

project, should be saved or copied. A readme.txt file

is also created within this directory explaining how it

should be used.

Some commands are displayed as examples of how to build and

upload sketches to the board. However, these assume that you will be

using the normal Arduino bootloader to do the uploading.

You can edit platformio.ini and change the long-winded name, if

necessary, to something more memorable. I changed mine to the following

as I couldn’t be bothered to have to type “diecimilaatmega328” all the time

(“2009” is what “duemilanove” means in Italian):

...

[env:2009]

platform = atmelavr

board = diecimilaatmega328

framework = arduino

[env:uno]

...

Now I can compile for the Duemilanove with the name 2009 instead.

It’s easier to remember and less typing too.

Chapter 6 alternatives to the arduino ide

284

If, like me, you have an ICSP device, then you need to edit the

platformio.ini file, or programming the board will not work. In my case,

I added a new environment so that I could use either the bootloader or the

ICSP device. The new environment is simply a copy of the existing one,

with a couple of lines added as shown in Listing 6-1. I did edit the Uno

environment as well, but that’s not shown in the listing.

Listing 6-1. Example platformio.ini file

...

[env:2009]

platform = atmelavr

board = diecimilaatmega328

framework = arduino

[env:uno]

...

; Code below added by NDunbar to allow use of

; my USBtiny for programming.

[env:2009_programmer]

platform = atmelavr

board = diecimilaatmega328

framework = arduino

;uploader = usbtinyisp

upload_protocol = usbtiny

[env:uno_programmer]

...

Chapter 6 alternatives to the arduino ide

285

The PlatformIO Documentation at https://docs.platformio.org/

en/latest/platforms/atmelavr.html has details of what is required by

each known ICSP device. In my case, I have a USBtiny clone, so I used

these two lines from Listing 6-1:

;uploader = usbtinyisp

upload_protocol = usbtiny

 From version 4.1.0 onward, it appears that the uploader line is
no longer required, just the upload_protocol line. i assume
(always a bad idea) that the protocol gives platformio all the detail it
needs to determine the uploader device.

it does no harm to leave the line in; however, you will receive a
warning at upload time if you do. i’ve simply commented mine out
with a leading semicolon to disable the warning message.

also available in recent versions is the ability to extract common
lines to a separate section and just add in the specific lines for the
environments in your file. this is not shown here.

The command to use to upload a sketch using the programmer is

pio run -e 2009_programmer -t program

You can now run pio run -e 2009 -t upload to upload using the

bootloader or the preceding command to use the ICSP device. Be aware

that once you have used the programmer, you no longer have a bootloader

and cannot then use pio run -t -e 2009 upload to upload. You must

always use pio run -t -e 2009_programmer program – until you recreate

the bootloader of course.

I suppose we need to create the ubiquitous Blink sketch now?

Chapter 6 alternatives to the arduino ide

https://docs.platformio.org/en/latest/platforms/atmelavr.html
https://docs.platformio.org/en/latest/platforms/atmelavr.html

286

6.1.2.4. Arduino-Style Projects

As mentioned earlier, PlatformIO allows you to continue using the Arduino

Language in your projects. This section will explain how the Blink sketch

can be converted and compiled in the new environment.

Create a new file, src/main.cpp (or whatever name you wish – I called

mine Blink.cpp), and add the code in Listing 6-2 to it.

Listing 6-2. Arduino blink sketch

#include "Arduino.h" ①

// Is the built in LED already named?

#ifndef LED_BUILTIN ②
#define LED_BUILTIN 13

#endif

// This runs once, in the usual Arduino manner.

void setup()

{

 // Make sure the LED is an output pin.

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 // LED on, then wait 1,000 milliSeconds.

 digitalWrite(LED_BUILTIN, HIGH);

 delay(1000);

 // LED off, then wait another 1,000 milliSeconds.

 digitalWrite(LED_BUILTIN, LOW);

 delay(1000);

}

Chapter 6 alternatives to the arduino ide

287

 ① You normally do not need to do this in the Arduino

IDE, but in PlatformIO, you must.

 ② This is just a safety check to ensure that the built- in

LED has been given a name in the Arduino.h file.

In most cases, it has been done, but it’s always best

to check and avoid any compilation errors that may

arise.

As you see, apart from adding one line, nothing has changed. You can

now use your favorite text editor to write code for your Arduino.

6.1.2.4.1. Compiling Arduino Projects

Compile the preceding code by first making sure that you are located in

the directory where the file platformio.ini exists. If you have changed

into the src directory to edit the file as in the preceding text, then please

change back up one level.

Now run this command:

pio run -e 2009

The -e option relates to the environment (or board) that you wish

to compile the code for. As I created two, I need to inform PlatformIO

which board I wish to compile for. In this case, it’s the Duemilanove

(which I renamed to “2009”) and not the Uno. If you omit this option, all

environments in the platformio.ini file will be compiled, as follows:

pio run

Compile, but do not upload, the code – in case there are errors:

pio run -e 2009

The compilation produced the following (slightly abridged) output:

Chapter 6 alternatives to the arduino ide

288

...

PLATFORM: Atmel AVR > Arduino Duemilanove ... ATmega328 ①
SYSTEM: ATMEGA328P 16MHz 2KB RAM (30KB Flash) ②

Library Dependency Finder ... [URL removed for brevity] ③
LDF MODES: FINDER(chain) COMPATIBILITY(soft)

Collected 24 compatible libraries ④

Scanning dependencies... ⑤
No dependencies

Compiling .pioenvs/2009/src/blink.cpp.o ⑥

Archiving .pioenvs/2009/libFrameworkArduinoVariant.a ⑦
Indexing .pioenvs/2009/libFrameworkArduinoVariant.a

Compiling .pioenvs/2009/FrameworkArduino/CDC.cpp.o

...

Archiving .pioenvs/2009/libFrameworkArduino.a ⑧
Indexing .pioenvs/2009/libFrameworkArduino.a

Linking .pioenvs/2009/firmware.elf

Checking size .pioenvs/2009/firmware.elf

Building .pioenvs/2009/firmware.hex ⑨

Memory Usage -> http://bit.ly/pio-memory-usage ➉
DATA: [] 0.4% (used 9 bytes from 2048 bytes)

PROGRAM: [] 3.0% (used 928 bytes from 30720 bytes)

============ [SUCCESS] Took 1.06 seconds ============

============ [SUMMARY] ============ ①
Environment 2009 [SUCCESS]

Environment uno [SKIP]

============ [SUCCESS] Took 1.06 seconds ============

Chapter 6 alternatives to the arduino ide

289

 ① This line summarizes the platform and board in

use. In this case, the platform is Atmel AVR, and the

board is a Duemilanove (even though I renamed it

to 2009 in the platformio.ini file).

 ② This line summarizes the capacity of the chosen

device.

 ③ The PlatformIO dependency finder goes hunting

for anything that it thinks needs to be included in

this compilation. I removed the URL that’s normally

listed here to get the line on the page.

 ④ This is the number of files and others that the finder

thinks are required.

 ⑤ The system is looking for any dependencies here. It

decided that there were none.

 ⑥ This is where my source file got compiled. Your file

name should appear here too.

 ⑦ Do you recognize these file names? They are all the

files that are included by default when you compile

an Arduino sketch in the Arduino IDE.

 ⑧ All the Arduino code is statically linked to the elf file.

This will be converted to a hex file for uploading.

 ⑨ The hex file is the one that will be uploaded to

the Arduino board. It has only been compiled at

present, not yet uploaded.

 ➉ The memory usage section shows that this Arduino

sketch used 9 bytes of RAM and 928 bytes of flash

program memory. This is standard for the default

Arduino Blink sketch. The blank spaces between the

Chapter 6 alternatives to the arduino ide

290

square brackets here look pointless; however, when

you compile large sketches, this shows a histogram

of the amounts of Static and Flash RAM used.

 ① The “SUMMARY” shows that this compilation only

affected the 2009 environment/board and that the

uno was not touched.

 on the first compilation of any target device, platformio will
download the required toolchain. in my example, it downloaded the
gcc-avr compiler toolset. this already exists under my arduino ide
installation, but is sadly not found or used by platformio.

6.1.2.4.2. Uploading Arduino Projects

Uploading compiled sketches to an Arduino board is carried out with a

bootloader or with an ICSP device. In the former case:

pio run -e 2009 -t upload

Or with an ICSP device:

pio run -e 2009_programmer -t program

Don’t forget that you need to edit the platformio.ini file if you want

to use a programmer instead of the bootloader – see preceding text.

You should note that in the absence of an -e option, all environments/

boards in the current project will be compiled and uploaded. This is

best avoided as you could end up with Uno code uploaded to your

Duemilanove, which may not work correctly – it depends on which board

is attached to the USB at the time.

You could see something similar to the following when uploading:

Chapter 6 alternatives to the arduino ide

291

...

Configuring upload protocol...

AVAILABLE: arduino

CURRENT: upload_protocol = arduino

Looking for upload port...

...

Auto-detected: /dev/ttyUSB0

Uploading .pioenvs/2009/firmware.hex

avrdude: AVR device initialized, ready to accept instructions

Reading | ###################################### | 100% 0.01s

avrdude: Device signature = 0x1e950f (probably m328p)

avrdude: reading input file ".pioenvs/2009/firmware.hex"

avrdude: writing flash (928 bytes):

Writing | ###################################### | 100% 0.51s

avrdude: 928 bytes of flash written

avrdude: verifying flash memory ...

avrdude: load data flash data from input file ...

avrdude: input file ... contains 928 bytes

avrdude: reading on-chip flash data:

Reading | ####################################### | 100% 0.44s

avrdude: verifying ...

avrdude: 928 bytes of flash verified

avrdude: safemode: Fuses OK (E:00, H:00, L:00)

avrdude done. Thank you.

============ [SUCCESS] Took 3.33 seconds ============

Chapter 6 alternatives to the arduino ide

292

 it appears that you will always see the following message until
you install the requested file or if it has been installed but has been
modified from the released file:

Warning! please install 99-platformio-udev.rules and check
that your board’s pid and vid are listed in the rules. http://docs.
platformio.org/en/latest/faq.html#platformio-
udev-rules

This can be a little irritating, but if anything goes wrong with the

upload, at least you have a couple of clues as to what to check. It’s

especially irritating as the file is only required for ICSP devices. Using a

bootloader only requires that your user be in the dialout group.

You should be able to see the built-in LED flashing away merrily in the

usual manner.

So that’s how easy it is to create Arduino-style projects using the

command-line versions of the PlatformIO Core code. I admit that it would

be nice to have an IDE, even one as simple as the Arduino IDE, so later on,

in Section 6.1.4, “PlatformIO in an IDE,” I’ll explain how easy it is to add

PlatformIO features to one of a number of existing IDEs.

In the meantime, the next section shows how to create the Blink sketch

as a plain AVR C/C++ program.

 You can use platformio to import existing arduino sketches. this
is not really possible from the command line, yet. You have to use the
pio home command, which is discussed later. if you need to do it
manually, then

• Create a new project in the usual manner.

Chapter 6 alternatives to the arduino ide

https://docs.platformio.org/en/latest/faq.html#platformio-udev-rules
https://docs.platformio.org/en/latest/faq.html#platformio-udev-rules
https://docs.platformio.org/en/latest/faq.html#platformio-udev-rules

293

• edit the platform.ini file and make sure that the
arduino framework is listed.

• Copy the existing arduino project’s ino file into the
src folder.

• edit the ino file and add the line #include
"Arduino.h" at the top.

6.1.2.5. AVR-Style Projects

The preceding project used the standard Arduino Language and compiled

down to a hex file the same size as you would have seen if the Arduino IDE

had been used instead. You can, however, go commando and bypass the

entire Arduino system, as shown in the following. Remember, however, that

it is your responsibility to make all the decisions about ports, pins, and so on.

If you are still in the TestProject directory, change back up one level

to the standard location for PlatformIO projects. Then create a new project

similar to the previous one. I’m not using an additional uno variant this

time, but there’s no reason that you cannot use “uno,” for example.

Remember this is no longer an Arduino board; it’s a plain vanilla Atmel

AVR development board – it just happens to look like an Arduino!

You should find a suitable board as follows, specifying the “atmega328”

device name:

pio boards atmega328 | grep 16

If you are on Windows, then use this command instead:

pio boards atmega328 | find "16"

There are quite a few occurrences of the text “atmega328,” so the

additional filtering with grep or find helps narrow it down to 16 MHz

versions. I picked the 328p16m variant, but anything which matches your

setup should do:

Chapter 6 alternatives to the arduino ide

294

mkdir TestProjectAVR

cd TestProjectAVR

pio init --board 328p16m

Once again, if you wish to upload using a programmer, then edit the

platformio.ini file and add a new environment which is a copy of the

one just created, with the additional lines for your particular programmer.

Mine will be as per Listing 6-3, with the comments removed for brevity.

Listing 6-3. The new platform.ini file

[env:328p16m]

platform = atmelavr

board = 328p16m

[env:328p16m_programmer]

platform = atmelavr

board = 328p16m

;uploader = usbtinyisp

upload_protocol = usbtiny

You can hopefully see that I’ve also deleted the line framework =

arduino as this is no longer required for plain AVR programming. Leaving

it in will cause all the Arduino files to be compiled regardless of the fact

that they are not used.

Yes, the actual physical board is an Arduino of some kind, but it is now

being used as an AVR development board instead of an Arduino.

Create src/Blink.cpp containing the code in Listing 6-4.

Listing 6-4. Another blink sketch

#include <avr/io.h> ①
#include <util/delay.h> ②

int main(void)

Chapter 6 alternatives to the arduino ide

295

{

 // D13 is actually PortB Pin 5. Configure

 // that pin as an output.

 // This equates to the Arduino setup() function.

 DDRB = (1 << DDB5); ③

 // This equates to the Arduino loop() function.

 while (1)

 {

 _delay_ms(1000); ④

 // Toggle the LED by writing to PINB.

 PINB = (1 << PINB5); ⑤
 }

 return 0; ⑥
}

 ① This brings in the correct settings, register names, pin

numbers and other definitions for the particular AVR

microcontroller in use.

 ② We need this to enable us to call the _delay_ms() function

(delay in milliseconds).

 ③ This is effectively pinMode(13, OUTPUT). Digital pin 13 is

on PORTB and is bit 5 of that port.

 ④ This delays for 1 second.

 ⑤ Pin toggling is carried out by writing a 1binary to the

appropriate bit in the PIN register for the pin to be toggled.

 ⑥ We never get here, but because main() is always declared as

returning an int, then the compiler complains if we leave

this off. There are other ways to silence the compiler, but

this is the easiest, in my opinion.

Chapter 6 alternatives to the arduino ide

296

6.1.2.5.1. Compiling AVR Projects

Compiling an AVR-style program is exactly the same as before:

pio run -e 328p16m

The -e option can be omitted if there is only a single board in the

project. The output from the command will be as follows, and no Arduino

files will have been included in the compilation. The following has been

slightly abridged to fit on the page:

...

PLATFORM: Atmel AVR > Microduino Core (Atmega328P@16M,5V) ①
SYSTEM: ATMEGA328P 16MHz 2KB RAM (31.50KB Flash) ②

Library Dependency Finder ... ③
LDF MODES: FINDER(chain) COMPATIBILITY(soft)

Collected 0 compatible libraries ④

Scanning dependencies... ⑤
No dependencies

Compiling .pioenvs/328p16m/src/Blink.o ⑥
Linking .pioenvs/328p16m/firmware.elf ⑦
Checking size .pioenvs/328p16m/firmware.elf

Building .pioenvs/328p16m/firmware.hex ⑧

Memory Usage -> http://bit.ly/pio-memory-usage ⑨
DATA: [] 0.0% (used 0 bytes from 2048 bytes)

PROGRAM: [] 0.5% (used 158 bytes from 32256 bytes)

============ [SUCCESS] Took 0.36 seconds ============

Chapter 6 alternatives to the arduino ide

297

 ① This line summarizes the platform and board in use.

 ② This line summarizes the capacity of the chosen

device. You may notice that it appears to have an

extra 1.5 Kb of flash over the Duemilanove that I

used previously. This is using the Uno bootloader

which is smaller, by 1.5 Kb.

 ③ The PlatformIO dependency finder goes hunting for

anything that it thinks needs to be included in this

compilation. The URL (not shown) that would normally

be on this line is that of the documentation for the Library

Dependency Finder. I removed it to fit the page width.

 ④ This is the number of libraries that the finder thinks

are required. It says nothing else will be required.

 ⑤ The system is looking for any dependencies here. It

decided that there were none.

 ⑥ This is where my source file got compiled. Your file

name should appear here too.

 ⑦ The code is first compiled into an elf file. This will be

converted to a hex file later.

 ⑧ The hex file is the one that will be uploaded to

the Arduino board. It has only been compiled at

present, not yet uploaded.

 ⑨ The memory usage section shows that this Arduino

sketch used no RAM and only 158 bytes of flash

program memory.

In bare-bones AVR code, the standard blink sketch takes 158 bytes

of flash program memory rather than the Arduino’s 928. It also does not

create any variables in RAM.

Chapter 6 alternatives to the arduino ide

298

6.1.2.5.2. Uploading AVR Projects

There’s no difference in uploading the compiled AVR C/C++ code to the

AVR microcontroller than previously. It is done with a bootloader or with

an ICSP device as normal. In the former case:

pio run -e 328p16m -t upload

Or with an ICSP device:

pio run -e 328p16m_programmer -t program

Remember to edit the platformio.ini file if you want to use a

programmer instead of, or as well as, the bootloader – see preceding text.

The output from the upload is very similar to that when an Arduino-

style project is uploaded, so has not been reproduced here.

The plain AVR style of programming takes less time to compile as it is

not required to compile all the Arduino support code – what you see in the

program is what you get.

 those readers who are slightly ahead of me here will realize that
this means that you don’t get things like millis() and
micros(),timer/counter 0 overflow interrupts, or even interrupts
enabled when you compile an avr-style project. everything you need,
you have to enable. the arduino does a heck of a lot of stuff in the
background to make your life easy.

i wish i had £1.00 (about $1.28 currently) for every project that didn’t
work initially because i forgot to enable interrupts!

You should now be able to see the built-in LED flashing away merrily

in the usual manner, but this time, using far fewer bytes of flash – 158 as

opposed to 928 – and even better 0 bytes of scarce Static RAM for variables,

as opposed to 9 bytes previously.

Chapter 6 alternatives to the arduino ide

299

6.1.3. Burning Bootloaders
The PlatformIO software has the ability to burn a bootloader for your

device. When you have initialized the board in a project, you need to

simply do the following:

• Edit the platformio.ini file and add the lines required

to use an ICSP device, rather than the bootloader, to do

the uploading.

• Run the command pio run --target bootloader to

do the burn.

As mentioned, you will have to use an ICSP device, or a spare Arduino

to use as an ISP, but it does work and is simple. The current version of the

arduino-cli, 0.6.0 (see Section 6.2), does not yet have the ability to burn a

bootloader.

So that’s a very brief introduction to the PlatformIO system on the

command line. As promised, I shall now demonstrate how you can install

PlatformIO so that you can use an existing IDE to develop code for your

Arduino boards – be that in Arduino Language or plain AVR C/C++ – the

choice is yours.

6.1.4. PlatformIO in an IDE
You have seen how PlatformIO can be used in the command line, but let’s

face it. It’s not an easy task switching from the editor back to the command

line to compile, then back to the editor to fix, and so on. Some Linux

editors do allow you to open a terminal within the editor, so that’s handy.

However, wouldn’t it be nice to add PlatformIO to our current favorite

development IDE?

There is a variant of PlatformIO which is named PlatformIO IDE and

this is used as a plugin for, among others, the Atom editor (https://atom.

io/) or the VSCode editor (https://code.visualstudio.com/).

Chapter 6 alternatives to the arduino ide

https://atom.io/
https://atom.io/
https://code.visualstudio.com/

300

 the vsCode editor apparently feeds some data back to Microsoft.
people are upset about this, and as the code for vsCode is open
source, a variant of vsCode without the telemetry has been created.
this is named vsCodium and can be obtained from https://
github.com/VSCodium/vscodium/releases/latest if you
don’t want data fed back to Microsoft.

Having said that, the PlatformIO IDE Integration page at https://

docs.platformio.org/en/latest/ide.html gives details on using

PlatformIO Core (yes, Core, not IDE) to create project files for various

IDEs. For the rest of the PlatformIO section of the book, I’ll be looking at

Code::Blocks (http://codeblocks.org/) as that’s an IDE that I use on

Windows (at work) and on Linux.

Run the following in a command-line session:

pio init --help

The output is as follows with the current version:

Usage: pio init [OPTIONS]

Options:

 -d, --project-dir DIRECTORY

 -b, --board ID

 --ide [atom|clion|codeblocks|eclipse|emacs|netbeans|

 qtcreator|sublimetext|vim|visualstudio|vscode]

 -O, --project-option TEXT

 --env-prefix TEXT

 -s, --silent

 -h, --help Show this message and exit.

Chapter 6 alternatives to the arduino ide

https://github.com/VSCodium/vscodium/releases/latest
https://github.com/VSCodium/vscodium/releases/latest
https://docs.platformio.org/en/latest/ide.html
https://docs.platformio.org/en/latest/ide.html
http://codeblocks.org/

301

These are the various options that the command accepts. Look at

the --ide options. There are facilities for PlatformIO to create project

files for a number of IDEs such as Eclipse, QT Creator, Code::Blocks, etc.

I’m a big fan of QT Creator and Code::Blocks, so let’s set up a project for

Code::Blocks.

 i have recently noticed that Qt Creator projects don’t compile
properly. this is due to the avr version of the g++ compiler not being
correctly configured into the project file. unlike Code::Blocks, which
does include the compiler in the project settings, Qt Creator doesn’t.
You have to pick it manually in the settings to use the avr version of g++.

There’s no other software that you need to install. The PlatformIO

Core software has everything you need to integrate into one of the many

supported IDEs.

6.1.4.1. Set Up a New Code::Blocks Arduino Project

If you are not already there, change your working directory back to the

default location for PlatformIO projects as before and initialize a new

Arduino-style project as follows. Adjust the board to match your specific

setup of course:

mkdir CodeBlocks

cd CodeBlocks

pio init --ide codeblocks --board diecimilaatmega328

Once the command has completed, you will be able to find the

usual files and folders as previously; however, in addition, there will be a

platformio.cbp file – a Code::Blocks project file.

Chapter 6 alternatives to the arduino ide

302

Open the Code::Blocks IDE as usual and select File ➤ Open, navigate

to the directory where the project was just initialized within, and open the

project file platformio.cbp in the normal manner.

Open the platformio.ini file within the IDE. You may be asked to

select which editor to use – simply scroll down the list and allow it to be

opened within Code::Blocks itself. The file looks like the following:

[env:diecimilaatmega328]

platform = atmelavr

board = diecimilaatmega328

framework = arduino

This time, it doesn’t matter that the environment has such a long-

winded name. I’ll never be referring to it again. Please also note that in this

case I’m not intending to use the programmer – I’ll be using the normal

Arduino bootloader to program my board this time, but the process of

setting up the ICSP is as before.

Click File ➤ New to add a new file. Select “Blank File” when prompted, and

then choose to add it to the project. You will have to save the file first, so make

sure that you select the src directory and save the file as Blink.cpp as usual.

When saved, you can accept the option to add the file to both the

release and debug projects. The file will now be opened in the editor. Add

the code in Listing 6-5 to the new file. This is a comment-free version of the

standard Arduino Blink sketch that we created previously.

Listing 6-5. Code::Blocks blink sketch

#include "Arduino.h"

#ifndef LED_BUILTIN

#define LED_BUILTIN 13

#endif

Chapter 6 alternatives to the arduino ide

303

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH);

 delay(1000);

 digitalWrite(LED_BUILTIN, LOW);

 delay(1000);

}

Now click the build button – it looks like a cogwheel – or click Build ➤

Build or press Ctrl+F9 to compile the code. The build log tab at the bottom

should fill with the usual text.

When it compiles cleanly, it’s ready to be uploaded. This is done

by clicking the run button (the green arrow), clicking Build ➤ Run, or

pressing Ctrl+F10.

A new window will open, and the normal PlatformIO text that we are

by now used to will scroll up the screen. Your Arduino board has now been

programmed and should once more be blinking. Press Enter in the newly

opened window to close it and return to the IDE.

6.1.4.2. Set Up a New Code::Blocks AVR Project

It is just as simple to create a new project to code in plain AVR C/C++.

Change directory back to the default location for PlatformIO projects

as before and then initialize a new AVR-style project as follows:

mkdir CodeBlocksAVR

cd CodeBlocksAVR

pio init --ide codeblocks --board 328p16m

Chapter 6 alternatives to the arduino ide

304

Open the platformio.ini file within the Code::Blocks IDE as normal

and delete the last line that says framework = arduino – we don’t need it.

You may also add the lines to use your programmer, if necessary. I’m again

using a bootloader in this example.

As before, click File ➤ New to add a new file. Select “Blank File” when

prompted, and then choose to add it to the project. You will have to save

the file first, so make sure that you select the src directory and save the file

as Blink.cpp as usual.

When saved, accept the option to add the file to both the release and

debug projects. The file will now be opened in the editor. Add the following

code – which is a comment-free version of the standard AVR Blink sketch

which we created previously and is shown in Listing 6-6.

Listing 6-6. Another blink sketch.

#include<avr/io.h>

#include<util/delay.h>

int main(void)

{

 DDRB = (1 << DDB5);

 while (1)

 {

 _delay_ms(1000);

 PINB = (1 << PINB5);

 }

 return 0;

}

Now click the build button, click Build ➤ Build, or press Ctrl+F9 to

compile the code. When it compiles cleanly, it’s ready to be uploaded. This

is done by clicking the run button (the green arrow), clicking Build ➤ Run,

or pressing Ctrl+F10.

Chapter 6 alternatives to the arduino ide

305

A new window will open, and the normal PlatformIO text that we are

by now used to will scroll up the screen. Your Arduino board has now been

programmed and should once more be blinking. Press Enter in the newly

opened window to close it and return to the IDE.

 You should be aware that there isn’t, apparently, an option to
determine the environment/board to be compiled and programmed
when using the ide in this manner. at least, i’ve not been able to find
one! so don’t go adding numerous boards to your project file at
creation time.

also, as before, when programming your device with an iCsp
device, you will need to edit the platformio.ini file to suit your
programmer.

6.1.5. PlatformIO Home
This is an interesting development in the PlatformIO system. Running the

command for the first time will download some files, and then this text will

appear on the screen:

 ___I_

 /\-_--\ PlatformIO Home

/ _-__\

|[]| [] | http://127.0.0.1:8008

|__|____|_________________________

After a short delay, the default browser on your system should open at

the page http://localhost:8008, and an IDE-alike screen will be waiting

for you.

Chapter 6 alternatives to the arduino ide

306

 the pio home command will hang up the session it was
opened in until closed by pressing Ctrl+C. if you do this while the
browser is open, then the browser will stop responding as the htMl
server has just been "crashed."

When you are finished in the "pio home" page, close it in the browser
and then shut down the server by pressing Ctrl+C in the session you
typed the pio home command.

On this browser screen, you can search for boards, libraries, etc. and

install them. You can add new or update existing platforms and so on.

However, this is where you can create new projects without needing to

remember all those pio init commands and options.

6.1.5.1. Creating Projects

Click the “New Project” button, and on the following dialogue, give the

project a name and choose a board and a framework – if there are options

available for the chosen board, the framework will usually be automatically

selected based on the board you have chosen. When choosing a board,

start typing, and the list will be filtered according to your typed text.

This is where the pio settings get projects_dir is used. As

you may have noticed, although you set this way back when installing

PlatformIO, it was never apparently used for new projects – you always

had to be in the desired location to create a new project. So leaving the box

ticked to “use the default location,” the project will be created there. Hover

over the “?” to see where the default location will be. You can also click the

“custom” link to define where you want to create the new project.

Chapter 6 alternatives to the arduino ide

307

Click the “Finish” button, and after a small delay, a message will

appear telling you that the project has been created and will be found

wherever you chose and that you can process it with the command

platformio run. Hmmm – and there was me thinking I could use PIO

Home to edit projects. No such luck I’m afraid.

6.1.5.2. Opening Projects

It’s useful to create projects, but the option to “Open Project” simply tells

you to go to the location where the project is and open it in your favorite

IDE. However, maybe the future will be different, and we can edit and so

on within the browser. That would be fun!

So, after creating the project, you are pretty much back in your favorite

IDE or editor, editing and running pio run commands to compile the code

and pio run -t upload to upload with the bootloader.

6.1.5.3. Importing Arduino Sketches

Another useful feature of PIO Home is that existing Arduino projects can

be imported from the PIO Home main screen. To do this, you simply click

“Import Arduino Project” and follow the on-screen prompts to

• Choose a board.

• Select the existing Arduino project.

Then click the “Import” button.

A new folder will be created in your default PlatformIO project

directory. It will not be named in a meaningful manner, so renaming it

might be helpful and wise. Within that directory, you will find the usual

PlatformIO directories and files, and, finally, the original sketch will be

found in the src directory, with its original *.ino name.

To compile the imported project, simply execute the command pio

run within the project’s top-level directory where the file platformio.ini

is to be found.

Chapter 6 alternatives to the arduino ide

308

 to be honest, pio home doesn’t appear to be of much use as
described earlier, other than as an easy way to import existing arduino
sketches. however, when you use the platformio ide variant, coming
next, that home screen is much more useful in that environment.

6.1.6. PlatformIO IDE
This section of the book will concentrate on the PlatformIO IDE variant

using the VSCode editor or, in my case, the VSCodium version which

is slightly different from the original in that it doesn’t “phone home” to

Microsoft with details of what you might have been doing.

What’s the difference between PlatformIO Core and PlatformIO IDE?

PlatformIO Core, as discussed, installs a number of command-line

tools to allow you to use your favorite editor, or programming IDE, to

develop software for the Arduino board, either in Arduino Language or in

the AVR’s native C++ format. You normally edit the code in your editor and

compile it from the command line.

PlatformIO IDE is simply an extension or plugin to the Atom and the

VSCode editors which effectively turns those two editors into an IDE to

develop Arduino software. In this variant, you develop the code in the

editor and then compile and upload it also from within the editor.

 don’t get confused. platformio ide isn’t necessary to generate
project files for a number of ides.

the "ide" part of the name comes from the fact that this version of
platformio turns your favorite editor into an ide for generating code
for your embedded devices. this assumes that your favorite editor is
atom or vsCode/vsCodium, that is!

Chapter 6 alternatives to the arduino ide

309

I use VSCodium as my editor, so the remainder of this chapter will look

at installing PlatformIO into that specific editor; however, the process is

almost identical if you are using Atom.

With Atom, there is a toolbar with big chunky buttons down the

left side where you can compile and upload projects. With VSCode/

VSCodium, there is an alien’s head icon added to the left toolbar, which

opens the Project Tasks list, from where you can click any of the activated

options to run compilations and so on. There does appear to be more

options in VSCode/VSCodium than in Atom.

6.1.6.1. Installation

To install PlatformIO IDE in VSCodium, either

• Open the extensions view on the left side.

• Press Ctrl+Shift+X.

• Click View ➤ Extensions.

The extensions search should now open on the left side of the editor

window.

In the search box at the top, type in “PlatformIO” and choose to install

the option which appears, probably at the top of the list, “PlatformIO IDE.”

After it installs, a window at the bottom of the editor window will open,

and a few tools will be installed to enable PlatformIO IDE. Do not close

the window or move to another editor tab until you are advised that the

installation is complete.

To start using the new plugin, you have to restart the editor, so click the

button helpfully displayed by the PlatformIO installation process.

After restarting, you will notice the following:

• A new editor tab appears named “PIO Home,” with an

alien’s head as an icon.

Chapter 6 alternatives to the arduino ide

310

• The command palette (View ➤ Command Palette

or Ctrl+Shift+P) has a number of new PlatformIO

commands listed.

6.1.6.2. PIO Home Tab

On the PIO Home tab in the editor, you have a new toolbar on the left and

some options on the main display area. On the toolbar, there are icons for

the following:

• Home – Takes you back to the PIO Home page, if you

happen to have chosen one of the following options.

• Inspect – Allows various details of an existing project to

be inspected and displayed. The code is analyzed as in

memory usage and so on.

• Libraries – Allows you to search for and install libraries

that may be required by some Arduino and AVR

projects.

• Boards – Allows you to search for a board. Try entering

“Duemilanove” and clicking the search icon. The two

variants of the board will be shown alongside some

important details of the boards such as the platform

and framework required, the memory sizes, etc.

• Platforms – Displays any installed platforms and

allows you to uninstall them or to install any new

requirements for a new board.

• Devices – Assuming you have an Arduino board

attached, this option will display details of the board(s),

the type of communications chip, and the port it is

attached to. Similarly to the arduino-cli, this option

will not detect an ICSP device.

Chapter 6 alternatives to the arduino ide

311

While on the main page itself, we can see these options:

• New Project – This should be fairly obvious. It allows

you to create a new project and pick as many boards for

it as you wish.

• Import Arduino Project – This option lets you navigate

to an existing Arduino project and import it into

PlatformIO’s favored format.

• Open Project – Opens an existing project within the

editor and allows you to continue developing it.

• Example Projects – Displays a few example projects

and allows you to import them into PlatformIO for

inspection or learning. You can, of course, compile the

example projects.

At the bottom of the screen is a couple of items of recent PlatformIO

news and a list of your most recent projects. If this is a new install, you

probably don’t have any listed. If you did, you have options here to hide

the projects from this list or to open it. Clicking the “open” link opens the

VSCode/VSCodium explorer on the left side of the screen to the top-level

directory for the project. From there you can open files for editing in the

usual manner.

6.1.6.3. Creating a New Project

A new project is created from the PIO Home screen. If it is not already

being displayed, then click the PlatformIO icon in the left-side toolbar to

open the PlatformIO menu. Under quick access, open the list of options

under “PIO Home” and click “Open.” A new tab appears named “PIO

Home.”

Chapter 6 alternatives to the arduino ide

312

On this tab, click the new project option. Then fill in (or select) the

appropriate options for the project name, the board you want to use, and

the location for the project. You can supply a custom location or simply

accept the default, which will be displayed if you hover over the “?”.

If you wish to use the same source code for numerous different boards,

simply keep adding new ones until you have everything set up as you wish.

Click the “Finish” button to create the project. After a short delay, the

PIO Home tab will close. This never used to happen prior to version 4.1.0,

so was a little disconcerting! On the left, the explorer will open with the

various files and directories of the new project on display. The PIO Home

tab will then reopen, after another short delay. I usually keep it closed as it

is of little use during development.

You can now edit your files in the usual manner.

6.1.6.4. Opening Existing Projects

If your project already exists, then you can use the PIO Home tab to open

it. As in the preceding text, make sure the tab is visible in the editor, then

click the “Open Project” option, navigate to the project’s location, and click

the “Open <project name>” button.

As before, the PIO Home tab will close, and the explorer on the left will

open at the project’s location. The project can now be edited as required.

6.1.6.5. Editing the Project

The PlatformIO system expects to find header files within the include

directory and source files in the src directory under the project’s home. To

test a new project, open the dummy src/main.cpp file and type in the code

from Listing 6-7.

Chapter 6 alternatives to the arduino ide

313

Listing 6-7. Yet another blink sketch!

#include <avr/io.h>

#include <util/delay.h>

int main(void)

{

 // D13 is actually PortB Pin 5. Configure

 // that pin as an output.

 // This equates to the Arduino setup() function.

 DDRB = (1 << DDB5);

 // This equates to the Arduino loop() function.

 while (1)

 {

 _delay_ms(250);

 // Toggle the LED by writing to PINB.

 PINB |= (1 << PINB5);

 }

 return 0;

}

6.1.6.6. Compiling a Project

Once editing is done, you can compile the project either from the left-side

toolbar or from a terminal which can be opened in the editor (Terminal

➤ New Terminal or Ctrl+Shift+#). If you use the terminal, it opens into the

project’s location, and you can run any of the usual PlatformIO commands

already described in Section 6.1.2, “Testing PlatformIO Core.”

To compile from the toolbar, you need to open the PlatformIO window

on the left by clicking the icon. Then, under the “Project Tasks” list, select

Chapter 6 alternatives to the arduino ide

314

“Build” to build the project. You can also press Ctrl+Alt+B to build it from

within one of the project’s files open in the editor.

A new terminal will open, and progress will be displayed. You are

requested to close this terminal when finished with it, by pressing any key.

This will only work if the terminal has focus. (Ask me how I know this.)

If all looks okay with the compilation, we are ready to upload or

program the board.

6.1.6.7. Upload or Program a Project

In the Project Tasks list, click “Upload” to upload using a bootloader or

“Upload using programmer” to use an ICSP device. This latter option

requires that you have added the device’s details to the platformio.ini

file in the usual manner:

;uploader = usbtinyisp

upload_protocol = usbtiny

 From platformio 4.1.0 onward, the preceding first line is no
longer required and has been commented out.

Another new terminal will open, and progress messages will be

displayed as appropriate. Then when it completes, your Arduino board

should be blinking happily again.

That’s a very quick and high-level overview of something that’s

becoming very popular in the Arduino world, especially with users of

3D printers running the Marlin Firmware as Marlin 2.0 onward uses

PlatformIO to build and upload the firmware.

I personally have swapped over from the Arduino IDE to PlatformIO

for most of my projects and experimenting with AVRs and Arduinos. I

find it a lot faster to develop software using PlatformIO, and I’m more

comfortable in the editor than in the Arduino IDE.

Chapter 6 alternatives to the arduino ide

315

Coming up next, I’ll be taking a look at the new, but still under

development, Arduino CLI – a command-line version of the Arduino IDE

which allows you to use your own favorite editor and make files to create

and build your Arduino projects.

6.2. Arduino Command Line
The Arduino IDE has always had a sort of command-line version, at least

on Linux. Windows had a separate version due to the way that Windows

GUI and command-line applications are so different. However, in August

2018, a new Arduino command-line application, arduino-cli, came out in

alpha test.

 it is possible that what is explained here might be likely subject
to some changes as time goes by.

When i first started looking into the arduino-cli, it was september
2018, and the latest release at that time was 0.2.1-alpha. it had quite
a few bug and foibles, but hey, it’s an alpha release so it’s expected.
the version i’m looking at here is a much later release, 0.6.0 (it’s
november 2019 now), and many of the original bugs and foibles have
been sorted. as more releases are, ahem, released, things can only
get better.

The use of the Arduino CLI is to help in getting code built using make

files, for incorporating into other IDEs and, most likely, as the basis for

whatever IDE changes appear in version 2 of the Arduino IDE itself. It has

been noted on the Arduino Developers Google Group (https://groups.

google.com/a/arduino.cc/forum/#!forum/developers) that visually

impaired users have great difficulty with IDEs and that command-line

versions are much better, so this can only be helpful.

Chapter 6 alternatives to the arduino ide

https://groups.google.com/a/arduino.cc/forum/#!forum/developers
https://groups.google.com/a/arduino.cc/forum/#!forum/developers

316

6.2.1. Obtaining the Arduino CLI
Stable releases are available for download from the project’s main release

page at https://github.com/arduino/arduino-cli/releases which has

links to the all binary releases for numerous platforms – there are 32- and

64-bit versions for Linux and a version for Linux on ARM chips – Raspberry

Pi, for example. Users with Windows or Macs are not left out either. Click

the link to download the appropriate version for your system.

You can always get to the most up-to-date release using the URL

https://github.com/arduino/arduinocli/releases/latest.

On the main project page, there are additional links to various nightly

builds. These can be used if you want the latest, bleeding-edge release;

however, you are advised to stick with the stable releases.

Failing all this, you can, if you are so inclined, build your own from

the source code. Links are on the preceding home page with the details.

I’m avoiding this option as I’d want to look at the source and I’m not a Go

(Golang) developer, yet.

6.2.2. Installing
There are details on the home page which hint that you can download

and install the arduino-cli with a single curl command. While I’m sure

that this will work perfectly well, I would be blindly allowing a script,

downloaded from the Internet, to be executed without checking what it

might do. I’m going with the latest release from the preceding URL instead.

Pick the file that’s appropriate for your system. I’m on 64-bit Linux

Mint, so my file is arduino-cli_0.6.0_Linux_64bit.tar.gz.

After downloading, simply unzip (Windows users) or use tar on Linux

and MacOS, as shown in the following Linux example:

tar -zvjf arduino-cli_0.6.0_Linux_64bit.tar.gz

Chapter 6 alternatives to the arduino ide

https://github.com/arduino/arduino-cli/releases
https://github.com/arduino/arduinocli/releases/latest

317

On Windows, right-click the file and “extract,” or in the command line,

the following will suffice:

unzip arduino-cli_0.6.0_Windows_64bit.zip

The current version, 0.6.0, expands to three files:

• arduino-cli which is the utility itself.

• License.txt which is the license.

• readme.md which is a markdown file used on the project’s

main GitHub page. This is a good place to start reading.

If the location you unzipped/untarred the download isn’t on your path,

you can either add it to the path or copy the arduino-cli file to a directory

that is on your path:

cp arduino-cli ~/bin/

Test that the downloaded file works with this command:

arduino-cli version

arduino-cli Version: 0.6.0 Commit: 3a08b07

You can get a feel for the various commands and options available in

the latest version with the following command:

arduino-cli help

The 0.6.0 version returns the following output:

Arduino Command Line Interface (arduino-cli).

Usage:

 arduino-cli [command]

Examples:

 arduino-cli <command> [flags...]

Chapter 6 alternatives to the arduino ide

318

Available Commands:

 board Arduino board commands.

 compile Compiles Arduino sketches.

 config Arduino Configuration Commands.

 core Arduino Core operations.

 daemon Run as a daemon on port :50051

 help Help about any command

 lib Arduino commands about libraries.

 sketch Arduino CLI Sketch Commands.

 upload Upload Arduino sketches.

 version Shows version number of arduino CLI.

... Lots more output omitted here ...

Use "arduino-cli [command] --help" for more information.

6.2.3. Configuring the CLI
By default, the configuration assumes a number of details about your system.

It’s best we find those out before we dive in and start creating sketches:

arduino-cli config dump

There’s not much to see though:

proxy_type: auto

sketchbook_path: /home/norman/Arduino

arduino_data: /home/norman/.arduino15

board_manager: {}

Unfortunately, we cannot change these settings from the command

line yet as there are no options to the config command other than dump or

init. If you need to make changes, then the following will be required:

Chapter 6 alternatives to the arduino ide

319

arduino-cli config init

Config file PATH: /home/norman/.arduino15/arduino-cli.yaml

You now have all the default config stored in the file name listed earlier.

You may edit the file and change the configuration as desired. Currently,

there’s not much to change, but the readme file that came with the

download does have some information of uses for this file, which may be

of interest, but are not covered here.

 things are changing with regard to configuration, even as
i type! i raised issue 503 (https://github.com/arduino/
arduino-cli/issues/503) on Github, because the sketch new
command no longer created sketches in the sketchbook location.
i was advised that:

• if a sketch name only is passed as parameter, assume
that the sketch directory is the current directory.

• if a relative path for the sketch is passed, join it with
the current directory path.

• if an absolute path for the sketch is passed, simply use it.

this is to be applied to the sketch new command in addition to
compile and upload commands.

so, no reference at all to the sketchbook , so i would consider leaving
the configuration well alone until the application settles down to at
least release candidate or release level.

Chapter 6 alternatives to the arduino ide

https://github.com/arduino/arduino-cli/issues/503
https://github.com/arduino/arduino-cli/issues/503

320

6.2.4. Creating Sketches
As the readme advises, the first task is to create a new sketch. This is done

with the arduino-cli sketch new <name> command:

arduino-cli sketch new MyFirstSketch

Sketch created in: /home/norman/MyFirstSketch

That was easy, and it has created a blank sketch, MyFirstSketch.ino,

with the content in Listing 6-8.

Listing 6-8. A brand-new sketch

void setup() {

}

void loop() {

}

As noted earlier, version 0.6.0 is not using the default sketchbook

location from the config dump – previous versions did. The sketch is

created within the current directory. For now, let’s move it to the proper

place:

mv ~/MyFirstSketch/ ~/Arduino/

cd ~/Arduino/MyFirstSketch

You can see from the preceding code that there’s not much to a new

sketch, but it’s a start on developing your next great project. The almost

obligatory Blink sketch is obviously required at this point, so edit the

generated MyFirstSketch.ino file with your favorite editor with the code

in Listing 6-9.

Chapter 6 alternatives to the arduino ide

321

Listing 6-9. MyFirstSketch.ino

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 for (short x = 0; x < 4; x++) {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(150);

 digitalWrite(LED_BUILTIN, LOW);

 delay(150);

 }

 delay(500);

}

Well, I can’t just keep using the same blink sketch all the time, can I? I

need a bit of variety!

We are now ready to compile the sketch, but as this is a new

installation, we have a bit of preliminary work to do. First, we should

update the system to make sure we have the latest package index file:

arduino-cli core update-index

Updating index: package_index.json downloaded

Now, connect your Arduino to the USB port in the normal manner.

Leave a few seconds for it to initialize, and search to see what you have.

I have a genuine Duemilanove and a non-genuine Mega 2560 attached.

Let’s see what the system recognizes:

arduino-cli board list

After a short delay, I see the information relating to my two boards

displayed. Unfortunately, the lines of text are far too wide for this page, so I

shall have to summarize.

Chapter 6 alternatives to the arduino ide

322

For my Mega 2560 clone, I see that it

• Is attached to port /dev/ttyACM0 which is a Serial Port

(USB) type of port

• Has a board name of Arduino/Genuino Mega 2560

• Uses the arduino:avr core

• Has arduino:avr:mega as its FQBN

The board’s FBQN is its “Fully Qualified Board Name” and is required,

later, to compile and upload sketches.

For my genuine Duemilanove, I see the following:

• Attached to port /dev/ttyUSB0 which is a Serial Port

(USB) port type

• Has a board name of Unknown

• Apparently, has no known core

• Apparently, has no FQBN

 the readme advises that boards will be listed as “unknown” if
they are connected via an Ftdi adaptor. i’m using the arduino-
supplied usB cable on my duemilanove, but on that board there is an
Ftdi chip, so i see the board listed as unknown.

Boards are detected based on a vendor and product ID, VID/PID. On

boards with FTDI, these identifiers are generic, so the actual board cannot

be determined. This is not a major problem here, however, as both my

boards have at least been identified as being present.

Chapter 6 alternatives to the arduino ide

323

 Boards will not be detected if they are connected to your
computer with an iCsp device.

Now we need to install a core (aka platform) for the boards. The Mega

is easy as it lists its core as “arduino:avr” which is useful. The Duemilanove,

on the other hand, doesn’t list a core, so how do we determine the correct

core?

Well, given that it too is an Arduino and has an AVR ATmega328P on

board, I’m certain that it has the same core. However, we can search

arduino-cli board listall | grep -i duemilanove

Arduino Duemilanove or Diecimila arduino:avr:diecimila

This is useful as it lists the board’s name followed by its FQBN. The

Fully Qualified Board Name is required when compiling or uploading

sketches to the board. It also starts with the appropriate platform/core

name, “arduino:avr”.

6.2.5. Installing Platforms
At the moment, you only have the command-line tool itself. In order to

compile code for Arduino boards with AVR microcontrollers, you must first

install a “core” or “platform.” In my own case, I need the arduino:avr core

for both my boards:

arduino-cli core install arduino:avr

Downloading packages...

arduino:avr-gcc@7.3.0-atmel3.6.1-arduino5 downloaded

arduino:avrdude@6.3.0-arduino17 downloaded

arduino:arduinoOTA@1.3.0 downloaded

arduino:avr@1.8.1 downloaded

Chapter 6 alternatives to the arduino ide

324

Installing arduino:avr-gcc@7.3.0-atmel3.6.1-arduino5...

arduino:avr-gcc@7.3.0-atmel3.6.1-arduino5 installed

Installing arduino:avrdude@6.3.0-arduino17...

arduino:avrdude@6.3.0-arduino17 installed

Installing arduino:arduinoOTA@1.3.0...

arduino:arduinoOTA@1.3.0 installed

Updating arduino:avr@1.6.23 with arduino:avr@1.8.1...

arduino:avr@1.8.1 installed

We can check what we have now with the following:

arduino-cli core list

ID Installed Latest Name

arduino:avr 1.8.1 1.8.1 Arduino AVR Boards

Those numbers seem to match up with the list of downloaded “stuff,”

so we should be good to go.

 don’t worry. You don’t need to jump through all these hoops
every time you want to compile with the arduino-cli, just the first
time, or when you add a new board that had a different core of
course.

6.2.6. Compiling Sketches
The time has arrived. We are now ready to compile our first sketch. You

should still be located within the sketch’s directory. In my case, that’s /

home/norman/Arduino/MyFirstSketch, so let’s compile it, first for my

Mega 2560:

Chapter 6 alternatives to the arduino ide

325

arduino-cli compile --fqbn arduino:avr:mega MyFirstSketch

Error during build: build failed: unable to stat Sketch

 location: stat /home/norman/Arduino/MyFirstSketch/

 MyFirstSketch: no such file or directory

Oh well, that didn’t go well. Why not?

• If you are located in the parent directory of the sketch,

/home/norman/Arduino in my case, the preceding

command works fine.

• If you are located elsewhere on the system, perhaps in

/home/norman, then you need to supply the full path

to the sketch’s top-level directory – /home/norman/

Arduino/MyFirstSketch or, the short version, ~/

Arduino/MyFirstSketch.

Let’s try another compilation, from the sketch’s parent directory instead:

cd ..

arduino-cli compile --fqbn arduino:avr:mega MyFirstSketch

When compiling a sketch, you must supply the board’s FQBN. If the

compilation succeeds, the usual details about the RAM usage will be

displayed. If you need verbose output, simply add the -v command-line

option to the preceding compile command.

Now, let’s compile the same source code for the Duemilanove:

arduino-cli compile \

 --fqbn arduino:avr:diecimila \

 MyFirstSketch

Chapter 6 alternatives to the arduino ide

326

 Yes, on linux, you can split a long command over a number of
lines if it makes it more readable. each line, except the last, must end
with the backslash character and an immediate linefeed – there are
no spaces between those characters.

You will see other occasions in this book where i do this. it helps keep
things on the page.

Sometimes, when compiling, you might see an error like this:

avr-g++: error: missing device or architecture after '-mmcu='

Error: exit status 1

Compilation failed.

This is a compiler error, and it is telling you that the command line

passed to the compiler was missing an option telling it the microcontroller

in use on the board in question.

In older versions of arduino-cli, this used to happen for my

Duemilanove and my Nano, so I had to update the board’s FQBN at

compile and upload time, to specify the appropriate AVR microcontroller.

This actually makes sense as some early boards have an ATmega168, while

later boards, mine, for example, have an ATmega328.

The following should resolve the issue if you suffer from these errors:

arduino-cli compile \

 --fqbn arduino:avr:diecimila:cpu=atmega328 \

 MyFirstSketch

Adding the cpu to the FQBN gets rid of the error, and the sketch

compiles.

Chapter 6 alternatives to the arduino ide

327

If, like me, you have a Duemilanove or a Nano, then either of these

can use the ATmega168 or the Atmega328 family of microcontrollers.

While you might not need to, you can always specify the cpu option and be

absolutely certain that the compiler will compile the code for the correct

CPU. Doing this is the equivalent of selecting the correct board option

from the Tools ➤ Boards menu in the IDE.

You can use the -v option on the compile command to see the full,

verbose, compilation text. This is similar to what is produced in the

Arduino IDE when you have the verbose compilation option enabled.

6.2.7. Uploading Sketches
Uploading a sketch uses a similar command to compiling, and you must

remember to always use the same FQBN, or it will ask you to compile

the sketch first. The port name is always required when uploading. If

you forget the port, then the arduino-cli board list command is your

friend.

Uploading to my Duemilanove is carried out as follows:

arduino-cli upload \

 --fqbn arduino:avr:diecimila \

 --port /dev/ttyUSB0 \

 MyFirstSketch

If you left the cpu=atmega328 parameter attached to the FQBN, it will

be ignored.

There will be no output displayed on screen if all went well with the

upload. If you wish to see the upload details, just add -v to the command,

and you will get the same verbose output as you would have seen in the

IDE.

Chapter 6 alternatives to the arduino ide

328

If you see something like the following error message, change up into

the parent directory – you are inside the sketch directory:

Error during Upload: compiled sketch

 MyFirstSketch/MyFirstSketch.arduino.avr.diecimila.hex

 not found

It is possible that you might encounter the following upload error, at

least, on Linux:

ser_open(): can't open "/dev/ttyUSB0": Permission denied

Error: exit status 1

Error during upload

This is simply because the user that you are logged in as is not a

member of the group which owns the port that the upload command was

trying to use to communicate with the board. You can check, and fix the

problem, as follows:

ls -l /dev/ttyUSB0

crw-rw-rw- 1 root dialout 188, 0 Nov 30 19:09 /dev/ttyUSB0

groups

norman: norman adm cdrom sudo dip lpadmin sambashare

usermod -a -G dialout your_user

Unfortunately, you will need to log out and back in again to pick up

the new group. This is mildly irritating, so here’s a quick tip on temporarily

working around the need to log out.

 instead of logging out and back in again, just, from the
command-line session that you are in, run this:

su - your_name

Chapter 6 alternatives to the arduino ide

329

You will be asked for your password and will start a new shell with
the new group assigned. test it by running the groups command
again, and note that now you do have dialout present.

now you can upload to your arduino board.

6.2.8. Uploading Sketches with an ICSP
At present, uploading is only possible when you are using an Arduino

board which still has a bootloader present. In-Circuit System Programmers

(ICSPs) are not yet supported. If you have a board connected using an

ICSP, then the arduino-cli board list command will not see it.

There is a workaround, but it’s not completely ideal, but it does work.

If you open a sketch in the Arduino IDE, then go to File ➤ Preferences

and set the upload option to verbose. Now, compile and upload the sketch

to the board with the ICSP device you want to use with arduino-cli. Any

sketch will do, even an empty one.

In the output area, look for and highlight (or select) the line which

mentions “avrdude.” It will look something like this exceedingly long line:

/home/norman/.arduino15/packages/arduino/tools/avrdude/

6.3.0-arduino17/bin/avrdude -C/home/norman/.arduino15/packages/

arduino/tools/avrdude/6.3.0-arduino17/etc/avrdude.conf -v

-patmega328p -cusbtiny -Uflash:w:/tmp/arduino_build_760389/

sketch_nov30a.ino.hex:i

Now, in my case, that is an upload to a Duemilanove using my USBtiny

programmer. From this, I can see the various parameters on the command

line and can write a shell script to do the required work after compiling

with arduino-cli. You can see what I created in Listing 6-10 where the

code for upload.sh is shown.

Chapter 6 alternatives to the arduino ide

330

Listing 6-10. The upload.sh shell script for Linux

#!/bin/bash

#

a script to program a Duemilanove with a compiled sketch

created by the Arduino CLI utility. Currently, version 0.6.0

does not have the ability to upload by any means except a

bootloader.

#

The following command is slightly adapted from that used in

the Arduino IDE to program a Duemilanove with the USBtiny

programmer. It requires a filename on the command line,

which is the name of the compiled hex file to be uploaded.

#

Devices and ports etc.

#

AVR device:

AVR=atmega328p ①

ICSP device:

ICSP=usbtiny ②

programs and config files

#

Where everything lives: ③
ARDUINO_HOME="${HOME}"/.arduino15

AVRDUDE_TOOLS="${ARDUINO_HOME}"/packages/arduino/tools

AVRDUDE_HOME="${AVRDUDE_TOOLS}"/avrdude/6.3.0-arduino17

Avrdude executable: ④
AVRDUDE="${AVRDUDE_HOME}"/bin/avrdude

Avrdude configuration file: ⑤

Chapter 6 alternatives to the arduino ide

331

AVRDUDECONF="${AVRDUDE_HOME}"/etc/avrdude.conf

Leave blank if you don't want all the output.

Otherwise, use -v

VERBOSE=-v ⑥

Get hex file.

HEXFILE="${1}" ⑦

Did we get a parameter?

if ["${HEXFILE}" == ""]

then

 echo A hex filename must be passed.

 exit 1

fi

Does the file exist?

if ([! -f "${HEXFILE}"])

then

 echo "${HEXFILE}" is not a filename.

 exit 1

fi

Does the file have the 'hex' extension? ⑧
EXTENSION="${HEXFILE##*.}"

if ["${EXTENSION}" != "hex"]

then

 echo "${HEXFILE}" is not a valid compiled Arduino sketch

 exit 1

fi

Upload via the ICSP device. ⑨
"${AVRDUDE}" -C "${AVRDUDECONF}" "${VERBOSE}" \

 -p "${AVR}" -c "${ICSP}" -Uflash:w:"${HEXFILE}":i

Chapter 6 alternatives to the arduino ide

332

 ① This is a copy of the device name extracted from the

upload command line displayed by the IDE.

 ② This is a copy of the uploading device name, again,

extracted from the IDE’s command line for the

upload.

 ③ This is the parent directory where the avrdude

applications, bin directories, etc. are to be found.

No trailing “/” is required. As before, this path is

extracted from the IDE output.

 ④ This is where we find the avrdude file, relative to

$AVRDUDE_HOME.

 ⑤ This is where we find the avrdude.conf file, relative

to $AVRDUDE_HOME.

 ⑥ We want verbose output. If you don’t want all the

chatter from avrdude, remove the -v and you will

get less output when uploading.

 ⑦ From here down, we do a bit of validation. Did

we get a file name passed to us? Is it actually a file

name for a file that physically exists? Does it have an

extension of “hex” on the file name?

 ⑧ Nobody said that bash coding was easy! This extracts

the file name’s extension. We are looking for “hex.”

 ⑨ The upload happens here. Of course, this will

overwrite your Arduino’s bootloader, so from now

on, you will have to continue using the ICSP device

or burn a new bootloader.

Your will need to check and maybe replace my directory names to

those appropriate to your system.

Chapter 6 alternatives to the arduino ide

333

If you decide to follow my example and create an

upload.sh script, beware when using the Arduino

IDE if it asks to update your boards or libraries. This

can have the effect of changing the names of some

of the directories I’ve used in the following in my

script. If you suddenly start getting upload errors,

check what’s been updated and amend the script.

This script also doesn’t upload any data to the

ATmega328P’s EEPROM. I did say that this wasn’t an

ideal solution.

So I hear you ask, “How do I find out where the compiled hex file is?”

Simple. Once your sketch compiles correctly, with no errors or warnings,

you will be able to find the required .hex file in the sketch’s directory:

ls -1 MyFirstSketch # That's a one, not an ell.

MyFirstSketch.arduino.avr.diecimila.elf MyFirstSketch.

arduino.avr.diecimila.hex MyFirstSketch.arduino.avr.mega.elf

MyFirstSketch.arduino.avr.mega.hex MyFirstSketch.ino

We can see from the preceding code that different boards have

different files. The cpu that we may have needed to use when compiling,

however, is not part of the output file name – only the FQBN is used.

You can now pass the required file name to the upload.sh script as a

parameter, and the sketch will be uploaded via the ICSP device instead of

using the bootloader.

6.2.9. Burning Bootloaders
As of version 0.6.0, the latest version available at the time I wrote this, it is

still not possible to burn a bootloader with the arduino-cli utility. So, if you

have managed to either corrupt or overwrite the bootloader, what can you do?

Chapter 6 alternatives to the arduino ide

334

In a manner similar to that described earlier to enable uploads using

an ICSP device, there is a workaround – and again, the Arduino IDE is

required.

 obviously, if you have the arduino ide installed, you can burn a
bootloader for your device at any time you like using tools ➤ Burn
Bootloader.

The process is very similar to that described earlier to upload a sketch

with an ICSP. We use the Arduino IDE, in verbose mode, to extract the

required command lines used when burning a bootloader and then simply

create a shell script with just about everything parameterized, ready to be

run on the command line.

Extracting was easy. I burned a bootloader to my Duemilanove

with my USBtiny device and copied the two calls to avrdude from the

verbose output. You will see them at the bottom of Listing 6-11, my

burnBootloader.sh script.

If you are writing the script for a different device or board, you will

need to change the device and board names and locations to match your

system.

Listing 6-11. The burnBootloader.sh shell script for Linux

#!/bin/bash

#

A script to program a Duemilanove with the default Arduino

bootloader and fuses. The script assumes that the device

is indeed a Duemilanove, that the default bootloader hex

file exists and that a USBtiny programmer will be used.

#

You CANNOT burn a bootloader using the current bootloader!

Chapter 6 alternatives to the arduino ide

335

#

Run the "burn bootloader" command in the IDE, for your

device, with verbose upload configured to see your command

line, and change the necessary variables below.

#

Devices and ports etc.

#

AVR device:

AVR=atmega328p ①

ICSP device:

ICSP=usbtiny ②

programs and config files

#

Where everything lives: ③
ARDUINO_HOME="${HOME}"/.arduino15

AVRDUDE_TOOLS="${ARDUINO_HOME}"/packages/arduino/tools

AVRDUDE_HOME="${AVRDUDE_TOOLS}"/avrdude/6.3.0-arduino17

The following long path is split on two lines. There

are no leading or trailing spaces on each line.

BOOTLOADER_HOME="${ARDUINO_HOME}"/packages/arduino/\

hardware/avr/1.8.2/bootloaders/atmega

Avrdude executable: ④
AVRDUDE="${AVRDUDE_HOME}"/bin/avrdude

Avrdude configuration file: ⑤
AVRDUDECONF="${AVRDUDE_HOME}"/etc/avrdude.conf

Leave blank if you don't want all the output.

Otherwise, use -v

VERBOSE=-v ⑥

Chapter 6 alternatives to the arduino ide

336

Bootloader details: ⑦
BOOTLOADER="${BOOTLOADER_HOME}"/ATmegaBOOT_168_atmega328.hex

Fuses: ⑧
EFUSE=0xFD

HFUSE=0xDA

LFUSE=0xFF

LOCK=0x0F

UNLOCK=0x3F

Does the bootloader file exist? ⑨
if ([! -f "${BOOTLOADER}"])

then

 echo "${BOOTLOADER}" is not a valid filename.

exit 1

fi

Does the bootloader file have the 'hex' extension?

EXTENSION="${BOOTLOADER##*.}"

if ["${EXTENSION}" != "hex"]

then

 echo "${BOOTLOADER}" is not a valid bootloader file

 exit 1

fi

Set the fuses for a Duemilanove. ➉
${AVRDUDE}" -C ${AVRDUDECONF}" "${VERBOSE}" \

-p "${AVR}" -c "${ICSP}" -e -Ulock:w:"${UNLOCK}":m \

-Uefuse:w:"${EFUSE}":m -Uhfuse:w:"${HFUSE}":m \

-Ulfuse:w:"${LFUSE}":m

Burn the actual bootloader hex file. ⑪

"${AVRDUDE}" -C "${AVRDUDECONF}" "${VERBOSE}" \

-p "${AVR}" -c "${ICSP}" -Uflash:w:"${BOOTLOADER}":i \

-Ulock:w:"${LOCK}":m

Chapter 6 alternatives to the arduino ide

337

 ① This is a copy of the device name extracted from the

upload command line displayed by the IDE.

 ② This is a copy of the uploading device name, again,

extracted from the IDE’s command line for the

upload.

 ③ This is the parent directory where the avrdude

applications, bin directories, etc. are to be found.

No trailing “/” is required. As before, this path is

extracted from the IDE output.

 ④ This is where we find the avrdude file, relative to

$AVRDUDE_HOME.

 ⑤ This is where we find the avrdude.conf file, relative

to $AVRDUDE_HOME.

 ⑥ We want verbose output. If you don’t want all the

chatter from avrdude, remove the -v and you will

get less output when uploading.

 ⑦ This is where the bootloader used by the IDE is to

be found. This is extracted from the command line

passed from the IDE to avrdude.

 ⑧ We need to set three fuse bytes for the Duemilanove.

These are defined here and are as per the IDE’s

command line. There are a couple of lock bytes also

that we need.

 ⑨ From here down, we do a bit of validation. Is the

bootloader file name a file that physically exists?

Does it have an extension of “hex” on the file name?

 ➉ This call to avrdude unlocks the device and sets

the three fuse bytes as required for a Duemilanove.

Chapter 6 alternatives to the arduino ide

338

The fuse settings can be extracted from the Arduino

installation’s boards.txt file, if you are stuck, but

they are also able to be extracted from the command

line used by the IDE to burn the bootloader.

 ⑪ This call to avrdude burns the bootloader file, as

supplied with the Arduino IDE software, and then

locks the device again.

 if you decide to follow my example and create a
burnBootloader.sh script, beware when subsequently using the
arduino ide if it asks to update your boards or libraries. this can have
the effect of changing the names of some of the directories i’ve used
in the following in my script.

if you suddenly start getting upload errors, check what’s been
updated and amend the script. in my case, the BOOTLOADER_HOME
location changed from version 1.8.1 to 1.8.2 and broke my script.

i did say that this wasn’t an ideal solution, but at least it was a
simple fix.

6.2.10. Serial Usage
If you need to monitor what the Arduino is sending to the serial device, you

will not yet be able to do so with the current version of the arduino-cli.

However, if you install the screen utility on Linux, you can see what the

board is sending back as follows:

screen /dev/ttyUSB0 9600

Chapter 6 alternatives to the arduino ide

339

Windows or, indeed, Linux users can use the freely available putty

utility with the following command:

putty -serial COM4 -sercfg 9600

You would most likely replace COM4 with the port you uploaded the

sketch on. Linux users would use /dev/ttyuUSB0 or similar.

After a short pause, the display should begin showing what the

Arduino is sending. To exit from the screen session, press Ctrl+A followed

by the letter “k” in upper- or lowercase. You will be asked to confirm your

wish to kill the session. Press “y” to continue.

To exit from putty, just close the window and confirm your intention

to do so when prompted.

Obviously, 9600 is the baud rate and must match that which you used

in your call to Serial.begin(), and /dev/ttyUSB0 is the same port that

you uploaded the sketch to. Use the arduino-cli board list to see what

it should be if necessary.

It’s possible to send data from the screen session to the Arduino, but

it doesn’t echo on the display and seems to be quite slow for some reason.

Further investigations appear to be required – there’s probably an option

when starting screen that resolves it.

If you only need to send data down to the Arduino, that’s simple too:

echo [-n] "Hello World" > /dev/ttyUSB0

The -n may be required to flush the buffer and make sure that the data

are sent to the Arduino.

That’s a very quick overview of something that’s to come soon in the

Arduino world. It certainly looks interesting, and I’ll be keeping an eye on

it. It’s not yet perfect, it is an alpha release after all, and I have not covered

all the options and commands available – installing libraries, for example. I

think it’s best to wait a while for a proper release to see if anything changes,

but hopefully, this will have whetted your appetite.

Chapter 6 alternatives to the arduino ide

340

I’ve seen comments on the Arduino forums about this utility, and a lot

of people seem to be very happy that they no longer require to install Java

to develop Arduino code.

After that slight deviation, I think it’s now time to look into the features

of the ATmega328P that we need to know about in order to continue from

where we were in Chapter 5 where we started replacing functions like

pinMode(), digitalWrite(), and digitalRead() with plain AVR C++

 variations.

Chapter 6 alternatives to the arduino ide

341© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_7

CHAPTER 7

ATmega328P
Configuration
and Management
In these last three chapters, I’ll dig deeper into the ATmega328P

microcontroller itself and take a look at some very important features of

the device, many of which are either ignored, unused, or just too confusing

as you read through the data sheet.

This chapter looks at those features which allow the ATmega328P to be

configured and which provide a certain amount of protection and power

reduction for application code – this can help it run on battery power alone

in some cases.

The following two chapters look deeper at the actual, usable hardware

of the device.

The contents of Chapters 8 and 9 will, hopefully, assist you in

developing projects using the AVR C++ rather than the Arduino Language –

should that be your wish. Even if you have no wish to discard the Arduino

Language, the source code for the numerous functions I discussed back in

Chapters 2, 3, and 4 rely on the information you will find here.

342

7.1. ATmega328P Fuses
Fuses are special areas of the AVR microcontroller by which the device

can be configured with a number of different settings. The ATmega328

has three fuses – low, high, and extended – each of which has different

responsibilities.

When a brand-new device is shipped from the factory, the fuses are set

to a default configuration, and this default may not be as required for any

specific purpose.

There are many online fuse calculators where you can select various

options and be shown the commands and/or values with which to

program your fuses. www.engbedded.com/fusecalc is a good one.

 It is easy to brick your device by setting incorrect fuses, so be
exceedingly careful and don’t go playing around with things you don’t
understand, yet! Ask me how I know!

 You should also be very careful to remember that a fuse that is
unprogrammed has a bit value of 1, while a programmed fuse has a
bit value of 0. The online fuse calculators show programmed fuses
with a ticked checkbox and an unprogrammed fuse with a clear
checkbox. This is the opposite way round from what I consider
normal, but that’s how the AVR microcontroller works.

The three fuses are discussed in the following.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

http://www.engbedded.com/fusecalc

343

7.1.1. Low Fuse Bits
The interesting bits in the low fuse, at least of interest to Arduino users, are

the SUT and CKSEL fuses and possibly CKDIV8. The latter simply divides the

chosen clock source (see CKSEL) by 8 to obtain the final system clock speed.

The SUT and CKSEL fuse bits are discussed following Table 7-1 which

describes the low fuse bits.

Table 7-1. Atmega328P low fuse bits

Bit Fuse Purpose Default

7 CKdIV8 divides clock by 8 programmed

6 CKouT Clock output on pin PORTB0 unprogrammed

5 SuT1 Selects startup time1 unprogrammed

4 SuT0 Selects startup time0 programmed

3 CKSeL3 Selects clock source3 programmed

2 CKSeL2 Selects clock source2 programmed

1 CKSeL1 Selects clock source1 unprogrammed

0 CKSeL0 Selects clock source0 programmed

7.1.1.1. SUT Fuse Bits

The SUT fuses comprise 2 bits in the high fuse byte. These determine how

much of a delay there will be after the power is applied, or the system

reset, in order to allow everything to settle down and become stable. Some

power supplies, for example, need a bit more time than others to stabilize

at the required voltage; and if the Arduino (or AVR microcontroller) was

to start running too soon, it could “brown out” or otherwise not behave

correctly. The startup and reset delays allow the oscillator to stabilize as

well as the power supply.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

344

As each different possible oscillator has different startup delays from

power on or from a wake-up call during a Power Save sleep mode, you

are advised to check the data sheet for your particular device as there are

numerous variations in each of the settings for these two fuse bits for each

particular oscillator.

7.1.1.2. CKSEL Fuse Bits

The CKSEL fuse bits, shown in Table 7-2, select the desired internal or

external oscillator to be used as the system clock. On the Arduino boards,

this is always an external crystal oscillator running at 16 MHz, so the other

options are not of much use there, but can be used if you build your own

boards and do away with the crystal.

Table 7-2. Atmega328P CKSEL oscillator choice fuse

CKSEL3–CKSEL0 Bits Oscillator to Be Used

0000 external clock

0001 Reserved, do not use

0010 Internal calibrated 8 mhz RC oscillator

0011 Internal 128 Khz RC oscillator

0100–0101 Low-frequency crystal oscillator

0110–0111 full-swing crystal oscillator

1000–1111 Low-power crystal oscillator

When using the low-power crystal oscillator, the CKSEL3:1 bits

determine the frequency of the oscillator in use, as shown in Table 7-3. Our

Arduinos with their 16 MHz oscillators will be using the 111binary option.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

345

If a low-power crystal oscillator is being used, then the SUT1:0 fuse bits

can be used to specify differing power-on/wake-up delays as defined in the

data sheet.

7.1.2. Low Fuse Factory Default
From the factory, the ATmega328P is shipped with this fuse set to 62hex

which is 0110 0010binary and is configured as follows:

• CKDIV8 (bit 7) is programmed (zero) and causes the

system clock to be divided by 8. See also CKSELn in the

following.

• SUT0 (bit 4) is programmed and sets the default

startup time, after a reset, to 14 clock cycles plus 65

milliseconds over and above that of the power-up time.

From initial power-up or wake from Power Save sleep

mode, the startup delay time is six clock cycles. These

delays allow the device and power supply to settle

down before anything important starts running.

Table 7-3. Atmega328P CKSEL oscillator frequency ranges

CKSEL3–CKSEL1 Frequency

100 0.4–0.9 mhz

101 0.9–3 mhz

110 3–8 mhz

111 8–16 mhz

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

346

• CKSEL3, CKSEL2, and CKSEL0 (bits 3, 2, and 0) are zero

and cause the system clock to be defaulted to an

internal 8 MHz oscillator. Given that the default also

programs CKDIV8, then the device will only be running

at 1 MHz. This does mean that while slower, it draws

less current and can run from a lower supply voltage.

Fuses CKOUT (bit 6), SUT1 (bit 5), and CKSEL1 (bit 1) remain

unprogrammed by default; and this means that the system clock pulse

does not appear on PORTB, pin zero (CKOUT). SUT1 affects the startup time,

and CKSEL1 affects the default system clock.

7.1.3. Arduino Low Fuse Settings
The Arduino boards running with the ATmega328P microcontroller

set the low fuse to FFhex or 1111 1111binary – at least on the Nano with an

ATmega328P, the Duemilanove with an ATmega328P, the Diecimila, and

the Uno.

This disables everything covered by this fuse and means that,

according to the data sheet

• The chosen oscillator is not divided by 8 (CKDIV8

unprogrammed), and an external crystal oscillator

in the range 8–16 MHz is in use (CKSEL3:1

unprogrammed) with a slow rising power supply

(SUT1:0 unprogrammed alongside CKSEL0

unprogrammed). This allows for 16,384 clock cycles

of startup delay at power on or from a Power Save

sleep wake-up call with an additional 14 clocks plus 65

milliseconds from a reset.

• SUT1:0, which define the startup time for the device, are

set to 11binary; and this is a setting described as reserved in

the ATmega328P data sheet. Hmmm, interesting.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

347

7.1.4. High Fuse Bits
Table 7-4 lists the high fuse bits and their purpose.

Table 7-4. Atmega328P high fuse bits

Bit Fuse Purpose Default

7 RSTdISBL disables ReSeT pin and use for I/o unprogrammed

6 dWen debug wire enable unprogrammed

5 SpIen enables serial programming (SpI)

and data downloading

programmed

4 WdTon Watchdog Timer always on unprogrammed

3 eeSAVe preserves eepRom data during

chip erasure

unprogrammed

2 BooTSZ1 Selects bootloader size bit 1 programmed

1 BooTSZ0 Selects bootloader size bit 0 programmed

0 BooTRST Selects ReSeT vector unprogrammed

Table 7-5. Atmega328P BOOTSZ bootloader fuse

BOOTSZ1–BOOTSZ0 Boot Area
Size

Application
Address Range

Bootloader Address
Range

11 128 Words 0–f7fhex f80hex–fffhex

10 256 Words 0–effhex f00hex–fffhex

01 512 Words 0–dffhex e00hex–fffhex

00 1024 Words 0–Bffhex C00hex–fffhex

High fuse bits of interest to Arduino users are the BOOTSZ bits shown

in Table 7-5 and the BOOTRST fuse bit shown in Table 7-6. It’s probably not

wise to play with the others!

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

348

 one word in the AVR is equivalent to 2 bytes, or is it 4 bytes? It
depends on which memory you are discussing.

given that the uno has a 512-byte – that’s an 8-bit byte – bootloader,
its fuse settings define 128 words. If a word was 2 bytes, this would
be only 256 bytes for the bootloader. It wouldn’t fit. So it appears that
here, a word must surely be 4 bytes.

There is much confusion all over the Internet about what exactly a
word is in the data sheet. however, be aware that in Static RAm,
addresses point to bytes. A word there would be 2 bytes or 16 bits. In
the flash RAm, an address points to a 16-bit-wide “byte,” so a word
of flash RAm is two of those "bytes" given, in reality, 4 bytes.

Confused? The bootloader lives in flash RAm, so each address is 16
bits wide, not 8, and still confusion reigns.

In Static RAm, address 0 points at the very first 8 bits in memory and
address 1 the next 8 bits. In flash RAm, address 0 points at the first
16 bits of flash and address 1 at the next 16 bits.

The Arduino Uno sets the BOOTSZ1:0 fuses to 11binary, while the

Duemilanove, Diecimila, and Nano use 01binary resulting in a bootloader of

128 words and 512 (8- bit) bytes, for the Uno, and 512 words and 2048 (8-bit)

bytes for the others.

The BOOTRST fuse has two possible values. The Arduino always sets

this fuse to 0, meaning programmed. The possible values for this fuse are

shown in Table 7-6. The ATmega328P’s RESET vector can be configured to

point either at the bootloader or at the application address space in Flash

RAM.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

349

The Arduino therefore sets this fuse so that the RESET vector will start

executing at the bootloader rather than the application code, which is a

good thing as it means that you will be able to reprogram the Arduino as

the bootloader watches for programming instructions before jumping into

the application code if none are forthcoming.

7.1.5. High Fuse Factory Default
From the factory, this fuse defaults to D9hex or 1101 1001binary and

means that

• SPIEN (bit 5) is programmed so serial programming

(SPI) and data downloading is enabled.

• BOOTSZ1:0 (bits 2 and 1) are programmed giving the

device 2048 words of flash starting at address 3800hex for

use as the bootloader area.

The remaining fuses are not programmed. Therefore

• RSTDISBL (bit 7) being unprogrammed means that the

RESET pin, pin 1, is not disabled and works as a RESET

pin. If this fuse is programmed, you cannot program

the AVR microcontroller unless you use a high-power

programmer device. (This is the fuse setting that

bricked one of my ATtiny85 devices when I managed to

program it!)

Table 7-6. Atmega328P BOOTRST reset vector fuse

BOOTRST Purpose

0 The ReSeT vector points to the bootloader address (see preceding table)

1 The ReSeT vector points at the application start address (address 0)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

350

• DWEN (bit 6) being unprogrammed results in the Debug

Wire interface being disabled. This is beyond the scope

of this book. (In other words, it’s something I have not

yet studied!)

• WDTON (bit 4) not being programmed means that the

Watchdog Timer is not always running and unable to

be disabled. This means that the Arduino can program

the Watchdog on or off as required.

• EESAVE (bit 3) remaining unprogrammed results in the

internal EEPROM being wiped clean each and every

time the AVR microcontroller is programmed. If you

need to save data in the EEPROM between program

changes and uploads, then you should program this bit.

• BOOTRST (bit 0) being unprogrammed means that

the device will not jump to the bootloader address at

startup. On reset, the device will start execution at the

normal reset vector at address 0.

7.1.6. Arduino High Fuse Settings
This fuse is set to DEhex, 1101 1110binary, on the Uno, but to DAhex, 1101

1010binary, on the Duemilanove, the Diecimila, and the Nano. This programs

the following fuses:

• SPIEN (bit 5) is the same as the factory default and

enables SPI.

• BOOTSZ1 (bit 2) is programmed (but unprogrammed on

the Uno).

• BOOTRST (bit 0) is programmed.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

351

As detailed earlier, the Uno is programmed with 128 words of

bootloader space, while other boards based on the ATmega328P use 512

words. A reset causes execution to start from the bootloader address.

7.1.7. Extended Fuse Bits
The extended fuse byte controls the BOD or brown-out detector in the

microcontroller. Not all of this fuse byte is used, and the relevant bits are

described in Table 7-7.

Table 7-7. Atmega328P extended fuse bits

Bit Fuse Purpose Default

2 BodLeVeL2 Brown-out detection trigger level2 unprogrammed

1 BodLeVeL1 Brown-out detection trigger level1 unprogrammed

0 BodLeVeL0 Brown-out detection trigger level0 unprogrammed

All other bits of the extended fuse are unused and should always be

programmed as 1binary to avoid possible problems. Table 7-8 shows how the

BOD fuse bits can be configured.

Table 7-8. Atmega328P BOD voltage ranges

Bits 2–0 BOD Vmin BOD Vtypical BOD Vmax

111 n/A n/A n/A

110 1.7 V 1.8 V 2.0 V

101 2.5 V 2.7 V 2.9 V

100 4.1 V 4.3 V 4.5 V

All other values for the BODLEVEL2:0 fuse bits are reserved and must

not be used.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

352

7.1.8. Extended Fuse Factory Default
From the factory, this fuse is set to FFhex or 1111 1111binary – so the brown-

out detection is disabled. Only fuse bits 2–0 are used (BODLEVEL2:0); the

rest should remain as 1binary.

7.1.9. Arduino Extended Fuse Settings
The Arduino sets this fuse to FDhex or 1111 1101binary which sets the brown-

out detection threshold voltage to 2.7 V as only BODLEVEL1 is programmed.

This is potentially a bad idea as the Arduino boards are running with an

external 16 MHz crystal and the data sheet advises that this will only be

reliable between 4.0 V and 5.5 V – so this fuse should really be set to FChex,

1111 1100binary, to give a 4.1 V threshold.

7.2. Brown-Out Detection
A brown-out is a feature of electrical supplies when the supply voltage is

not stable and varies up and down from the typical voltage that the supply

should be.

Some electrical devices either don’t run, don’t run properly, get

confused, or reset themselves if the supply voltage goes too low.

Brown-out detection, or BOD, is a means by which the AVR

microcontroller keeps a watchful eye on the power supply (VCC) and,

when it drops below a configured level, initiates a system shutdown by

pulling, and holding, the RESET pin low, until the power rises back above

the BOD level again.

The BOD is enabled and configured using the BODLEVEL2:0 fuses as

described in Section 7.1.7, “Extended Fuse Bits.” Remember a fuse is not

programmed when it has a value of 1binary, but is programmed when it has

the value 0binary.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

353

The Arduino boards using the ATmega328P microcontroller are fused

so that the BOD is 2.7 V typical, while a brand-new ATmega328P, supplied

from the factory, will have the fuses unprogrammed and, thus, BOD will be

disabled (111binary).

 given that the data sheet for the ATmega328p shows that the
minimum voltage for a 16 mhz AVR microcontroller is 4.0 V, the
default setting for an Arduino uno, in this case, is a little out of range!

The default fuse settings can be found in the $ARDINST/boards.
txt file. for a nano with the ATmega328p, duemilanove, and uno,
the extended fuse is set to fdhex. This is 1111 1101binary which means
that BODLEVEL2:0 is 101, and that sets the Bod threshold at 2.7 V
which is way below what the data sheet says is safe for the Arduino
setup.

The ATmega328P is stable, when running with an external 16 MHz

crystal, with VCC between 4.0 V and 5.5 V. Above this and the AVR

microcontroller will probably let the magic blue smoke out and stop

working. Below this and the ATmega328P will possibly not work correctly,

and this may affect any sensors that are attached especially if accurate

timings are required.

 It is a well-known fact that all electronic devices seem to run on
magic blue smoke. The reason for this belief is that when you
somehow let the smoke out, most electronic devices stop working!

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

354

The available BOD settings on an ATmega328P are shown in Table 7-9.

Table 7-9. ATmega328 BOD voltage ranges

BODLEVEL2–BODLEVEL0 BOD Minimum BOD Typical BOD Maximum

111 Bod is disabled

110 1.7 V 1.8 V 2.0 V

101 2.5 V 2.7 V 2.9 V

100 4.1 V 4.3 V 4.5 V

0xx Reserved. don’t use

The typical value is what the BOD settings define.

The ATmega328P, as mentioned , can run safely at 16 MHz if it has

power supplied at at least 4.0 V. Anything below 4.0 V means the chip is

likely to misbehave. This would be a problem if the device were being used

with sensors to take measurements or relied on accurate timings.

To prevent this possible problem, the BOD trigger threshold voltage

should be set to the 4.3 V typical setting shown earlier, by setting the

BODLEVEL2:0 fuses to 100binary.

The trigger level has a built-in hysteresis to ensure that the BOD doesn’t

keep triggering and putting the AVR microcontroller into a BOD reset loop

as the supply voltage fluctuates. This hysteresis allows the voltage to briefly

drop below the threshold level; and, if it quickly rises back above it, no

BOD reset will take place.

The hysteresis on the detection level should be interpreted as

Vbot+ = Vbot + Vhyst/2

and

Vbot- = Vbot - Vhyst/2

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

355

The data sheet for the ATmega328P lists the hysteresis as 50 milliVolts,

which implies the typical VBOT+ = 2.7V + 25mV ⇒ 2.725V and VBOT- = 2.7V –

25mV ⇒ 2.675V.

Some AVR microcontrollers allow the BOD to be disabled in software;

others don’t. The ATmega328P is one of the devices that can disable the

BOD – this is useful when entering various sleep modes as the BOD uses

power that may be scarce, but disabling the BOD could leave your project

open to apparently random resets if the voltage isn’t stable.

7.3. The Watchdog Timer
The Watchdog Timer (WDT) is an internal safety switch which can be

used to prevent code hangups, runaways, etc. or which can be used to fire

off an interrupt every so often. It runs off of a dedicated internal 128 KHz

oscillator and can be programmed to fire at a number of preset intervals.

The Watchdog Timer interrupt can be used to wake the device from the

bottom of a really deep sleep; this can be used to save power and preserve

battery life. The AVR microcontroller can be put into a Power Down

Sleep mode, and the interrupt will wake it periodically, do some essential

processing, and then put it back to sleep again ready for its next wake-up call.

Sleep modes are discussed in Section 7.3.9, “Sleep Modes.”

7.3.1. Watchdog Timer Modes of Operation
The WDT has three separate modes of operation:

• Watchdog Reset (WDR) – If the Watchdog Timer has

not been reset within the timeout period, the whole

AVR microcontroller will be forced to a reset. On

restarting after the reset, bit WDRF will be set to a 1binary

in the MCU Status Register, MCUSR. The WDRF bit can be

interrogated to determine if the AVR microcontroller

was reset by the Watchdog, or otherwise.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

356

On waking from a Watchdog-induced reset, the

Watchdog Timer is still enabled; however, it is now

firing with the shortest timeout period – not what

you originally configured.

• Watchdog Interrupt (WDI) – An interrupt will be fired

at the end of every Watchdog Timer timeout period.

• Interrupt and Reset – The interrupt will fire on the first

Watchdog Timer timeout, and on the next timeout, the

system will be reset, unless WDIE is set again to prevent

it. As long as the WDIE bit is constantly being set, the

system reset will not fire, only the interrupt.

 The data sheet has the following warning about the use of the
Watchdog Timer:

If the Watchdog is accidentally enabled, for example by a
runaway pointer or brown- out condition, the device will be
reset and the Watchdog Timer will stay enabled. If the code is
not set up to handle the Watchdog, this might lead to an eternal
loop of time-out resets. To avoid this situation, the application
software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialization routine, even
if the Watchdog is not in use.

It should be noted that the Arduino code might be making this check,

but that depends on how the bootloader was compiled. It is therefore

still possible that your code could lead to a constantly resetting AVR

microcontroller under the circumstances mentioned in the data sheet.

The code shown in Listing 7-1 from the Uno bootloader shows the test

being made and the Watchdog Timer disabled, if configured accordingly.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

357

Listing 7-1. Arduino bootloader code to prevent Watchdog Timer

reset loops

#ifdef WATCHDOG_MODS ①
 ch = MCUSR; ②
 MCUSR = 0; ③

 WDTCSR |= _BV(WDCE) | _BV(WDE); ④
 WDTCSR = 0; ⑤

 // Check if the WDT was used to reset, in which ⑥
 // case we don't bootload and skip straight to

 // the code. woot.

 if (! (ch & _BV(EXTRF))) ⑦
 app_start(); // skip bootloader

#else

 asm volatile("nop\n\t");

#endif

 ① This code will only execute if the bootloader was

compiled with WATCHDOG_MODS defined, either

on the command line that did the compile with

... -DWATCHDOG_MODS ... (see https://forum.

arduino.cc/index.php?topic=27162.0), or in an

appropriate make file. Otherwise, there is no check

on the WDT restart status on boot, and Watchdog

Timer reset loops are possible.

 ② This copies the MCU Status Register for later use.

 ③ This initializes the MCU Status Register.

 ④ Watchdog Timer timed sequence begins

 ⑤ This disables the Watchdog Timer completely.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

https://forum.arduino.cc/index.php?topic=27162.0
https://forum.arduino.cc/index.php?topic=27162.0

358

 ⑥ Actually, this comment is wrong and misleading. It

ignores the bootloader and jumps to the sketch code

if the AVR microcontroller was reset by any means,

other than bringing the RST pin low.

 ⑦ This checks that the reset was not caused by the RST

pin being brought low by pressing the reset button,

for example. Powering the board up, or a restart

following a Watchdog Timer reset, will not set this bit.

7.3.2. Amended Sketch setup() Function
Given that we currently do not know if the bootloader was compiled with

WATCHDOG_MODS defined, perhaps the setup() code in Listing 7-2 could be

added at the top of our sketches to ensure that potentially rogue Watchdog

Timer reset loops can be avoided.

Listing 7-2. Amended setup() function to prevent Watchdog Timer

reset loops

#include <avr/wdt.h>

void ensureWDTisOff() {

 // wdt_disable() will disable interrupts and

 // call wdt_reset first, then disable the WDT.

 wdt_disable(); ①

 // Reset the MCU Status Register.

 MCUSR=0; ②
}

void setup() {

 // Ensure the WDT has not gone rogue!

 ensureWDTisOff();

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

359

 // Do the sketch's own initialisation here.

 pinMode(...);

 ...

}

 ① Calling wdt_disable() will turn off global interrupts

to prevent them interfering with the timed sequence

of instructions to disable/enable the Watchdog

Timer, clear the Watchdog Timer counter, and

then completely disable the Watchdog Timer. After

disabling, interrupts will be enabled again if they

were enabled when wdt_disable() was called.

 ② This resets the MCU Status Register to a known state.

The Watchdog Timer can now be enabled to a known and desired

state, if required, in setup() and a call to wdt_reset() executed each time

through the loop() and any other long-running processes.

7.3.3. Watchdog Timer Reset
To keep your code running, without the Watchdog Timer resetting the AVR

microcontroller, your code must, periodically, clear the Watchdog Timer

counter by executing the wdr assembly language instruction prior to the

timeout period expiring. This instruction has been defined in the AVRLib

code as follows:

#define wdt_reset() __asm__ __volatile__ ("wdr")

So, if you are using the Watchdog Timer, your code must include the

file avr/wdt.h and call wdt_reset() at regular intervals. How regular? You

must reset the Watchdog Timer within the configured timeout period.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

360

 The call to wdt_reset() is only necessary when the Watchdog
Timer is configured to run in “WdT Reset” and “Reset and Interrupt”
modes. It is not necessary to call wdt_reset() when running in
“WdT Interrupt” (WdI) mode as that mode does not cause the
microcontroller to be reset.

7.3.4. The Watchdog Timer Control Register
The Watchdog Timer Control Register, WDTCSR, is 8 bits wide; and the

individual bits have their usages defined in Table 7-10.

Table 7-10. Watchdog Control Register

Bit Name Comments

7 WdIf Watchdog Interrupt flag

6 WdIe Watchdog Interrupt enable

5 Wdp3 Watchdog Timer prescaler 3

4 WdCe Watchdog Change enable

3 Wde Watchdog Reset enable

2 Wdp2 Watchdog Timer prescaler 2

1 Wdp1 Watchdog Timer prescaler 1

0 Wdp0 Watchdog Timer prescaler 0

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

361

The bits are used as follows:

• WDIF is set when the Watchdog Timer times out and

the Watchdog Timer interrupt is enabled. If global

interrupts are also enabled, then the Watchdog

Timer interrupt ISR fires, and this bit will be cleared

automatically.

 User code may, if desired, clear this bit by writing

a 1binary to it when global interrupts are off. If it is

not cleared, then the Watchdog Timer interrupt

ISR will execute as soon as the global interrupts are

subsequently re-enabled.

• WDIE, if set, enables Watchdog Timer Interrupt mode (WDI).

 Depending on the setting of the WDE bit – see in the

following – then

• If WDE is also set, the WDT is now in Reset and

Interrupt mode. The first timeout will execute the

Watchdog Timer interrupt ISR, clear WDIF as in the

preceding text, clear WDIE to disable WDI, and leave

WDE set to ensure WDR mode. The second timeout

will cause a system reset.

• If WDE is clear, then the mode is Watchdog Timer

Interrupt or WDI. Each time the timeout expires,

the Watchdog Timer interrupt ISR will be executed.

No system reset will occur.

• WDCE is used in the timing sequence that allows the

Watchdog Timer to be configured. The configuration

allows for

• Setting or clearing the WDE bit

• Setting or clearing the prescaler bits, WDP3:0

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

362

• WDE enables the Watchdog Timer in Watchdog Reset

(WDR) mode. If the Watchdog Timer is not reset before

the timeout period expires, the AVR microcontroller

will be reset, and on restarting, bit WDRF (Watchdog

Timer Reset Flag) in MCUSR will be set to 1binary showing

that the reset occurred due to the Watchdog Timer.

 If WDIE see earlier – is also set, then the Reset and

Interrupt mode is active. The first timeout will cause

the interrupt to fire and execute the ISR, will clear

WDIE to disable the Watchdog Timer interrupt, and

will enable Watchdog Reset (WDR) mode. The second

timeout will reset the system, unless WDIE was again set

to enable the Watchdog Timer interrupt.

• WDP3:0 set the Watchdog Timer prescaler to give the

desired timeout period. If the Watchdog Timer counter

is not cleared within this period, then the system will

be reset, or the interrupt will be fired, depending on the

settings on WDE and WDIE.

Given the preceding discussion, we can pick and choose the Watchdog

Timer modes that we wish to configure in our code as follows:

• Watchdog Reset (WDR) mode – WDE is set and WDIE

is clear. The system will reset if the Watchdog Timer

counter is not itself cleared within the timeout period.

No interrupts will fire.

• Watchdog Interrupt (WDI) mode – WDE is clear and WDIE

is set. The system will set WDIF on the timeout occurring

and then fire the appropriate ISR if global interrupts are

enabled.

• Watchdog Reset and Watchdog Interrupt mode – WDE

and WDIE are both set.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

363

In this mode of operation, if the Watchdog Timer was initialized at time

T with timeout period P, then the interrupt will fire at time T + P (assuming

global interrupts are enabled of course).

If WDIE is again set to 1binary after the first P timeout, but before the

second P timeout, then the system reset will not occur at time T + P + P.

The Watchdog interrupt ISR will fire again instead.

If, on the other hand, WDIE is not set to 1binary prior to the end of the next

timeout period, P, then the system will be reset. This will occur at T + P + P.

This sequence allows for such things as using the ISR to save any data

that must be updated between restarts; shutting down any peripherals,

motors, laser cutters, etc. to a safe state before the restart occurs; and so

on. Until the system has restarted, and fully initialized, the state of various

pins is potentially unknown; and a runaway laser cutter, for example, is not

a good thing to have close by!

 If the WDTON fuse has been programmed (i.e., has value 0binary)
then you are unable to ever change bits WDE and WDIE in WDTCSR.
The Arduino default is that this fuse bit is not programmed, so the
Watchdog Timer can be enabled or disabled as you might wish.

With this fuse programmed, WDE is always 1binary, while WDIE is always
0binary, so the Watchdog Timer is always running in Watchdog Timer
Reset (WdR) mode, and you cannot use the Watchdog Timer interrupt.

When the system is reset by the Watchdog Timer, on restarting, the
Watchdog Timer is still enabled; however, it is now enabled at the
smallest possible timeout setting, 16 milliseconds, and not perhaps
as you configured it prior to the reset. This could cause Watchdog
Timer reset loops. The Arduino bootloader should be checking
and disabling the Watchdog Timer, but this depends on how the
bootloader was compiled and cannot be relied upon. See Listing 7-2
for details on how to possibly prevent this from occuring.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

364

7.3.5. Enabling the Watchdog Timer
In order that rogue programs don’t cause problems by accidentally setting

the WDT, and to try and ensure that any changes are valid ones, there is a

certain timed sequence of events that must be followed in order to configure

WDTCSR when either WDE or the prescaler bits WDP3:0 are being changed:

• Disable global interrupts. This will prevent any existing

interrupt handlers from firing during the critical timed

sequence, thus preventing a valid change to WDTCSR if

the ISR in question takes longer than four system clock

cycles to execute – which it will!

• Reset the Watchdog Timer. It may already be

running, and it should not be allowed to reset the

AVR microcontroller while it is being reconfigured,

especially when reducing the timeout period.

If the prescaler is being changed to reduce the timeout,

and the new timeout period has already expired since

the previous reset of the Watchdog Timer counter,

then the Watchdog Timer will timeout as soon as the

configuration completes.

• To start changing WDTCSR, you must write a 1binary to

both WDCE and WDE in the same instruction. If WDE is

already a 1binary, you must still write a 1binary to it.

• Within four system clock cycles, write the desired

configuration bits for the prescaler (see below), interrupt

enable and so on to WDTCSR and include a 0binary in bit WDCE.

All bits must be set and/or cleared in the same instruction.

• Enable global interrupts.

The AVRLib functions defined in avr/wdt.h take care of all this when

you make calls to the function wdt_enable().

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

365

7.3.6. Setting the Watchdog Timer Timeout
The Watchdog Timer can be configured, as mentioned earlier, by setting

bits WDP3:0 according to Table 7-11, to time out after an approximate set

time.

Table 7-11. Watchdog timeout settings

Timeout WDP3-WDP0 WDP3-WDP0 Comments

16 mS 0000bin 0 only if VCC is 5 V. 3.3 V will be a

longer timeout

32 mS 0001bin 1 only if VCC is 5 V. 3.3 V will be a

longer timeout

64 mS 0010bin 2 only if VCC is 5 V. 3.3 V will be a

longer timeout

0.125 S 0011bin 3 only if VCC is 5 V. 3.3 V will be a

longer timeout

0.25 S 0100bin 4 only if VCC is 5 V. 3.3 V will be a

longer timeout

0.5 S 0101bin 5 only if VCC is 5 V. 3.3 V will be a

longer timeout

1.0 S 0110bin 6 only if VCC is 5 V. 3.3 V will be a

longer timeout

2.0 S 0111bin 7 only if VCC is 5 V. 3.3 V will be a

longer timeout

4.0 S 1000bin 8 only if VCC is 5 V. 3.3 V will be a

longer timeout

8.0 S 1001bin 9 only if VCC is 5 V. 3.3 V will be a

longer timeout

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

366

All other WDP3:0 values from 10 (1010binary) to 15 (1111binary) are reserved

and should not be used.

Listing 7-3 shows an example Arduino sketch to enable the Watchdog

Timer, in Watchdog Timer Reset (WDR) mode.

Listing 7-3. Arduino code to enable the Watchdog Timer

#include "avr/wdt.h"

void setup() {

 wdt_reset();

 // Fire WDT every 8 seconds.

 wdt_enable(WDTO_8S);

}

void loop() {

 // Make sure we reset the WDT.

 wdt_reset();

 // Do our loopy stuff here. It must

 // complete in less time than the

 // WDT timeout period.

 ...

}

Unfortunately, the wdt_enable(WDTO_8S) instruction in Listing 7-3

only sets the WDE and prescaler bits; it does not set the interrupt enable

bit, WDIE, for you. At present, the AVRLib doesn’t have the ability to set the

Watchdog Timer interrupt, so, if Watchdog Timer interrupts are required,

you need to configure everything manually. Listing 7-4 is a function which

will enable the Watchdog Timer Interrupt mode, without enabling the

WDR mode. Your project can then use the Watchdog Timer interrupt

handler to carry out some work periodically and not have to worry about

calling wdt_reset() within the timeout period.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

367

Listing 7-4. Arduino code to enable Watchdog Timer interrupt

#include <avr/wdt.h>

void wdt_interrupts(uint8_t value) {

 // Save existing interrupt state.

 uint8_t oldSREG = SREG; ①

 // Set the WDP3-WDP0 bits for the prescaler.

 uint8_t wdt_setting;

 value = (value > 9) ? 9 : value; ②
 wdt_setting = (value > 7) ? (1 << WDP3) : 0;

 wdt_setting |= (value & 7);

 // Disable interrupts and reset WDT. ③
 noInterrupts();

 wdt_reset();

 // Clear WDT restarted flag.

 MCUSR &= ~(1 << WDRF); ④

 // Do the timed sequence next. ⑤
 #if defined WDTCSR

 // ATmega168/328/2560 etc

 WDTCSR |= ((1 << WDCE) | (1 << WDE));

 WDTCSR = (wdt_setting | (1 << WDIE));

 #elif defined WDTCR

 // ATtiny25/45/85 etc

 WDTCR |= ((1 << WDCE) | (1 << WDE));

 WDTCR = (wdt_setting | (1 << WDIE));

 #else

 #error "Unknown WDT Control Register on your AVR."

 #endif

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

368

 // Put interrupts back as they were previously.

 SREG = oldSREG; ⑥
}

 ① Saving the status register preserves the state of

global interrupts.

 ② There are 4 bits available here, so up to 16 values;

however, we can only have 9 as the maximum value.

If it is 8 or 9, then we need to set WDP3.

 ③ Interrupts and the Watchdog Timer must be

disabled if we are going to change the Watchdog

Timer settings. This will prevent rogue resets

partway through changing the settings.

 ④ The data sheet says we must clear WDRF.

 ⑤ This is the timed sequence of instructions that we

must complete in order that the changes to the

Watchdog Timer will be considered valid.

 ⑥ Restore the global interrupt bit in the status register

to how it was on entry to this function.

That takes care of enabling the Watchdog Timer interrupt. To disable it,

use the function in Listing 7-5.

Listing 7-5. Arduino code to disable the Watchdog Timer interrupt

#include "avr/wdt.h"

void wdt_noInterrupts() {

 // Disable WDT interrupts leaving

 // everything else untouched.

 #if defined WDTCSR

 // ATmega328 etc

 WDTCSR &= ~(1 << WDIE); ①

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

369

 #elif defined WDTCR

 // ATtiny85 etc

 WDTCR &= ~(1 << WDIE); ①

 #else

 #error "Unknown WDT Control Register on your AVR."

 #endif

}

 ① This clears the WDIE bit and leaves the other bits

unaffected. The WDE and WDP3:0 bits cannot be

changed except under the terms and conditions

of the previously mentioned timed sequence. The

code here doesn’t violate those rules. The code

attempts to determine between the ATmega328P

and ATtiny85 microcontrollers – both of which I use.

The preceding code could now be used to program yet another

replacement Blink sketch. Listing 7-6 shows how a regular blink could be

applied to an LED using nothing but the Watchdog Timer interrupt.

Listing 7-6. Using the Watchdog Timer interrupt in the Blink sketch

void setup() {

 wdt_interrupts(WDTO_1S);

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 ; //Do nothing.

}

ISR(WDT_vect) {

 PINB |= (1 << PINB5);

}

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

370

The loop() function does nothing at all. All the blinking takes place

in the ISR for the Watchdog Timer interrupt. In code like this, where

an ISR is doing all the work, the main loop should really put the AVR

microcontroller to sleep. And this is something we will deal with in Section

7.3.8, “Putting the AVR to Sleep.”

7.3.7. Disabling the Watchdog Timer
The Watchdog Timer can be disabled by following the sequence of events

as follows:

 If the WDTON fuse has been programmed (i.e., has value 0binary),
then you will be unable to disable the Watchdog Timer. In this case, the
Watchdog Timer is always running in Watchdog Reset (WdR) mode.

• Disable global interrupts. This will prevent any existing

interrupt handlers from firing during the critical timed

sequence, thus preventing a valid change to WDTCSR.

• Reset the Watchdog Timer. It may already be running,

and it should not reset the AVR microcontroller while it

is being reconfigured.

• Ensure that bit WDRF in MCUSR is cleared.

• To start changing WDTCSR, you must write a 1binary to both

WDCE and WDE in the same instruction. If WDE is already a

1binary, you must still write a 1binary to it. You are advised

to preserve the existing state of bits WDP3:0 to prevent

unintentional Watchdog Timer timeouts which will

occur if the timeout period is being reduced, explicitly

or implicitly, and the new timeout has already expired.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

371

• Within four system clock cycles, write a 0binary to bits

WDCE and WDE. All bits must be set and/or cleared in

the same instruction. The data sheet, surprisingly,

advises clearing the entire register – which completely

disagrees with its previous instruction to preserve the

state of bits WDP3:0.

• Enable global interrupts.

The AVRLib functions defined in avr/wdt.h take care of all this when

you make calls to the function wdt_disable().

Listing 7-7 is an example Arduino sketch to completely disable the

Watchdog Timer.

Listing 7-7. Arduino code to disable the Watchdog Timer

#include "avr/wdt.h"

void setup() {

 wdt_reset();

 MCUSR &= ~(1 << WDRF); ①
 wdt_disable(); ②
}

 ① This clears the flag in the MCU Status Register which

indicates that the Watchdog Timer reset the AVR

microcontroller.

 ② The function wdt_disable() is defined in the avr/

wdt.h header file and carries out all the necessary

instructions to disable the Watchdog Timer

including disabling interrupts and enabling them

afterward, if appropriate.

You could, obviously, extract the preceding code to a function of your

own and call that whenever the Watchdog Timer needed to be disabled.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

372

7.3.8. Putting the AVR to Sleep
The ATmega328P comes with six different sleep modes built in. These can

be used to vastly reduce power requirements of the AVR microcontroller

when it doesn’t need to be polling for button presses and so on. When

sleeping, interrupts must normally be used to wake the device and let it

run the necessary processing as required.

In other words, if the code is written in such a way as to not require the

processor to be constantly polling sensors and so on in the main loop, then it

can be put to sleep which will save power and make batteries last much longer.

 Chapter 9 of the data sheet, “Sleep modes”, has the following
points of note:

When entering a sleep mode, all port pins should be configured to
use minimum power. The most important is then to ensure that no
pins drive resistive loads. In sleep modes where both the I/O clock
(clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of
the device will be disabled. This ensures that no power is consumed
by the input logic when not needed. In some cases, the input logic is
needed for detecting wake-up conditions, and it will then be enabled.

If the input buffer is enabled and the input signal is left floating
or have an analog signal level close to VCC/2, the input buffer will
use excessive power.

For analog input pins, the digital input buffer should be disabled
at all times. An analog signal level close to VCC/2 on an input pin
can cause significant current even in active mode. Digital input
buffers can be disabled by writing to the Digital Input Disable
Registers (DIDR1 and DIDR0).

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

373

The "analogue input pins" referred to are those of the ADC and the

Analogue Comparator. Chapter 9, Section 9.1.3, “Digital Input,” and

Section 9.2.1.6, “Disable Digital Input,” describe how to disable the digital

input buffers when using the Analogue Comparator or the ADC.

The following sleep modes are available:

• Idle

• ADC Noise Reduction

• Power Down

• Power Save

• Standby (only when there is an external crystal or

ceramic resonator)

• Extended Standby

To put the AVR microcontroller to sleep, the code must

• Set bits SM2:0 in SMCR (Sleep Mode Control Register) to

select the sleep mode required.

• Set bit SE (Sleep Enable) in SMCR to enable the desired

sleep mode.

• Execute the sleep instruction.

The values defined for the various modes are as follows and can be

found in the header file $ARDINC/avr/iom328p.h:

#define SLEEP_MODE_IDLE (0x00<<1)

#define SLEEP_MODE_ADC (0x01<<1)

#define SLEEP_MODE_PWR_DOWN (0x02<<1)

#define SLEEP_MODE_PWR_SAVE (0x03<<1)

#define SLEEP_MODE_STANDBY (0x06<<1)

#define SLEEP_MODE_EXT_STANDBY (0x07<<1)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

374

 The bits SM2:0 in the SMCR register are bits 3, 2, and 1, hence
the use of the shift left instructions in the preceding definitions.

To put an AVR microcontroller to sleep in Idle mode, for example, you

could execute code similar to that shown in Listings 7-8 to 7-10. You could,

but I wouldn’t bother myself because it doesn’t work as expected with the

code shown! Don’t worry as all will be made clear soon.

Listing 7-8 is a simple function to flash the built-in LED a few times. It’s

called from setup() to show that we are indeed alive and from the loop()

when it’s doing “real” work.

Listing 7-8. Non-functioning sleep sketch, flashLED()

#include <avr/sleep.h>

#include <avr/interrupt.h>

void flashLED(byte flashes) {

 for (byte x = 0; x < flashes; x++) {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(250);

 digitalWrite(LED_BUILTIN, LOW);

 delay(250);

 }

}

Listing 7-9 is the setup() function which sets the requirements for

Idle sleep mode and then flashes the LED a couple of times to show we are

alive and well, so far. Setting the sleep mode doesn’t put the Arduino to

sleep at that point – that comes later.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

375

Listing 7-9. Non-functioning sleep sketch, setup()

void setup() {

 set_sleep_mode(SLEEP_MODE_IDLE);

 pinMode(LED_BUILTIN, OUTPUT);

 // Show we are alive

 delay(1500);

 flashLED(2);

}

In Listing 7-10, we can see the loop() function. This is where the code

would normally be doing application work and then sleeping until some

stimulus wakes it up for the next pass through the loop.

Listing 7-10. Non-functioning sleep sketch, loop()

void loop() {

 noInterrupts(); ①

 // Enable sleep mode and disable Brown Out Detection.

 // BOD disable is permitted on ATmega328P.

 sleep_enable(); ②
 sleep_bod_disable();

 // Enable interrupts and execute the sleep_cpu() -

 // Which guarantees that the sleep_cpu() will execute

 // before any new interrupts will be fired.

 interrupts(); ③
 sleep_cpu(); ④

 // When we wake up, on an interrupt, disable

 // sleep mode while processing.

 sleep_disable(); ⑤

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

376

 // Do some application "stuff" here after waking up ...

 flashLED(4); ⑥

 // On the next pass of the loop, we will go back to sleep.

}

 ① It is recommended to disable interrupts when

changing sleep modes.

 ② In setup() we configured Idle sleep mode with

set_sleep_mode(). This function call enables sleep

modes, but still doesn’t put the device to sleep. Also

here, we turn off the brown-out detector (BOD)

while sleeping.

 ③ Sleep modes need an interrupt to wake the device.

We need interrupts turning on, or we will simply

sleep forever.

 ④ Finally, we put the device to sleep. The device will

sleep in Idle mode until woken.

 ⑤ This is where the application does some work, after

it wakes up from sleep. It should disable sleeping

until ready to go back to sleep.

 ⑥ This is the “real” work that the application has to do!

If, while the device is asleep, an interrupt occurs, the device will

wake up but will then halt itself for four clock cycles before executing the

interrupt routine. Those four clock cycles are in addition to any startup

time requirements.

Once the interrupt routine has been executed, control returns to

the instruction after the sleep instruction that put the device to sleep

previously. The sleep instruction is built in to the ATmega328P. Our C++

code can call it as it has been defined elsewhere. Normally, it is easier to

use the various sleep functions in AVRLib.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

377

“So what’s wrong with the preceding sketch?” I hear you think. “Why

is SLEEP_MODE_IDLE not the best sleep mode for this demonstration?”

You will possibly have realized that while an Arduino is in this sleep

mode, the Timer/counter 0, used to count millis() and so on, is running

with its Overflow interrupt enabled. And an interrupt wakes the AVR

microcontroller when it fires, so in SLEEP_MODE_IDLE the main loop just

runs and runs – it does sleep, but only until the timer/counter overflows

and that happens every 1024 microseconds.

If you were to recompile the preceding code, but use SLEEP_MODE_

PWR_DOWN instead, once the LED flashes twice in setup(), you won’t see it

again until a proper interrupt occurs – but because I haven’t enabled any

particular interrupts, the Arduino will simply go to sleep and never wake

up. There’s a much better example in Section 7.3.10.

7.3.9. Sleep Modes
In the following discussions, regarding each different sleep mode, I give the

sleep modes numbers; SLEEP_MODE_IDLE, for example, is sleep mode 0. I

indicate the value in binary as well, in 3 bits. These are the 3 bits that need

to be written to the SM2:0 bits in the Sleep Mode Control Register (SMCR).

These 3 bits control which sleep mode the AVR microcontroller will enter

when the Sleep Enable (SE) bit is set and a sleep instruction executed.

While there are 3 bits available, giving eight different sleep modes

(000binary–111binary), sleep modes 4 (100binary) and 5 (101binary) are reserved

and should not be used, leaving only six modes. Of these, one cannot

be used on the Arduino as it requires Timer/counter 2 to be running in

asynchronous mode, which is not possible on an Arduino, and another is

dubious. We therefore have three good modes and two dubious ones left

on our Arduinos.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

378

To put the AVR microcontroller to sleep, the steps are as follows:

• Set the sleep mode required in bits SM2:0 of the SMCR.

You can do this in a sketch by calling set_sleep_

mode() or directly in your own code. The examples in

this section use the easy method – calling set_sleep_

mode() in AVRLib.

• Set the Sleep Enable bit, SE, to 1binary in SMCR by calling

sleep_enable() as part of the loop().

• Execute the sleep (assembly language) instruction by

calling sleep_cpu() in the loop().

• On wake-up, the data sheet advises that you

immediately clear the SE bit to 0binary. You can do this

simply by calling sleep_disable() before starting the

code that is to be carried out upon waking from sleep.

The ATmega328P will be woken from sleep modes if an enabled

interrupt occurs or if it is reset while asleep. The wake-up process is as

follows, for an interrupt:

• The interrupt fires and the AVR microcontroller wakes

up from sleep.

• The device is then halted for four clock cycles (over and

above the device wake-up time).

• The interrupt service routine (ISR) is executed.

• Execution then continues from the instruction

immediately following the sleep (or sleep_cpu())

instruction.

Table 7-12 shows a list of the various sleep modes available and

whether they can be used on an Arduino.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

379

7.3.9.1. Idle Sleep Mode

This is sleep mode 0 (000binary) and is the lightest sleep mode, it saves

power but not really a lot, and it’s almost useless on an Arduino.

In Idle mode, CLKcpu and CLKflash are stopped while the remaining

clocks continue to run. This means that the AVR microcontroller is unable

to access the flash memory or actually run any instructions. Peripherals

such as the USART, SPI, ADC, Two=Wire Interface (TWI), Analogue

Comparator, the three timer/counters, and the Watchdog Timer will

continue to run.

If the hardware is set up correctly, then the Asynchronous Timer/

counter on Timer/counter 2 can also be used, but not on Arduinos.

Table 7-12. Sleep modes

Sleep Mode Arduino Comments

SLeep_mode_IdLe maybe only usable if Timer/counter 0 has the

overflow interrupt disabled

SLeep_mode_AdC Yes Could be used before an

analogRead() call

SLeep_mode_pWR_doWn Yes

SLeep_mode_pWR_SAVe maybe on Arduinos, this is effectively

identical to SLEEP_MODE_PWR_DOWN

which should be used instead

SLeep_mode_STAndBY Yes This is just SLEEP_MODE_PWR_DOWN

but with the main oscillator running

SLeep_mode_eXT_STAndBY no This is just SLEEP_MODE_PWR_SAVE

but with the main oscillator running

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

380

To wake the device from Idle mode, one of the following stimuli will be

required:

• External interrupts – INT0, INT1, and any Pin Change

Interrupt

• Internal interrupts such as a Timer/counter Overflow,

USART Transmit Complete, the Analogue Comparator

interrupt, or the Watchdog Timer interrupt.

 As demonstrated earlier, this sleep mode is of very limited use
on an Arduino as the overflow interrupt for Timer/counter 0 is active
when sketches are compiled. You would have to disable the Timer/
counter 0 overflow interrupt in your sketch to be able to use this
sleep mode.

please also note that the Analogue Comparator is definitely known to
keep running in this sleep mode; this is an unknown quantity in the
other sleep modes however.

A summary of this sleep mode is given in Table 7-13.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

381

Table 7-13. Idle sleep mode summary

Sleep Mode 0 (Idle)

Clocks CLKcpu (Core, RAm) Stopped

CLKflash (flash RAm, eepRom) Stopped

CLKio (SpI, uSART, TWI, gpIo pins,

Timer/counters, external interrupts)

Running

CLKadc (AdC) Running

CLKasy (Asynchronous

Timer/counter 2)

Running (but not on an Arduino

board)

Oscillators main system oscillator Running

Asynchronous Timer oscillator Running (not Arduino)

Peripherals AdC Running CLKadc

Analogue Comparator Running

Core Stopped CLKcpu

RAm Stopped CLKcpu

eepRom Stopped CLKflash

external interrupts Running CLKio

flash RAm Stopped CLKflash

SpI Running CLKio

Timer/counters Running CLKio

TWI (address matching) Running CLKio

uSART Running CLKio

Watchdog Running

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

382

Table 7-13. (continued)

Sleep Mode 0 (Idle)

Wake on external Reset

InT0 interrupt

InT1 interrupt

pin Change Interrupt

TWI address match

Timer/counter 2 interrupt

Spm/eepRom ready interrupt

AdC Conversion Complete interrupt

Watchdog Timer interrupt

other I/o interrupts

Analogue Comparator interrupt

If wake-up from the Analogue Comparator interrupt is not required,

the Analogue Comparator should be powered down by setting the ACD bit

in the Analogue Comparator Control and Status Register – ACSR.

If the ADC is enabled, an ADC conversion will be started automatically

when the Idle sleep mode begins after the sleep instruction’s execution.

7.3.9.2. ADC Noise Reduction Sleep Mode

This is sleep mode 1 (001binary) and is used when there is a need to reduce

any noise coming from the AVR microcontroller itself, so that the ADC can

take better analogue readings. This sleep mode is usable on Arduinos.

In ADC Noise Reduction mode, CLKcpu, CLKio, and CLKflash are

stopped while the remaining clocks continue to run. This means that

while the AVR microcontroller is unable to access the flash memory, use

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

383

the I/O pins (except for the analogue pins obviously), or actually run

any instructions, peripherals such as the ADC, USART, SPI, ADC, TWI,

Analogue Comparator, the three Timer/counters, and the Watchdog Timer

will continue to run.

To wake the device from this mode, one of the following stimuli will be

required:

• External (level) interrupts – INT0, INT1, and any Pin

Change Interrupt

• Internal interrupts such as the ADC Conversion

Complete interrupt, a Timer/counter 2 interrupt (if

running in asynchronous mode), USART Transmit

Complete, or the Watchdog Timer interrupt.

A summary of this sleep mode is given in Table 7-14.

Table 7-14. ADC Noise Reduction sleep mode summary

Sleep Mode 1 (ADC Noise Reduction)

Clocks CLKcpu (Core, RAm) Stopped

CLKflash (flash RAm, eepRom) Stopped

CLKio (SpI, uSART, TWI,

gpIo pins, Timer/counters,

external interrupts)

Stopped

CLKadc (AdC) Running

CLKasy (Asynchronous Timer/

counter 2)

Running (but not on an Arduino

board)

Oscillators main system oscillator Running

Asynchronous Timer

oscillator

Running (not Arduino)

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

384

Sleep Mode 1 (ADC Noise Reduction)

Peripherals AdC Running CLKadc

Analogue Comparator unknown!

Core Stopped CLKcpu

RAm Stopped CLKcpu

eepRom Stopped CLKflash

external interrupts Stopped CLKio

flash RAm Stopped CLKflash

SpI Stopped CLKio

Timer/counters Stopped CLKio

TWI (address matching) Stopped CLKio

uSART Stopped CLKio

Watchdog Running

Wake on external Reset

InT0 LoW (level) interrupt

InT1 LoW (level) interrupt

pin Change Interrupt

TWI address match

Timer/counter2 interrupt – only if Timer/counter2 is running in

asynchronous mode, which is not possible on an Arduino

Spm/eepRom ready interrupt

AdC Conversion Complete interrupt

Watchdog Timer interrupt

Table 7-14. (continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

385

When the SM2:0 bits in SMCR are written to 001binary, the sleep instruction

makes the MCU enter ADC Noise Reduction mode, stopping the CPU but

allowing the ADC, the external interrupts, the two-wire Serial interface

address watch, Timer/counter 2 (only in asynchronous mode), and the

Watchdog to continue operating (if enabled). This sleep mode basically halts

CLKio, CLKcpu, and CLKflash while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher-

resolution measurements. If the ADC is enabled, a conversion starts

automatically when this mode is entered.

Only an External Reset, a LOW level interrupt on the INT0 or INT1

pins, a Watchdog System Reset, a Watchdog Interrupt, a Brown Out Reset,

a 2-wire Serial Interface address match, a Timer/counter 2 interrupt or an

SPM/EEPROM ready interrupt will wake the AVR from this sleep mode.

7.3.9.3. Power Down Sleep Mode

This is sleep mode 2 (010binary). This is a deep sleep and saves the most

power. Consequently, it has fewer wake-up stimuli. This sleep mode is

usable on Arduinos.

In Power Down mode, all clocks are stopped. This means that the AVR

microcontroller is effectively powered off; however, the Watchdog Timer

continues to run, a LOW level interrupt on the INT0 and INT1 pins or any

of the Pin Change Interrupts will wake the device as will the TWI address

match interrupt and the Brown Out Detector (BOD).

A summary of this sleep mode is given in Table 7-15.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

386

Table 7-15. Power Down sleep mode summary

Sleep Mode 2 (Power Down)

Clocks CLKcpu (Core, RAm) Stopped

CLKflash (flash RAm, eepRom) Stopped

CLKio (SpI, uSART, TWI, gpIo

pins, Timer/counters, external

interrupts)

Stopped

CLKadc (AdC) Stopped

CLKasy (Asynchronous Timer/

counter 2)

Stopped

Oscillators main system oscillator Stopped

Asynchronous Timer oscillator Stopped

Peripherals AdC Stopped CLKadc

Analogue Comparator unknown!

Core Stopped CLKcpu

RAm Stopped CLKcpu

eepRom Stopped CLKflash

external interrupts Running CLKio

flash RAm Stopped CLKflash

SpI Stopped CLKio

Timer/counters Stopped CLKio

TWI (address matching) Running CLKio

uSART Stopped CLKio

Watchdog Running

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

387

Sleep Mode 2 (Power Down)

Wake on external Reset

InT0 interrupt (LoW level only)

InT1 interrupt (LoW level only)

pin Change Interrupt

TWI address match

Watchdog Timer interrupt (or Reset)

Brown-out Reset

Table 7-15. (continued)

7.3.9.4. Power Save Sleep Mode

This is sleep mode 3 (011binary). This is also a deep sleep and saves much

power. However, it is slightly less a deep sleep than the preceding mode,

Power Down. This sleep mode is possibly usable on Arduinos but not

advised as the asynchronous mode for Timer/counter 2 is not enabled.

In Power Save mode, all clocks are stopped except CLKasy. This is

almost as deep a sleep as the preceding one, but on an Arduino board, the

asynchronous mode of Timer/counter 2 cannot be used, so effectively, this

too is a Power Save sleep. Once again, the AVR microcontroller is pretty

much powered off; however, the Watchdog Timer continues to run, and

the INT0 and INT1 level interrupts and any of the Pin Change Interrupts

will wake the device as will the TWI address match interrupt and the BOD.

If this is not an Arduino board and Timer/counter 2 is configured in

asynchronous mode, then Timer/counter 2 can also wake the device from

this sleep mode with either an Overflow or a Compare Match interrupt.

This isn’t possible on an Arduino though as the pins required for the

external crystal for that particular timer mode are used for the main

oscillator which has a 16 MHz crystal attached.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

388

On an Arduino, Timer/counter 2 will not therefore be enabled during

this sleep mode and according to the data sheet, we should be using

power down mode, rather than Power Save mode if Timer/counter 2 is not

running asynchronously.

A summary of this sleep mode is given in Table 7-16.

Table 7-16. Power Save sleep mode summary

Sleep Mode 3 (Power Save)

Clocks CLKcpu (Core, RAm) Stopped

CLKflash (flash RAm, eepRom) Stopped

CLKio (SpI, uSART, TWI,

gpIo pins, Timer/counters,

external interrupts)

Stopped

CLKadc (AdC) Stopped

CLKasy (Asynchronous Timer/

counter 2)

Running (but not on an Arduino

board)

Oscillators main system oscillator Stopped

Asynchronous Timer

oscillator

Running (not Arduino)

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

389

Sleep Mode 3 (Power Save)

Peripherals AdC Stopped CLKadc

Analogue Comparator unknown!

Core Stopped CLKcpu

RAm Stopped CLKcpu

eepRom Stopped CLKflash

external interrupts Running CLKio

flash RAm Stopped CLKflash

SpI Stopped CLKio

Timer/counters Stopped CLKio

TWI (address matching) Running CLKio

uSART Stopped CLKio

Watchdog Running

Wake on external Reset

InT0 interrupt (LoW level only)

InT1 interrupt (LoW level only)

pin Change Interrupt

TWI address match

Timer/counter2 interrupt

Watchdog Timer interrupt (or Reset)

Brown-out Reset

Table 7-16. (continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

390

7.3.9.5. Standby Sleep Mode

This is sleep mode 6 (110binary). The data sheet advises not to use this sleep

mode unless there is an external crystal running the main clock. This is

appropriate for Arduino boards due to the 16 MHz crystal which is used to

run the main system oscillator.

This mode is identical to the Power Down mode described earlier,

apart from the main oscillator running. This sleep mode is usable on

Arduinos.

In Standby mode, all clocks are again stopped. This means, yet again,

that the AVR microcontroller is effectively powered off; however, the

Watchdog Timer continues to run, and the INT0 INT1 Level interrupts

and any of the Pin Change Interrupts will wake the device as will the TWI

address match interrupt and the BOD.

A summary of this sleep mode is given in Table 7-17.

Table 7-17. Standby sleep mode summary

Sleep Mode 6 (Standby)

Clocks CLKcpu (Core, RAm) Stopped

CLKflash (flash RAm, eepRom) Stopped

CLKio (SpI, uSART, TWI, gpIo

pins, Timer/counters, external

interrupts)

Stopped

CLKadc (AdC) Stopped

CLKasy (Asynchronous Timer/

counter 2)

Stopped

Oscillators main system oscillator Running

Asynchronous Timer oscillator Stopped

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

391

Sleep Mode 6 (Standby)

Peripherals AdC Stopped CLKadc

Analogue Comparator unknown!

Core Stopped CLKcpu

RAm Stopped CLKcpu

eepRom Stopped CLKflash

external interrupts Running CLKio

flash RAm Stopped CLKflash

SpI Stopped CLKio

Timer/counters Stopped CLKio

TWI (address matching) Running CLKio

uSART Stopped CLKio

Watchdog Running

Wake on external Reset

InT0 interrupt (LoW level only)

InT1 interrupt (LoW level only)

pin Change Interrupt

TWI address match

Watchdog Timer interrupt (or Reset)

Brown-out Reset

Table 7-17. (continued)

On a wake-up call, when sleeping in this mode, the device is back up

and running in six clock cycles.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

392

7.3.9.6. Extended Standby Sleep Mode

This is sleep mode 7 (111binary). The data sheet advises not to use this sleep

mode unless there is an external crystal running the main clock.

This mode is identical to the Power Save mode described earlier, apart

from the two main oscillators running. This sleep mode is best avoided on

Arduinos as the asynchronous timer clock isn’t running. Use Standby sleep

mode instead.

In Extended Standby mode, all clocks are again stopped; and once

more, the AVR microcontroller is powered off for all intents and purposes.

The Watchdog Timer does continue to run, and the INT0 and INT1 Level

interrupts and any of the Pin Change Interrupts will wake the device as will

the TWI address match interrupt and the BOD.

A summary of this sleep mode is given in Table 7-18.

Table 7-18. Extended Standby sleep mode summary

Sleep Mode 7 (Extended Standby)

Clocks CLKcpu (Core, RAm) Stopped

CLKflash (flash RAm, eepRom) Stopped

CLKio (SpI, uSART, TWI,

gpIo pins, Timer/counters,

external interrupts)

Stopped

CLKadc (AdC) Stopped

CLKasy (Asynchronous Timer/

counter 2)

Running (but not on an Arduino

board)

Oscillators main system oscillator Running

Asynchronous Timer

oscillator

Running (not Arduino)

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

393

Sleep Mode 7 (Extended Standby)

Peripherals AdC Stopped CLKadc

Analogue Comparator unknown!

Core Stopped CLKcpu

RAm Stopped CLKcpu

eepRom Stopped CLKflash

external interrupts Running CLKio

flash RAm Stopped CLKflash

SpI Stopped CLKio

Timer/counters Stopped CLKio

TWI (address matching) Running CLKio

uSART Stopped CLKio

Watchdog Running

Wake on external Reset

InT0 interrupt (level only)

InT1 interrupt (level only)

pin Change Interrupt

TWI address match

Timer/counter2 interrupt

Watchdog Timer interrupt (or Reset)

Brown-out Reset

Table 7-18. (continued)

On a wake-up call, when sleeping in this mode, the device is back up

and running in six clock cycles.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

394

7.3.10. Analogue Comparator
The data sheet is not very clear on whether or not the Analogue

Comparator interrupt can be used to wake the device from some of the

sleep modes. Believe me I searched in vain for the detail! To this end, I

configured the various sleep modes and set up a circuit identical to the

one described in Chapter 9 on the Analogue Comparator. There’s a full

description of the circuit and how it works in Chapter 9, Section 9.1,

“The Analogue Comparator.”

In the code in Listings 7-11 to 7-14, I set the Arduino into various sleep

modes in setup() and then tested to see if the comparator would wake the

AVR microcontroller from its slumbers.

Listing 7-11 is the setupComparator() function which has not been

changed from Chapter 9, other than to #include the avr/sleep.h and

avr/interrupt.h header files at the top of the function.

Listing 7-11. Analogue Comparator wake-up, setupComparator()

//===

// The purpose of the sketch is to test the various sleep

// modes and to see if the AC will wake the Arduino.

//===

#include <avr/sleep.h>

#include <avr/interrupt.h>

// This function sets up the comparator to fire an interrupt

// each time the ACO bit toggles. It uses D6 as the reference

// voltage and D7 as the voltage to be compared.

void setupComparator() {

 ACSR &= ~(1 << ACIE);

 ACSR &= ~(1 << ACD);

 DIDR1 |= ((1 << AIN0D) | (1 << AIN1D));

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

395

 ACSR &= ~(1 << ACBG);

 ADCSRB &= ~(1 << ACME);

 ACSR |= ((1 << ACIS1) | (1 << ACIS0));

 ACSR |= (1 << ACIE);

}

Listing 7-12 is pretty much the same setup() function to that in

Chapter 9, with the minor addition of the call to function set_sleep_

mode(). It is here that I tested each and every valid sleep mode to see

which, if any, would be interrupted by the Analogue Comparator’s

interrupt.

Listing 7-12. Analogue Comparator wake-up, setup()

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

 setupComparator();

 // Here is where I set the various sleep modes.

 set_sleep_mode(SLEEP_MODE_IDLE);

}

An interrupt is required to wake the ATmega328P, but we don’t need

to do any work inside the ISR. Listing 7-13 shows the code required for just

such a purpose; it is an empty ISR to handle the Analogue Comparator

interrupt.

Listing 7-13. Analogue Comparator wake-up, empty ISR

// Analogue Comparator Interrupt Handler. Simply used to

// wake up the device, so no code required.

EMPTY_INTERRUPT(ANALOG_COMP_vect);

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

396

Listing 7-14 is the main loop() function for the sketch. It puts the

device to sleep in whatever mode I used in setup() and waits for a wake-

up call. If one arrives, it will flash the built-in LED to show that it woke up.

It will then go back to sleep.

Listing 7-14. Analogue Comparator wake-up, loop()

void loop() {

 noInterrupts();

 sleep_enable();

 sleep_bod_disable();

 // Kill timer 0 and its overflow interrupt otherwise

 // it will wake the AVR from SLEEP_MODE_IDLE thus

 // negating the test. I need the AC to do the wake

 // up call!

 TCCR0B &= ~((1 << CS02) | (1 << CS01) | (1 << CS00));

 interrupts();

 // Go to sleep now.

 sleep_cpu();

 sleep_disable();

 // Reset Timer 0 to divide by 64 or delay() doesn't!

 TCCR0B |= ((1 << CS01) | (1 << CS00));

 // Flash the LED on wake up.

 for (short x = 0; x < 4; x++) {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(250);

 digitalWrite(LED_BUILTIN, LOW);

 delay(250);

 }

}

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

397

And the results? The Analogue Comparator does indeed wake up the

Arduino when in SLEEP_MODE_IDLE but doesn’t wake it up in any other

mode which is as I thought would be the case, but at least I now know.

7.4. Power Reduction
Many AVR microcontrollers come with numerous different, potentially

power-hungry, peripherals. If these are not being used by a sketch,

then they can be disabled by setting a bit in the PRR or Power Reduction

Register. This will shut them down and reduce overall power consumption

by the AVR microcontroller, thus increasing battery life on battery-powered

devices.

Numerous parts of the AVR microcontroller can be disconnected or

shut down to save power, and it is recommended that this be done if those

peripherals are not in use. The Arduino system cannot determine which

parts you are not using, so it is up to you, the maker, to decide and disable

accordingly.

Power consumption and the various sleep modes discussed in Section

7.3.9, “Sleep Modes,” are a great way to reduce the power requirements

of your project and can help – in some cases – to dramatically increase

running time from battery power.

7.4.1. Power Consumption
The ATmega328P can be run at a number of supply voltages. On Arduino

boards with a 16 MHz crystal or ceramic resonator, the supply voltage is

limited to between 4.0 V and 5.5 V. The data sheet gives the figures shown

in Table 7-19 for power consumption for each of those voltages, at 16 MHz,

when the device is idle (in sleep mode Idle) and active or not sleeping.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

398

 You should note that these figures are for a bare-bones AVR
microcontroller and not for the whole Arduino board, complete with
power-hungry devices like the voltage regulator, the always-on power
Led, and so on.

You may be surprised to find out exactly how few components
you actually need to run a device with an ATmega328p as the
microcontroller and even fewer if your device can be run using an
ATtiny85!

From Table 7-19, it can be seen that an active ATmega328P, running at

16 MHz with a VCC of 4 V, uses half the power of the same device running

with a VCC of 5.5 V. Sadly, our Arduino boards are fixed at 5.0 V for VCC,

so we are not able to do much in that area to reduce power consumption.

However, for a bare-bones AVR microcontroller on a breadboard or circuit

board of our own design, we do have the option.

Table 7-19. ATmega328P power consumption

VCC Idle Current Idle Power Active Current Active Power

4.0 V 1.75 milliAmps 7.0 milliWatts 7.0 milliAmps 28 milliWatts

4.5 V 2.1 milliAmps 9.45 milliWatts 8.2 milliAmps 36.9 milliWatts

5.0 V 2.4 milliAmps 12.0 milliWatts 9.6 milliAmps 48.0 milliWatts

5.5 V 2.8 milliAmps 15.4 milliWatts 11.0 milliAmps 60.5 milliWatts

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

399

 While the Arduino boards themselves are excellent for
prototyping, they are a tad expensive, and power hungry, to embed in
the finished product. In the case where a device is deemed to be
market-ready, the Arduino itself will normally be replaced by a
minimal ATmega328p circuit, with far fewer resource requirements
and a much lower cost.

Table 7-20 shows the power consumption of the various ATmega328P

internal peripherals and is taken from the data sheet. It should be noted

that the typical figures listed are those for an AVR microcontroller running

with a VCC of 5 V and a clock frequency of 8 MHz. This will not be accurate

for an Arduino at 16 MHz, but read on, as all will become clear.

Table 7-20. ATmega328P peripherals’ power consumption

Peripheral Typical Current Active Extra Idle Extra

AdC 295.38 microAmps 4.1% 22.1%

uSART 100.25 microAmps 1.4% 7.8%

SpI 186.5 microAmps 2.9% 15.7%

Timer/counter 1 176.25 microAmps 2.7% 14.5%

Timer/counter 0 61.13 microAmps 0.9% 4.8%

Timer/counter 2 224.25 microAmps 3.3% 17.8%

TWI 199.25 microAmps 3.0% 16.6%

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

400

7.4.1.1. Calculating Power Requirements

As the data sheet explains, it is possible to calculate the power

requirements for each of the preceding seven peripherals, based on

the voltage and frequency of the crystal or ceramic oscillator in use.

The preceding typical figures are based on a 5 V AVR microcontroller

running at 8 MHz. The Arduino runs at 16 MHz, so we need to get the

calculator out.

It’s actually quite simple. Take the current drawn from Table 7-19 for

the voltage your device is using, and then add the percentage for active or

idle from Table 7- 20 for the peripheral in question. If there are more than

one peripherals, simply add each percentage.

If we consider the AVR microcontroller running on a 5 V supply at 16

MHz, with all peripherals enabled and running, what is the idle power

required?

Idle power at 5V = 2.4 mA

Peripheral percentages = 22.1% + ... + 16.6% = 99.3%

99.3% of 2.4 mA = 2.3832 mA

Added to 2.4 mA = 4.7832 mA

Resulting power = 5V * 4.5432 mA = 22.916 mW.

The same calculation in active mode results in

Active power at 5V = 9.6 mA

Peripheral percentages = 4.1% + ... + 3.0% = 18.3%

18.3% of 9.6 mA = 1.7568 mA

Added to 9.6 mA = 11.3568 mA

Resulting power = 5V * 11.3568 mA = 56.784 mW.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

401

7.4.2. Power Reduction Register
Not all AVR microcontrollers have the same set of peripherals, and the

relevant ones in the ATmega328P are as follows:

• Analogue to Digital Converter (ADC)

• Universal Synchronous/Asynchronous Receiver/

Transmitter (USART)

• Two-Wire Interface (TWI) aka I2C interface

• Timer/counter 0

• Timer/counter 1

• Timer/counter 2

• Serial Peripheral Interface (SPI)

Those seven peripherals each have a single bit in the Power Reduction

Register or PRR so that when set to a 1binary, that particular peripheral is

powered off. The bits in question are

• PRADC which enables or disables power to the ADC

• PRUSART0 which enables or disables power to the

USART

• PRSPI which enables or disables power to the SPI

• PRTIM1 which enables or disables power to Timer/

counter 1

• PRTIM0 which enables or disables power to Timer/

counter 0

• PRTIM2 which enables or disables power to Timer/

counter 2

• PRTWI which enables or disables power to the TWI

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

402

What these bits do is to stop the clock to the peripheral. Once the clock

has been stopped, that peripheral is effectively suspended, and there is no

ability to write to, or read from, the device’s registers.

The data sheet warns that Resources used by the peripheral when

stopping the clock will remain occupied, hence the peripheral should in

most cases be disabled before stopping the clock.

What this means is that whatever peripheral you wish to power off

should be disabled before powering it down. In the case of the ADC, for

example, this would entail writing a 0binary to ADEN in the ADCSRA register to

disable the ADC and then writing a 1binary to PRADC in the PRR to power it off.

The on-off switches for each preceding peripheral are listed in Table 7-21

and, unless otherwise noted, should be written with a zerobinary to disable the

appropriate peripheral.

Table 7-21. Disabling ATmega328P peripherals

Peripheral Bit Register Comments

AdC Aden AdCSRA Shuts down the AdC

uSART RXenn uCSRnB Shuts down the uSARTn Receiver

uSART TXenn uCSRnB Shuts down the uSARTn Transmitter

SpI Spe SpCR Shuts down the SpI

Timer/counter 1 CS12–CS10 TCCR1B Shuts down Timer/counter 1 when

written as 000binary

Timer/counter 0 CS02–CS00 TCCR0B Shuts down Timer/counter 0 when

written as 000binary

Timer/counter 2 CS22–CS20 TCCR2B Shuts down Timer/counter 2 when

written as 000binary

TWI TWen TWCR Shuts down the TWI/I2C Interface

Analogue

Comparator

ACd ACSR Shuts down the Analogue

Comparator

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

403

To power up a peripheral from its powered-down state, simply write a

0binary to the appropriate bit in the PRR. The peripheral will wake up again

and will resume the state that it was in when powered down. You have to

write a zero because that disables the power reduction for that peripheral.

 The Analogue Comparator doesn’t have a bit in the PRR. It does,
however, have the ACD bit in the Analogue Comparator Control and
Status Register – ACSR. Write a 1binary to that bit to power off the
Analogue Comparator.

7.4.3. Saving Arduino Power
Now you know what peripherals can be disabled and powered down, you

are able to perhaps save a little of your device’s power by using the setup()

function to power off all those bits of the ATmega328P that you don’t need

for a sketch.

Taking the old favorite blink sketch, yet again, what does it actually

need? Nothing more than the I/O pins and a timer/counter to work the

delay() function. The delay() function and millis() and micros() all

depend on Timer/counter 0. Listings 7-15 to 7-17 show an example blink

sketch with unwanted peripherals turned off.

The AVRLib has some useful power maintenance functions, and these

can be used to power off the peripherals we don’t need in our blink sketch.

There is a trade-off of course: adding code to setup() to disable and power

off these peripherals will increase the code size of the final sketch.

In the case of the blink sketch, it’s unlikely that this will be a problem,

but for other sketches that might be pushing at the capacity of the AVR

microcontroller, it could be a problem and you might have to revert to the

direct manner of setting the registers in your code, rather than using the

AVRLib functions.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

404

The sketch in Listings 7-15, 7-16, and 7-17 could be used to enhance

battery life for an Arduino device, running the blink sketch. Listing 7-15 is

a function, disable(), which disables all the unwanted peripherals based

on parameters passed to it, prior to powering them all off.

Listing 7-15. Low-power blink, disable() function

#include <avr/power.h>

void disable(bool ADCdisable, bool USARTdisable, bool

SPIdisable,

 bool TIMER0disable, bool TIMER1disable, bool

TIMER2disable,

 bool TWIdisable, bool ACdisable)

{

 // Disable ADC.

 if (ADCdisable)

 ADCSRA &= ~(1 << ADEN);

 // Disable USART0 RX and TX.

 if (USARTdisable)

 UCSR0B &= ~((1 << RXEN0) | (1 << TXEN0));

 // Disable SPI.

 if (SPIdisable)

 SPCR &= ~(1 << SPE);

 // Disable Timer/Counter 0

 if (TIMER0disable)

 TCCR0B &= ~((1 << CS02) | (1 << CS01) | (1 << CS00));

 // Disable Timer/Counter 1.

 if (TIMER1disable)

 TCCR1B &= ~((1 << CS12) | (1 << CS11) | (1 << CS10));

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

405

 // Disable Timer/Counter 2.

 if (TIMER2disable)

 TCCR2B &= ~((1 << CS22) | (1 << CS21) | (1 << CS20));

 // Disable TWI.

 if (TWIdisable)

 TWCR &= ~(1 << TWEN);

 // Disable Analogue comparator.

 if (ACdisable)

 ACSR &= ~(1 << ACD);

}

The setup() function in Listing 7-16 calls disable() with a list of

peripherals to disable and then calls the AVRLib’s __power_all_disable()

function which powers down all the peripherals. It then powers Timer/

counter 0 back on to ensure that that is still working as it is needed by the

sketch.

Listing 7-16. Low-power blink, setup() function

void setup() {

 // Disable the peripherals we don't want.

 disable(

 /* ADCdisable = */ true,

 /* USARTdisable = */ true,

 /* SPIdisable = */ true,

 /* TIMER0disable = */ false,

 /* TIMER1disable = */ true,

 /* TIMER2disable = */ true,

 /* TWIdisable = */ true,

 /* ACdisable = */ true);

 // Power down everything except Timer/Counter 0.

 // It's quicker this way, and less code bloat!

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

406

 __power_all_disable();

 power_timer0_enable();

 // Finally, do the sketch stuff.

 pinMode(LED_BUILTIN, OUTPUT);

}

The loop() in Listing 7-17 just blinks the LED as usual.

Listing 7-17. Low-power blink, loop() function

void loop() {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(1000);

 digitalWrite(LED_BUILTIN, LOW);

 delay(1000);

}

The sketch uses 1006 bytes of Flash RAM now, which is obviously more

than the standard blink sketch would use. In larger sketches, the overhead

should be less.

7.4.4. The Power Functions
As mentioned earlier, there are useful power handling functions in the

AVRLib. These are, for the ATmega328P, as shown in Table 7-22.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

407

Not all devices have these functions; it’s another one of those

configuration things. The iom328p.h header file sets up the appropriate

functions which are available for peripheral devices on the ATmega328P.

Table 7-22. AVRLib power functions

Function Name Description

power_adc_enable() enables power to the AdC

power_adc_disable() disables power to the AdC

power_spi_enable() enables power to the SpI

power_spi_disable() disables power to the SpI

power_timer0_enable() enables power to Timer/counter 0

power_timer0_disable() disables power to Timer/counter 0

power_timer1_enable() enables power to the Timer/counter 1

power_timer1_disable() disables power to the Timer/counter 1

power_timer2_enable() enables power to the Timer/counter 2

power_timer2_disable() disables power to the Timer/counter 2

power_twi_enable() enables power to the TWI

power_twi_disable() disables power to the TWI

power_usart0_enable() enables power to uSART0 (the only one on the

ATmega328p)

power_usart0_disable() disables power to uSART0 (the only one on the

ATmega328p)

__power_all_enable() enables power to all peripherals

__power_all_disable() disables power to all peripherals

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

408

 You are required to manually turn off the Analogue Comparator
if you do not need it. There doesn’t appear to be a utility function to
do so in the AVRLib code.

7.5. Bootloaders
The ATmega328P on an Arduino board is supplied already programmed

with a bootloader. This is a small area of the Flash RAM set aside for a

special program, and when the device is reset or powered on, a jump to the

bootloader takes place.

The standard Uno bootloader delays startup of the ATmega320P for a

brief period, to check that no programming commands are being received

on the USART pins (D0 and D1). If there are no commands, the application

code starts normally; and the blink sketch, or whatever you programmed

last, starts executing.

If there are specific commands being read, then the bootloader

starts running those commands and may, depending on what it is being

commanded to do, overwrite the previously uploaded code with a new

version or just upload a new sketch to the application area of the Flash

RAM. The bootloader cannot update itself with a new version.

7.5.1. Flash Memory
The flash memory in the ATmega328P is divided into two sections:

• The application section – This is where your sketch

code is written to by the bootloader or the ICSP device.

• The bootloader section, or BLS – This is where the

bootloader lives.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

409

There are fuses, BOOTSZ1:0 and BOOTRST, to determine the size and

address of the bootloader sections; and, in the case of the BOOTRST fuse,

it determines whether the device starts executing the bootloader or the

application code on startup and/or reset.

 While it is possible and, indeed, permitted for the bootloader to
write to the application section, the converse is not true. The
application cannot access the bootloader section.

You should also note that the whole of flash RAm can be used as
the application section if no bootloader is required. This seems to be
easily done simply by using an ICSp device to do the programming.

The sections are considered completely separate by the device, and

they can have different protection levels. This protection is determined

by special lock bits. Boot Loader Lock Bits 0 protect the application

section, while Boot Loader Lock Bits 1 protect the bootloader section.

There are two other lock bits that protect the entire ATmega328P from

either being reprogrammed or having its Flash RAM read out.

7.5.2. Lock Bits
The lock bits can be set in software, in serial or parallel programming

mode. To clear the bootloader lock bits, a full chip erase command must

be given. It may not be possible, but I have not checked this on my own

devices – for obvious reasons, to ever unlock the device for programming if

the device lock bits have been set.

7.5.2.1. Device Lock Bits

The device lock bits prevent anyone from reading or changing the contents

of the AVR microcontroller. Those are lock bits LB1 and LB2 and have the

following modes and settings.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

410

Table 7-23. Device lock bits 0

MODE LB02 LB01 Description

1 1 1 The device is totally unprotected. It can be programmed or

flash and eepRom contents read at will.

2 1 0 programming the device – flash or eepRom – is disabled

in serial or parallel mode. The fuse bits are also locked. Any

code already programmed can still be read.

3 0 0 programming and reading the device – flash or eepRom –

is disabled in serial or parallel mode. The fuse bits are also

locked.

The default is LB Mode 1 which allows the device to be programmed

and verified (read back) as required.

 In case you are wondering, serial programming is when either an
ICSp device or a high-voltage serial programmer is used and requires
only a few pins; parallel, on the other hand, requires many more pins
and is uncommon outside of large establishments which need to
program many devices at once.

There are very good descriptions and circuit diagrams of both
methods at nick gammon’s blog [www.gammon.com.au/
forum/?id=12898] if you are interested.

 As with fuses, lock bits are considered programmed when at
0binary and unprogrammed when 1binary.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

http://www.gammon.com.au/forum/?id=12898
http://www.gammon.com.au/forum/?id=12898

411

7.5.2.2. Bootloader Lock Bits

With the two sets of lock bits, the following options can be selected. Details

follow for the BLBn modes mentioned:

• The entire Flash RAM can be protected from a software

update – BLB0 Mode 2 plus BLB1 Mode 2.

• Only the bootloader section can be protected – BLB0

Mode 1 and BLB1 Mode 2 or 3.

• Only the application section can be protected – BLB0

Mode 2 or 3 and BLB1 Mode 1.

• The entire Flash RAM can be unprotected – BLB0 Mode

1 plus BLB1 Mode 1.

7.5.2.2. Bootloader Lock Bits 0

These bits protect the application section of the device. There are two bits

here, BLB01 and BLB02; and these are set according to a mode, known as

BLB0 Mode. Table 7-24 summarizes the different modes:

Table 7-24. Bootloader lock bits 0

MODE BLB02 BLB01 Description

1 1 1 The application section is totally unprotected

2 1 0 The Store program memory (Spm) instruction is not allowed

to write to the section. The application section is fully

protected

(continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

412

 If interrupt vectors are located in the bootloader section,
interrupts will be disabled while code is executing from the
application section.

7.5.2.2. Bootloader Lock Bits 1

These bits protect the bootloader section of the device. There are two bits

here, BLB11 and BLB12; and these are set according to a mode, known as

BLB1 Mode. Table 7-25 summarizes the different modes:

MODE BLB02 BLB01 Description

3 0 0 The Spm instruction cannot write to the application section;

and, at the same time, the Load program memory (Lpm)

instruction cannot read from it if executing from the

bootloader. See note in the following.

4 0 1 The Lpm instruction, if executing from the bootloader, is not

allowed to read from the application section. See note in

the following.

Table 7-24. (continued)

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

413

 If interrupt vectors are located in the application section,
interrupts will be disabled while code is executing from the
bootloader section.

7.5.3. Installing the Uno (Optiboot) Bootloader
The Uno bootloader is around 500 bytes in size, so takes up less of your

precious Flash RAM when installed. It is found, should you wish to

examine it in detail, in $ARDINST/bootloaders/optiboot/optiboot.c.

Although it’s commonly referred as the Uno bootloader, it is, in fact,

quite easily installable into other devices. The comments in the source

code mention that it is compatible with both the Duemilanove and the

Diecimila and other ATmega168- or AtMega328P-based devices.

Table 7-25. Bootloader lock bits 0

MODE BLB12 BLB11 Description

1 1 1 The bootloader section is unprotected and can be written

to, but not by code running in the application section

2 1 0 The Store program memory (Spm) instruction is not

allowed to write to the section. The bootloader section

is fully protected

3 0 0 The Spm instruction cannot write to the bootloader section;

and, at the same time, the Load program memory

(Lpm) instruction cannot read from it if executing from

the application section. See note in the following.

4 0 1 The Lpm instruction, if executing from the application

section, is not allowed to read from the bootloader

section. See note in the following.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

414

If you wish to use a much smaller bootloader on your Duemilanove, for

example, and save 1.5 Kb of Flash RAM for your own programs, it’s easy:

• Close the IDE if it is open.

• Open the file $ARDINST/boards.txt in your favorite

text editor.

• Find this line, for the ATmega328P variant:

diecimila.menu.cpu.atmega328.upload.maximum_size=30720

• Change it to the following:

diecimila.menu.cpu.atmega328.upload.maximum_size=32256

• Find this line – it’s a single line which has wrapped

around on this page:

diecimila.menu.cpu.atmega328.bootloader.file= atmega/

ATmegaBOOT_168_atmega328.hex

• Change it to the following single line, not wrapped as

follows:

diecimila.menu.cpu.atmega328.bootloader.file= optiboot/

optiboot_atmega328.hex

• Save the file.

• Open the IDE again.

• Make sure that the correct board is selected under

Tools ➤ Boards.

• Choose Tools ➤ Burn Bootloader.

You now have a smaller, faster bootloader and an additional 1.5 Kb of

flash for your program – and all for free.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

415

7.5.4. Optiboot Bootloader Operation
When the device is powered on, or reset, and if the BOOTRST fuse is set to

enable the bootloader to be executed at startup, then the bootloader code

for the device is executed.

One of the first tasks that the bootloader does is to check the MCUSR to

determine if this was an External Reset or not. It does this by checking the

EXTRF bit in the MCUSR. If that bit is set, then the device was reset by pulling

pin 1, RST low, and not by a power-on, Watchdog, or BOD reset. This could

have been done by the user pressing the reset button on the Arduino board

or by the programming device using the DTR pin to pull the ATmega328P’s

RST pin low. In any case, bit EXTRF will have been set.

In the case when this bit is not set, the bootloader assumes that the

device is not about to be reprogrammed and jumps immediately to the

application code, bypassing the rest of the bootloader itself. If the bit is set,

then the bootloader continues executing.

The Watchdog Timer is set to fire after 1 second, the onboard LED is

flashed once to indicate that it is waiting, and an infinite loop is entered to

wait for characters coming in over the USART. If nothing is received after

the 1 second timeout by the Watchdog, then the device will reset again but

this time by the Watchdog. On restarting from a Watchdog-induced reset,

the EXTRF bit in the MCUSR will no longer be set – the WDRF bit, on the other

hand, will be set – so the application code is immediately executed.

The bootloader, if it continues executing, must have read at least 1

byte from the USART. These bytes are assumed to be commands from a

subset of the STK500 communications protocol – the Optiboot bootloader

currently only implements a subset of the STK500 instructions – and these

commands are used to communicate with, usually, avrdude.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

416

It is beyond the scope of this book to delve into the various bootloader

commands as they really have little to do with application programming.

Suffice it to say that the bootloader sits in a loop, reading characters from

the USART and acting upon them, in addition to resetting the Watchdog

Timer to prevent the device being reset by the Watchdog and messing up

the programming.

Should you really wish to examine the Optiboot bootloader, there

is a compilation listing for the ATmega328P, in the location $ARDINST/

bootloaders/optiboot/optiboot_atmega328.lst – it does make

interesting reading.

ChApTeR 7 ATmegA328p ConfIguRATIon And mAnAgemenT

417© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_8

CHAPTER 8

ATmega328P
Hardware: Timers
and Counters
This chapter and the next look at the hardware features of the ATmega328P

and should link up with the information presented in Chapters 2 and 3.

You should, I hope, see how the Arduino Language talks to the hardware

described in these chapters. This chapter starts by looking, long and hard,

at the facilities of the ATmega’s timer/counters, while the following chapter

delves into the ADC and serial communications hardware, the USART.

8.1. Timer/Counters
The Atmega328P has a total of three timer/counters named Timer/counter

0, Timer/counter 1, and Timer/counter 2. The first and last of these are

both 8-bit timer/counters and have a maximum value of 255, while Timer/

Counter 1 is 16 bits and its maximum is 65,535.

At power on, or reset, all timer/counters are disabled and must be

enabled in software. The Arduino’s init() function does a lot of timer/

counter initialization so that the millis(), micros(), and analogWrite()

functions work.

418

Timer/counters are so called because they have two separate

functions. They can

• Count up and down depending on the mode,

with a regular clock source based off of the AVR

microcontroller’s system clock. This is when it acts as a

timer.

• Count up, and down, based on an external rising or

falling edge attached to a specific pin. This is when it

acts as a counter.

 The data sheet for the ATmega328P advises that when setting
various timer/counter modes, any output pins affected should be set
to OUTPUT after setting the required modes.

In much of what follows, you may see references to TOP, MAX, and/

or BOTTOM. These are definitions that are used in the data sheet for the

ATmega328P and refer to the following:

• BOTTOM is easy. It is always zero.

• MAX is also easy. It is always the maximum value that

can be held in the timer/counter’s TCNTn register

according to however many bits the timer/counter is

configured for. This is calculated as 2bits – 1.

For Timer/counters 0 and 2, this is always 8 bits, and

so MAX always equals 255. For Timer/counter 1, MAX

varies as follows:

• In 8-bit mode, MAX = 255.

• In 9-bit mode, MAX = 511.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

419

• In 10-bit mode, MAX = 1,023.

• In 16-bit mode, MAX = 65,535.

• TOP depends on the timer/counter’s mode and is either

MAX for some modes or as defined by various other

timer/counter registers such as OCRnA, OCRnB, ICR1, etc.

8.1.1. Timer/Counter 0 (8 Bits)
This timer/counter has eight different modes of operation defined by the

Waveform Generation bits WGM02:0 in the registers TCCR0A and TCCR0B

(Timer/counter 0 Control Registers A and B). Bit WGM02 is found in TCCR0B,

while WGM01 and WGM00 are in TCCR0A.

Table 8-1 shows the various settings for the modes available in Timer/

counter 0.

Table 8-1. Timer/counter 0 modes

Mode WGM02–
WGM00

TOP OCR0x
Updated

TOV0 Set at Mode of Operation

0 000 255 now 255 normal

1 001 255 ToP 0 Pwm, Phase Correct

2 010 oCr0A now 255 CTC

3 011 255 0 255 Pwm, Fast

5 101 oCr0A ToP 0 Pwm, Phase Correct

7 111 oCr0A 0 ToP Pwm, Fast

Modes 4 and 6 are reserved and should not be configured.

When you write a new value to register OCR0x, the value doesn’t get

written until the timer/counter’s value TCNT0 reaches that shown in the

preceding table, where “NOW” means that the new value is written as soon

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

420

as your code executes it and any other value means that the new value will

be written when TCNT0 reaches that given value.

The various timer/counter modes are explained later in this chapter.

8.1.2. Timer/Counter 1 (8, 9, 10, and/or 16 Bits)
This timer/counter has 16 different modes of operation defined by the

Waveform Generation bits WGM13:0 in the registers TCCR1A and TCCR1B

(Timer/counter 1 Control Registers A and B). Bits WG13 and WGM12 are

found in TCCR1B, while WGM11 and WGM10 are in TCCR1A.

Table 8-2 shows the various settings for the modes available in Timer/

counter 1.

Table 8-2. Timer/counter 1 modes

Mode WGM13–
WGM10

TOP OCR1x
Updated

TOV1
Set at

Mode of Operation

0 0000 65535 now 65535 normal

1 0001 255 ToP 0 Pwm, Phase Correct 8 bit

2 0010 511 ToP 0 Pwm, Phase Correct 9 bit

3 0011 1023 ToP 0 Pwm, Phase Correct 10

bit

4 0100 oCr1A now 65535 CTC

5 0101 255 0 ToP Pwm, Fast 8 bit

6 0101 511 0 ToP Pwm, Fast 9 bit

7 0101 1023 0 ToP Pwm, Fast 10 bit

8 1000 iCr1 0 0 Pwm, Phase and

Frequency Correct

(continued)

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

421

Mode 13 is reserved and should not be configured.

When you write a new value to register OCR1x, the value doesn’t get

written until the timer/counter’s value TCNT1 reaches that shown in the

preceding table, where “NOW” means that the new value is written as soon

as your code executes it and any other value means that the new value will

be written when TCNT1 reaches that given value.

 Timer/counter 1 has an extra control register, TCCR1C, which
the other two timer/counters don’t have.

The various timer/counter modes are explained later in this chapter.

8.1.3. Timer/Counter 2 (8 Bits)
This timer/counter has eight different modes of operation defined by the

Waveform Generation bits WGM22:0 in the registers TCCR2A and TCCR2B

(Timer/counter 2 Control Registers A and B). Bit WGM22 is found in TCCR2B,

while WGM21 and WGM20 are in TCCR2A.

Table 8-2. (continued)

Mode WGM13–
WGM10

TOP OCR1x
Updated

TOV1
Set at

Mode of Operation

9 1001 oCr1A 0 0 Pwm, Phase and

Frequency Correct

10 1010 iCr1 ToP 0 Pwm, Phase Correct

11 1011 oCr1A ToP 0 Pwm, Phase Correct

12 1100 iCr1 now 65535 CTC

14 1110 iCr1 0 ToP Pwm, Fast

15 1111 oCr1A 0 ToP Pwm, Fast

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

422

Table 8-3 shows the various settings for the modes available in Timer/

counter 2.

Table 8-3. Timer/counter 2 modes

Mode WGM22–
WGM20

TOP OCR2x
Updated

TOV2 Set at Mode of Operation

0 000 255 now 255 normal

1 001 255 ToP 0 Pwm, Phase Correct

2 010 oCr2A now 255 CTC

3 011 255 0 255 Pwm, Fast

5 101 oCr2A ToP 0 Pwm, Phase Correct

7 111 oCr2A 0 ToP Pwm, Fast

Modes 4 and 6 are reserved and should not be configured.

When you write a new value to register OCR2x, the value doesn’t get

written until the timer/counter’s value TCNT2 reaches that shown in the

preceding table, where “NOW” means that the new value is written as soon

as your code executes it and any other value means that the new value will

be written when TCNT2 reaches that given value.

The various timer/counter modes are explained later in this chapter.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

423

8.1.4. Timer/Counter Clock Sources
The timer/counters all have their own clock sources, most of which are

based on the system clock, and each timer/counter has its own dedicated

prescaler and this can be set to various values, to divide the system clock

giving the timer/counter’s clock speed or, alternatively, to clock on an

external pin’s rising, or falling, edge.

While all three timer/counters have mostly the same prescaler settings,

Timer/counter 2 does not have the ability to be externally clocked,

but it does have the ability to run with divide-by-32 and divide-by-128

prescalers, which the others cannot. It can also be configured to run

in asynchronous mode with a 32.768 KHz crystal attached to the TOSCn

pins. This is beyond the scope of this book, however, as the Arduino uses

those two pins for a 16 MHz crystal, thus rendering asynchronous mode

unusable.

Table 8-4 shows the various clock sources for the three timer/counters.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

424

Ta
bl

e
8-

4.
 T

im
er

/c
ou

n
te

r
cl

oc
k

so
u

rc
es

Pr
es

ca
le

r
Ti

m
er

 0

CS
02

–C
S0

Ti
m

er
 1

CS

12
–C

S0
Ti

m
er

 2

CS
22

–C
S0

Fr
eq

ue
nc

y
Pe

rio
d

di
sa

bl
ed

00
0

00
0

00
0

-
-

di
vi

de
 b

y
1

00
1

00
1

00
1

16
 m

hz
0.

06
25

 m
ic

ro
se

co
nd

s

di
vi

de
 b

y
8

01
0

01
0

01
0

2
m

hz
0.

5
m

ic
ro

se
co

nd
s

di
vi

de
 b

y
32

-
-

01
1

50
0

Kh
z

(0
.5

 m
hz

)
2

m
ic

ro
se

co
nd

s

di
vi

de
 b

y
64

01
1

01
1

10
0

25
0

Kh
z

(0
.2

5
m

hz
)

4
m

ic
ro

se
co

nd
s

di
vi

de
 b

y
12

8
-

-
10

1
12

5
Kh

z
(0

.1
25

 m
hz

)
8

m
ic

ro
se

co
nd

s

di
vi

de
 b

y
25

6
10

0
10

0
11

0
62

.5
 K

hz
16

 m
ic

ro
se

co
nd

s

di
vi

de
 b

y
10

24
10

1
10

1
11

1
15

.6
25

 K
hz

64
 m

ic
ro

se
co

nd
s

ex
te

rn
al

 fa
lli

ng
11

0
pi

n
T0

11
0

pi
n
T1

-
-

-

ex
te

rn
al

 ri
si

ng
11

1
pi

n
T0

11
1

pi
n
T1

-
-

-

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

425

 The preceding Pin T0 is physical pin 6 on the ATmega328P,
which is PD4 in AVr terminology or D4 in the Arduino Language. Pin
T1 is physical pin 11, also known as PD5 in the AVr terminology, and
corresponds to Arduino pin D5.

8.1.5. Timer/Counter Operating Modes
As you have seen earlier, the three timer/counters can operate in a number

of different modes. Not all timer/counters have the same modes though.

Tables 8-1 through 8-3 show the modes available for each timer/counter

individually.

8.1.5.1. Timers Disabled

This is not really a timer/counter mode, but setting the CSn2, CSn1, and

CSn0 bits to zero in register TCCRnB will disable the timer/counters. The

preceding “n” refers to the timer/counter in question.

Disabling Timer/counter 0 will disable the ability to use the millis()

and micros() functions if you are using the Arduino Language. It will also

prevent the use of analogWrite() on pins D5 and D6.

Disabling Timer/counter 1 will prevent the use of analogWrite() on

pins D9 and D10.

Disabling Timer/counter 2 will prevent the use of analogWrite() on

pins D3 and D11 and will also affect the ability of the tone() function to be

used as that needs Timer/counter 2.

Due to the usefulness of the various timer/counters, it is unlikely that

they will ever be disabled. However, should your code not require any

of the timer/counters, you can save a few microAmps of power

consumption by disabling power to the timer/counters in the PRR, by

setting the required bits PRTIMn, where, as ever, “n” refers to the timer/

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

426

counter number. Section 7.4.2, “Power Reduction Register,” in Chapter 7

discusses the PRR in some detail.

 should you decide do this, Timer/counter 2 must be running
either in synchronous mode off of the internal oscillator or on a
16 mhz crystal as per the Arduino. if the timer is running in
asynchronous mode with a 32 Khz or higher crystal, plus AS2 set in
register ASSR, then writing a 1binary to PRTIM2 in the PRR register will
not stop Timer/counter 2.

This latter mode of operation is, of course, not possible on an Arduino
board as the 16 mhz crystal is attached to the two pins that an
external 32 Khz crystal needs to use for asynchronous mode. on a
bare- bones AVr microcontroller though, this need not be the case.

8.1.5.1.1. Disabling the Timers

Table 8-5 shows the settings required to disable the timer/counters.

Table 8-5. Disable timer/counter settings

Timer Mode TTCRnB Bits Value

0 0 CS02–CS00 000binary

1 0 CS12–CS10 000binary

2 0 CS22–CS20 000binary

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

427

8.1.5.2. Normal Mode

In normal mode, a timer/counter starts at zero, but this can be changed

by writing a new value to TCNTn, which counts upward by 1 every time its

clock source ticks, until it reaches MAX – see preceding text for details of

MAX, BOTTOM, and TOP in relation to the three timer/counters – which is 255

for Timer/counter 0 and 2 or 65,535 for Timer/counter 1 in this mode.

At MAX, the timer/counter’s value, in TCNTn, will roll over from MAX to

zero – BOTTOM – on the following tick of the timer/counter’s clock.

A number of things happen when the timer/counter rolls over or

overflows:

• The Timer Overflow bit, TOVn, is set in the Timer

Interrupt Flag Register, TIFRn, on the same clock tick as

the timer/counter’s value became zero – after MAX + 1

counts – assuming that you didn’t change TCNTn. This

flag is only ever set unless your program uses the timer/

counter’s Overflow interrupt. It will remain set until

manually cleared by your sketch by writing a 1binary to it.

• The Timer Overflow interrupt will be fired, if the Timer

Overflow interrupt enable bit, TOIEn, is set in the Timer

Interrupt Mask Register TIMSKn and global interrupts

are enabled. In this case, the TOVn bit will be cleared

automatically when the interrupt service routine is

entered.

• Pin OCnA will perform an action. The action depends on

the values in the COMnA1:0 bits, as described in Table 8-6,

when TCNTn matches with OCRnA.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

428

• Pin OCnB will perform an action. The action depends

on the values in the COMnB1:0 bits, as described in

Table 8-7, when TCNTn matches with OCRnB.

Table 8-6. COMnA1:0 settings in normal mode

COMnA1-COMnA0 Description

00 no effect on pin OCnA

01 Pin OCnA toggles on match with OCRnA

10 Pin OCnA is cleared (LOW) on match with OCRnA

11 Pin OCnA is set (HIGH) on match with OCRnA

Table 8-7. COMnB1:0 settings in normal mode

COMnB1-COMnB0 Description

00 no effect on pin OCnB

01 Pin OCnB toggles on match with OCRnB

10 Pin OCnB is cleared (LOW) on match with OCRnB

11 Pin OCnB is set (HIGH) on match with OCRnB

While running in this mode, you can, if you wish, write a value to the

timer/counter’s TCNTn register, which can reduce the time it takes for the

Overflow bit to be set or the interrupt to be fired.

8.1.5.2.1. Setting Normal Mode

Table 8-8 shows the settings required to put the timer/counters into

normal mode.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

429

Note that bits WGMn0 and WGMn1 are found in register TCCRnA, bit WGMn2

is found in TCCRnB and, for Timer/counter 1 only, WGM13 is also found in

TCCR1B.

8.1.5.2.2. Example Sketch

Atmel/Microchip’s data sheets advise that the Output Compare unit can be

used to generate interrupts at some given time, Using the Output Compare

unit to generate waveforms in Normal mode is not recommended, since this

will occupy too much of the CPU time.

So it sounds like we should use Overflow interrupts for useful

purposes, and this is what the Arduino uses for its millis() function and

so on, but can we use OCR0A and OCR0B to generate interrupts as well? Well,

Listings 8-1 to 8-3 tell all.

 i did originally write this code using Timer/counter 0, but as the
TIMER0_OVF handling routine in the Arduino library is already using
that timer/counter’s overflow interrupt, i got linker errors due to there
being two copies of the interrupt handler. Any Arduino code with this
vector in use will not be able to be compiled with the ide.

Table 8-8. Normal mode settings

Timer Mode Bits Value

0 0 WGM02–WGM00 000binary

1 0 WGM13–WGM10 0000binary

2 0 WGM22–WGM20 000binary

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

430

The sketch initializes Timer/counter 2 with three interrupts in setup().

The three interrupts are

• The Overflow interrupt which will toggle an LED on

pin D13

• The Compare Match A interrupt which will toggle an

LED on pin OC2A which is Arduino pin D12

• The Compare Match B interrupt which will toggle an

LED on pin OC2B which is Arduino pin D11

Listings 8-1, 8-2, and 8-3 show the setup(), loop(), and interrupt

handler code, respectively.

Listing 8-1. Normal timer/counter mode setup() function

//==

// This sketch uses the Timer/Counter 2 as follows:

//

// Overflow Interrupt to toggle LED_BUILTIN (D13)

// COMPA Interrupt to toggle D12

// COMPB Interrupt to toggle D11.

//==

void setup() {

 TCCR2A = 0; ①
 TIMSK2 = ((1 << OCIE2B) | ②
 (1 << OCIE2A) |

 (1 << TOIE2));

 // Set up the compare values. ③
 OCR2A = 8;

 OCR2B = 172;

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

431

 TCCR2B = ((1 << CS22) | ④
 (1 << CS21) |

 (1 << CS20));

 // D11, D12 and D13 are outputs. ⑤
 pinMode(13, OUTPUT);

 pinMode(12, OUTPUT);

 pinMode(11, OUTPUT);

}

 ① This clears the timer register to a known starting

configuration. This enables normal mode.

 ② This enables interrupts on Overflow and Compare

Matches A and B.

 ③ This is a couple of random values to compare

against, for the interrupts to trigger.

 ④ This sets the prescaler to 1024 and starts the timer.

 ⑤ This configures the LED pins as OUTPUT after setting

the timer/counter configuration, as per the data

sheet.

Listing 8-2. Normal timer/counter mode loop() function

void loop() {

 // Nothing happening here, move along now!

}

As you can see, the loop() function is empty – the timer/counter

interrupts take care of flashing the LEDs without needing the loop() to do

anything.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

432

Listing 8-3. Normal timer/counter mode ISRs

// Toggle pin D13 which is PortB pin 5.

ISR(TIMER2_OVF_vect) {

 // Fast pin toggle.

 PINB |= (1 << PINB5);

}

// Toggle pin D12 which is PortB pin 4.

ISR(TIMER2_COMPA_vect) {

 // Fast pin toggle.

 PINB |= (1 << PINB4);

}

// Toggle pin D13 which is PortB pin 3.

ISR(TIMER2_COMPB_vect) {

 // Fast pin toggle.

 PINB |= (1 << PINB3);

}

If you set this up with an LED on pin D13 (or use the built-in LED),

another on pin D12, and a third on pin D11, then they will all flash, so the

interrupts are working. All three will flash at exactly the same rate because

there is an Overflow interrupt every 256 clock ticks, and both OCR2A and

OCR2B will match TCNT2 once every 256 clock ticks also.

The timer/counter is running with a frequency of

F_CPU / prescaler

= 16 MHz / 1024

= 15,625 Hz.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

433

We are toggling every 256 counts of the clock, and it takes two toggles

to make one flash of the LED, so that’s

F_CPU / prescaler / 256 / 2

= 16 MHz / 1024 / 256 / 2

= 30.5176 Hz

And that means we have a flash every 32.768 milliseconds. (The period

is 1/frequency.)

Attaching my Labrador oscilloscope to the LEDs one at a time shows

that they all have the same frequency, and it’s calculated as 31.03 Hz, so it’s

not far off. It’s obviously my ability to accurately place the cursors to get the

correct measurements that is affecting the results, but it’s close enough.

Don’t forget that when an interrupt fires, it disables further interrupts,

plus it takes four clock cycles to process the interrupt handler jump and

another four to return, and those delays are not being considered here.

So we now know that interrupts work in normal mode. What about

toggling the pins by setting the various COM2An and COM2Bn bits to toggle the

pins when there’s a compare match? Listings 8-4 to 8-6 show an amended

sketch to do just that. Note that while D13 still has the same connections,

the LED on D12 has to be moved to D3 because now, we are using the

timer/counter’s hardware to toggle the pins and not the interrupts. The

pins that the hardware toggles for us are OC2A or D11 and OC2B or D3.

Listing 8-4. Getting the timer to flash LEDs, setup()

//==

// This sketch uses the Timer/Counter 2 as follows:

//

// Overflow Interrupt to toggle LED_BUILTIN (D13)

// OC2A to toggle D11

// OC2B to toggle D3.

//==

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

434

void setup() {

 // Initialise Timer/counter 2 in normal mode

 // with OC2A (D11) and OC2B (D3) toggling on match.

 TCCR2A = ((1 << COM2A0) | (1 << COM2B0)); ①

 // Enable overflow interrupt (on D13 = PB5) ②
 TIMSK2 = (1 << TOIE2);

 // Set up the compare values. ③
 OCR2A = 8;

 OCR2B = 172;

 // Prescale by 1024, and start the timer. ④
 TCCR2B = ((1 << CS22) |

 (1 << CS21) |

 (1 << CS20));

 // D11, D12 and D3 are outputs. ⑤
 pinMode(13, OUTPUT);

 pinMode(11, OUTPUT);

 pinMode(3, OUTPUT);

}

 ① Here we put the timer/counter into normal mode

again, but configure it to also toggle pins OC2A and

OC2B when there is a compare match. This does not

require the use of interrupts – the toggling of the

pins is controlled by the timer alone. The CPU is not

involved.

 ② We still use the Overflow interrupt to toggle D13 as

before. The CPU will be involved here.

 ③ I’m using the same values as before.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

435

 ④ The timer/counter’s clock source is configured as

divided by 1024, and this starts the timer/counter

running.

 ⑤ As before, we have to set the output pins after setting

up the timer/counter.

As before, the loop() function is empty and has nothing to do.

Listing 8-5. Getting the timer to flash LEDs, loop()

void loop() {

 // Nothing to see here, move along now!

}

Finally, the code in Listing 8-6 now has a single ISR. This one is

required for the Overflow interrupt. The two Compare Match interrupts

are no longer required as the timer/counter will toggle the LEDs without

the use of the main CPU.

Listing 8-6. Getting the timer to flash LEDs, ISR

// Toggle pin D13 which is PortB pin 5.

ISR(TIMER2_OVF_vect) {

 // Fast pin toggle.

 PINB |= (1 << PINB5);

}

It looks like those settings work too. The frequency and period of the

flashing LEDs are exactly as before on all the pins – 30.5176 Hz on all three

LEDs. We are still getting one flash every 256 counts on the timer.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

436

8.1.6. Clear Timer on Compare Match Mode
In Clear Timer on Compare Match (CTC) mode, the timer/counter counts

upward from BOTTOM (or from the value your code wrote to TCNTn) until

it reaches TOP which is the value stored in OCRnA, whereupon, on the next

timer clock pulse, the value in TCNTn will be cleared to zero. This is mode 2

for Timer/counter 0 and Timer/counter 2 and mode 4 for Timer/counter

1. Timer/counter 1 also has mode 12 CTC, which is discussed separately in

the following.

You can change the values in OCRnA and/or OCRnB at any time, but you

must be careful as double buffering is not enabled on those registers in

this mode. Any changes you make are written directly to the register(s) at

the time that your sketch does so. In other modes, these registers do not

get changed until a certain point in the count – the values are held in a

working register, buffer, until the specific point is reached. This prevents

what the data sheet refers to as “glitches” in those other modes. There is no

such protection in CTC mode.

If you change the value to a new value close(r) to BOTTOM (zero) while the

counter is running with a low, or no prescaler, then CTC mode might miss

a match if the current value in TCNTn is higher than the value just written to

the OCRnx register. It will count right up to the timer/counter’s maximum

value and then roll over to zero before it can start the normal sequence of

events again – a glitch, in other words. It is better to control the changes to

the OCRnx registers by utilizing the Overflow interrupt to make the changes –

that way, it happens always at BOTTOM and should avoid the glitches.

At TOP, the timer/counter’s value, in TCNTn, will roll over from TOP to

zero – BOTTOM – on the following tick of the timer/counter’s clock.

Some things happen when the timer/counter clears:

• The Timer Overflow bit, TOVn, is set in the Timer

Interrupt Flag Register, TIFRn, on the same clock tick

as the timer/counter’s value became zero – after TOP

+ 1 counts, assuming that you didn’t change TCNTn.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

437

This flag is only ever set, and, unless your program has

enabled the timer/counter’s Overflow interrupt, it will

remain set until manually cleared by your sketch. You

manually clear this bit by writing a 1binary to it.

• The Timer Overflow interrupt will be fired, if the Timer

Overflow interrupt enable bit, OCFnA, is set in the Timer

Interrupt Mask Register TIMSKn and global interrupts

are enabled. In this case, the TOVn bit will be cleared

automatically when the interrupt service routine is

entered.

• Pin OCnA will perform an action. The action depends

on the values in the COMnA1-0 bits, as described in

Table 8-9, when TCNTn matches with OCRnA.

Table 8-9. COMnA1:0 settings in CTC mode

COMnA1-COMnA0 Description

00 no effect on pin OCnA

01 Pin OCnA toggles on match with OCRnA plus one clock pulse

10 Pin OCnA is cleared (LOW) on match with OCRnA plus one

clock pulse

11 Pin OCnA is set (HIGH) on match with OCRnA plus one clock

pulse

• Pin OCnB will perform an action. The action depends

on the values in the COMB1-0 bits, as described in

Table 8-10, when TCNTn matches with OCRnB.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

438

 The value in OCRnA is always the TOP value. if OCRnB is higher
than the value in OCRnA, then there will be no effect on the OCnB
pin, as the value in TCNTn will never reach the value in OCRnB. You
will only see the desired effect on the OCnB pin if the value in OCRnB
is less than, or equal to, the value in OCRnA.

The data sheet for the ATmega328P doesn’t make this clear, and
many online forums have lots of confusion on the matter.

Timer/counters 0 and 2 don’t have any other CTC modes, so the

preceding description applies to those counters. Timer/counter 1 has two

CTC modes, modes 4 and 12. In mode 4 CTC, Timer/counter 1 acts exactly

as described earlier.

When Timer/counter 1 is configured in CTC mode 12, the TOP value

is defined by the value in the ICR1 or Input Capture Register, and this is

attached to the Input Capture Unit for this timer/counter, as described

in Section 8.3, “Input Capture Unit.” The Input Capture Unit copies the

Timer/counter 1 value from TCNT1 to the ICR1 register each time an “event”

occurs. This value is then used as TOP in CTC mode 12 for Timer/counter 1.

In CTC mode 12, the following will occur when TCNT1 matches ICR1:

Table 8-10. COMnB1:0 settings in CTC mode

COMnB1-
COMnB0

Description

00 no effect on pin OCnB

01 Pin OCnB toggles on match with OCRnB plus one clock pulse

10 Pin OCnB is cleared (LOW) on match with OCRnB plus one clock pulse

11 Pin OCnB is set (HIGH) on match with OCRnB plus one clock pulse

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

439

• Bit ICF1 is set in the Timer/counter 1 Interrupt Flag

Register TIFR1. This bit will be cleared if the Input

Capture interrupt is enabled by setting bit ICIE1 in

register TIMSK1, when the interrupt routine is executed.

If interrupts are not used, then your sketch must clear

the ICF1 flag by writing a 1binary to it.

• The Input Capture interrupt will be fired, automatically

clearing the ICF1 flag, if configured to do so.

• The effect of the COM1A1:0 and COM1B1:0 bits are exactly

as described earlier.

While running any timer/counter in any CTC mode, you can, if you

wish, write a value to the timer/counter’s counter register, TCNTn, which

can reduce the time it takes for the Overflow bit to be set or the interrupt to

be fired. The interrupt itself can write a new value to TCNTn if necessary.

8.1.6.1. Setting CTC Mode

Table 8-11 shows the settings required to put the timer/counters into CTC

mode.

Table 8-11. CTC mode settings

Timer Mode Bits Value

0 2 WGM02–WGM00 010binary

1 4 WGM13–WGM10 0100binary

1 12 WGM13–WGM10 1100binary

2 2 WGM22–WGM20 010binary

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

440

Bits WGMn0 and WGMn1 are found in register TCCRnA, bit WGMn2 is found in

TCCRnB, and, for Timer/counter 1 only, WGM13 is also found in TCCR1B.

The maximum frequency at which the OCnA and/or OCnB pins will

toggle is given by

F = F_CPU / (2 * prescaler * (1 + OCRnA))

This, if OCRnA is zero, makes the maximum frequency possible equal to

F_CPU / (2 * prescaler))

The value to be loaded into OCRnA is calculated as

OCRnA = (F_CPU / (F * 2 * prescaler)) - 1

for any desired frequency “F” and provided that the answer fits onto the

appropriate timer/counter’s OCRnA register.

8.1.6.2. Example Sketch

Listings 8-7 and 8-8 illustrate a sketch which sets up Timer/counter 2 in

CTC mode 2, turns off all interrupts from the timer/counter, and sets pins

OC2A and OC2B to toggle whenever the value in TCNT2 matches either that of

OCR2A or OCR2B. TCNT2 will be cleared to zero on the timer clock pulse after

it equals OCR2A.

OCR2A defines the TOP value for this sketch. In Listing 8-7, it is set to 200,

giving 201 counts per cycle. OCR2B is initialized to the value 86, which is

less than that of OCR2A, so it will be affected by the running timer/counter

and will flash. The prescaler is again 1024, giving a frequency of

F_CPU / (2 * prescaler * (1 + OCR2A))

Therefore, the expected frequency of both LEDs will be

16e6 / (2 * 1024 * (1 + 200))

=> 16e6 / (2048 * 201)

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

441

=> 16e6 / 411648

= 38.868159204 Hz

Listing 8-7 is the setup() function for the sketch.

Listing 8-7. CTC example sketch, setup() function

//==

// This sketch uses the Timer/Counter 2 in CTC mode 2 as

// follows:

//

// OC2A to toggle D11 when TCNT2 matches OCR2A.

// OC2B to toggle D3 when TCNT2 matches OCR2B.

//

// Frequency = F_CPU / (2 * prescaler * (OCR2A + 1)

//==

void setup() {

 // Initialise Timer/counter 2 in CTC mode. (Mode 2) ①
 TCCR2A = ((1 << WGM21) |

 (1 << COM2A0) |

 (1 << COM2B0));

 // Disable interrupts on Timer 2. ②
 TIMSK2 = 0;

 // Set up the compare values. ③
 OCR2A = 200;

 OCR2B = 86;

 // Prescale by 1024, and start the timer. ④
 TCCR2B = ((1 << CS22) |

 (1 << CS21) |

 (1 << CS20));

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

442

 // D11 and D3 are outputs. ⑤
 pinMode(11, OUTPUT);

 pinMode(3, OUTPUT);

}

 ① Timer/counter 2 is configured here with CTC mode

2, and both the OC2A (D11) and OC2B (D3) pins toggle

when there is a compare match between TCNT2 and

either OCR2A or ORC2B.

 ② All interrupts are disabled for Timer/counter 2.

 ③ The two required match values are set up here. As

OCR2A is higher than OCR2B, both output pins will be

affected when the counts match.

 ④ This is the point where the timer/counter’s prescaler

is set to divide the system clock by 1024, which starts

the timer/counter running.

 ⑤ The output pins are configured after the timer/

counter, as stated in the data sheet.

Listing 8-8 shows a very empty loop() function.

Listing 8-8. CTC example sketch, loop() function

void loop() {

 // Nothing happening here, move along now!

}

Using my trusty Labrador oscilloscope, I measured a frequency of

39 Hz on both LEDs, so I was close to the expected 38.868159204 Hz.

You will notice that loop() is empty, again. The timer/counter

hardware is doing all the hard work of toggling the LEDs for us. We could

add some code to the loop to do something useful and still have the

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

443

other two LEDS flashing away unaffected. Listings 8-9 and 8-10 show the

changes that need to be made to Listings 8-6 and 8-7 to get the loop()

function working hard!

Add the following line to the setup() function, just after the existing

pinMode() calls.

Listing 8-9. CTC example, setup() function changes

pinMode(LED_BUILTIN, OUTPUT);

Change loop() to the following:

Listing 8-10. CTC example, loop() function changes

void loop() {

 // Toggle D13 and use a delay().

 digitalWrite(LED_BUILTIN, LOW);

 delay(1000);

 digitalWrite(LED_BUILTIN, HIGH);

 delay(1000);

}

Compile and upload the sketch. The LED on D13 will toggle at the usual

rate of once every second, controlled by loop(), while the other two LEDs

are completely unaffected by the calls to delay() and continue “flashing”

at a frequency of almost 39 Hz. I use quotes around “flashing” as the rate

is quite fast on a 16 MHz Arduino, so the LEDs appear on if you stare at

them directly. If you see them in your peripheral vision, you will make out

a flashing.

As the frequency is roughly 39 Hz, the period is 25.64 milliseconds,

or 12.82 milliseconds on and 12.82 milliseconds off. Pretty quick, but you

can see it – in your peripheral vision. The human eye is truly amazing –

sometimes.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

444

 Yes, i know i’m mixing and matching Arduino code and AVr code,
but that’s what happens sometimes. i’ve seen many sketches where
the vast majority was written in Arduino code – it’s far easier on the
eye after all – and only the nitty gritty parts of the code were written in
plain AVr language. This is usually because the facilities of the
ATmega328P being used were not available in the Arduino Language.

8.1.7. PWM Modes
The timer/counters can be configured to generate pulse width modulation

(PWM) on certain pins. As with the modes already discussed, the timer/

counters have a given frequency – which can be changed (see PWM

frequencies in the following) – however, unlike the other modes, the

amount of time that the pins stay HIGH can also be changed, even on the fly

as the code is running.

The frequency of a waveform is the number of times a second that

it moves through a single wave – from crest to crest or trough to trough.

The period is the time it takes to do so. If the frequency is 400 Hz, then the

period is one over that, or 2.5 milliseconds.

In non-PWM modes, the pin connected to the waveform generator is

HIGH for 50% of the time and LOW for the other 50%. With PWM waveforms,

the time that the pin is HIGH in each period is adjustable and not stuck at 50%.

8.1.7.1. Duty Cycle

The amount of time that a pin stays high, during each period, is normally

specified as a percentage and is called the duty cycle. On the Arduino, the

duty cycle for the analogWrite() function calls is simply

(value * 100) / 256

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

445

Calling analogWrite(pin, 128) is setting a duty cycle of 50% – the pin

will be HIGH for 50% of the period and LOW for 50%.

The image in Figure 8-1 was created on a Labrador oscilloscope which

was monitoring pin D9 when the Arduino was executing the statement

analogWrite(9, 128).

Figure 8-1. Phase Correct PWM with 50% duty cycle

In the top-right corner, you can see that the frequency (f) is listed as

489.22 Hz which is approximately 490 Hz as the Arduino documentation

states. That will be the same on all PWM pins except D5 and D6. For those,

as will be explained in the following, the image in Figure 8-2 applies.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

446

This time, the frequency shows as 973.66 Hz and is roughly the

approximate 980 Hz as mentioned in the Arduino documentation. The

documentation is a bit too approximate though as the actual frequency

is only 976.5625 – so my measurement is a tad closer! This example trace

was taken from pin D6; and the statement executing this time, to give a

different graph, was analogWrite(6, 64) for a 25% duty cycle.

The general calculation to work out a duty cycle is

DC = (Time HIGH * 100) / (Time HIGH + Time LOW)

The duty cycle is useful as it causes what appears to be an analogue

voltage on the output pin, rather than a digital HIGH or LOW. The voltage

that appears to be present on the pin, and can be measured, is given by the

formula

DC * HIGH Voltage

So if, for example, the duty cycle is 50% and VCC is 5 V, we appear to see

a voltage of 2.5 V on the output pin. If the duty cycle is 25%, then we appear

Figure 8-2. Fast PWM with 25% duty cycle

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

447

to see only 1.25 V on the output pin. This is why an LED can be made to

fade in brightness or a motor with an appropriate driver can be made to

speed up or down.

8.1.7.2. PWM Frequencies

The Arduino is set up with two fixed PWM frequencies, as explained

earlier, caused by the three timer/counters being run in 8-bit mode with

a divide-by-64 prescaler. Table 8-12 shows the relationship between the

prescaler values and the two PWM frequencies which correspond to the

prescaler value.

If necessary, you can get faster or slower PWM frequencies if your

specific project requires them, by taking over the timer/counters and

changing things around. If you must do this, then the following table will

help you avoid having to do the arithmetic. It assumes a 16 MHz system

clock and an 8-bit counter, like the Arduino.

Table 8-12. Prescaler values and PWM frequencies

Prescaler
Fast PWM
Frequency

Fast PWM
Period

Phase Correct
PWM Frequency

Phase Correct
PWM Period

1 62.5000 Khz 16 31.3725 Khz 31.87

8 7.8125 Khz 128 3.9216 Khz 254.99

32 1.953125 Khz 512 980.3922 hz 1,020

64 976.5625 Hz 1,024 490.1960 Hz 2,040

128 488.28125 hz 2,048 245.098 hz 4,080

256 244.1406 hz 4,096 122.5490 hz 8,160

1024 61.0352 hz 16,384 30.6372 hz 32,640

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

448

 All periods in Table 8-12 are measured in microseconds, or
millionths of a second.

Only Timer/counter 2 can use the 32 and 128 prescaler values in the

preceding table.

Be aware that changing Timer/counter 0 in this fashion will mess up

things like millis() and delay() and such things that rely on a prescaler

of 64 for accuracy.

 The data sheet advises that when measuring Pwm waveforms,
the period is deemed to be measured between each TOP (highest)
value of the counter.

The PWM frequency, in any PWM mode, is changed by changing the

timer/counter’s prescaler.

8.1.7.3. Fast PWM Mode

In Fast PWM mode, the value in register TCNTn will increment from zero –

BOTTOM – until it reaches TOP. On the next clock pulse, TCNTn will be reset

to zero, BOTTOM, and will then continue counting upward again. There are

therefore TOP + 1 steps in each cycle. The TOP value is determined by the

mode and can be

• For all timer/counters, the value 255 – this is the

Arduino default.

• For all timer/counters, the value in register OCRnA.

• For Timer/counter 1 only, the value 511.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

449

• For Timer/counter 1 only, the value 1023.

• For Timer/counter 1 only, the value in register ICR1.

 The data sheet advises that

When changing the TOP value the program must ensure that
the new TOP value is higher or equal to the value of all of the
Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between
the TCNTn and the OCRnx.

This PWM mode is called “single slope” as a graph of TCNTn’s value

would slope upward and then fall immediately back down to zero like a

saw tooth. Figure 8-3 shows the slope of the count in TCNTn as it rises and

resets to zero.

Each timer/counter has two pins upon which it can generate PWM

waveforms. The Arduino initialization carried out in the init() function

discussed in Chapter 2, for each and every sketch, sets all three timer/

counters to run in 8-bit mode with a prescaler of 64 and a TOP value of 255.

Timer/counter 0 is configured to run in Fast PWM mode, while the other

two are configured in Phase Correct PWM mode.

Timer/counters 0 and 2 have two Fast PWM modes, modes 3 and 7.

The differences are as follows:

• In mode 3, TOP is always 255 – this mode is used by the

Arduino.

• In mode 7, TOP is always the value in OCRnA.

Timer/counter 0 runs Fast PWM on Arduino pins D5 and D6, which

correspond to the AVR pins named PD5 and PD6.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

450

Timer/counter 1 has five different Fast PWM modes available for use,

modes 5, 6, and 7, plus modes 14 and 15. The differences are as follows:

• In mode 5, TOP is always 255 and the count in TCNT1 is

always 8 bits – this mode is used by the Arduino.

• In mode 6, TOP is always 511 and the count in TCNT1 is

always 9 bits.

• In mode 7, TOP is always 1023 and the count in TCNT1 is

always 10 bits.

• In mode 14, TOP is always the value in register ICR1, the

Input Capture Unit register.

• In mode 15, TOP is always the value in register OCR1A.

In these Fast PWM timer/counter modes

• There are TOP + 1 cycles.

• When TCNTn is zero, the appropriate PWM pin goes

HIGH.

• When TCNTn equals OCRnA or OCRnB, the pin will go LOW.

The AVR microcontroller can be configured to invert the PWM output

pins OCnA and OCnB, so that they go LOW instead of HIGH and HIGH instead of

LOW.

 it should be obvious, when running in a Fast Pwm mode where
TOP is defined by OCRnA, that the value in OCRnB must be less than
OCRnA or the Pwm will not work on that pin.

Also, in modes where OCRnA defines TOP, then you will be somewhat
restricted in what you can do with pin OCnA.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

451

The Arduino configures Timer/counter 0 to run in Fast Pwm mode
with a prescaler of 64. The other two times/counters are configured
in Phase Correct Pwm mode.

For Fast PWM mode, the PWM frequency is calculated as

F_CPU / (prescaler * (TOP + 1))

This works out on the Arduino boards as 16e6/(64 ∗ 256) or 976.5625

Hz, and this is the rate that Timer/counter 0 runs. Table 8-12 should save

you the effort of working out the PWM frequencies and periods for any

given prescaler.

Figure 8-3 shows the details of Fast PWM with TOP fixed at 255 which is

mode 3 for Timer/counters 0 and 2 or mode 5 for Timer/counter 1.

Figure 8-3. 8-bit Fast PWM with TOP at 255

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

452

 in the preceding diagram, the value in OCRnA is constant as per
the Arduino initialization code. it can be changed in code or in an
interrupt handler, to vary the duty cycle of the Pwm waveform, but
this is not used on the Arduino.

in the following description, everything that applies to OCRnA and
OCnA also applies to OCRnB and OCnB, but the latter are not shown in
the diagram to avoid clutter.

• The jagged line in Figure 8-3 is the value in TCNTn as

it rises from zero (BOTTOM) to TOP which, in the case

of an Arduino board, is set to 255 although this can

be changed as per the data sheet. After 255, the value

drops to zero on the next timer/counter clock pulse.

• The horizontal line is the constant value in OCRnA; in

this example, it is 255 as per Arduino initialization

code. The value in OCRnA can be changed, usually by

the interrupt handler, if the duty cycle is required to

be varied. Changes to the value in OCRnA are double

buffered and applied at BOTTOM when TCNTn has just

become zero.

• The two square wave lines at the bottom represent the

non-inverting and the inverting waveforms generated

on pin OCnA.

• If you look at the line for pin OCnA, the non-inverting

output will be HIGH when TCNTn is zero and will then

go LOW when TCNTn equals OCRnA. At the same time as

the match is made, the timer/counter’s Timer Compare

Match interrupt flag is set.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

453

• The bottom square wave of the two shown is the

inverting output line, and this is simply the opposite to

pin OCnA.

• The timer/counter’s overflow flag will be set when

TCNTn reaches BOTTOM.

The data sheet advises that This high frequency makes the Fast PWM

mode well suited for power regulation, rectification, and DAC applications.

High frequency allows physically small sized external components (coils,

capacitors), and therefore reduces total system cost. It is not advised for

motors as they much prefer Phase Correct PWM.

So what happens in Fast PWM? There are many things:

• When TCNTn equals TOP, the Timer n Overflow interrupt

bit TOVn is set in register TIFRn, and if enabled, this

interrupt can be used to update the value in the OCRnA

and/or OCRnB registers to change the duty cycle of

the PWM waveform. In this timer/counter mode, the

OCRnA and OCRnB registers are double buffered; and the

value written by your sketch, to these registers, will not

be copied into the register until TCNTn resets to zero

(BOTTOM). Only then do the register values change.

This bit is not cleared unless your sketch clears it

or if the interrupt handler is enabled by setting bit

TOIEn in register TIMSKn in which case, assuming

also that global interrupts are enabled, the bit will

be automatically cleared. To clear the bit manually,

in a sketch, you must write a 1binary to it.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

454

• When TCNTn reaches OCRnA, then bit OCFnA is set in

register TIFRn. This bit is not cleared unless your sketch

clears it or if the interrupt handler is enabled by setting

bit OCIEnA in register TIMSKn in which case, assuming

also that global interrupts are enabled, the bit will be

automatically cleared. To clear the bit manually, in a

sketch, you must write a 1binary to it.

• Pin OCnA will perform an action. The action depends

on the values in the COMnA1:0 bits, as described in

Table 8-13, when TCNTn matches with OCRnA.

Table 8-13. COMnA1:0 settings in Fast PWM mode

COMnA1-COMnA0 Description

00 no effect on pin OCnA

01 • Pin OCnA, for Timer/counters 0 and 2, in mode 3, is not

affected

• in mode 7, then pin OCnA will toggle when TCNTn

matches OCRnA

• For Timer/counter 1 in mode 14, pin OC1A will

toggle when TCNT1 matches ICR1. Pin OC1B will be

unaffected

• in mode 15, pin OC1A will toggle when TCNT1 matches

OCR1A. Pin OC1B will be unaffected

• in mode 5, 6, or 7, OC1A is unaffected

10 Pin OCnA is LOW on match with OCRnA and HIGH at BOTTOM.

This is non-inverting mode

11 Pin OCnA is HIGH on match with OCRnA and LOW at BOTTOM.

This is inverting mode

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

455

• When TCNTn reaches OCRnB, then bit OCFnB is set in

register TIFRn. This bit is not cleared unless your sketch

clears it or the interrupt handler is enabled by setting

bit OCIEnB in register TIMSKn in which case, assuming

also that global interrupts are enabled, the bit will be

automatically cleared. To clear the bit manually, in a

sketch, you must write a 1binary to it.

• Pin OCnB will perform an action. The action depends

on the values in the COMnB1:0 bits, as described in

Table 8-14, when TCNTn matches with OCRnB.

Table 8-14. COMnB1:0 settings in Fast PWM mode

COMnB1-COMnB0 Description

00 no effect on pin OCnB

01 • reserved – do not use on Timer/counters 0 and 2

• For Timer/counter 1 in mode 14, pin OC1A will toggle

when TCNT1 matches ICR1. Pin OC1B will be unaffected

• in mode 15, pin OC1A will toggle when TCNT1 matches

OCR1A. Pin OC1B will be unaffected

• in mode 5, 6, or 7, OC1A is unaffected

in other words, this setting only affects channel A on Timer/

counter 1

10 Pin OCnB is LOW on match with OCRnB and HIGH at BOTTOM.

This is non-inverting mode

11 Pin OCnB is HIGH on match with OCRnB and LOW at BOTTOM.

This is inverting mode

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

456

8.1.7.3.1. Setting Fast PWM Mode

Table 8-15 shows the settings required to put the timer/counters into Fast

PWM mode.

Table 8-15. Fast PWM mode settings

Timer Mode Bits Value

0 3 WGM02–WGM00 011binary

0 7 WGM02–WGM00 111binary

1 5 WGM13–WGM10 0101binary

1 6 WGM13–WGM10 0110binary

1 7 WGM13–WGM10 0111binary

1 14 WGM13–WGM10 1110binary

1 15 WGM13–WGM10 1111binary

2 3 WGM22–WGM20 011binary

2 7 WGM22–WGM20 111binary

Note that bits WGMn0 and WGMn1 are found in register TCCRnA, bit WGMn2

is found in TCCRnB, and, for Timer/counter 1 only, WGM13 is also found in

TCCR1B.

You should be aware that because the PWM pins always go HIGH, at

least in non-inverting mode, at BOTTOM, then they are always HIGH at the

start of each cycle and LOW at the end, no matter what value is used for TOP.

Sometimes this isn’t suitable – motors apparently don’t like this – and for

that, you would use Phase Correct PWM instead.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

457

8.1.7.3.2. Example Sketch

As mentioned earlier, Fast PWM is set up by the Arduino init() function

for every sketch, on Timer/counter 0. The sketch in Listings 8-11, 8-12, and

8-13 is effectively what the init() function does to set up Timer/counter

0, but without the Overflow interrupt handler that updates millis() and

micros(),and with a slower prescaler.

You might need to adjust the delay at the end of loop() if you can’t see

the fade up and down of the LEDs.

Listing 8-11 is a number of #defines, used to reduce the amount of

bit shifting in the main code. It simply creates a definition for the two

channels on Timer/counter 0, for both the HIGH and LOW states. These are

used when the PWM value is 255 or 0.

Listing 8-11. Fast PWM sketch, defines

//==

// This sketch uses the Timer/Counter 0 in Fast PWM mode

// to fade down an LED on pin D5 while fading up an LED

// on D6. The prescaler is 1,024.

//==

#define PWM_A_LOW (~(1 << PORTD5))

#define PWM_A_HIGH ((1 << PORTD5))

#define PWM_B_LOW (~(1 << PORTD6))

#define PWM_B_HIGH ((1 << PORTD6))

The preceding definitions could have been declared as const uint8_t

PWM_A_LOW = (~(1 << PORTD5)) and so on, which would have had the

same effect. Listing 8-12 is the setup() function for the sketch.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

458

Listing 8-12. Fast PWM sketch, setup() function

void setup() {

 // Set Timer 0 into Fast PWM mode 3

 // with TOP = 255 and OC0A and OC0B

 // toggling on match

 TCCR0A = ((1 << WGM01) | ①
 (1 << WGM00) |

 (1 << COM0A1) |

 (1 << COM0B1));

 // Timer 0 prescaler = 1,024. ②
 TCCR0B = ((1 << CS02) | (1 << CS00));

 // Need to set the pins to output. ③
 DDRD = ((1<< DDD5) | (1 << DDD6));

}

 ① This sets Timer/counter 0 into Fast PWM mode, with

TOP = 255. This is the same as the Arduino init()

function usually does. In addition, pins OC0A and OC0B

will toggle on a compare match. These equate to pins

PD5 and PD6, or Arduino pins D5 and D6.

 ② Unlike the Arduino’s init() function, the prescaler

here is set to divide by 1024.

 ③ This is simply pinMode(5, OUTPUT); and

pinMode(6, OUTPUT); but both pins are set in one

statement, not two.

The code in Listing 8-13 is that of the loop() function, which is where

the hard work of fading the two LEDs up and down takes place. In the

code, checks have to be made for the limits of the timer/counter – 0 and

255 – as the data sheet advises against setting those values for a PWM

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

459

waveform. The analogWrite() function also checks for these values and, if

found, calls digitalWrite() to set the pin LOW or HIGH as appropriate and

ignores the PWM for those values.

Listing 8-13. Fast PWM sketch, loop() function

void loop() {

 // Current PWM duty cycle and increments.

 static uint8_t a = 0; ①
 static uint8_t b = 255;

 uint8_t increment = 1;

 if ((a != 0) && (a != 255)) { ②
 OCR0A = a;

 OCR0B = b;

 } else { ③
 if (a == 255) { // then b == 0

 PORTD |= PWM_A_HIGH;

 PORTD |= PWM_B_LOW;

 } else { // then b == 255

 PORTD |= PWM_A_LOW;

 PORTD |= PWM_B_HIGH;

 }

 }

 a += increment; ④
 b -= increment;

 // Even at 1,024 prescaling, it's too quick!

 delay(1); ⑤
}

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

460

 ① Declaring variables in a function as static means

that they are initialized with the given value on the

first call to the function. Then on the next call to

the function, they have the value from the previous

call – they retain their value across function call and

exit, in other words.

 ② If a is not on a PWM limit (0 or 255), then b is not

either, so simply set the OCR0x registers with the

values of a and b – we have two valid PWM values

which we can use.

 ③ If a is on a limit, then b must be on the other limit. In

this case, we simply do what analogWrite() would

do and effectively digitalWrite() a LOW or HIGH to

the appropriate pins, depending on which limit a

and b are on.

 ④ The fade values in a and b are incremented and

decremented by the current amount.

 ⑤ As even the biggest prescaler runs the timer/counter

way too quickly, there is a small delay to allow the

fading effect to be seen. Feel free to adjust this if

necessary.

The preceding code is effectively the same as analogWrite() which

checks for values of 0 or 255, which the data sheet advises avoiding, and

handles those separately. All other values get written to the OCR0A and

OCR0B registers to control the duty cycle of the square wave generated on

pins D5 and D6. An LED (and 330 Ohm resistor!) on these two pins should

fade up on D5 and fade down on D6.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

461

As variable a and b are unsigned 8-bit variables, they will roll over

when increment is added or subtracted, which is why I only need to check

explicitly for 0 or 255 in the code. Even if you change the increment value,

it will still work.

If you run the preceding code on a normal Arduino, it might be

flashing far too quickly to see properly, but one LED should be fading

up while the other fades down. On a breadboard setup with the AVR

microcontroller running at 8 MHz, the flashing is more obvious. You can

change the delay() statement at the end of the loop() to slow things down

a little, if necessary.

The LEDs will reset to their starting values when they reach the end of

their fade – a will toggle from full on to full off, while b does the opposite.

This means that D5 will start off, fade up to full brightness, and then drop to

off again, while D6 does the opposite.

8.1.7.4. Phase Correct PWM Mode

Phase Correct PWM is called “dual slope” because the counter, TCNTn,

counts from zero, BOTTOM, up to TOP and then counts back down again to

BOTTOM. It takes twice as long to repeat the cycle and, thus, runs at half the

frequency of the Fast PWM. The graph of the timer/counter’s value against

time slopes upward and then back down again and doesn’t exhibit the

sudden drop from TOP to BOTTOM that Fast PWM does. Figure 8-4 shows the

slope of the count in TCNTn as it rises and falls back to zero.

The TOP value is determined by the mode and can be

• For all timer/counters, the value 255 – this is the

Arduino default.

• For all timer/counters, the value in register OCRnA.

• For Timer/counter 1 only, the value 511.

• For Timer/counter 1 only, the value 1023.

• For Timer/counter 1 only, the value in register ICR1.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

462

 The data sheet advises that

When changing the TOP value the program must ensure that
the new TOP value is higher or equal to the value of all of the
Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between
the TCNT1 and the OCR1x.

It should be obvious, as with Fast PWM, that when running in a mode

where TOP is defined by OCRnA or ICR1, the value in OCRnB must be less

than OCRnA or the PWM will not work on that pin.

Also, in modes where OCRnA defines TOP, then you will be somewhat

restricted in what you can do with pin OCnA.

On an Arduino, Timer/counter 1 runs Phase Correct PWM mode 1 on

Arduino pins D9 and D10, which correspond to the AVR pins named PB1

and PB2. Timer/counter 2 runs Phase Correct PWM mode 1 on Arduino

pins D3 and D11, which correspond to the AVR pins named PD3 and PB3.

Figure 8-4 shows the details for Phase Correct PWM with TOP fixed at

255 – mode 1 on all three timer/counters.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

463

 in the preceding diagram, the value in OCRnA is a constant, as
per the Arduino. it can be changed in code or in an interrupt handler
and so vary the duty cycle of the Pwm waveform.

in the following description, everything that applies to OCRnA and
OCnA applies also to OCRnB and OCnB, but the latter are not shown in
the diagram to avoid clutter.

• The triangular line is the value in TCNTn as it rises from

zero (BOTTOM) to TOP which, in the case of an Arduino

board, is set to 255 although this can be changed as

per the data sheet. After TOP, the value counts back

down to zero (BOTTOM) and then repeats as shown in the

diagram. (Only two full cycles are shown here.)

Figure 8-4. 8-bit Phase Correct PWM with TOP at 255

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

464

• The horizontal line is the constant value in OCRnA,

in this example. The value in OCRnA can be changed,

usually by the interrupt handler, if the duty cycle is

required to be varied. Changes to the value in OCRnA are

double buffered and applied at TOP when TCNTn is at

255 on Arduino boards.

• The two square wave lines at the bottom represent the

non-inverting and the inverting waveform generated

on pin OCnA.

• If you look at the line for pin OCnA, the non-inverting

output, you should see that when TCNTn reaches OCRnA

while counting upward, the appropriate output pin will

go LOW. It stays LOW until TCNTn hits OCRnA again while

counting downward whereupon it goes HIGH. At the

same time as the match is made, the timer/counter’s

Timer Compare Match interrupt flag is set.

• The bottom square wave of the two shown is the

inverting output line, and this is simply the opposite to

pin OCnA.

• The timer/counter’s overflow flag will be set when

TCNTn reaches BOTTOM.

The data sheet advises that due to the symmetric feature of the dual-

slope PWM modes, these modes are preferred for motor control applications.

Each timer/counter has two pins upon which it can generate PWM

waveforms. The Arduino initialization for each and every sketch sets the

timers to all run in 8-bit mode with a prescaler of 64; however, only Timer/

counters 1 and 2 are set to run in Phase Correct PWM mode.

Timer/counters 0 and 2 have two Phase Correct PWM modes, modes 1

and 5. The differences are as follows:

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

465

• In mode 1, TOP is always 255.

• In mode 5, TOP is always the value in OCRnA.

Timer/counter 1 has five different Phase Correct PWM modes available

for use, modes 1, 2, and 3, plus modes 10 and 11. The differences are as

follows:

• In mode 1, TOP is always 255 and the count in TCNT1 is

always 8 bits.

• In mode 2, TOP is always 511 and the count in TCNT1 is

always 9 bits.

• In mode 3, TOP is always 1023 and the count in TCNT1 is

always 10 bits.

• In mode 10, TOP is always the value in register ICR1, the

Input Capture Unit register.

• In mode 11, TOP is always the value in register OCR1A.

In these timer modes

• There are TOP ∗ 2 cycles.

• When TCNTn equals OCRnA or OCRnB while counting

upward, the appropriate PWM pin goes LOW.

• When TCNTn equals OCRnA or OCRnB when counting

downward, the appropriate PWM pin will go HIGH.

The AVR microcontroller can be configured to invert the output

PWM pins, so that they go LOW and HIGH opposite to that specified in the

preceding text.

For Phase Correct PWM mode, the PWM frequency is calculated as

F_CPU / (prescaler * (TOP * 2))

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

466

This works out on the Arduino boards as 16e6/(64 ∗ 510) or

490.196078431 Hz, and this is the rate that Timer/Counters 1 and 2 run.

The period of the PWM frequency is, for Phase Correct PWM configured as

per the Arduino code, 2040 microseconds, or, 2.04 milliseconds.

Table 8-12 should save you the effort of working out the PWM

frequencies and periods for any given prescaler.

The following lists the various changes that occur in Phase Correct PWM:

• TCNTn is only ever at TOP or BOTTOM for one clock. It will

hold the value of all other counter values twice, once

while counting up, once when counting down.

• When TCNTn equals BOTTOM, the Timer n Overflow

interrupt bit TOVn is set in register TIFRn, and if

enabled, this interrupt can be used to update the value

in the OCRnA and/or OCRnB registers to change the duty

cycle of the PWM waveform. In this timer mode, the

OCRnA and OCRnB registers are again double buffered;

and the value written by your sketch, to these registers,

will not be copied into the register until TCNTn hits

TOP. Only then do the register values change.

• This bit is not cleared unless your sketch clears it or if

the interrupt handler is enabled by setting bit TOIEn in

register TIMSKn in which case, assuming also that global

interrupts are enabled, the bit will be automatically

cleared. To clear the bit manually, in a sketch, you must

write a 1binary to it.

• When TCNTn reaches OCRnA, then bit OCFnA is set in

register TIFRn. This bit is not cleared unless your sketch

clears it or if the interrupt handler is enabled by setting

bit OCIEnA in register TIMSKn in which case, assuming

also that global interrupts are enabled, the bit will be

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

467

automatically cleared. To clear the bit manually, in a

sketch, you must write a 1binary to it.

• Pin OCnA will perform an action. The action depends

on the values in the COMnA1-0 bits, as described in

Table 8-16, when TCNTn matches with OCRnA.

Table 8-16. COMnA1:0 settings in Fast PWM mode

COMnA1-COMnA0 Description

00 no effect on pin OCnA

01 • Pin OCnA, for Timer/counters 0 and 2, in mode 1, is not

affected

• in mode 5, pin OCnA will toggle when TCNTn matches

OCRnA

• For Timer/counter 1 in mode 11, pin OC1A will toggle

when TCNT1 matches OCR1A, and pin OC1B will be

unaffected

• in modes 10, 1, 2, and 3, OC1A is unaffected

10 Pin OCnA is LOW on match with OCRnA when counting upward

and HIGH on match with OCRnA when counting downward.

This is non-inverting mode

11 Pin OCnA is HIGH on match with OCRnA when counting

upward and LOW on match with OCRnA when counting

downward. This is inverting mode

• When TCNTn reaches OCRnB, then bit OCFnB is set in

register TIFRn. This bit is not cleared unless your sketch

clears it or if the interrupt handler is enabled by setting

bit OCIEnB in register TIMSKn in which case, assuming

also that global interrupts are enabled, the bit will be

automatically cleared. To clear the bit manually, in a

sketch, you must write a 1binary to it.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

468

• Pin OCnB will perform an action. The action depends

on the values in the COMnB1-0 bits, as described in

Table 8-17, when TCNTn matches with OCRnB.

Table 8-17. COMnB1:0 settings in Fast PWM mode

COMnB1-COMnB0 Description

00 no effect on pin OCnB

01 • reserved – do not use on Timer/counters 0 and 2

• For Timer/counter 1 in mode 9, pin OC1A will toggle

when TCNT1 matches OCR1A, and pin OC1B will be

unaffected.

• in mode 1, 2, 3, or 8, OC1B is unaffected (in other words,

exactly as Table 8-16)

10 Pin OCnB is LOW on match with OCR1B when counting upward

and HIGH on match with OCR1B when counting downward.

This is non-inverting mode

11 Pin OCnB is HIGH on match with OCR1B when counting

upward and LOW on match with OCR1B when counting

downward. This is inverting mode

• Only when TCNTn matches TOP are any changes made

by the sketch to OCRnA or OCRnB applied.

8.1.7.4.1. Setting Phase Correct PWM Mode

Table 8-18 shows the settings required to put the timer/counters into

Phase Correct PWM mode.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

469

Note that bits WGMn0 and WGMn1 are found in register TCCRnA, bit WGMn2

is found in TCCRnB, and, for Timer/counter 1 only, WGM13 is also found in

TCCR1B.

8.1.7.4.2. Example Sketch

As mentioned in the preceding text, Phase Correct PWM is set up by

the Arduino init() function for every sketch, on Timer/counters 1

and 2. The sketch in Listings 8-14, 8-15, and 8-16 is effectively what the

init() function does to set up Timer/counters 1 and 2 for use with the

analogWrite() function, but in the example, I’m hijacking Timer/counter

0 instead – just to be different!

Table 8-18. Phase Correct PWM mode settings

Timer Mode Bits Value

0 1 WGM02–WGM00 001binary

0 3 WGM02–WGM00 011binary

1 1 WGM13–WGM10 0001binary

1 2 WGM13–WGM10 0010binary

1 3 WGM13–WGM10 0011binary

1 10 WGM13–WGM10 1010binary

1 11 WGM13–WGM10 1011binary

2 1 WGM22–WGM20 001binary

2 3 WGM22–WGM20 011binary

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

470

 manipulating the Pwm mode of Timer/counter 0 in this manner
is harmless on the ATmega328P, but for some microcontrollers – the
ATmega8 or ATmega168, for example – this will affect the accuracy
of the millis() counter and all that which relies upon it.

You might need to adjust the delay at the end of loop() if you can’t see

the fade up and down of the LEDs.

Listing 8-14 is a number of #defines, used to reduce the amount of

bit shifting in the main code. It simply creates a definition for the two

channels on Timer/counter 0, for both the HIGH and LOW states. These are

used when the PWM value is 255 or 0.

Listing 8-14. Phase Correct PWM sketch, defines

//==

// This sketch uses the Timer/Counter 0 in Phase Correct

// PWM mode to fade down an LED on pin D6 while fading up

// an LED on D5. The prescaler is 1,024.

//==

#define PWM_A_LOW (~(1 << PORTD5))

#define PWM_A_HIGH ((1 << PORTD5))

#define PWM_B_LOW (~(1 << PORTD6))

#define PWM_B_HIGH ((1 << PORTD6))

The preceding code could have been declared as const uint8_t

PWM_A_LOW = (~(1 << PORTD5)) and so on, which would have had the

same effect. Listing 8-15 is the setup() function for the demonstration

sketch.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

471

Listing 8-15. Phase Correct PWM sketch, setup() function

void setup() {

 // Set Timer 0 into Phase Correct PWM mode 1

 // with OC0A and OC0B toggling on match

 // and TOP = 255.

 TCCR0A = ((1 << WGM00) | ①
 (1 << COM0A1) |

 (1 << COM0B1));

 // Timer 0 prescaler = 1,024. ②
 TCCR0B = ((1 << CS02) | (1 << CS00));

 // Need to set the pins to output.

 // Using AVR speak here.

 DDRD = ((1<< DDD5) | (1 << DDD6)); ③
}

 ① This sets Timer/counter 0 into Phase Correct PWM

mode, with TOP = 255. This is similar as the Arduino

init() function usually does for the other two

timer/counters. In addition, pins OC0A and OC0B are

configured to toggle on a compare match. These

equate to pins PD5 and PD6, or Arduino pins D5 and D6.

 ② Unlike the Arduino’s init() function, the prescaler

here is set to divide by 1024.

 ③ This is simply pinMode(5, OUTPUT); and

pinMode(6, OUTPUT); but both pins are set in one

statement, not two.

The code in Listing 8-16 is that of the loop() function, which is where

the task of fading the two LEDs up and down lies. As we did with Fast

PWM, checks have to be made for the limits of the timer/counter – 0 and

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

472

255 – as the data sheet advises against setting those values for a PWM

waveform. If found, the code effectively calls digitalWrite() to set the pin

LOW or HIGH as appropriate and ignores the PWM for those values.

Listing 8-16. Phase Correct PWM sketch, setup() function

void loop() {

 // Current PWM duty cycle and increments.

 static uint8_t a = 0; ①
 static uint8_t b = 255;

 uint8_t increment = 1;

 if ((a != 0) && (a != 255)) { ②
 OCR0A = a;

 OCR0B = b;

 } else { ③
 if (a == 255) { // then b == 0

 PORTD |= PWM_A_HIGH;

 PORTD |= PWM_B_LOW;

 } else { // then b == 255

 PORTD |= PWM_A_LOW;

 PORTD |= PWM_B_HIGH;

 }

 }

 a += increment; ④
 b -= increment;

 // Even at 1,024 prescaling, it's too quick!

 delay(1); ⑤
}

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

473

 ① Declaring variables in a function as static means

that they are initialized with the given value on the

first call to the function. Then on the next call to

the function, they have the value from the previous

call – they retain their value across function call and

exit, in other words.

 ② If a is not on a PWM limit (0 or 255), then b is not

either, so simply set the OCR0x registers with the

values of a and b – we have two valid PWM values

which we can use.

 ③ If a is on a limit, then b must be on the other limit.

In this case, we effectively digitalWrite() a LOW or

HIGH to the appropriate pins, depending on which

limit a and b are on.

 ④ The fade values in a and b are incremented and

decremented by the current amount.

 ⑤ As even the biggest prescaler runs the timer/counter

way too quickly, there is a small delay to allow the

fading effect to be seen. Feel free to adjust this if

necessary.

The preceding code is effectively the same as analogWrite() which

checks for values of 0 or 255, which the data sheet advises avoiding, and

handles those separately. All other values get written to the OCR0A and

OCR0B registers to control the duty cycle of the square wave generated on

pins D5 and D6. An LED (and 330 Ohm resistor!) on these two pins should

fade up on D5 and fade down on D6.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

474

As variable a and b are unsigned 8-bit variables, they will roll over

when increment is added or subtracted, which is why I only need to check

explicitly for 0 or 255 in the code. Even if you change the increment value,

it will still work.

If you run the preceding code on a normal Arduino, it might be

flashing far too quickly to see properly, but one LED should be fading

up while the other fades down. On a breadboard setup with the AVR

microcontroller running at 8 MHz, the flashing is more obvious. You can

change the delay() statement at the end of the loop() to slow things down

a little, if necessary.

The LEDs will reset to their starting values when they reach the end of

their fade – a will toggle from full on to full off, while b does the opposite.

This means that D5 will start off, fade up to full brightness, and then drop to

off again, while D6 does the opposite.

While the sketch is running, you should, hopefully, notice that the

flickering of the LEDs is different with Phase Correct PWM from that of Fast

PWM – this is noticeable when both sketches use the same delay() at the

end of the loop.

8.1.7.5. Phase and Frequency Correct PWM Mode

Timer/counter 1 has an additional mode, well two modes, that the

other timer/counters do not have. This is Phase and Frequency Correct

PWM and is mostly identical to the previously mentioned Phase Correct

PWM modes. The main difference is that the PWM generated is always

symmetrical around the TOP value. This is because the OCR1A and/or ICR1

registers are updated with new values at BOTTOM, unlike Phase Correct

PWM, which updates the OCRnA registers at TOP. Because of the update at

BOTTOM, the count upward from BOTTOM to TOP is always the same as the

count downward from TOP to BOTTOM.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

475

 The data sheet advises that

When changing the TOP value the program must ensure that
the new TOP value is higher or equal to the value of all of the
Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between
the TCNT1 and the OCR1x.

The data sheet also states that there is little difference between Phase

Correct and Phase and Frequency Correct PMW modes, when using a fixed

TOP value. However, it also states that if you need to vary the TOP value, then

Phase and Frequency Correct mode is best as it is _symmetrical about TOP.

What exactly is symmetrical about this mode? As the data sheet says

The PWM period begins and ends at TOP. This means that the
falling slope of the waveform, is determined by the old TOP
value while the rising slope that follows, is determined by the
new value in TOP. At the point where the two TOP values are
different, the slopes will have a different length and thus, the
period of the output waveform will be different.

 This is not a problem on the Arduino boards – none of the timer/
counters are configured to run in this Pwm mode.

On Timer/counter 1, the only one which has this PWM mode, the

two Phase and Frequency Correct PWM modes are modes 8 and 9. The

differences are as follows:

• In mode 8, TOP is always the value in register ICR1, the

Input Capture Register.

• In mode 9, TOP is always the value in OCR1A.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

476

So what happens in Phase and Frequency Correct PWM?

• TCNT1 is only ever at TOP or BOTTOM for one clock. It will

hold the value of all other counter values twice, once

while counting up, once when counting down. This is

identical to Phase Correct PWM.

• When TCNT1 equals BOTTOM, any new value for OCR1A or

OCR1B will be written into the appropriate register. Also,

the Timer 1 Overflow interrupt bit TOV1 is set in register

TIFR1, and if enabled, this interrupt can be used to

update the value in the OCR1A and/or OCR1B registers

to change the duty cycle of the PWM waveform. In this

timer mode, the OCR1A and OCR1B registers are again

double buffered; and the value written by your sketch,

to these registers, will not be copied into the register

until TCNT1 hits BOTTOM.

This bit is not cleared unless your sketch clears it

or if the interrupt handler is enabled by setting bit

TOIE1 in register TIMSK1 in which case, assuming

also that global interrupts are enabled, the bit will

be automatically cleared. To clear the bit manually,

in a sketch, you must write a 1binary to it.

• When TCNT1 reaches TOP, then the OCF1A or ICF1 bit

is set in register TIFR1. The bit set depends on which

mode the timer/counter is executing. In mode 8, TIF1

will be set; in mode 9, it will be OCF1A.

These two bits are not cleared unless your sketch

clears them or the appropriate interrupt handler is

enabled by setting bit ICIE1 in mode 8 or OCIE1A in

mode 9, in register TIMSK1. In this case, assuming

also that global interrupts are enabled, the bits will

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

477

• When TCNT1 reaches OCR1B, then bit OCF1B is set in

register TIFR1. This bit is not cleared unless your sketch

clears it or if the interrupt handler is enabled by setting

bit OCIE1B in register TIMSK1 in which case, assuming

also that global interrupts are enabled, the bit will be

automatically cleared. To clear the bit manually, in a

sketch, you must write a 1binary to it.

• Pin OCnB will perform an action. The action depends

on the values in the COMnB1-0 bits, as described in

Table 8-20, when TCNTn matches with OCRnB.

Table 8-19. COMnA1:0 settings in Phase and Frequency Correct

PWM mode

COM1A1-COMnA0 Description

00 no effect on pin OC1A.

01 in mode 8 pin OC1A will be unaffected. in mode 9 pin OC1A

will toggle when TCNT1 matches OCR1A. OC1B1 is unaffected

10 Pin OC1A is LOW on match with OCR1A when counting upward

and HIGH on match with OCR1A when counting downward.

This is non-inverting mode

11 Pin OC1A is HIGH on match with OCR1A when counting

upward and LOW on match with OCR1A when counting

downward. This is inverting mode

be automatically cleared. To clear the bits manually,

in a sketch, you must write a 1binary to them.

• Pin OCnA will perform an action. The action depends

on the values in the COMnA1-0 bits, as described in

Table 8-19, when TCNTn matches with OCRnA.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

478

• When TCNT1 matches BOTTOM, any changes made by the

sketch to OCR1A or OCR1B are applied.

8.1.7.5.1. Setting Phase and Frequency Correct PWM Mode

Table 8-21 shows the settings required to put the timer/counters into

Phase and Frequency Correct PWM mode.

Table 8-20. COMnB1:0 settings in Phase and Frequency Correct

PWM mode

COM1B1-COMnB0 Description

00 no effect on pin OC1B

01 This setting is exactly the same as setting bits COM1A1-0 as

described earlier. only pin OC1A is affected. in mode 8 pin

OC1A will be unaffected. in mode 9 pin OC1A will toggle when

TCNT1 matches OCR1A. OC1B1 is unaffected in either mode

10 Pin OC1B is LOW on match with OCR1B when counting upward

and HIGH on match with OCR1B when counting downward.

This is non-inverting mode

11 Pin OC1B is HIGH on match with OCR1B when counting

upward and LOW on match with OCR1B when counting

downward. This is inverting mode

Table 8-21. Phase and Frequency Correct PWM mode settings

Timer Mode Bits Value

1 8 WGM13–WGM10 1000binary

1 9 WGM13–WGM10 1001binary

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

479

Note that bits WGM10 and WGM11 are found in register TCCR1A, while bits

WGM12 and WGM13 are found in TCCR1B.

8.1.8. Too Much to Remember? Try AVRAssist
So many timer/counters, so many modes, so many bits to be set or cleared,

etc. Does it have to be this hard?

If you point your favorite browser at https://github.com/

NormanDunbar/AVRAssist which is the AVRAssist GitHub page, you will

come across my very easy to use AVR header files. These headers can be

#included in your own source files, which will make life a lot easier when

setting up timer/counters and the like.

In use, you end up with something like Listing 8-17.

Listing 8-17. Setting up Timer 0 with AVRAssist

#include <timer0.h>

using namespace AVRAssist;

ISR(TIMER0_OVF_vect) {

 ...

}

...

Timer0::initialise(MODE_FAST_PWM_255,

 Timer0::CLK_PRESCALE_64,

 Timer0::OCOA_TOGGLE | OCOB_TOGGLE,

 INT_OVERFLOW

);

...

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

https://github.com/NormanDunbar/AVRAssist
https://github.com/NormanDunbar/AVRAssist

480

The preceding code will set Timer/counter 0 to have PWM on both pins

D5 and D6 as per the Arduino init() function, with a prescaler of 64 and

with an interrupt handler for the Timer 0 Overflow interrupt enabled, which,

I think, is a little better to read and understand than a number of separate

instructions listing various bit and register names, one after the other.

The preceding code should set up Timer/counter 0 in the mode

specified and with all the settings that the Arduino sets up in the

background for Timer/counter 0 when you compile a sketch. However,

the preceding code will not compile and link when used in a sketch

compiled with the Arduino IDE. This is because the IDE silently includes

an interrupt handler for the Timer/counter 0 Overflow interrupt, and that

means that any code in a sketch, compiled by the IDE, cannot specify an

interrupt handler for that same interrupt.

If you do try this, you will get a linker error telling you that there are two

separate interrupt handlers for the Overflow interrupt. Ask me how I know!

If you still wish to do something like this, you will need to compile

your code outside of the Arduino IDE, and this means without using any

of the Arduino Language. You will need to code in AVR C++ instead. The

preceding code works perfectly in the PlatformIO environment – if, and

only if, you remember to enable global interrupts – for example, and an

interrupt handler for the Overflow interrupt can be defined. But then, if

you do it that way, you lose the millis() function and all that depend on it

from the Arduino environment. Decisions, decisions!

There are a few more details about AVRAssist in Appendix K.

8.2. Counting
Previously in this chapter, you learned, in some detail, all about the three

timer/counters in the ATmega328P. However, all you learned about were

the timer modes. They can also be used as counters; and instead of being

triggered by a regular clock signal, generated from the main system clock

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

481

via a prescaler, the value in TCNTn can be incremented according to an

external rising or falling edge on a pair of specific pins.

 only Timer/counters 0 and 1 have this ability. Timer/counter 2
has other features, not available on Timer/counters 0 and 1.

8.2.1. Setting External Counting
Table 8-22 shows the configuration required to set the timer/counters into

counter mode.

Table 8-22. Setting timer/counters into counting mode

CSn1-CSn0 Value Description

110 6 external clock on Tn pin, counts on a falling edge

111 5 external clock on Tn pin, counts on a rising edge.

Pin T0 is physical pin 6 on the ATmega328P, Arduino pin D4, or AVR pin

PD4. Pin T1 is physical pin 11 on the ATmega328P, Arduino pin D5, or AVR

pin PD5. These are the only two pins that can be used in this way. If your

sketch is using the pins as counter stimulus, then they obviously cannot be

used as normal I/O pins.

All the Waveform Generation modes are still available when clocking

from the external pins, and usually, it would be expected that some form

of clock signal, perhaps generated by the ubiquitous 555 timer, would be

utilized to run the counter – if a regular count was required. On the other

hand, it could be used to count the number of times a door was opened in

a given time – it’s down to the maker to decide.

All the interrupts, matching on OCRnA or OCRnB, overflow bit setting,

etc., work as expected when running in counter mode.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

482

8.2.2. Counter Example
The circuit in Figure 8-5 and the corresponding sketch in Listings 8-18 and

8-19 show a simple model of a door counter system – the serial monitor

will record “door openings” each time the switch is pressed. In real use, the

switch would be debounced and mounted in such a position as to record

the door opening.

 As i have not debounced the switch, it will also show how
bouncy the particular switch i’m using happens to be.

Figure 8-5 shows the breadboard layout for this example. The circuit is

very simple: the “high” side of SW1 is connected to 5 V from the Arduino.

The “low” side of the switch, SW1, is connected to R1 which is a 10 K

pulldown resister to GND and also to the Arduino pin D5 which is Timer/

counter 1’s T1 pin. The LED and R2, which is 330 Ohms, are connected

between D13 and GND in the normal manner.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

483

Listing 8-18. The door counter sketch setup()

void setup() {

 // Serial monitor is required.

 Serial.begin(9600);

 // Initialise Timer/counter 1 to be triggered externally

 // by a rising edge on pin D5. The timer runs in normal

 // mode as we don't need waveforms.

 TCCR1A = 0; // Sets WGM11 and WGM10 to zero.

 // Disable interrupts on Timer 1.

 TIMSK1 = 0;

 // Clocked on a rising edge, and start the timer.

 TCCR1B = ((1 << CS12) | (1 << CS11) | (1 << CS10));

Figure 8-5. Door counter circuit

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

484

 // Make sure everything is reset.

 TCNT1 = 0;

 // T1=PD5=D5 is an input. PB5=D13 an Output.

 DDRB |= (1 << DDB5);

 DDRD |= (1 << DDD5);

}

Listing 8-18 sets up Timer/counter 1 to be clocked externally on a

rising edge on pin T1 and with the timer/counter’s interrupts disabled.

Listing 8-19 displays the count of the number of times the door was

opened.

Listing 8-19. The door counter sketch loop()

void loop() {

 // Save the previous value of TCNT1.

 static uint16_t lastTCNT1 = 0;

 uint16_t thisTCNT1 = TCNT1;

 if (thisTCNT1 != lastTCNT1) {

 Serial.print("TCNT1 = ");

 Serial.println(thisTCNT1);

 lastTCNT1 = thisTCNT1;

 }

 // Flash the LED and delay ...

 // ... to show that the timer still works.

 PINB |= (1 << PINB5);

 delay(2000);

}

Each time through the loop, the current value of TCNT1 is sent to the

serial monitor if it changed since the previous count. Regardless of any

changes, loop() always toggles the LED on Arduino pin D13 and then

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

485

delays for 2 seconds. The delay is simply there to show that the timer/

counter will still record switch presses during a delay which is tying up the

main CPU.

When the LED is on, or off, press the switch a few times quickly. When

the delay is complete, the next value displayed in the serial monitor will

show multiple hits have taken place and been recorded.

The following list shows the first ten results I obtained with a random

switch from my spares box. These were all single presses, and the results

appear quite good, not many bounces. I was of course suspicious! Surely

cheap switches shouldn’t be this good?

TCNT1 = 1

TCNT1 = 2

TCNT1 = 3

TCNT1 = 6

TCNT1 = 7

TCNT1 = 8

TCNT1 = 9

TCNT1 = 11

TCNT1 = 12

TCNT1 = 14

I tried a few more times with single presses, and it seems that I

had picked the best switch in the world. I mostly only ever got a single

increment. Is something wrong with the sketch? Or do I just have a really

good switch?

I decided to check and remove the wire from 5 V to the high side of

the switch. I then touched it to the switch side of R1, the pulldown resistor.

That’s better. It bounced – a lot!

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

486

 Don’t touch the 5 V wire to the GND side of the resistor. You will
short out the power supply and might destroy your Arduino.

TCNT1 = 31

TCNT1 = 32

TCNT1 = 33

TCNT1 = 35

TCNT1 = 36

TCNT1 = 104

TCNT1 = 148

TCNT1 = 243

TCNT1 = 401

TCNT1 = 417

The preceding first five presses used the button, and I rarely saw a

bounce. The remaining five used the wire to bypass the switch. Those

touches bounced massively!

 You can purchase guaranteed non-bounce switches, it appears.
getting hold of one and testing it against the sketch in Listings 8-18
and 8-19 might prove interesting.

In summary, as you can plainly see, setting a timer/counter to run as a

counter is far, far simpler than setting one to run as timer.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

487

8.3. Input Capture Unit
Timer/counter 1, as you know, is the only 16-bit timer on the

ATmega328P. It is also the only timer/counter which has an input capture

unit. The data sheet advertises this feature as

… an Input Capture unit that can capture external events and
give them a time-stamp indicating time of occurrence. The
external signal indicating an event, or multiple events, can be
applied via the ICP1 pin or alternatively, via the analog-com-
parator unit. The time-stamps can then be used to calculate
frequency, duty-cycle, and other features of the signal applied.
Alternatively the time-stamps can be used for creating a log of
the events.

As you will see, this is not quite as useful as it sounds, but let’s carry on

with the data sheet, which goes on to state that:

When a change of the logic level (an event) occurs on the Input
Capture pin (ICP1), alternatively on the Analog Comparator
output (ACO), and this change confirms to the setting of the
edge detector, a capture will be triggered.

When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The
Input Capture Flag (ICF1) is set at the same system clock as
the TCNT1 value is copied into [the] ICR1 Register.

If enabled (ICIE1 = 1), the Input Capture Flag generates an
Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1
Flag can be cleared by software by writing a logical one to its
I/O bit location.

Sounds useful? Maybe! Think about Timer/counter 1. It has a number

of prescaler values we can use to slow down its counting frequency, the

biggest of these being 1024. The Arduino’s main clock runs at 16 MHz

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

488

which at full speed will cause Timer/counter 1 to overflow after only

0.004096 second.

So we need to slow it down. The biggest prescaler value for Timer/

counter 1 is 1024. Now it overflows every 4.194304 seconds, which is still

pretty much unusable as a timestamp, as intimated in the data sheet.

We could use a uint16_t variable in our code to store the timestamp

values and increment another uint16_t variable as an overflow counter

every time Timer/counter 1 overflows – there’s a handy interrupt that

would take care of that – and use the overflow counter as the high 16 bits

and the value from ICR1 in the low 16 bits. That would work, no?

Maybe. The 16-bit count of overflows would increment every 4.194304

seconds and can store up to 65,536 of those before it too overflows. That’s a

total of 274,877.9069 seconds which works out at 4,581.298449 minutes or

76 hours, 21 minutes, and 17.9069 seconds.

So, as long as all the events you wish to record, and timestamp, arrive

within that time span, then having a spare 16-bit counter around to hold

the overflow counts should work.

If 76 hours is still too short a time span for all the expected events,

would using an unsigned 32- bit variable to hold the overflow count and a

separate 16-bit variable to hold the TCNT1 value be any better? How long do

we have to record all our events now?

We still overflow every 4.194304 seconds, but we can now

accommodate 232 of them. Doing the calculations, I think that works out as

follows:

4.194304 Seconds * 2^32

=> 1.8014398e10 seconds

=> 300,239,975.2 minutes

=> 5,003,999.586 hours

=> 208,499.9827 days

= 570 years 307 days.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

489

That should be long enough surely?

I have yet to see any AVR or Arduino code that uses the input capture

unit. For further details of using the unit, please refer to the data sheet;

however, I can’t leave you in suspense, so Listings 8-20 and 8-21 show a

small sketch that demonstrates using the input capture unit.

Listing 8-20. Input capture unit, setup()

//==

// This sketch uses the Timer/Counter 1 input capture

// unit to "timestamp" the arrival of a rising edge on

// Arduino pin D8, AVR pin ICP1/PB0, physical pin 14 on

// the ATmega328P.

//==

void setup() {

 // Initialise the LED pin (D13) as OUTPUT and

 // pin D8/PB8/ICP1 as INPUT_PULLUP.

 DDRB = (1 << DDB5); // D13/PB5 as output. ①
 PORTB = (1 << PORTB0); // PB0/ICP1 as input pullup. ②

 // Initialise the ICU to no scaler, no noise cancel,

 // and rising edge detection.

 TCCR1A = 0; // Normal mode. ③
 TCCR1B = ((1 << ICES1) | (1 << CS10)); ④

 Serial.begin(9600);

}

 ① This sets all of PORTB as input, with pin PB5, aka D13,

aka LED_BUILTIN as output. I’m using the built-in

LED as a “flag” to show that something is happening

while we wait for an event to happen.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

490

 ② Writing to the PORT pin for an input pin enables the

internal pullup resistor. This pin will be held HIGH

unless pulled to ground externally.

 ③ Timer/counter 1 is in normal mode.

 ④ ICES1 enables input capture on a rising edge. CS10

enables full-speed Timer/counter clock based on

the system clock.

Listing 8-21. Input capture unit, loop()

void loop() {

 // This is a polled wait, so it's inefficient! However

 // this loop() is not doing much else.

 //

 // Wait for ICF1 to be set in TIFR1 then send

 // ICR1 to the serial port. Toggle the built

 // in LED while we wait. (Very quickly!)

 while (!(TIFR1 & (1 << ICF1))) ①
 PINB |= (1 << PINB5);

 // Clear the ICF1 bit (no interrupts running you see)

 TIFR1 &= (1 << ICF1); ②

 // Grab the timestamp.

 Serial.println(ICR1); ③
}

① Wait here, just toggling the LED, until ICF1 goes

HIGH to signal an event. That event copies the TCNT1

value into the ICR1 register while the timer carries

on counting. This is a tight loop, and so the LED

will appear on all the time, with the odd occasional

flicker.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

491

② Because we are not running Input Capture

interrupts, we must write a 1binary to the ICF1 bit to

clear it for the next event.

③ Grab the event timestamp from ICR1 and write it

to the serial port.

Compile and upload the sketch as shown in the preceding text and

plug a jumper wire into pin D8 on your Arduino board and plug the other

end into the GND location on the header.

Now open the serial monitor, which will reset the board and start the

sketch running. Nothing should appear on the monitor window.

Pull the jumper wire out of the GND, the pullup resistor will start to pull

the pin HIGH, and the ICU will register that as an event. The LED might

flicker, briefly, and a couple of numbers will appear on the monitor output.

I got these:

3802

4474

If you see only one number, well done! You managed to not cause any

bounce when you removed the jumper wire.

Plug the jumper back into GND again. This will pull the pin LOW, and

there should be no more numbers. However, given the slowness of a

human being, in contrast with an AVR microcontroller running at 16 MHz,

the chances are slim. You will see a few more numbers hitting the serial

monitor output. Mine read

60412

60488

17441

19431

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

492

Note how the numbers count up and then appear lower, but counting

up again? That’s a demonstration of my point about the period available

for grabbing all your events and timestamping them.

Oh, by the way, the built-in LED will appear to be always on, but it’s

flashing (toggling) every time loop() gets called from main().

 Your numbers might be bigger than mine or roll over faster. my
test bed for this experiment was a breadboard NormDuino – see
Appendix h – running on an internal 8 mhz oscillator, to free up the
two pins normally used for the 16 mhz crystal.

ChAPTer 8 ATmegA328P hArdwAre: Timers And CounTers

493© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6_9

CHAPTER 9

ATmega328P
Hardware: ADC
and USART
This chapter continues our look at the various hardware components of

the ATmega328P. Some of them are not visible (“surfaced”) in the Arduino

IDE or Language, so they may at first appear new to you – the Analogue

Comparator, for example.

The information in this chapter and Chapter 8 should link up with

what you have already seen in Chapters 2 and 3 which covered the

compilation process and the Arduino Language.

9.1. The Analogue Comparator
The ATmega328P has a built-in device, called the Analogue Comparator,

which compares the input voltage on pin AIN0, the positive input, and pin

AIN1, the negative input.

If the voltage on the positive input, AIN0, is higher than the voltage on

the negative input, AIN1, the Analogue Comparator output bit, ACO (that’s

a letter OH and not a digit zero), in the Analogue Comparator Control and

Status Register (ACSR), will be set to 1binary.

494

If the voltage on the positive input, AIN0, is lower than the voltage on

the negative input, AIN1, then ACO is cleared to 0binary.

In addition to setting the ACO bit, the comparator can also be set to

trigger

• The Timer/counter 1 Input Capture function.

• A dedicated interrupt, exclusive to the Analogue

Comparator. The interrupt can be configured to trigger

when

• The comparator output, ACO, is rising – from

0binary to 1binary.

• The comparator output, ACO, is falling – from

1binary to 0binary.

• The comparator output, ACO, is toggling – from

0binary to 1binary or from 1binary to 0binary.

Chapter 8, Section 8.3, “Input Capture Unit,” deals with Timer/counter

1’s Input Capture Unit.

Digital pins D6 and D7 are the Arduino’s comparator input pins, with

D6 being AIN0, the positive input, and D7 being AIN1, the negative input.

D6 is therefore the reference voltage to which the voltage on D7 can be

compared. However, AIN1 can optionally be configured to be any one of

the ADC input pins, A0–A7 (if you have A6 and A7 of course!), as explained

in the following.

 The Arduino Language does not facilitate easy access to the
Analogue Comparator.

You have to do it the hard way yourself, by manipulating the
individual register bits – there’s no easy option here I’m afraid!

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

495

9.1.1. Reference Voltage
The reference voltage, on the positive input, AIN0, is used as the basis

for the comparator. The voltage that is being sampled or compared will

be checked against the voltage on the comparator’s positive input. The

positive input can be configured to be either

• An internally generated 1.1 V known as the bandgap

reference voltage

• An external voltage supplied on the AIN0 pin also

known as D6

9.1.2. Sampled Voltage
The voltage being compared against the reference voltage can be either

• The AIN1 pin, also known as D7

• Any one of the ADC input pins, which on the Arduino

are A0–A5 plus A6 and A7 if your board has the

surface mount version of the ATmega328P and the

manufacturer has routed those two extra pins to a

header somewhere

9.1.3. Digital Input
The pins D6 and D7 cannot be used as normal I/O pins when being used by

the comparator. To this end, they should have their I/O buffers disabled –

to save wasting power. This is done by setting bits AIN0D and/or AIN1D in

register DIDR1, the Digital Input Disable Register 1.

Bit 0 in the DIDR1 register is AIN0D, bit 1 is AIN1D, and bits 2–7 are

reserved and should not be written. They will always be zero when read.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

496

When either AIN0D or AIN1D bit is set to 1binary, the digital I/O on the AIN0

(D6) or AIN1 (D7) pin is disabled. When the pins are disabled in this manner,

reading the PIND register (the input register that these two pins belong to) will

always return a value of 0binary for whichever of the two pins has been disabled.

The ATmega328P data sheet has this to say:

When an analog signal is applied to the AIN1/0 pin

and the digital input from this pin is not needed,

this bit should be written logic one to reduce power

consumption in the digital input buffer.

The following sections summarize the steps necessary to use the

comparator.

9.1.4. Enable the Analogue Comparator
• Write a 0binary to bit ACIE in the Analogue Comparator

Control and Status Register – ACSR. This disables the

Analogue Comparator Interrupt Enable as an interrupt

can occur when the ACD bit is changed.

• Write a 0binary to bit ACD in ACSR.

The preceding steps enabled the comparator and disabled interrupts

from it, for now. This can be easily changed later if interrupts from the

comparator are required.

9.1.5. Select Reference Voltage Source
The reference voltage applied to the positive input to the comparator can

be either

• The internal bandgap reference voltage

• An external voltage on pin AIN0

Only one of these can be selected.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

497

9.1.5.1. External Reference

To use the external reference voltage on pin AIN0, you must

• Write a 1binary to bit AIN0D to disable the I/O facilities on pin D6.

• Write a 0binary to bit ACBG in the ACSR register.

9.1.5.2. Internal Bandgap Reference

To use the internal reference voltage instead of AIN0, you must

• Write a 1binary to bit ACBG in register ACSR.

9.1.6. Select Sampled Voltage Source Pin
The voltage to be compared with on the comparator’s positive input can be

either

• Pin AIN1

• One of the pins A0–A7

9.1.6.1. Sample Voltage on Pin AIN1

To compare an external reference voltage on pin AIN1 (D7), you must

• Write a 1binary to bit AIN1D, in register DIDR1, to disable

the I/O facilities on pin D7.

Then, either

• Write a 0binary to bit ACME in register ADCSRB.

• Write a 1binary to bit ACME in register ADCSRB and write a

1binary to bit ADEN in register ADCSRA.

You therefore have two choices to set up the system to use AIN1.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

498

9.1.6.2. Sample Voltage on Pins A0–A7

• Write a 0binary to bit PRADC in register PRR to power the ADC.

• Write a 0binary to bit ADEN in register ADCSRA to disable

the ADC from using the ADC multiplexor.

• Write a 1binary to bit ACME in register ADCSRB to allow the

comparator to use the ADC multiplexor.

• Write the pin number, 0–7, to bits MUX2:0 in the ADMUX

register to select the desired input pin from A0 through A7.

9.1.7. Sampled Voltage Summary
Table 9-1 summarizes the pin settings for all possible negative input settings.

Table 9-1. Analogue Comparator negative input summary

ACME ADEN MUX2-MUX0 Negative Input

0 ? ??? AIN1

1 1 ??? AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

499

9.1.8. Comparator Outputs
So far, we have looked at the numerous ways that we can set up the two

inputs to the comparator. How then to we get an output from it? The

Analogue Comparator Control and Status Register (ACSR) is where we need

to be looking. We have already seen that bits ACD and ACBG disable/enable

the comparator and select the reference voltage. The other bits areas follows:

• ACO, Analogue Comparator Output – This bit

is connected to the comparator output and is

synchronized with the comparator output when it

changes. This synchronization takes one to two clock

cycles to settle and delays changing this bit when the

comparator changes.

• ACI, Analogue Comparator Interrupt Flag – This bit is

set when a comparator output triggers according to the

mode set in bits ACIS1:0 (see in the following). If global

interrupts are enabled and the ACIE bit set, then the

appropriate ISR will be executed and this bit cleared by

hardware. Otherwise, it can be cleared by the writing of

a 1binary in the normal back-to-front AVR manner!

• ACIE, Analogue Comparator Interrupt Enable – This bit

enables or disables the firing of an interrupt when the

comparator output takes on a certain state as defined

by bits ACIS1-0 which are described in the following.

When the bit is 0binary, no interrupts will fire.

• ACIC, Analogue Comparator Input Capture Enable –

Writing this bit to 1binary will enable Timer/counter 1’s

Input Capture function to be triggered by the Analogue

Comparator. In addition to setting this bit, bit ICIE1 in

register TIMSK1 must also be set to enable the Timer/

counter 1 Input Capture interrupt.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

500

• ACIS1-0, Analogue Comparator Interrupt Mode

Select – These two bits must always be changed after

disabling the comparator’s ACIE bit by writing it to

0binary. These two bits select the interrupt mode for the

comparator and determine when the interrupt will be

fired. The possible values are

• 00binary – The interrupt fires when the comparator

output toggles.

• 01binary – Reserved – do not use.

• 10binary – Interrupt fired on falling output edge

(when the ACO changes from 1binary to 0binary).

• 11binary – Interrupt fired on rising output edge (when

the ACO changes from 0binary to 1binary).

9.1.9. Comparator Example
The sketch in Listing 9-1 shows the use of the Analogue Comparator to

turn an LED on or off depending on whether the voltage at D6 is higher or

lower than the voltage at D7.

In the circuit I used for this experiment, I created a voltage divider

using two resistors. I used the same value, but it isn’t necessary. The output

from this was fed into D6 and used as the reference voltage. I connected

one end to the Arduino VCC (5 V) and the other to Arduino ground.

I also wired up a potentiometer to Arduino VCC and ground and

fed the middle pin of the potentiometer to pin D7. By turning the

potentiometer, I was able to vary the voltage on pin D7, and the LED

turned off or on depending on whether the voltage was higher on D7 or

lower.

You can see the breadboarded circuit in Figure 9-1.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

501

When the project was running, turning the potentiometer varied the

voltage on D7. If the reference voltage on D6, which was 2.5 V due to my

voltage divider, was higher than the variable voltage on D7, the LED turned

on; otherwise, it turned off.

I’ve added a bigger LED to pin D13 to better show the effect, but you

don’t have to do this. Just remember there are two LEDs on D13 and you

need to keep the current below 20 mA.

The LED I’m using has a voltage drop of 1.8 V, so subtract that from the

5 V supply from the Arduino to get 3.2 V. The resistor is 330 Ohms; and so,

by division, we get 3.2/330 which gives 9.69 mA.

The Arduino has an absolute maximum of 40 mA per pin (but with

other restrictions – see Appendix C for details), but 20 mA is preferred, so

there should be no problems with this resistor value.

Figure 9-1. Analogue Comparator circuit

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

502

Listing 9-1. Analogue Comparator sketch

//===

// This sketch uses the analogue comparator with pin D6

// as the reference voltage and D7 as the voltage to be

// compared with D6. When D6 is higher than D7 then the

// LED will light. When D6 is lower than D7, the LED goes

// out. So, not a blink sketch this time!

//===

// This function sets up the comparator to fire an interrupt

// each time the ACO bit toggles. It uses D6 as the reference

// voltage and D7 as the voltage to be compared.

void setupComparator() { ①

 // Disable AC interrupts.

 ACSR &= ~(1 << ACIE);

 // Enable AC by disabling the AC Disable bit!

 ACSR &= ~(1 << ACD);

 // Disable digital I/O on D6 and D7.

 DIDR1 |= ((1 << AIN0D) | (1 << AIN1D));

 // D6 will be the reference voltage.

 ACSR &= ~(1 << ACBG);

 // D7 to compare with D6.

 ADCSRB &= ~(1 << ACME);

 // Fire AC interrupt on ACO toggle.

 ACSR |= ((0 << ACIS1) | (0 << ACIS0));

 // Enable AC Interrupt.

 ACSR |= (1 << ACIE);

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

503

 // Enable Global Interrupts.

 sei();

}

void setup() {

 // You can still use Arduino code as well -

 // but I'm not! D13 = output.

 DDRB |= (1 << DDB5); ②
 setupComparator();

}

void loop() {

 ; // Do nothing. ③
}

// Analogue Comparator Interrupt Handler.Reads the ACSR

// register and sets the LED to the state of the ACO bit.

ISR(ANALOG_COMP_vect) { ④
 if (ACSR & (1 << ACO)) {

 PORTB |= (1 << PORTB5); // LED HIGH);

 } else {

 PORTB &= ~(1 << PORTB5); // LED LOW);

 }

}

 ① The setupComparator() function initializes the

Analogue Comparator as described in the text and

the code comments.

 ② This is just a very short pinMode(LED_BUILTIN,

OUTPUT) call.

 ③ The loop() function does nothing. Everything

happens in the ISR.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

504

 ④ The ISR fires any time that the Analogue

Comparator output toggles. It sets the LED to on, if

the ACO bit is set; otherwise, it turns the LED off.

You should note that when the comparator output is set or reset, it

remains that way until a change is necessary. The preceding interrupt is

only called when the ACO bit toggles from set to clear, or from clear to set.

It is effectively, like a light switch, on or off until it changes.

9.2. Analogue to Digital Converter (ADC)
The Atmega328P has a single, 10-bit Analogue to Digital Converter which

has up to nine separate inputs, depending on which ATmega328P your

Arduino is using. The Dual In-Line Package (DIP) with 28 pins has seven

inputs, while the surface mount version has all nine. On Arduino boards,

these are pins A0–A5 (or A0–A7 for the surface mount version), plus the

internal temperature sensor input. The ADC inputs can also be used by

the Analogue Comparator as described in Section 9.1, “The Analogue

Comparator,” at the start of this chapter.

As mentioned earlier, the ADC has 10-bit resolution which means that

it can return a value between 0 and 210 – 1, or 1023. The value is indicative

of the voltage on the AREF or AVCC pin, depending on configuration, as

compared with whichever ADC input has been selected. Only one of the

available ADC inputs can be used at a time. A result of zero represents GND,

and 1023 represents the reference voltage. The reference voltage can be

configured to one of the following three options:

• The 1.1 V internal bandgap reference voltage

• The voltage on the AVCC pin

• An external voltage on the AREF pin, which must not

exceed VCC

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

505

The voltage on the ADC input pin is therefore

(Reference Voltage / 1024) * ADC Result

The ADC works by using a capacitor to sample and hold the input

voltage, which is useful if the voltage changes during the time that the ADC

is still calculating the result as it ensures that the sampled voltage remains

stable throughout the calculation. The ADC uses successive approximation

to calculate the 10 bits of the result.

In order to further improve the accuracy of the ADC, there is a special

sleep mode, ADC Noise Reduction, which shuts down almost everything

which is not the ADC, in order to stop all the "digital noise" that the

microcontroller generates internally, so that the ADC can do its job in

relative peace and quiet.

The ADC can be configured to take a single shot – as per the Arduino

analogRead() function call – where ADC conversions are started manually

on request, or to run in free running mode where each completed

conversion starts another conversion automatically and only the very first

conversion has to be manually started.

The ADC has an interrupt that may be configured to fire when the

conversion is complete to avoid the need for your code to sit in a polling

loop, waiting for the result. The interrupt is required in auto trigger mode,

which can be triggered by one of many different sources – more on that

later.

9.2.1. ADC Setup and Initiation
Assuming you are not using the Arduino’s analogRead() function, then the

following steps are required in order to take an ADC reading:

• Power up the ADC.

• Select a suitable prescaler to configure the ADC to run

at a frequency within its required range of 50–200 KHz.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

506

• Select a suitable reference voltage source.

• Decide on whether the result is to be left or right

aligned.

• Select an input source.

• Disable digital input for the selected input pin.

• Enable interrupts, if required.

• Select single-shot or auto trigger, and if auto trigger,

choose a trigger.

• Enable the ADC and initiate a conversion.

Easy?

9.2.1.1. Powering the ADC

Probably the easiest step of all, you simply have to write a 0binary to the PRADC

bit of the PRR register. If that bit is a 1binary, then the ADC is powered off:

PRR &= ~(1 << PRADC);

9.2.1.2. Selecting the Prescaler

The ADC runs most accurately at a frequency between 50 and 200 KHz.

This frequency range is mandatory if you wish to get the full 10-bit result;

however, if you require less than 10-bit resolution, you can run the ADC at

different frequencies. On an Arduino, the CPU is running at 16 MHz, which

is a tad on the high side for the ADC. There is a prescaler for the ADC to

bring the frequency down to within the desired range. To set the prescaler,

you must write a suitable value to the ADPS2, ADPS1, and ADPS0 bits in the

ADC Control and Status Register A, ADCSRA.

Table 9-2 shows the permitted settings for the prescaler and the

resulting ADC frequencies, in KHz, for 16 MHz and 8 MHz systems.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

507

On Arduinos, only the final 111binary setting, divide by 128, brings the

ADC frequency down into the desired range. You might be successful with

the 110binary setting, divide by 64, which results in a frequency of 250 KHz –

but it’s probably not advisable especially if you need 10 bits of resolution.

I have seen it in Arduino code – once – in the source code for an Arduino-

based oscilloscope.

As I run the odd occasional NormDuino board at 8 MHz – see

Appendix H – I can use either of the preceding two settings and possibly

also the divide by 32 option, 101binary.

Assuming you are running an Arduino of some kind and are bypassing

analogRead(), the following code would set the desired frequency:

ADCSRA = ((1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0));

Table 9-2. ADC prescaler settings and frequencies

ADPS2–ADPS0 Description 16 MHz 8 MHz

000 divide F_CpU by 1 16,000 8,000

001 divide F_CpU by 2 8,000 4,000

010 divide F_CpU by 4 4,000 2,000

011 divide F_CpU by 8 2,000 1,000

100 divide F_CpU by 16 1,000 500

101 divide F_CpU by 32 500 250

110 divide F_CpU by 64 250 125

111 divide F_CpU by 128 125 63

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

508

 The preceding code overwrites all settings in the ADCSRA
register. If you are compiling in the Arduino Ide, this is a good idea as
it will overwrite the Arduino’s default settings.

regardless of the Ide, doing this means that you know exactly where
you start in the AdC setup. All further settings in ADCSRA can be Ord
or Anded in the usual manner. The examples that follow will all begin
by clearing the appropriate register on its first use and adding in
additional requirements on all subsequent uses.

9.2.1.3. Selecting the Reference Voltage Source

There are three separate and selectable voltage references which can be

used by the ADC, although only one can be selected at any one time.

 The data sheet advises against selecting either of the two
internal options if there is an external voltage already applied to the
AREF pin. doing this will most likely brick your ATmega328p. It’s best
to check if your particular device has anything connected before
changing the reference voltage source.

I’ve looked at the schematics for the Uno and the duemilanove, and
neither of those connects the AREF pin to any voltage. normduino
also does not have any voltages on that pin.

The same cannot be said for a number of breadboard Arduino layouts
to be found on the Internet, where they connect AVCC to VCC as
required, but for some reason, also connect AREF to VCC, thus
creating a time bomb, just waiting to happen and for no good reason.
Beware.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

509

even the Arduino Language delays setting the analogReference()
until the time that analogRead() actually executes and the source
comes with a warning against having voltage applied to AREF.

The reference voltage is set by bits REFS1 and REFS0 in the ADC

Multiplexer Selection Register, also known as ADMUX. The permitted values

for these two bits are shown in Table 9-3.

Table 9-3. ADC reference voltage selection settings

REFS1–REFS0 Description

00 Use the AREF pin as the reference voltage. The external voltage

applied must not exceed VCC

01 Use the (internal) voltage on AVcc as the reference voltage. For

best results, there should be a 100 nF capacitor between AREF

and GND

10 reserved

11 Use the internal 1.1 V bandgap voltage as the reference. Again,

it’s best to have a 100 nF capacitor between AREF and GND.

In the following example, we set the ADMUX register with an initial value

for the reference voltage source, selecting the AVCC voltage, and will add to

it as we progress:

ADMUX = ((0 << REFS1) | (1 << REFS0));

9.2.1.4. Left or Right Alignment?

The result of an ADC conversion is a value between 0 and 1023. This

represents the voltage on the ADC input pin – see in the following – as

compared with the reference voltage, both with respect to GND.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

510

There are two registers that must be read to obtain the result, ADCH and

ADCL. ADCH holds the highest bits of the result, while ADCL holds the lowest

bits. Reading these registers must be done in a specific order – ADCL must

be read first and then ADCH.

Once you have read ADCL, the ADC is no longer permitted to write

to either ADCL or ADCH until after you have completed reading ADCH. This

blocking method ensures that when you read the result of a conversion, both

registers are giving you the appropriate bits of the same conversion result.

The ADC generates a 10-bit result, 0–1023, which is returned in the

ADC data registers ADCH and ADCL. By default, the result is presented right

adjusted, but can optionally be presented left adjusted by setting the ADLAR

bit in ADMUX to a 1binary:

ADMUX |= (1 << ADLAR);

The default is for the result to be right aligned, which you can ensure by

ADMUX &= ~(1 << ADLAR);

The data sheet states that If the result is left aligned and no more than

8-bit precision is required, it is sufficient to read ADCH.

So what is the difference? The default, right alignment, returns ADCL

with bits 9–8 of the result in bits 1–0 of ADCH and bits 7–0 of the result in bits

7–0 of ADCL.

In left alignment, bits 9–2 are in bits 7–0 of ADCH, and bits 1–0 of the

result are in bits 7–6 of ADCL.

In Table 9-4, "x" means we don’t care about this bit of the result as it is

outside the 10-bit resolution of the ADC.

Table 9-4. ADC left/right alignment options

ADLAR Alignment Result ADCH Result ADCL

0 right xxxxxx98 76543210

1 Left 98765432 10xxxxxx

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

511

 In code, you can read ADCW to get the correct result and not
worry about reading ADCH and ADCL in the correct order.

9.2.1.5. Selecting an Input Source

It is now time to select an input source. This is the pin that will receive

the voltage that we are comparing against the reference voltage source.

There are 4 bits in register ADMUX, MUX3–MUX0, which are used to select the

input source. This gives up to 16 different sources, all of which are listed in

Table 9-5; however, a number of the options are reserved and should not

be used. ADC8, while listed in the data sheet as one of the reserved values, is

actually an exception in that it can be safely used.

Table 9-5. ADC input voltage source settings

MUX3-MUX0 Description MUX3-MUX0 Description

0000 AdC0 (Arduino A0, AVr PC0) 1000 reserved

0001 AdC1 (Arduino A1, AVr PC1) 1001 reserved

0010 AdC2 (Arduino A2, AVr PC2) 1010 reserved

0011 AdC3 (Arduino A3, AVr PC3) 1011 reserved

0100 AdC4 (Arduino A4, AVr PC4) 1100 reserved

0101 AdC5 (Arduino A5, AVr PC5) 1101 reserved

0110 AdC6 (Arduino A6, AVr ADC6) 1110 1.1 V internal bandgap

0111 AdC7 (Arduino A7, AVr ADC7) 1111 0 V (GND)

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

512

The data sheet has the following warnings:

• If ADC3, ADC2, ADC1 or ADC0 are used not as ADC inputs,

but as Digital Outputs, then they _must not switch while

an ADC conversion is in progress._

• If ADC4 or ADC5 are being used for 2WI (2 Wire Interface)

purposes, then using that will affect only ADC4 and ADC5,

not the other ADC inputs.

Now, the final two entries in Table 9-5 are interesting perhaps? I can

only assume that they are there to enable some form of configuration

perhaps. If you set MUX3:0 to 1110binary, then the ADC always reads 227–229

(at least mine does) which works out at 1.11–1.12 V. Using 1111binary for

MUX3:0 returns zero on my devices, representing GND. Working on the

assumption that this is indeed some form of configuration test, my ADC

seems to be quite accurate – assuming, of course, that the 1.1 V bandgap

reference voltage is itself 1.1 V of course.

 If your code decides to change the AdC input channel while a
conversion is underway and has not yet completed, nothing will
happen until the current conversion finishes.

9.2.1.6. Disable Digital Input

When using a pin as an ADC input, you are required to disable its digital

input buffer by setting the appropriate bit for the pin, in the Digital Input

Disable Register 0 or DIDR0.

Only the pins corresponding to ADC0 (Arduino A0) through ADC5

(Arduino A5) have the ability to have their digital input buffers disabled.

Pins ADC6 and ADC7, the two new ones on surface mount versions of the

ATmega328, and ADC8 do not have digital input buffers, so you cannot have

them disabled.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

513

To disable the digital input buffer for a pin, you must write a 1binary to

the appropriate ADCnD bit of the DIDR0 register, where the "n" represents the

ADCn pin number. To disable the digital input buffer for pin ADC3, Arduino

pin A3, for example, you would code

DIDR0 |= (1 << ADC3D);

Don’t forget to re-enable the buffer after the pin’s use as an ADC input

is finished; otherwise, it will always read LOW. This is done by writing a

0binary to the appropriate bit in DIDR0, as follows:

DIDR0 &= ~(1 << ADC3D);

9.2.1.7. ADC Interrupt

There is a single interrupt attached to the ADC, the ADC interrupt, or ADC

Conversion Complete interrupt, accessed through ISR(ADC_vect) in your

code. This interrupt is enabled by setting the ADIE, ADC Interrupt Enable,

bit in register ADCSRA as follows:

ADCSRA |= (1 << ADIE);

If global interrupts are also enabled, then the interrupt will fire every

time that the ADC has completed a conversion and the result is available.

Any time that the ADC conversion is complete, the ADIF bit in ADCSRA will

be set and will remain set until either

• The interrupt handler executes, whereupon ADIF will

be automatically cleared.

• The code writes a 1binary to ADIF in the usual AVR manner.

If your code is not using the ADC interrupt, it should monitor ADIF,

and remember to clear it; otherwise, a further ADC conversion will not

begin – unless the ADC is in free running mode, as described in the

following.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

514

 The data sheet warns that we should beware that if doing a
Read-Modify-Write on ADCSRA, a pending interrupt can be disabled.
This also applies if the SBI and CBI instructions are used.

9.2.1.8. Single-Shot or Auto Trigger?

In single-shot mode, a single conversion is carried out, and the ADC stops

working until the next request for a conversion. The conversion is started

on demand by the code, and the ADC will make the reading and then stop.

In auto trigger mode, the conversion is triggered by an event or can be

put in free running mode which causes the ADC to continually make a new

conversion as soon as the previous one has completed. This mode usually

requires the ADC interrupt to be enabled to advise the code that a conversion

has finished and that the result is available. Free running mode still requires

the first conversion to be manually started, as described in the following.

The various triggers available are set up in register ADCSRB by setting

bits ADTS2, ADTS1, and ADTS0 as per Table 9-6.

Table 9-6. ADC auto trigger sources

ADTS2–ADTS0 Trigger Source

000 Free running mode

001 Analogue Comparator

010 external Interrupt request 0

011 Timer/counter 0 Compare match A

100 Timer/counter 0 Overflow

101 Timer/counter 1 Compare match B

110 Timer/counter 1 Overflow

111 Timer/counter 1 Input Capture event

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

515

These bits are only used if the ADATE bit in register ADCSRA is also set.

To set the ADC into auto trigger mode with free running, the code required

would be

ADCSRA |= (1 << ADATE);

ADCSRB = ((0 << ADTS2) | (0 << ADTS1) | (0 << ADTS0));

 register ADCSRB also contains, in bit 6, the ACME bit which is
used by the Analogue Comparator – see Section 9.1, “The Analogue
Comparator.” Setting ADCSRB in the preceding manner will clear that
bit which might affect the running of the comparator if your device
needs it. In that case, the preceding code should probably be changed
to preserve the ACME bit before Oring the desired auto trigger bits:

ADCSRA |= (1 << ADATE);

ADCSRB &= (1 << ACME);

ADCSRB |= ((0 << ADTS2) | (0 << ADTS1) | (0 << ADTS0));

And yes, I know Oring with zero has no effect, but it will have an
effect for other auto trigger sources.

Auto triggering is initiated when a positive edge occurs on the selected

trigger signal. When this occurs, the ADC’s prescaler is reset, and a new

conversion is started. If the triggering signal is still positive when the

current conversion finishes, a new conversion will not be automatically

started.

Additionally, if another triggering positive edge is detected during an

ADC conversion, the new triggering edge will be ignored.

The various Timer/counter 0– and Timer/counter 1–related auto

triggering sources can be used to cause an ADC conversion to be initiated

at regular intervals.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

516

Even when auto triggering is enabled, your code can still manually

request a single-shot conversion by initiating the conversion as described

in the following.

9.2.1.9. Enabling the ADC and Initiating Conversions

Everything is now configured. All that remains is to enable the ADC and,

if necessary, initiate the first conversion. The ADC is enabled by writing a

1binary to the ADEN bit in register ADCSRA, as follows:

ADCSRA |= (1 << ADEN);

When ADEN is set as in the preceding text, the following events occur:

• The ADC starts consuming power.

• The ADC prescaler starts counting.

• If configured, auto triggering events will now initiate an

ADC conversion.

An ADC conversion is manually requested, in single-shot or free

running mode, by writing a 1binary to the ADSC bit in register ADCSRA:

ADCSRA |= (1 << ADSC);

When the ADSC bit is set, the following events occur:

• The ADC prescaler is reset so that each conversion

takes the same time.

• The sample and hold circuitry charges its capacitor

with the voltage on the ADC input pin.

• The chosen reference voltage is enabled.

• The input channel selection is made, and the

appropriate input is connected to the ADC.

• The conversion then starts at the next rising edge of the

ADC clock.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

517

9.2.1.10. ADC Conversions

The very first conversion takes 25 ADC clock cycles to complete so that the

internal analogue circuitry can be initialized. Subsequent conversions take

only 13 ADC clock cycles.

If the ADC’s reference voltage is the internal bandgap voltage, then

it will take a certain time for the voltage to stabilize. If it is not stabilized,

the first conversion’s result may be wrong. The data sheet, sadly, does not

specify how long a certain time should be. My own code simply throws

away the first reading in that mode of operation, although I have seen calls

to delay(20) in some code as a suitable delay to allow the stabilization to

occur.

The sample and hold of the input voltage takes place after 13.5 ADC

clock cycles for the first conversion and after only 1.5 ADC clock cycles

after the start of subsequent conversions.

When an ADC conversion is complete, the result is written to the data

registers ADCH and ADCL, and then bit ADIF in ADCSRA is set. When running

in single-shot mode, ADSC in ADCSRA is cleared simultaneously with the

setting of ADIF.

If the code then sets bit ADSC to 1binary, a new conversion will be initiated

on the first rising edge of the ADC clock signal.

In any of the auto triggering modes, the ADC prescaler is reset as

soon as the triggering event occurs. This ensures a fixed delay from the

triggering event occurring to the start of a new ADC conversion. In this

mode, the sample and hold takes place two ADC clock cycles after the

rising edge on the trigger source signal. An additional three CPU clock

cycles, not ADC clock cycles, are used for synchronization logic.

In free running mode, a new conversion will start as soon as the

previous one completes, and this will occur even if the ADIF flag in the

ADCSRA register is not cleared.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

518

9.2.2. Noise Reduction
There is a sleep mode especially for the ADC. It disables many of the

internal clocks leaving the ADC to make its conversion with as few noise

sources internally as possible. This sleep mode is discussed in Chapter 7,

Section 7.3.9.2, “ADC Noise Reduction Sleep Mode.”

It should be noted that this Noise Reduction mode is available only

in single-shot ADC mode. The data sheet specifies the following about

enabling this sleep mode:

The following procedures should be used:

Make sure that the ADC is enabled and is not busy converting.

Single Conversion mode must be selected and the ADC con-
version complete interrupt must be enabled.

Enter ADC Noise Reduction mode (or Idle mode). The ADC
will start a conversion once the CPU has been halted.

If no other interrupts occur before the ADC conversion com-
pletes, the ADC interrupt will wake up the CPU and execute
the ADC Conversion Complete interrupt routine. If another
interrupt wakes up the CPU before the ADC conversion is
complete, that interrupt will be executed, and an ADC
Conversion Complete interrupt request will be generated
when the ADC conversion completes.

The CPU will remain in active mode until a new sleep com-
mand is executed.

It also gives the following point to note.

 The AdC will not be automatically turned off when entering
other sleep modes than Idle mode and AdC noise reduction mode.
The user is advised to write zero to Aden before entering such sleep
modes to avoid excessive power consumption.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

519

9.2.3. Temperature Measurement
See Appendix E for an example of using this facility of the ADC. To select

this ADC input, your code needs to

• Select the internal 1.1 V bandgap as the ADC reference

voltage (REFS1:0 = 11binary).

• Select ADC8 as the ADC input channel (MUX3:0 = 1000binary).

• Set the prescaler – divide by 128 on an Arduino board at

16 MHz (ADPS2:0 = 111binary).

• Execute single conversions as and when required. Auto

triggering is not permitted.

The data sheet advises that readings from an uncalibrated sensor are

• -40oC = 010Dhex (269decimal)

• 25oC = 0160hex (352decimal)

• 125oC = 01E0hex (480decimal)

This works out at approximately 1.2769 per degree C, and that matches

with the data sheet which states that it is approximately 1 LSB [degrees

Kelvin] or 1 degree C. The data sheet states that the temperature in degrees

Centigrade is calculated as

Temp_C = (((((ADCH << 8) + ADCL)

 - (273 + 100 - TS_OFFSET)) * 128) / TS_GAIN)

 + 25

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

520

 given the rules of arithmetic precedence, the preceding code
would cause ADCH to be read before ADCL, and this would not be the
correct order! Using ADCW instead of ((ADCH << 8) + ADCL)
would give the correct result and cause the two registers to be read
in the correct order.

• TS_OFFSET is the calibration offset for the sensor

and is stored in the device itself. It is a signed two’s

compliment value.

• TS_GAIN is the sensor gain factor and is also stored in

the device. It is an unsigned, fixed-point, 8-bit value

representing 1/128th units, hence the need to multiply

by 128 in the preceding text.

In the data sheet, there is a small assembly language routine to obtain

both TS_OFFSET and TS_GAIN from the device. I do not use that particular

method of temperature conversion, so I have not discussed that routine here.

There are, over the Internet, various methods of converting the

temperature from what the ADC reads to degrees Centigrade. Some I have

seen are as follows:

• ADC - an_offset – The offset is dependent on the

individual AVR device.

• (ADC - 247)/1.22 – From the developer help note

mentioned earlier and linked in the following.

• (((ADC - (273 - 100 - TS_OFFSET)) * 128) / TS_

GAIN) + 25 – From the data sheet itself.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

521

• ADC – 273 – From the application note on calibrating

the sensor, linked in the following.

• (ADC - an_offset) a_gain_factor – From the

"MySensors" code, linked in the following.

The Atmel/Microchip documents mentioned in the preceding text are

as follows:

• The developer help note is at

https://microchipdeveloper.com/8avr:avradc.

• The application note on calibrating the temperature

sensor is at http://ww1.microchip.com/downloads/

en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-

Internal-Temperature- Reference_ApplicationNote_

AVR122.pdf, which may prove useful – if your Maths is

better than mine!

• The MySensors code mentioned in the

preceding text can be found at https://

github.com/mysensors/MySensors/blob/

bde7dadca6c50d52cc21dadd5ee6d3623be5f3c6/hal/

architecture/AVR/MyHwAVR.cpp.

 In the United Kingdom, we say Maths, plural, from mathematics.
I believe in the United States it is Math, singular (from mathematic?),
which sounds really weird to my Scottish ears. At least we agree on
Arithmetic.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

https://microchipdeveloper.com/8avr:avradc
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
https://github.com/mysensors/MySensors/blob/bde7dadca6c50d52cc21dadd5ee6d3623be5f3c6/hal/architecture/AVR/MyHwAVR.cpp
https://github.com/mysensors/MySensors/blob/bde7dadca6c50d52cc21dadd5ee6d3623be5f3c6/hal/architecture/AVR/MyHwAVR.cpp
https://github.com/mysensors/MySensors/blob/bde7dadca6c50d52cc21dadd5ee6d3623be5f3c6/hal/architecture/AVR/MyHwAVR.cpp
https://github.com/mysensors/MySensors/blob/bde7dadca6c50d52cc21dadd5ee6d3623be5f3c6/hal/architecture/AVR/MyHwAVR.cpp

522

Interestingly, the calibration document mentioned in the preceding

text states something a little different from the information in the data

sheet, in that

The output from the ADC is given in LSBs or K, so the

calibration values ADCT1 and ADCT2 have to be converted to

degrees C. This is done by subtracting 273 from the values

This, to my mind, implies that the temperature sensor is outputting a

value representing degrees K (Kelvin) whereby 0 degrees Centigrade is 273

degrees Kelvin, hence the need to subtract 273 from the ADC reading, to

get a value for Centigrade. In practice, this does not compute!

9.2.4. ADC Example
The following code initializes the ADC in free running mode and uses

an interrupt to send the ADC reading to the Serial Monitor. The code

was written and compiled in the Arduino IDE, but uses the plain AVR C

language to set up the ADC.

This code can be run on my Uno or Duemilanove at 16MHz or on one

of my 8 MHz NormDuino boards. The prescaler for the AVR is calculated

based on the F_CPU chosen in the Arduino IDE, and the code correctly

determines whether the board is 16 MHz or 8 MHz and sets the correct

prescaler accordingly.

Figure 9-2 shows the breadboard layout where I simply connected a

potentiometer to pin A0 to vary the voltage. An LED on pin D9 with a 560

Ohm resistor gave some visual feedback as it brightened and dimmed

according to where I had turned the potentiometer.

The first part of the source code is shown in Listing 9-2 and is the function

setupADC() which sets up the ADC directly. As mentioned earlier, it will be

set up in free running auto trigger mode and will use the ADC interrupt to

pass the readings to the main loop as each one becomes available.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

523

Listing 9-2. ADC example, setupADC() function

void setupADC() {

 // Ensure ADC is powered.

 PRR &= ~(1 << PRADC); ①

 // Slow the ADC clock down to 125 KHz

 // by dividing by 128 or 64. 128 is for a 16MHz Arduino

 // 64 for an 8MHz NormDuino. Does not cater for other

 // clock speeds here. BEWARE.

 #if F_CPU == 16000000 ②
 ADCSRA = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);

 #else

 // Non-standard 8MHz clock in use.

 ADCSRA = (1 << ADPS2) | (1 << ADPS1) | (0 << ADPS0);

Figure 9-2. ADC example sketch breadboard layout

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

524

 #endif

 // Initialise the ADC to use the

 // internal AVCC 5V reference voltage.

 ADMUX = (0 << REFS1) | (1 << REFS0); ③

 // Ensure result is right aligned.

 ADMUX &= ~(1 << ADLAR);

 // Use the ADC multiplexer input

 // ADC0 = Arduino pin A0.

 ADMUX |= (0 << MUX3) | (0 << MUX2) | ④
 (0 << MUX1) | (0 << MUX0);

 // Disable ADC0 Digital input buffer.

 DIDR0 |= (1 << ADC0D);

 // Use the interrupt to advise when a result is available.

 ADCSRA |= (1 << ADIE); ⑤

 // Set auto-trigger on, and choose Free Running mode. As

 // we are not using the Analogue Comparator, we don't care

 // about the ACME bit in ADCSRB.

 ADCSRA |= (1 << ADATE); ⑥
 ADCSRB = 0;

 // Enable the ADC and wait for the voltages to settle.

 ADCSRA |= (1 << ADEN); ⑦
 delay(20);

}

 ① This powers the ADC by disabling the disable the

ADC bit.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

525

 ② These lines work out the prescaler for 16 MHz or

8 MHz devices. Other speeds are not catered for

here. I only have two speeds on my devices.

 ③ This selects the internal 5 V reference voltage which

is fed by pin AVCC which must be connected to VCC

plus or minus 2%.

 ④ I know it’s all zeros, but it’s easy to change this line

for different ADC input pins.

 ⑤ We are using interrupts, so they must be enabled,

as must the global interrupts. This is always the

case when compiling in the Arduino IDE, but not

necessarily in other IDEs. Beware.

 ⑥ Setting ADATE enables auto trigger mode. Setting

ADCSRB to zero enables free running mode. It also

messes up the Analogue Comparator, but we don’t

care here. Other code might care, so bear it in mind.

 ⑦ Enable, but do not start the ADC. From here on, the

ADC draws power and has initialized the reference

voltage selector and the reference voltage source. It

is ready to go.

After executing the code in Listing 9-2, the ADC is now fully initialized

and enabled; however, it has not yet been started. In free running and

single-shot modes, the ADC must be started manually. The startADC()

function in Listing 9-3 does exactly that by setting bit ADSC in ADCSRA.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

526

Listing 9-3. ADC example, startADC() function

void startADC() {

 ADCSRA |= (1 << ADSC);

}

Listing 9-4 sets up a volatile variable, ADCReading, to hold the result

passed back from the interrupt handler. The variable must be defined as

volatile; otherwise, the compiler might notice that it doesn’t seem to

be being changed in value and may simply "optimize" it away. Any global

variables that you wish to change from inside an interrupt handler should

be defined as volatile to prevent this happening.

Following the variable declaration, we need an interrupt handler for

the ADC interrupt. All that it needs to do is to copy the ADC result from

ADCW into ADCReading. The loop() function, in Listing 9-6, will do some

work with this result.

Listing 9-4. ADC example, the interrupt handler

// Somewhere for the ADC Interrupt to store the result.

volatile uint16_t ADCReading = 0;

// The interrupt handler.

ISR(ADC_vect) {

 ADCReading = ADCW;

}

The setup() function, in Listing 9-5, initializes the ADC using the

setupADC() function from Listing 9-4. This sets up the Serial Monitor

to display the results and fires up the ADC for its first reading. Once the

first reading is complete, the ADC will then be in free running mode and

will constantly be initiating a new conversion as soon as the current one

finishes.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

527

Listing 9-5. ADC example, the setup() function

void setup() {

 setupADC();

 // Use the Serial monitor for output.

 Serial.begin(9600);

 Serial.println("Arduino Direct ADC Testing");

 // Add an LED and 560R resistor to pin 9 for feedback.

 pinMode(9, OUTPUT);

 // Now, fire up the ADC.

 startADC();

}

And finally, Listing 9-6 shows the loop() function, which takes the

most recent ADC reading and sends it to the Serial Monitor, first as a plain

value between 0 and 1023 and, second, as a voltage.

As there are 1024 different values that can be returned from the ADC

and with 0 = GND and 1023 = AVCC or 5 V, anything in between must be

equal to 5/1024 per division. We simply multiply ADCReading by this

fraction, 0.004882812 V (4.88 milliVolts and a little bit), to get the voltage

on the ADC0 or A0 pin. We must be careful to cast the result to a float, or

we will lose accuracy and only see integer values.

Listing 9-6. ADC example, the loop() function

void loop() {

 Serial.print("ADC = ");

 Serial.print(ADCReading);

 // The voltage is ADCReading * (5V/1024)

 Serial.print(", Voltage = ");

 Serial.println((float)(ADCReading * 5.0 / 1024.0));

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

528

 // Light up the LED to a value representing the voltage

 // on pin A0 (ADC0).

 analogWrite(9, map(ADCReading, 0, 1023, 0, 255));

 delay(500);

}

There’s a small delay at the end of the loop() to prevent the numbers

scrolling up the screen too quickly. Don’t worry about the ADC though. It

will carry on taking readings and passing them back to the loop() as the

interrupt handler works outside of delay() and is not affected.

9.3. USART
The USART is the Universal Synchronous/Asynchronous Receiver/

Transmitter. It’s easier to type USART!

On the Arduino, it is connected from physical pins 2 and 3 to the

laptop or desktop’s USB port via either a separate Atmel/Microchip AVR

microcontroller or an FTDI chip – depending on which Arduino you

have. On an ordinary ATmega328P, it is also pins 2 and 3, but they are not

connected anywhere – unless you connect them.

Pin 2 is the receive or RX pin, while pin 3 is the transmit or TX pin.

You don’t have to worry about this on an Arduino, but when you have

your own naked ATmega328P on a breadboard or PCB and you want

to communicate with it, you do. With a serial device such as an FTDI

connector, at least the one I have, the pins are marked TXO and RXO for

output. So the TXO pin on the FTDI connects to the ATmega328P’s RX pin,

and the RXO on the FTDI connects to TX on the AVR.

Confused? You should be! Some FTDI devices have the pins marked as

TX and RX, and with those, you connect the TX to the TX and the RX to RX. It

will not break anything if you get them crossed over, but nothing will work.

If that happens to you, just swap the wires over at the AVR end.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

529

The USART can be set up to transmit only, receive only, or do both;

and it can use interrupts to facilitate this, having three dedicated interrupts

available.

In synchronous modes, the USART will require a clock pin and a data

pin, whereas asynchronous mode does not need a clock and can use one

pin, of the two available to the USART, as the TX pin and the other for the

RX pin. The Arduino uses the latter mode, asynchronous.

9.3.1. Baud Rates
The baud rate is configured by the value stored in the USART Baud Rate

Register, UBRR0, where "0" is the USART number. On the ATmega328P,

there is a single USART numbered 0. The Mega 2560 has four USARTs,

numbered from 0 to 3.

UBRR0 is connected to a counter which counts down at the F_CPU

frequency, and whenever it reaches zero, a USART clock is generated and

this clock controls the USART’s transmission and/or receipt of data. When

the counter reaches zero, it is reloaded with the value in UBRR0. This clock

is the Baud Rate Generator Clock and has the frequency given by

F_CPU / (UBRR0 + 1)

The Baud Rate Generator Clock is divided down by the USART’s

transmitter by 2, 8, or 16 depending on the configured mode.

The receiver circuitry, on the other hand, does no such division and

uses the Baud Rate Generator Clock directly as input to its data recovery

unit. Within the data recovery unit, there is a state machine which uses 2,

8, or 16 states to determine correct receipt of the transmitted data.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

530

9.3.2. Double Speed
The transfer rate of the USART can be doubled by setting bit U2X0 in

register UCSR0A. However, this bit should only be set in asynchronous

operation; it should be zero for synchronous modes. Setting the bit causes

the baud rate divider to be reduced to 8, from the usual 16, and this

effectively doubles the transfer rate.

The receiver, however, will also only sample eight times, rather than 16,

in the data recovery unit, thus doubling the receive speed too, but it should

be noted that in this mode, a more accurate baud rate setting is required as

well as a more accurate system clock. Some baud rates can cause excessive

error rates – see the following for details.

For the transmission side of the USART, doubling the speed has no

apparent drawbacks. (At least, that’s what the data sheet says.)

9.3.3. Baud Rate Calculations
In single-speed asynchronous mode, the baud rate is calculated as

BAUD = F_CPU / 16 * (UBRR0 + 1)

Normally, however, you are more interested in setting a specific baud

rate, so you would need to calculate UBRR0 for the desired rate. This is done

using the formula

UBRR0 = (F_CPU / (16 * BAUD)) - 1

You will probably have figured out that you can just about define any

baud rate you wish by setting UBRR0 to any given value.

In double-speed asynchronous mode, the formulas change to

BAUD = F_CPU / 8 * (UBRR0 + 1)

and

UBRR0 = (F_CPU / (8 * BAUD)) - 1

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

531

In synchronous (master) mode, which incidentally the Arduino cannot

use, the formulas again change to

BAUD = F_CPU / 2 * (UBRR0 + 1)

and

UBRR0 = (F_CPU / (2 * BAUD)) - 1

As an example, what would the required UBRR0 setting be for an

Arduino running at 16 MHz, for a baud rate of 9600 in single-speed mode?

UBRR0 = (F_CPU / 16 * BAUD) - 1

 = (16e6 / 16 * 9600) - 1

 = (16e6 / 153,600) - 1

 = 104.1666... - 1

 = 103.1666...

See the problem? We are working with registers, and registers cannot

have fractions, so the preceding calculation introduces errors. Do we use

the value 103 and round down or use 104 by rounding up? What are the

actual baud rates obtained with those values? If we feed them back into the

equation, we will see, first for UBRR0 = 103

BAUD = F_CPU / 16 * (UBRR0 + 1)

 = 16e6 / 16 * (103 + 1)

 = 16e6 / 16 * 104

 = 16e6 / 1664

 = 9615.384615

and now for UBRR0 = 104

BAUD = F_CPU / 16 * (UBRR0 + 1)

 = 16e6 / 16 * (104 + 1)

 = 16e6 / 16 * 105

 = 16e6 / 1680

 = 9523.809524

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

532

Neither of these is 9600, which we wanted, so it looks like rounding

down, in this case, works out closer to our desired baud rate.

9.3.4. Baud Rate Errors
With UBRR0 set to 103 and 104, as in the preceding text, we have actual

baud rates of 9615 and 9524. My rounding here is in the normal direction:

less than 0.5 rounds down, more than 0.5 rounds up, and 0.5 rounds up or

down to the even number.

We wanted 9600, but we got 9615 or 9524. One is running high and the

other low. Which has the lowest error rate?

The data sheet calculates the error rate, as a percentage, as

error% = ((BAUDgot / BAUDwanted) - 1) * 100

The data sheet supplies numerous tables showing the desired baud

rates, the UBRR0 setting, and error rates for many different values of F_CPU;

and they all appear to be wrong!

Taking the best value calculated in the preceding text and checking the

data sheet, it shows the error rate as being 0.2% for UBRR0 having the value

103. I feel the need to run a quick check myself and calculate the error rate

for UBRR0 = 103:

error% = ((BAUDgot / BAUDwanted) - 1) * 100

 = ((9615 / 9600) - 1) * 100

 = (1.0015625 - 1) * 100

 = 0.15625%

Hmm, that’s not quite the 0.2% that the data sheet mentions. So let’s

try again but this time, use the fractions:

error% = ((BAUDgot / BAUDwanted) - 1) * 100

 = ((9615.384615 / 9600) - 1) * 100

 = (1.001602564 - 1) * 100

 = 0.1602%

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

533

That’s still not 0.2%. There are many other discrepancies in the data

sheet on the matter. To be honest, I think the data sheet is rounding error

rates to the nearest 0.1%.

Regardless of the data sheet’s approximate error rates, the advice given

is to choose a baud rate which gives an error rate of between –0.5% and

+0.5%. On an Arduino board, running at 16 MHz, a 9600 baud rate is within

specifications. Using this advice, it would seem that UBRR0 can safely be set

to 103 as calculated.

9.3.5. What Is a Frame?
According to the data sheet, A serial frame is defined to be one character of

data bits with synchronization bits (start and stop bits), and optionally a

parity bit for error checking.

Start and stop bits are used to synchronize the transmitting and receiving

devices, while parity bits are used to apply rudimentary error checking.

The USART is able to be configured to use any combination of the

following:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• None, even, or odd parity

• 1 or 2 stop bits

A frame always begins with the single start bit. This is followed by 5, 6,

7, 8, or 9 data bits with the least significant bit first. If parity is enabled, the

parity bit is next. Finally are the 1 or 2 stop bits.

When a frame has been transmitted, it can either be followed by

another frame, or the line can be set to a HIGH for idle state.

It is because of the frame structure that regarding the baud rate as the

number of characters per second is incorrect. For an 8-bit character set, a

frame can be as much as 12 bits long.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

534

9.3.6. Parity
The USART operates, or can be configured to do so, in odd or even

parity or with no parity at all. When configured to use parity, the way it is

calculated is to exclusively OR, or XOR, each of the bits in the data, not the

bits in the frame, and then to XOR the result with a 0binary bit for even parity

or a 1binary bit for odd parity.

 An exclusive Or operation takes 2 bits, and if they are both the
same, the result is 0binary. If they are different, the result is 1binary, giving
the following truth table:

A B | Z

----+--

0 0 | 0

0 1 | 1

1 0 | 1

1 1 | 0

If even parity is in use, the parity bit is used to make the number of

1binary bits in the data even. Odd parity makes the number of 1 bits odd. The

parity bit will be found between the final data bit and the first stop bit of a

frame.

As an example, the letter "A," in ASCII, has code 65decimal, 41hex, or 0100

0001binary. There are 2 bits that are 1binary. So for even parity, the parity bit

must be a 0binary; and for odd parity, it must be a 1binary.

The letter "C," on the other hand, is 67decimal, 43hex, and 0100 0011binary.

This has 3 bits that are 1 binary. So the parity bit in even parity will be a 1binary,

and for odd parity, it will be a 0binary.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

535

9.3.7. Interrupts
The USART has three separate interrupts that can be used. Two are for

transmission and one for receiving data. These are

• TX Complete

• TX Data Register Empty

• RX Complete

9.3.7.1. TX Complete Interrupt

This interrupt fires when the data written to the UDR0 register has been

framed in start, stop, and parity bits as appropriate and the whole of the

frame has been transmitted.

9.3.7.2. TX Data Register Empty Interrupt

This interrupt fires when the data written to the UDR0 register has been

written into the shift register buffer internally, to be framed. The USART

may still be in the midst of sending the byte down the line, but the UDR0

register is empty and another byte can be written.

This is the interrupt used by the Arduino’s Serial interface and allows

for a slightly quicker processing of data to be written to the USART as it

can be written into the UDR0 register even as the previous byte is still being

wrapped and transmitted in its frame.

9.3.7.3. RX Complete

When this interrupt fires, a new data byte is waiting to be retrieved from

the UDR0 register.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

536

 It appears that the UDR0 register is used by both the transmit
and receive parts of the USArT. how can this be when the USArT can
be both transmitting and receiving? when data are read from UDR0,
the byte of data recently received is returned to the calling code,
while when data are written to UDR0, it is forwarded on to the
transmitter side of things. The ATmega328p knows what it is doing!

9.3.8. Initializing the USART
It goes without saying that the USART will have to be initialized before any

communication can take place. The process usually requires the USART

to be powered up, choose the USART mode, set the baud rate, set the

frame requirements, and then enable the transmitter and/or the receiver

depending on the requirements of the code.

When running code with interrupt-driven USART operations, the

global interrupts should be disabled during the setup.

If the USART needs to be reconfigured, perhaps to change the frame

format or the baud rate, then the code must ensure that the existing

settings have been finished with and that all current transmissions and

receipts are completed. This can be carried out by checking the TXC0 and/

or RXC0 bits in the UCSR0A register.

The USART has three separate control registers:

• UCSR0A is used for various error flags and transmit and

receive complete flags and to set double-speed mode

and multi-processor communications mode.

• UCSR0B is used to enable interrupts, to enable transmit

and receive modes, and to hold bit 9 of 9-bit data frames,

for transmission and receipt and one of the 3 bits used to

set the data size – the other two are in UCSR0C.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

537

• UCSR0C is used to select the USART mode, parity

settings, stop bits, the remaining 2 bits of the data size

settings, and the clock polarity.

In order to ensure that your USART is fully initialized, without relying

on some defaults that may not be as expected, it is best to start from a

known, clear configuration by clearing all three control registers:

UCSR0A = 0;

UCSR0B = 0;

UCSR0B = 0;

Any options that the code requires can now be safely ORd into the

appropriate registers. The following examples will assume this mode of

operation.

9.3.8.1. Powering the USART

The USART is powered up by writing a 0binary to the PRUSART0 bit in the

Power Reduction Register, PRR, as described in Chapter 7, Section 7.4.2,

“Power Reduction Register”:

PRR &= ~(1 << PRUSART0);

Writing a 1binary to this bit shuts down the USART by stopping the clock

to the module. When subsequently waking the USART again, it should be

fully re-initialized to ensure proper operation.

9.3.8.2. Choosing the USART Mode

The USART can be operated in one of three modes:

• Asynchronous USART (the default)

• Synchronous USART

• Master SPI

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

538

The default mode is asynchronous USART, and the desired mode is

defined by setting the UMSEL01 and UMSEL00 bits in the UCSR0C register,

USART Control Status Register C, as defined in Table 9-7.

Table 9-7. USART mode settings

UMSEL01–UMSEL00 Description

00 Asynchronous USArT

01 Synchronous USArT

10 reserved – do not use

11 master SpI

 Synchronous mode(s) requires a clock and a data line, where
asynchronous mode does not. There are two pins available to the
USArT, so because asynchronous mode doesn’t use a clock, the two
pins can be configured as TX and RX.

In this mode, transmission and reception can occur at the same
time – also known as full duplex.

Arduino boards run in asynchronous mode.

As an example, setting the USASRT to run in Master SPI mode, your

code would be

UCSR0C |= ((1 << UMSEL01) | (1 << UMSEL00));

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

539

9.3.8.3. Baud Rate Setting

Setting the baud rate has been described earlier. You must calculate the

appropriate value for the UBRR0 register and load it, for example:

// Settings for 9600 baud rate.

#define BAUD 9600

#define UBRR0_9600 ((F_CPU) / 16 * (BAUD)) - 1

...

UBRR0 = UBRR0_9600;

9.3.8.4. Frame Settings

The frame settings define the start bit, which is always present, the number

of data bits to be transmitted/received, whether or not a parity bit is

required, and the number of stop bits.

9.3.8.5. Setting Parity

Bits UPM01 and UPM00 in the UCSR0C register, USART Control Status Register

C, define the USART parity mode. Table 9-8 shows the bit settings for the

different parity modes.

Table 9-8. USART parity settings

UPM01–UPM00 Description

00 no parity (the default)

01 reserved – do not use

10 even parity

11 Odd parity

To configure the USART with even parity, the code would be

UCSR0C |= ((1 << UPM01) | (0 << UPM00));

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

540

9.3.8.6. Setting Stop Bits

The USBS0 bit in the UCSR0C register defines the number of stop bits as

shown in Table 9-9.

Table 9-9. USART stop bit settings

USBS0 Description

0 1 stop bit (the default)

1 2 stop bits

The code to configure the USART with 2 stop bits would therefore be

UCSR0C |= ((1 << USBS0);

9.3.8.7. Setting Data Width

Bits UCSZ01 and UCSZ00 in register UCSR0C, along with bit UCSZ02 in

register UCSR0B, define the number of data bits in a frame. The default,

at power on/reset, is 8 bits. Table 9-10 shows the valid settings for the

data width which the USART will use. You will note some settings are

not permitted.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

541

Table 9-10. USART data width settings

UCSZ02–UCSZ00 Description

000 5 bits data size

001 6 bits data size

010 7 bits data size

011 8 bits data size (the default)

100 reserved – do not use

101 reserved – do not use

110 reserved – do not use

111 9 bits data size

To set, for example, 9 bits of data in the frame, your code should

execute the following:

UCSR0B |= (1 << UCSZ02);

UCSR0C |= ((1 << UCSZ01) | (1 << UCSZ01));

9.3.8.8. Enabling Double-Speed Mode

To double the speed of communications, both transmission and receipt, in

asynchronous mode only, set bit U2X0 in register UCSR0A as follows:

UCSR0A |= (1 << U2X0);

If the USART is to be operated in synchronous mode, this bit can be

explicitly cleared, if required:

UCSR0A &= ~(1 << U2X0);

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

542

9.3.8.9. Enabling Interrupts

The USART has thee interrupts, as detailed earlier. Bits RCXCIE0, TXCIE0,

and UDRIE0 control which, if any, of the interrupts will be used; and the

settings are displayed in Table 9-11.

Table 9-11. USART interrupts

Bit Description

RCXCIE0 rX Complete interrupt will be enabled. The code in ISR(USART_

RXC_vect) will handle reading the UDR0 register to retrieve the byte

just read

TXCIE0 TX Complete interrupt will be enabled. The code in ISR(USART_TXC_

vect) will handle writing a new data byte to the UDR0 register ready

to be transmitted

UDRIE0 USArT data register empty interrupt will be enabled. The code in

ISR(USART_UDRE_vect) will handle writing a new data byte to the

UDR0 register ready to be transmitted

The latter two interrupts appear do the same thing. They do, but

slightly differently.

The TX Complete interrupt is fired when the data frame of up to 13 bits

has been transmitted. At this point, any new data written to UDR0 has to be

framed before it can be transmitted.

The USART Data Register Empty interrupt is fired whenever the date

most recently written to UDR0 has been copied to the transmit shift buffer

internally to the AVR microcontroller. There can be up to 9 bits of data,

and so this interrupt can fire when the previous character is still in the

midst of being framed and transmitted; and, in doing so, you can get a

better throughput as the byte can be framed and transmitted as soon as the

previous byte is on its way down the line.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

543

The Arduino uses the USART Data Register Empty interrupt for better

throughput.

Enabling these interrupts is a matter of writing a 1binary to the

appropriate bit in the UCSR0B register:

cli();

...

UCSR0B |= ((1 << RCXCIE0) | (1 << UDRIE0));

...

sei();

 If interrupts are to be used, it is considered best to disable
global interrupts while initializing the USArT. This will prevent
spurious firing of the USArT interrupts, possibly, when the USArT is
not fully configured.

9.3.8.10. Enabling Data Transmission

To enable transmission of data, the USART is configured as follows:

UCSR0B |= (1 << TXEN0);

Doing so will override the normal function of the TX pin on the AVR

microcontroller. This corresponds to Arduino pin D1 or AVR pin PD1.

9.3.8.11. Enabling Data Receipt

To enable receipt of data, the USART is configured as follows:

UCSR0B |= (1 << RXEN0);

Doing so will override the normal function of the RX pin on the AVR

microcontroller. This corresponds to Arduino pin D0 or AVR pin PD0.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

544

9.3.8.12. Transmitting or Receiving 9-Bit Data

Nine-bit data? What’s that about? It can happen that some data

transmissions require 9 bits for each character. The ATmega328P’s USART

can cope with this. Given that data bytes in registers are only 8 bits long,

where does the 9th bit get stored?

Bits TXB80 and RXB80 in register UCSRB0 are the places. These bits hold

the 9th bit when transmitting and receiving 9-bit data. You should note that

• When transmitting data, the 9th bit must be written to

TXB80 before writing the remaining 8 bits to the UDR0

register.

• When receiving data, the 9th bit must be read from

RXB80 before reading the rest from UDR0.

In either case, the appropriate bit in register UCSRB0 holds the most

significant bit of the 9-bit data. This will be bit number 8 – bits number

from 0 upward remember. Data bits 7–0 will be in the UDR0 register when

transmitting or receiving 9-bit data.

9.3.9. USART Checks
When all the initialization has been completed and the USART is now

transmitting and/or receiving data quite happily, how do you check for

completion or errors?

With interrupts in force, you will know when data are received

and/or transmitted without problems as the appropriate interrupt

will fire. However, if you are not using interrupts, you will have to poll

various bits in the control registers, to see if data have been received or

transmitted.

All of the bits to be checked or polled are found in register UCSR0A.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

545

9.3.9.1. USART Receive Complete

Bit RXC0 in register UCSR0A is set when the current byte being received has

been received and unframed. The data byte will be available for reading

from the UDR0 register.

When the UDR0 register is subsequently read, RXC0 will be automatically

cleared, as it will if the USART RX Complete interrupt is enabled and the

ISR has been executed.

Code may also clear this bit by the usual manner of writing a 1binary to it.

9.3.9.2. USART Transmit Complete

Bit TXC0 in register UCSR0A is set when the frame in the transmit buffer (a

simple shift register) has been completely shifted out onto the data line,

and no new data is waiting in the UDR0 register for transmission.

This bit will be automatically cleared when the USART TX Complete

interrupt handler has been executed or can be cleared in code by writing a

1binary to it.

9.3.9.3. USART Data Register Empty

Bit UDRE0 in register UCSR0A indicates that the register UDR0 is now empty,

its previous contents having been copied into the transmit buffer ready for

framing and transmission.

This bit will be automatically cleared when the USART Date Register

Empty interrupt handler has been executed. Application code may also

clear this bit by writing a 1binary to it.

On reset or power-up, this bit is initialized to a 1binary to show that the

transmit data register is ready to accept new data.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

546

9.3.9.4. USART Frame Error

Bit FE0 in register UCSR0A will be set if the received data byte had a framing

error in that the first stop bit was detected as a 0binary. The bit remains set

until UDR0 is read and so should be checked prior to reading the data.

 when writing to register UCSR0A, this bit should always be
written as 0binary.

9.3.9.5. USART Data Overrun

Bit DOR0 in register UCSR0A will be set whenever a Data Overrun condition

is detected. A Data Overrun occurs when

• The receive buffer is full – it can hold up to two

characters.

• There is a character waiting in the USART’s receive shift

register to be copied into the receive buffer.

• A new start bit is detected on the RX pin.

DOR0 will remain set until the receive buffer (UDR0) is read, freeing up

space for new data.

 when writing to register UCSR0A, this bit should always be
written as 0binary.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

547

9.3.9.6. USART Parity Error

Bit UPE0 in register UCSR0A will be set if the next character in the receive

buffer had a parity error when received but only if the USART had parity

checking enabled at the time the data was received (Bit UPM01 in register

UCSR0C was set to 1binary).

UPE0 will remain set until the receive buffer (UDR0) is read.

 when writing to register UCSR0A, this bit should always be
written as 0binary.

9.3.10. USART Example
The code that follows in Listings 9-7 through 9-15 is a sketch to

demonstrate the use of the USART without help from the Arduino

Language and without using the Serial interface as we would normally

do. The code that follows is all one sketch but is split into separate

functions here for explanation.

The sketch begins with the setupUSART() function in Listing 9-7.

Listing 9-7. USART sketch, setupUSART() function

#define SET_UBRR0(x) ((F_CPU) / (16 * (x))) - 1 ①

void setupUSART(unsigned long baudRate) {

 // Sets up the USART to send and receive at a given baud,

 // 8 data bits, one stop bit, no parity. It doesn't use

 // interrupts or double speed.

 // Ensure we have power/clock.

 PRR &= ~(1 << PRUSART0); ②

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

548

 // calculate the baud rate setting.

 UBRR0 = SET_UBRR0(baudRate); ③

 // Initialise registers, then set TX and RX on,

 // 8 data bits. The others default appropriately.

 UCSR0A = UCSR0B = UCSR0C = 0; ④
 UCSR0B |= ((1 << TXEN0) | (1 << RXEN0)); ⑤
 UCSR0C |= ((1 << UCSZ01) | (1 << UCSZ00)); ⑥
}

 ① This is a quick way to convert the desired baud rate

into the required value for UBRR0.

 ② Always remember to power up the USART first.

 ③ We set the required baud rate here.

 ④ Clearing all the control registers is a good way to set

up the system to a known configuration.

 ⑤ This line enables transmission and receipt of data.

 ⑥ These 2 bits set the data size in the frame to 8.

You will note that much of the setup was not mentioned. Where, for

example, did I put the USART into asynchronous mode? My initialization

of the three control registers to zero did the following for me:

• UCSR0A set double-speed and multi-processor modes off.

• UCSR0B set interrupts off.

• UCSR0C set the mode to asynchronous and defined no

parity and a single stop bit.

All that the rest of setupUSART had to do was enable 8 bits of data frame

size and turn on transmission and receipt of data.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

549

The next function, shown in Listing 9-8, is the code to receive a single

byte of data from the RX line. This code will block if there is nothing

currently being received.

Listing 9-8. USART sketch, receiveByte() function

uint8_t receiveByte() {

 // Wait for bit RXC0 to be set in UCSR0A.

 loop_until_bit_is_set(UCSR0A, RXC0); ①

 return UDR0; ②
}

 ① Wait here until the RXC0 bit gets set. Once that

happens, the data in the UDR0 register is valid.

 ② Retrieve and return the character just read.

Receiving one byte at a time is okay, but sometimes you just want

more! The next function, receiveText(), receives a whole string of

characters. Listing 9-9 has the details.

Listing 9-9. USART sketch, receiveText() function

uint8_t receiveText(char *buffer, uint8_t howMany) {

 // Receive a string of text up to howMany characters

 // or until a terminating linefeed is received.

 //

 // MAKE SURE that the serial monitor is set to send a

 // NEWLINE or this code will fail to return until the

 // buffer fills.

 //

 // Assumes the caller knows what s/he is doing! The

 // buffer should be one more than howMany in length.

 uint8_t i = 0;

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

550

 while (i < howMany) { ①
 uint8_t c = receiveByte();

 if (c == '\n') { ②
 buffer[i] = '\0';

 return i;

 }

 buffer[i++] = c; ③
 }

 // We have received howMany characters.

 buffer[i] = '\0'; ④
 return howMany;

}

 ① This loop will exit on one of two conditions:

• The buffer is filled up with howMany characters, and

a new line has not been seen.

• The last character received was a new line.

 ② If the character just received as a new line, overwrite

it in the buffer with a string terminator and return to

the caller.

 ③ Otherwise, store the character just read and loop

around again.

 ④ If we exit the loop here, we have filled the buffer with

howMany characters. Add a terminating character

and return.

This is a pretty simple function to be honest, but it works. As long as

the buffer has howMany characters plus one, it will work perfectly if the

input received is less than the buffer size, which is something that is the

responsibility of the programmer.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

551

If the received data is longer, then it is possible that the USART will

suffer a Data Overrun error and lose characters. You can see this by

running the sketch and holding down a key until there has been more than

the buffer size typed. Then press Enter.

The first buffer full of characters will be correctly displayed, and the

first two characters after that will also be displayed. Anything after those

two will be lost – unless your baud rate was low enough for the characters

in the array to be displayed and the following two retrieved from the

internals of the USART, before the third "extra" character started to be

received.

Interrupts would be better, but even the Arduino’s interrupt-driven

Serial interface can lose characters if there is a buffer overrun.

So far, that’s all we really need for simple USART receipt of data. What

about sending data out? Listing 9-10 shows how we can send a single byte

down the wire via the USART.

Listing 9-10. USART sketch, sendByte() function

void sendByte(uint8_t c) {

 // Wait for bit UDRE0 to be set in UCSR0A then

 // buffer up the data byte.

 loop_until_bit_is_set(UCSR0A, UDRE0); ①
 UDR0 = c; ②
}

 ① Wait here until the data buffer is empty.

 ② Add the character to be sent to the buffer where it

will be wrapped in a frame and transmitted.

Again, sending one byte is no fun, so the sendText() function in

Listing 9-11 sends a whole string of characters.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

552

Listing 9-11. USART sketch, sendText() function

void sendText(const uint8_t *text) {

 // Transmit a string of text. One byte

 // at a time.

 uint8_t *i = text;

 while (*i)

 sendByte(*i++);

}

The preceding code simply walks the passed buffer sending each

character out through the USART transmitter until it finds the end of the

string character, which does not get sent.

The sendNumber() function in Listing 9-12 allows you to send numeric

data in almost any radix (number base) that you desire, although the

default is 10. This only handles signed integer values – I leave it as an

exercise for the reader to write a sendFloat() function.

Listing 9-12. USART sketch, sendNumber() function

void sendNumber(const long x, const uint8_t r = 10) {

 // Transmit a long integer to the USART. Only 32 bits

 // can be sent.

 char buffer[40]; ①
 ltoa(x, buffer, r); ②
 sendText(buffer); ③
}

 ① The length of a long is 32 bits, so 40 characters is

enough of a buffer to cope without crashing. 232

is 4,294,967,296 and is 10 digits in size. There’s

plenty room in 40 characters to hold a full unsigned

number or a signed one, the smallest negative

number being –2,147,483,648.

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

553

 ② The ltoa (long to ASCII) function does all the hard

work. It also adds a terminating character to the

buffer – which is another reason for having a bit

extra on the end.

 ③ The buffered ASCII representation of the number is

then transmitted.

The communicate() function in Listing 9-13 demonstrates some of

the code we have seen earlier in action. It sends out the number 232 – 1 in

various formats.

Listing 9-13. USART sketch, communicate() function

void communicate() {

 const long number = 4294967295;

 sendText("Number = 2^32 -1 in HEX: "); ①
 sendNumber(4294967295, 16);

 sendByte('\n');

 sendText("Number = 2^32 -1 in DEC: "); ②
 sendNumber(number, 10);

 sendByte('\n');

 sendText("Number = 2^32 -1 in OCT: "); ③
 sendNumber(number, 8);

 sendByte('\n');

 sendText("Number = 2^32 -1 in BIN: "); ④
 sendNumber(number, 2);

 sendByte('\n');

 sendText("\n\n");

 sendText("Type some text or numbers ... \n");

}

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

554

 ① This sends out a big number in hexadecimal. The

number is 232 – 1 and is the biggest that will fit into a

long data type.

 ② This sends out a big number in decimal. In this case,

it gets printed as –1 because the parameter is signed

in the call to ltoa() and 232 – 1 is indeed –1 when

dealing with signed values.

 ③ This sends out a big number in octal.

 ④ This sends out a big number in binary.

The well-known and much loved setup() function is shown in Listing 9-14.

Listing 9-14. USART sketch, setup() function

void setup() {

 // Initialise the USART without needing Serial.

 setupUSART(9600);

 // Play with the USART.

 communicate();

}

This function simply initializes the USART by calling the setupUSART()

function and then calls the communicate() function to "show off"! Finally,

Listing 9-15 is the main loop() function.

Listing 9-15. USART sketch, loop() function

void loop() {

 uint8_t howManyChars;

 char buffer[101];

 // Buffer is one more than we want to receive.

 // Beware of buffer overruns, the code will lose

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

555

 // characters as the USART can only store two characters.

 howManyChars = receiveText(buffer, 100);

 sendNumber(howManyChars);

 sendByte('=');

 sendByte('>');

 sendText(buffer);

 sendByte('\n');

}

The loop() function loops around – that’s its job after all – and receives

strings of text from the Serial Monitor. That will need to be configured to

add a new line to the end of the sent text, or the code will not print any

output until it has received a full buffer of 100 characters of text.

The function just receives text and prints it out, preceded by the

number of characters it received. It uses two calls here to sendByte()

which could, obviously, have been a single call to sendText(); but that’s

demonstrated in the next line.

If your input text is shorter than the buffer, the preceding discussion

will work fine; if not, there’s a strong possibility that characters may be

lost. If, as I did, you send 102 characters to a buffer that holds 100, you get

two lines of output, the first 100 characters and then the two remaining.

However, if you send more than that, you get exactly the same output – the

first hundred get copied to the buffer, the next two are still stored internally

in the USART, and the rest, sadly, get lost due to a buffer overrun.

Welcome to the world of serial communications!

ChApTer 9 ATmegA328p hArdwAre: AdC And USArT

557© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX A

Arduino Paths
The installation paths, versions, etc. used in the book, relating to the
Arduino IDE and the files to be found within that installation, are listed
in the following. Be aware that these paths are valid for a download of
the Arduino software as a zip file only. Downloading the installer, or, on
Linux, running an install using the package manager for your distribution,
may result in a different location.

My main workstation is Linux based, so most of the paths and others in

the book refer to that, unless there is a specific need to refer to a Windows

file or folder for any reason:

• $ARDVERS is 1.8.5.

• $ARDBASE is the location where I extracted the Arduino

installation zip file. This is where you will find the file

arduino.exe on Windows or arduino on Linux. These

are the Arduino IDE for your operating system. My

actual locations are

• Linux – /home/norman/arduino-1.8.5

• Windows – c:\users\norman\arduino-1.8.5

• $ARDINST is the location of the main Arduino files for

AVR microcontrollers. This is $ARDBASE/hardware/

arduino/avr and, on my Linux system, expands to /

home/norman/arduino- 1.8.5/hardware/arduino/

avr. This is where the various cores, bootloaders,

variants, and so on are to be found.

https://doi.org/10.1007/978-1-4842-5790-6

558

• $ARDINC is the location of many of the *.h header files

and most of the *.c and *.cpp files that comprise the

Arduino Language for AVR microcontrollers. This is, on

my setup, $ARDINST/cores/arduino which expands to

the path /home/norman/arduino- 1.8.5/hardware/

arduino/avr/cores/arduino.

• Finally, $AVRINC is where the header files for the version

of the AVR Library provided by the Arduino IDE are

located. The Arduino Language (eventually) compiles

down to calling functions within the AVR Library

(henceforth referred to as AVRLib), and the header files

are to be found in location $ARDBASE/hardware/tools/

avr/avr/include or /home/norman/arduino-1.8.5/

hardware/tools/avr/avr/include.

The following will be helpful on a Linux computer, if you wish to follow

the text of the book and view the source code files referred to when I am

describing the contents of such files. Listing A-1 is for Linux or MacOS

users, while Listing A-2 is for Windows.

Listing A-1. shell_exports.sh for Linux and MacOS.

export ARDVERS=1.8.5

export ARDBASE="${HOME}"/arduino-"${ARDVERS}"

export ARDINST="${ARDBASE}"/hardware/arduino/avr

export ARDINC="${ARDINST}"/cores/arduino

export AVRINC="${ARDBASE}"/hardware/tools/avr/avr/include

Setting up the variable is simple:

source shell_exports.sh

The corresponding script for Windows users is shown in Listing A-2.

Appendix A Arduino pAths

559

Listing A-2. shell_exports.bat for Windows 7

@echo off

set ARDVERS=1.8.5

set ARDBASE=%HOMEPATH%\arduino-%ARDVERS%

set ARDINST=%ARDBASE%\hardware\arduino\avr

set ARDINC=%ARDINST%\cores\arduino

set AVRINC=%ARDBASE%\hardware\tools\avr\avr\include

Alternatively, you could set the preceding environment variables up in

Control Panel’s System applet.

You should, obviously, change paths to suit your name and

installation. You can now look at files, on Linux, by running the command

view ${ARDINC}/Arduino.h

You may, of course, replace view with your preferred editor, be it

emacs, nano, or similar. If you have the xdgutils package installed, then

the following command will open files in the default application:

xdg-open ${ARDINC}/Arduino.h

Similarly, on Windows, to open files in the default application, simply

execute commands similar to the following, within a command-line

session:

%ARDINC%/Arduino.h

This obviously assumes that files with an .h extension will have a

default application set up to open them. If not, load them into your favorite

text editor.

Appendix A Arduino pAths

561© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

In the preceding diagram, we have the following:

• The dark area in the center of the image is a

representation of the ATmega328P – if you use your

imagination, that is! At the top and bottom are labels

identifying the contents of the appropriate columns.

 APPENDIX B

ATmega328P Pinout
Figure B-1 shows the position and names of the pins on an ATmega328P
device.

Figure B-1. ATmega328P pinout diagram

https://doi.org/10.1007/978-1-4842-5790-6

562

• Closest to the ATmega328P is the column labeled “Pin,”

and the numbers in those columns are the physical pin

numbers on the device. The ATmega328P is a 28-pin

device.

• The next column outward is labeled “AVR” and contains

the names of the pins as defined by Atmel/Microchip.

The Arduino uses a different naming standard. When

reading the data sheet for the ATmega328P, these are

the names that will be used.

• The columns labeled “PCInt” list the appropriate

pin names, again defined by Atmel/Microchip, to be

used when running code that handles Pin Change

Interrupts. Here you see names such as PCINT0,

PCINT5, etc.

• The next column outward, labeled “Arduino,” indicates

the Arduino pin names which can be used in your

sketches. You should be familiar with names like D0,

A5, etc. by now, I hope! Do remember the various Dn

pins are not named like that in sketches; they just use

the number. Pin D5 will be specified as just 5 in a sketch.

The analogue pins, A0–A5, do use the A prefix.

• Finally, in the columns labeled “ALT,” we have the list

of alternate functions for a number of the pins. These

alternate functions can be enabled using fuses in

some cases or can be selected by setting bits in various

control registers as necessary.

Appendix B ATmegA328p pinouT

563© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX C

ATmega328P Power
Restrictions
The ATmega328P is limited in the power it can source or sink:

• In total, the device can source or sink up to 200 mA

maximum.

• On each port, however, only up to 100 mA maximum is

allowed.

• On each individual pin, the limit is 40 mA maximum,

but 20 mA is the preferred limit.

 Exceeding one or more of the power restrictions will probably
damage your device and may render it useless, so take care. If you
hear a click, notice a strange smell, and see blue smoke, then like
me, you have overdone it!

The limits given mean that you should be thinking of using some form of

a driver, a transistor, or a MOSFET, if you need to drive anything bigger than

an LED on each pin. LEDs normally run around 20 mA. At least the red ones

do – green and blue take more. A 2N2222 NPN transistor will safely drive up

to 1000 mA and, with a 220 Ohm resistor between the Arduino and the base

pin, will draw only around 15 mA from the Arduino – well within limits.

https://doi.org/10.1007/978-1-4842-5790-6

564

C.1. Power in Total
The ATmega328P is restricted to a maximum of 200 mA power, sourced or

sunk, in total over all the ports and pins.

C.2. Power per Port
You are advised, in the data sheet, that while each pin within a port can

source or sink up to 20 mA, the total current for a single port must be

limited to a maximum of 100 mA. This therefore limits each port to a

maximum of five pins running at full power. However, on the ATmega328P,

there are three ports, and the power restrictions on the entire chip are

limited to 200 mA, so it is not possible to drive the microcontroller at

capacity on all three ports.

C.3. Power per Pin
Although each pin can source or sink up to 40 mA, the data sheet warns

that this should be restricted to a preferred maximum of 20 mA per pin,

bearing in mind that each pin belongs to a port and ports have their own

maximum power limit as does the device as a whole.

AppEndIx C ATmEgA328p powEr rEsTrICTIons

565© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX D

Predefined Settings
The Arduino init() function sets up a number of different features of the

AVR microcontroller so that your sketch can make best use of same. These

are briefly described in the following, all in one place, for reference.

D.1. Global Interrupts
Interrupts are enabled globally.

D.2. Timer/counter 0
Timer/counter 0 is configured with a divide-by-64 prescaler and in 8-bit

Fast Hardware PWM mode to allow analogWrite() on pins D5 and D6. The

PWM frequency is

System_clock / (Prescaler * 256)

= 16e6 / (64 * 256)

= 16e6 / 16384

= 976.5625 Hz

The Fast Hardware PWM mode simply counts up from 0 to 255, which

is 256 different values, and then rolls over to 0 again for the next count up.

The data sheet suggests that controlling motor speeds with Fast Hardware

PWM isn’t the best of ideas. (No, I don’t know why either!) This would

suggest that if you want to control motors, D5 and D6 are not the best pins

to be used.

https://doi.org/10.1007/978-1-4842-5790-6

566

Timer/counter 0 is also set up with an Overflow interrupt which

updates the millis() counter via variables timer0_millis, timer0_

overflow_count, and timer0_fract. These three variables account for the

9 bytes of Static RAM (SRAM) that every sketch uses as a minimum. There

are two unsigned longs taking up 4 bytes each and one unsigned char

using up the final byte.

Timer0_millis and timer0_fract are used by the millis() function,

via the Timer/counter 0 Overflow interrupt ISR, while timer0_overflow_

count is used by the micros() function and, from there, by the delay()

function.

The Timer/counter 0 prescaler is set to divide the system clock

by 64 meaning that the overflow occurs every 1 millisecond plus 24

microseconds. The millis() function carefully accounts for this.

Timer/counter 0 is set to use Fast Hardware PWM as using Phase

Correct PWM would have interfered with the Timer/counter 0 Overflow

interrupt, potentially breaking the millis() function by giving different

values on the ATmega8 and ATmega168/ ATmega328 devices. The other

two timers both use 8-bit Phase Correct PWM.

 If you disable timer/counter, or reconfigure it with a different
prescaler value, for example, you will affect micros(), millis(),
and delay(), as well as possibly affecting PWM on pins D5 and D6.
Beware.

D.3. Timer/counters 1 and 2
Timer/counter 1 is a 16-bit timer, but is configured to provide 8-bit Phase

Correct PWM on pins D9 and D10.

Timer/counter 2 is configured to provide 8-bit Phase Correct PWM on

pins D3 and D11, and it is indeed an 8-bit timer.

APPendIx d PredefIned SettIngS

567

Both timer/counters set the prescaler to divide the system clock by 64.

This means that the PWM frequency is

System_clock / (Prescaler * 510)

= 16e6 / (64 * 510)

= 16e6 / 32649

= 490.196 Hz

Phase Correct PWM counts up from 0 to 255, then back down to 0, and

so on. This is only 510 different values because 0 and 255 are not counted

on the way up and down – the sequence would be 0, 1, 2 … 253, 254, 255,

254, 253 … 2, 1, 0, 1, 2, 3 … ad infinitum.

According to the data sheet, motors prefer Phase Correct PWM to

control their speed, so if you want to control motors, D3, D9, D10, and D11

are your friends.

Disabling or reconfiguring these timer/counters will affect PWM

(analogWrite()) on pins D9 and D10 (Timer/counter 1) and/or pins D3 and

D11 (Timer/counter 2).

Timer/counter 2’s ability to run in asynchronous mode, with an

external 32 KHz crystal, cannot be used. This is because the Arduino

boards come with a 16 MHz crystal attached to the pins that the

asynchronous timer mode needs, and the ATmega328P has its fuses set to

disable the calibrated internal RC oscillator so that the external one with

the 16 MHz crystal can be used.

D.4. USART
The USART, which was enabled by the bootloader, is subsequently disabled

by the init() function allowing pins D0 and D1 to be used as digital pins

in the normal manner. This therefore requires that pins D0 and D1 be

reconfigured as the USART when serial communications are required. This

is automatically carried out by calling Serial.begin() in a sketch.

APPendIx d PredefIned SettIngS

568

 Some other AVr microcontrollers, notably the Mega 2560, have
multiple USArts, but the Atmega328P only has one, and it uses
these two pins for communicating with the outside world.

D.5. Analogue to Digital Converter
The ADC is configured with a prescaler of 128 which divides the system

clock by 128 to get an ADC clock frequency of 125 KHz, which is within the

desired range of between 50 and 200 KHz. In addition, the ADC is enabled

and powered on in every sketch, whether or not it is used.

You can disable the ADC and power it down to save a few microAmps,

if it is not required in your sketch by adding the code in Listing D-1 to your

setup() function.

Listing D-1. Disable and power down the ADC

#include <avr/power.h>

void setup() {

 // Disable ADC if not used.

 ADCSRA &= ~(1 << ADEN);

 // Power off ADC.

 power_adc_disable();

}

APPendIx d PredefIned SettIngS

569© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX E

ADC Temperature
Measuring
Some AVR microcontrollers have an internal temperature measuring device,

which can be selected to be used as an input to the ADC and used to query

the actual running temperature of the AVR microcontroller itself. This is not

the temperature of the air around the Arduino board/AVR microcontroller;

it is the temperature of the AVR microcontroller itself. Measuring the air

temperature requires some kind of external temperature sensor.

This internal sensor is not accessible directly from the Arduino

Language, but with a little effort, it can be done.

 The data sheet for the ATmega328P states that

If the user has a fixed voltage source connected to the AREF pin,
the user may not use the other reference voltage options in the
application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch
between AVCC and 1.1V as reference selection.

This means don’t connect a voltage source to the AREF pin if you are
going to set up the ADC to use any other reference voltage. If you do,
your AVR microcontroller will possibly allow the magic blue smoke
out and will stop working.

https://doi.org/10.1007/978-1-4842-5790-6

570

Bearing the preceding warning in mind and looking at the schematics,

the Arduino Duemilanove and the Uno Mark3 do not normally have AREF

connected to a voltage source. There is, however, a location on one of the

headers labeled “AREF” where you can supply a voltage to the AREF pin.

This is limited to a maximum of 5.5 V and shouldn’t be higher than the

supply voltage.

As previously discussed, the ATmega328P has an on-chip temperature

sensor. This can be read using channel 8 of the ADC and returns a value

which represents the temperature in degrees Kelvin. Kelvin is similar to

Centigrade, but is offset by 273 degrees, so 0 degrees Centigrade is 273

degrees Kelvin.

In order to set up the ADC to measure the AVR microcontroller’s own

temperature, you need to configure certain registers, as follows:

• The ADC reference voltage must be configured

to use the internal 1.1 V reference by setting bits

REFS1: 0 to 11binary in register ADMUX. You cannot use

any other reference voltage for internal temperature

measurements using the ADC. However, to use the

internal 1.1 V reference, you must not have the
external AREF pin connected to any source of voltage

(see the preceding warning).

• Register ADMUX, bits MUX3-0, must be set to 1000binary

to enable the temperature sensor as the ADC input

source.

• As with all ADC measurements, the ADC clock must

be in the range 50–200 KHz. The Arduino runs with

a 16 MHz crystal attached, so the system clock speed

is far too high. In order to reduce the clock speed, the

ADC prescaler must be set so that the system clock

is divided down by a suitable amount to get the ADC

APPenDIx e ADC TemPeRATuRe meAsuRIng

571

clock into the required range. Dividing by 128 will give

a value of 125 MHz, so the ADCSRA register bits ADPS2:0

should be set to 111binary to achieve this.

• Register ADCSRA, bits ADEN and ADSC, should both be set

to 1binary to enable the ADC and to automatically start

the first measurement.

 In the following example code, the ADC noise reduction settings
are not being used. see the data sheet or Chapter 7, section 7.3.9.2,
“ADC Noise Reduction Sleep Mode,” for details if you wish to enable
that feature. It’s a special sleep mode which powers everything down
apart from the ADC.

In Listing E-1, the setup() function carries out all of the preceding

initialization.

Listing E-1. Initializing the ADC for temperature measurements

void setup() {

 // Initialise the ADC to use the

 // internal 1.1V reference voltage.

 ADMUX = (1 << REFS0) | (1 << REFS1); ①

 // Use the ADC multiplexer input

 // number 8, the temperature sensor.

 ADMUX |= (1 << MUX3); ②

 // Slow the ADC clock down to 125 KHz

 // by dividing by 128. Assumes that the

 // standard Arduino 16 MHz clock is in use.

 ADCSRA = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); ③

APPenDIx e ADC TemPeRATuRe meAsuRIng

572

 // Non-standard 8MHz clock in use.

 //ADCSRA = (1 << ADPS2) | (1 << ADPS1) | (0 << ADPS0); ④
 // Enable the ADC and discard the first reading as

 // it is always 351 on my device.

 ADCSRA |= (1 << ADEN) | (1 << ADSC); ⑤
 (void)readADC();

 // Use the Serial monitor for output.

 Serial.begin(9600);

 Serial.println("Arduino Internal Temperature");

}

 ① This sets the internal 1.1 V bandgap as the ADC’s

reference voltage. This is mandatory when using

the temperature sensor. You must make sure that

there are no external voltages on the AREF pin of the

Arduino, or else this setting makes the magic blue

smoke out and causes the device to stop working.

A 100 nF capacitor, between AREF and GND, is

acceptable, but connecting to AREF to 5 V is not.

 ② This use of a reserved value for the ADMUX register is

the one that selects the internal temperature sensor

as the ADC input source.

 ③ I have an Arduino Duemilanove, an Uno, and a

few homemade "NormDuinos"; and I need to

uncomment one of these two lines depending on

which board I’m using. My "NormDuinos" run at 8

MHz, while the Arduino boards run at 16 MHz. The

main clock frequency needs to be divided down to

get it into the range of 50–200 KHz.

 ④ This is the line for my 8 MHz devices.

APPenDIx e ADC TemPeRATuRe meAsuRIng

573

 ⑤ I’ve noticed that the first reading from the ADC is

always a bit weird, at least when using the temperature

sensor. These lines start the ADC conversion and wait

for completion before throwing away the result

The readADC() function called from setup(), to throw away the first

reading, and on each pass through the loop() can be seen in Listing E-2.

Listing E-2. Reading the temperature

// Read the ADC result from the most recent conversion and

// start another before returning the current reading.

 uint16_t readADC() {

 // Make sure the most recent ADC read is complete.

 while ((ADCSRA & (1 << ADSC))) { ①
 ; // Just wait for ADC to finish.

 }

 uint16_t result = ADCW; ②

 // Initiate another reading.

 ADCSRA |= (1 << ADSC); ③

 return result;

}

 ① The previous call to readADC() initiated a new read

request, so these lines simply make sure that the

request has completed and a reading is available.

The ADSC bit is used to start a conversion and

remains set to 1binary until the conversion finishes,

whereupon it is cleared to 0binary.

 ② We grab the result from ADCW which takes care of

reading the high and low bytes of the ADC result

in the correct order. This ensures that we get the

correct value read and not some intermediate result.

APPenDIx e ADC TemPeRATuRe meAsuRIng

574

 ③ Prior to returning the result just read from the

sensor, this line initiates a new reading. The

temperature sensor can only be read in single-shot

mode. There’s no opportunity to initiate a free

running mode with the sensor.

The loop() function in Listing E-3 gathers a running average of

100 readings from the ADC and then converts the final total to degrees

Centigrade which is then printed to the serial monitor.

Listing E-3. Displaying the temperature

void loop() {

 // Running average of the ADC Readings for

 // better accuracy.

 uint32_t ADCTotal = 0;

 float ADCAverage = 0.0;

 uint16_t ADCReading = readADC();

 for (uint8_t x = 1; x < 101; x++) { ①
 ADCTotal += ADCReading;

 ADCAverage = (float)ADCTotal / (float)x;

 // Uncomment if you want a running commentary! ②
 /*
 Serial.print("ADC = ");

 Serial.print(ADCReading);

 Serial.print(" ");

 Serial.print("ADCTotal = ");

 Serial.print(ADCTotal);

 Serial.print(" ");

 Serial.print("ADCAverage = ");

 Serial.println(ADCAverage);

 */

APPenDIx e ADC TemPeRATuRe meAsuRIng

575

 ADCReading = readADC();

 }

 // Print the ADC temperature.

 float degreesC = (ADCAverage - 324.31) / 1.22; ③
 Serial.print(degreesC);

 Serial.print("C, ");

 // Convert to Fahrenheit. C ∗ 1.8 + 32. ④
 Serial.print(degreesC ∗ 1.8 + 32);
 Serial.println("F.");

 // Delay a second more between readings.

 delay(1000);

}

 ① A running average of 100 readings from the sensor

is calculated here. This avoids most of the weirdness

that can sometimes arise, especially as the code is

not using the ADC’s Noise Reduction sleep mode

to try and get better readings. Whatever else is

happening on the device might be affecting the

readings.

 ② The comment says it all! If you want to see how the

running average builds up, uncomment these lines.

 ③ I’ve decided to use this method of converting the

ADC reading from something related to degrees

Kelvin to degrees Centigrade. This method is closest

to my reality and my measured temperatures in the

office. See the following for details.

APPenDIx e ADC TemPeRATuRe meAsuRIng

576

 ④ And for those who like their temperatures in "old

money," this line converts degrees Centigrade to

degrees Fahrenheit.

According to the Internet, example documents from Atmel/Microchip,

and elsewhere, there are many ways to calculate the internal temperature

from the reading returned by the ADC. Here are some that I’ve come

across:

• ADC - some random offset – This is different for every

device.

• (ADC - 247) / 1.22.

• ADC - 273 – This one looks promising as it corresponds

to converting degrees Kelvin to Centigrade.

• (((ADC - (273 - 100 - TS_OFFSET)) ∗ 128) / TS_GAIN)

+ 25 – Sadly, getting the TS_OFFSET and TS_GAIN is not

simple. The documents mentioned in the following

warning have the details.

• (ADC - 324.31) / 1.22.

I’m using the last one, as it’s the one closest to my actual temperature

measurements.

Each time around the loop(), the ADC has to be coaxed into running

another conversion, so bit ADSC in register ADCSRA is again set to 1binary to

trigger another reading.

Converting to degrees Fahrenheit, for those who still measure

temperature in old money, is done usually by multiplying Centigrade by 1.8

and adding 32, so that’s what happens next; and the resulting temperature

is printed out to the Serial Monitor. Using float data types in a sketch pulls

in a lot more code than normal, so it’s best, if possible, to avoid them –

unless you have lots of spare Flash RAM of course.

APPenDIx e ADC TemPeRATuRe meAsuRIng

577

 According to the data sheet, uncalibrated sensor data is
accurate to plus or minus 10 degrees Centigrade. That’s quite a range
of possible temperatures then. The Application note at http://ww1.
microchip.com/downloads/en/AppNotes/Atmel-8108-
Calibration-of-the-AVRs-Internal-Temperature-
Reference_ApplicationNote_AVR122.pdf shows how the
device can be calibrated, and even after that, there’s only a possible
best accuracy of plus or minus 2 degrees Centigrade.

APPenDIx e ADC TemPeRATuRe meAsuRIng

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVRs-Internal-Temperature-Reference_ApplicationNote_AVR122.pdf

579© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX F

Assembly Language:
Briefly
I know I promised that there wouldn’t be any assembly language code in

the book, but I did say probably.

This appendix is a very brief introduction to Arduino assembly

language which is supported in the IDE now, whereas it wasn’t all that

many versions ago that you had to make some changes to the IDE source

code and recompile in order to get assembly code noticed.

One thing you must remember: assembly source files have the

extension “S,” in uppercase. If you have the “s” in lowercase, it won’t

compile as the file won’t be found.

Open the Arduino IDE and create a new sketch, call it “BlinkASM,” and

immediately save it. Make the sketch resemble the code in Listing F-1.

Listing F-1. Arduino BlinkASM sketch

// Make sure the compiler can find 'blink' which is

// written elsewhere in assembly language.

extern "C" void blink(); ①

void setup() {

 pinMode(13, OUTPUT); ②
}

https://doi.org/10.1007/978-1-4842-5790-6

580

void loop() {

 blink(); ③
 delay(1000);

}

 ① This is how we tell the IDE that we have a void

function, called blink, which takes no parameters

and is written in a language other than C++. We use

“C” to make sure that the compiler doesn’t attempt

to do any C++ “name mangling” of function names

and/or parameter names.

 ② We still need D13 as an output pin, for this example

anyway.

 ③ This is where we call the assembly language

function.

So far, so good? Nothing to be afraid of here. Next though, we have the

assembly language code itself:

• Add a new tab to the opened sketch in the IDE. There’s

a downward arrow on the far right of the IDE’s tab bar,

where the tab for “BlinkASM” is currently showing.

Click the arrow and choose “New Tab.”

• Enter the name “BlinkASM.S” in the filename prompt

area at the bottom of the screen and click OK. Make

sure the file’s extension is “S” in uppercase.

Now enter the assembly language code in Listing F-2 into the new tab.

Appendix F Assembly lAnguAge: brieFly

581

Listing F-2. Arduino assembly language

#define __SFR_OFFSET 0 ①
#include <avr/io.h> ②

.section .text ③

.global blink ④

blink: ⑤
 // digitalWrite(13, !(digitalRead(13))); ⑥
 ldi r18, (1 << PORTB5) ; PORTB5 = Arduino D13

 out PINB, r18 ; Toggle PORTB5 = D13

 ret

 ① Apparently, a hack! But this makes sure we get the

correct offset for the PINB and PORTB names used

in the following. AVRs are weird and these things –

I/O addresses – have two addresses in memory

(technically incorrect, but pretty much accurate!)

 ② This fetches the correct header file for the device

we are using. This means we can refer to PORTB and

PINB by name and not as a number.

 ③ Code, mostly, lives in the text section. We need our

code to live there too.

 ④ As we wish to call blink() from other files, our

sketch in particular, we need to make the entry point

for the blink function visible.

 ⑤ This is the entry point to the blink() function.

 ⑥ This is the Arduino Language equivalent to the

following two lines of assembly code.

Appendix F Assembly lAnguAge: brieFly

582

Now compile the sketch. You can do this from either tab in the

IDE. You should see the usual text scrolling up the screen – if you have

verbose compilation messages enabled in the File ➤ Preferences dialogue.

At the very end of the compilation, you should see the usual details on the

size of the sketch and so on. Mine used 720 bytes of Flash RAM and the

usual 9 bytes of Static RAM. This is another reduction in the size of the

blink sketch, and we are still using a lot of Arduino Language code.

You should now be able to upload the sketch to your board and be

amazed as the built-in LED starts blinking, yet again!

Obviously, this is a really minimal example, and unless you really need

the speed and space reductions of code written in plain AVR assembly,

then you should not often need to resort to assembly language, but at least

it’s now available in the IDE.

You do still need an .ino sketch file to be able to use the IDE for

assembly language. That factor hasn’t yet gone away – you cannot, as yet,

write a complete sketch in assembly language. Well, you can but you would

be using AVR Studio or PlatformIO to do it. The Arduino IDE or arduino-cli

both require a sketch file.

Appendix F Assembly lAnguAge: brieFly

583© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX G

Smallest Blink Sketch?
Okay, here’s one last blink sketch, and could this one be the smallest we

can get? I wonder. It requires the PlatformIO system as the Arduino IDE or

command line and wraps too much extraneous code around an assembly

language module. The following code in Listing G-1 compiled to 478 bytes

with 9 bytes of SRAM used in the Arduino IDE and also with the arduino-

cli utility. In PlatformIO, it’s 162 bytes in total with no bytes of precious

SRAM used.

Here’s the process:

mkdir SmallestBlink

cd SmallestBlink

pio init --board uno

Listing G-1 shows what the platformio.ini file should look like for an

Arduino Uno build. The framework - arduino line must be removed, or

PlatformIO will compile all the usual Arduino code into the finished file. I had

to add in the upload_port line as the code wouldn’t upload without it and a

helpful error message advised me what to do. (My Uno has an FTDI chip.)

Listing G-1. The platform.ini file

[env:uno]

platform = atmelavr

board = uno

upload_port = /dev/ttyUSB0

https://doi.org/10.1007/978-1-4842-5790-6

584

We now need to determine the flash rate for a 16 MHz Arduino Uno

running at a blink rate of 1 MHz with a divide-by-256 prescaler. The

formula for the frequency of a Timer/counter 1 in CTC mode is

F = F_CPU / ((2 * prescaler) * (1 + OCR1A))

OCR1A = ((F_CPU / (2 * prescaler)) / Frequency) - 1

This gives

((16e6 / (2 * 256)) / 1 MHz) -1

=> (16e6 / 512) -1

=> 31,250 -1

= 31,249

This is the value for register OCR1A.

Type in the code shown in Listing G-2 into the file src/SmallestBlink.S.

Listing G-2. The smallest blink sketch?

#include <avr/io.h>

.section .text

.global main

#define FLASH_RATE 31249

main:

 ldi r18, (1 << DDB1)

 out _SFR_IO_ADDR(DDRB), r18 ; ①

 ; Set up Timer 1:

 ldi r18, (1 << COM1A0)

 sts TCCR1A, r18 ; ②

Appendix G SmAlleSt Blink Sketch?

585

 ldi r18, hi8(FLASH_RATE) ; ③
 sts OCR1AH, r18

 ldi r18,lo8(FLASH_RATE)

 sts OCR1AL, r18

 ; Finish setup of Timer 1.

 ldi r18, ((1 << WGM12)|(1 << CS12)) ; ④
 sts TCCR1B, r18

loop:

 rjmp loop ; ⑤

 ① This sets pin 15 or PB1 or Arduino pin D9 as OUTPUT.

We have to use the _SFR_IO_ADDR macro here;

otherwise, the I/O register addresses used in our

instructions will be 32 bytes too high!

 ② This puts the timer/counter into CTC mode with the

pin PB1, Arduino D9, toggling every time we hit the

value in OCR1A.

 ③ The next four lines load the value 31,249 into the

OCR1A register. It must be done in two 8-bit chunks,

and the high byte must always be written first.

 ④ The timer/counter is now set to run with a divide-

by- 256 prescaler and in CTC mode (Clear Timer on

Compare). When the timer/counter’s value reaches

that in OCR1A, the timer/counter’s value resets to

zero, and the PB1 pin will toggle.

 ⑤ This is effectively like an empty loop() in a sketch.

It does nothing except burn CPU cycles looping

around itself.

Appendix G SmAlleSt Blink Sketch?

586

 As noted in the preceding text, when writing 16-bit values to
important registers, you must note the advice in the data sheet to
load the bytes in the order given. When you write the high byte, it is
stored in a temporary register. When the low byte is then written, both
bytes are written to the register as one operation. this prevents the
possibility of a “split” value in the register.

When reading OCR1A, you read the low byte first and then the high
byte to get the correct value.

Save the file, and exit the editor. Run a test compile:

pio run

There should be no errors. Now upload the code:

pio run -t upload

There should be an LED on pin D9 (PB1 or physical pin 15) on the Uno,

connected to ground through an appropriate resistor – I used a 330 Ohm

resistor on a 5 V setup, giving a maximum current of

(5V - 1.8V) / 330 ①

=> 3.2V / 330

= 9.69 milliAmps ②

 ① This is the VCC voltage minus the forward voltage of the

LED in particular. Mine is 1.8 V according to the data

sheet, and this is a good default value for a red LED.

 ② This value is well within the absolute maximum value

of 40 milliAmps allowed on a single pin and, also, well

within the recommended maximum of 20 milliAmps.

Appendix G SmAlleSt Blink Sketch?

587

The LED should be blinking away merrily at around 1 Hz, or 1 flash per

second, but it is running faster – why? Figure G-1 shows the oscilloscope

trace on the Uno’s pin D9 while the code was running.

Figure G-1. SmallestBlink Oscilloscope trace

It clearly states in the upper-right corner that the frequency is 1 Hz.

However, while that may be true, it does mean that the waveform is HIGH

for 50% and LOW for the other 50% of that time; hence, the LED is actually

flashing every half second. Oops! To get a 1-second flash, I need to

calculate a 0.5 Hz frequency.

Edit the code in Listing G-2 to change one setting:

#define FLASH_RATE 62499

Recompile and upload, and finally, the LED is flashing once per

second. I can check my calculations by feeding the value I recalculated

back into the equation for frequency:

F = F_CPU / ((2 ∗ prescaler) ∗ (OCR1A + 1))

Appendix G SmAlleSt Blink Sketch?

588

 => 16e6 / ((2 ∗ 256) ∗ (62499 + 1))
 => 16e6 / (512 ∗ 62500)
 => 16e6 / 32e6

 = 0.5 Hz.

So that seems to be correct. The oscilloscope now reads 504 mHz in the

upper left, so that’s pretty close to 0.5 Hz. I’m happy with that.

 the best thing about this blink sketch is that timer/counter 1 is
doing all the blinking by itself. the cpU is doing nothing except
burning cycles in a tight loop. it would be entirely possible to put the
Atmega328p to sleep to reduce power or to actually have it do
“something useful” with its time.

That’s it! No more blink sketches and definitely no more assembly
language!

Appendix G SmAlleSt Blink Sketch?

589© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX H

NormDuino
You can build your own “Arduino” on a breadboard and play with it there, if

you feel the need. I have done this for some of the experiments in this book –

just to be sure that things worked perfectly whether I was running a full-speed,

16 MHz Arduino board like my Duemilanove or my Uno or a breadboarded

experimental system running at 8 MHz on the internal oscillator.

This is the sort of thing you might find interesting. After all, there’s

no point having a fully blown Arduino board, with all the attendant

paraphernalia such as USB communications, always-on power LED, etc. –

things that can waste power – when they are not needed in your finished

project. It’s great to use the Arduino for prototyping, but when you go into

“production,” you only need a handful of components.

If you look at the schematics in Figure H-1, you will notice that there’s

a diode between the board and the battery. This is for two reasons: it drops

0.7 V of the incoming 6 V battery supply, taking the voltage down to 5.3

V and within range of the ATmega328P’s 5.5 V maximum, and it prevents

damage if you connect the battery the wrong way around.

A 16 MHz crystal and a pair of 22 pF capacitors will be required

if you can’t get hold of an ATmega328P without the Uno bootloader

already burned in. It is quite simple to burn a new bootloader so that the

ATmega328P doesn’t need the 16 MHz crystal and others. It is however

a bit of a faff (that’s a technical term) as you have to create a new entry in

boards.txt and burn an 8 MHz bootloader and reset a couple of fuses

along the way. This is the sort of thing that requires an ICSP device,

although you could use an existing Arduino as the ICSP.

https://doi.org/10.1007/978-1-4842-5790-6

590

So, if you have an ATmega328P with an Uno bootloader, you will

need the crystal and the capacitors plus a 6 V supply (which drops to

5.3 V, thanks to the diode); and if you get an ATmega328P without an

Uno bootloader, you will be able to run it at 3 V without the crystal and

capacitors, but 4.5 V will be better as the diode will drop that to 3.8 V which

is ample.

The following image is the schematic layout for what I’m calling

NormDuino. You can see that it is quite simple. All it needs is a power

supply, a spare ATmega328P, a couple of resistors, a switch, a diode, and a

handful of capacitors.

Figure H-1. NormDuino schematic

Appendix H normduino

591

As you can see, there’s nothing to it. You will note, I hope, that the AREF

pin is not connected to anything other than a 100 nF capacitor to smooth

out the power if you decide to connect it to VCC. For safety, and to avoid

letting the magic blue smoke out, it’s best to heed the warnings in the data

sheet, and do not set the ADC reference voltage to the internal one if you

have the AREF pin connected to an external power source.

By not connecting it in the breadboard setup, you avoid this problem

and can safely use the internal 1.1 V reference for the Analogue Comparator

and/or the ADC.

Figure H-2 shows how it looks when laid out on a half-sized breadboard,

with power lines running down both sides.

Figure H-2. NormDuino breadboard layout

As mentioned in the preceding text, the crystal, XTAL1; two capacitors,

C6 and C7; and the two wires, at the bottom left of the breadboard, may

be omitted if you have an ATmega328P without an Uno bootloader

programmed in. It will, in the factory default settings, be configured to run

off of the 8 MHz internal oscillator with a divide-by-8 prescaler, giving your

breadboard Arduino a top speed of a whopping 1 MHz; but that can be

changed.

Appendix H normduino

592

When done and tested on the breadboard, you wouldn’t want to put

the breadboard into a box and use that in your finished project, so you can

purchase copper-clad board that is designed to resemble a breadboard,

and it’s an easy task then to move each component from the breadboard

to the copper board and solder it in place. You would probably need or

wish to add five pins to the board as well, to allow the FTDI access to the

ATmega328P, in order to reprogram it, should this ever be necessary.

Alternatively, some normal stripboard can be used, and just break

each track up the middle and you have your own, handmade breadboard

on a copper-clad board. I have two NormDuinos that I built in this way,

one on a copper breadboard layout and the other on a simple stripboard.

 Some FTdi devices have their TX and RX pins labeled the other way
around. The ATmega328p’s physical pin 2 is its RX pin, and that needs to
be connected to the programmer’s TX pin. The ATmega328p’s physical
pin 3 is its TX pin, and that needs to be connected to the programmer’s
RX pin. on my FTdi, the pins are labeled RXO and TXO (rx and Tx
output), and those need connecting to the ATmega328p’s corresponding
input pins, so RXO goes to TX and TXO goes to RX. Your device, of course,
may well differ, so if it doesn’t work, just swap the wires over and try
again – you won’t damage anything if the wires are crossed.

Confused? i was too. When i first started using the FTdi, i couldn’t
get it to see the ATmega328p, so it couldn’t program it. in the end,
swapping the wires over solved the problem.

Welcome to the world of old-style serial communications. nowadays,
the pins are connected like to like – so MOSI connects to MOSI and
MISO connects to MISO – there’s a lot less confusion that way.

Appendix H normduino

593

Your project is now complete. The bill of materials (BOM) for the

NormDuino is shown in Table H-1.

Table H-1. BOM for a single NormDuino

ITEM QTY Label Purpose

ATmega328p 1 AVr1 The brains!

560 r resistor 1/4 W 1 r1 For the Led on D13, pin 19

10 K resistor 1/4 W 1 r2 pullup resistor on RST pin, pin 1

red 5 mm Led 1 Led1 The “built-in” Led, Arduino style

momentary push button 1 S1 reset button

100 nF ceramic capacitors 4 C1, C2,

C3, C4

To decouple VCC, AVCC, and AreF

and for dTr when programming

10 uF 16 V electrolytic

capacitor

1 C5 decoupling the power supply

1n4001 diode 1 d1 reverse polarity protection,

voltage dropper

16 mHz crystal 1 xTAL1 optional: For ATmega328p with

the uno bootloader only

22 pF ceramic capacitors 2 C6, C7 optional: For ATmega328p with

the uno bootloader only

Battery pack 1 VCC1 power supply. 6 V for

ATmega328p with the uno

bootloader, 4.5 V otherwise

If your ATmega328P came with an Uno bootloader, then you can use an

FTDI device or an ICSP to program it. If the microcontroller came without

a bootloader, and you don’t have an ICSP of your own, you could use an

existing Arduino as an ICSP, as detailed in Appendix I, which is coming next.

Appendix H normduino

595© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX I

No ICSP? No Problem!
So you managed to buy an ATmega328P, but it came without an Uno

Bootloader burned in. You don’t have an ICSP to program it yourself, so

what can you do? Well, you cannot burn a bootloader without an ICSP, and

that could leave you a tad stuck, but Arduino to the rescue.

It’s quite easy to do, and there are recent details on the Arduino

Tutorials section of the Arduino web site at www.arduino.cc/en/

Tutorial/ArduinoISP. The steps are as follows:

• Load your Arduino with the example sketch

“ArduinoISP” – go to File ➤ Examples ➤ArduinoISP ➤

ArduinoISP in the IDE.

• Compile it, and upload to your Arduino in the normal

manner.

• Connect the breadboarded ATmega328P to your

Arduino as detailed in the following.

• Burn the bootloader.

I.1. ArduinoISP Sketch
This is a sketch that converts an Arduino into an ICSP device. It is supplied

with the IDE and can be found under File ➤ Examples ➤ ArduinoISP

➤ ArduinoISP. Simply open the sketch, compile, and upload it to your

Arduino, in the normal manner.

https://doi.org/10.1007/978-1-4842-5790-6
https://www.arduino.cc/en/Tutorial/ArduinoISP
https://www.arduino.cc/en/Tutorial/ArduinoISP

596

Your Arduino is now able to be used as an ICSP device.

 From this point onward, the Arduino you have just programmed
will be referred to as “Arduino (ICSP),” while the device you wish to
program will be known as “Breadboard ATmega328P.”

One thing you will also need is a 10 uF capacitor between the RESET

and GND holes in the Arduino (ICSP) board header. This is required, to

prevent the Arduino (ICSP) from being reset when it starts to upload the

new sketch to the breadboard ATmega328P.

 The chances are that you will be using an electrolytic capacitor,
so make sure that the negative lead is pushed into GND; otherwise,
you might cause the capacitor to burst.

I.2. Connections
To program the breadboard ATmega328P, you need to connect four wires

to it, from the Arduino ICSP, in addition to the power and ground lines of

course. The connections are shown in Table I-1.

Table I-1. ArduinoISP connections

ICSP ATmega328P Description

D10 Pin 1 Used to reset the breadboard ATmega328P

D11 Pin 17 MOSI – Master Out Slave In

D12 Pin 18 MISO – Master In Slave Out

D13 Pin 19 SCK – system clock

APPendIx I nO ICSP? nO PrOBleM!

597

Figure I-1 shows how the connections should look. Only the bare

essential components are installed on the breadboard. This is just to burn

the bootloader, nothing else. Maybe C2 and C3 are a little superfluous, but

extra power supply filtering isn’t a bad thing!

Figure I-1. ArduinoISP

Table I-2. ArduinoISP optional connections

ICSP Description

D7 Programming indicator

D8 error indicator

D9 Heartbeat

There are three additional, but optional, connections you can make,

if you are a big fan of flashing LEDs! These are optional and listed in Table I-2.

APPendIx I nO ICSP? nO PrOBleM!

598

These pins should be connected to a resistor, with a value between 330

and 560 Ohms, and from there to the positive (longest) lead of an LED. The

short lead of the LED goes to GND. I use a red LED for the error indicator,

green for the heartbeat, and yellow for the programming indicator.

However, these are optional.

I.3. Choose Your Programmer
In the IDE, select Tools ➤ Programmer and look for the option “Arduino

as ISP.” Do not select “ArduinoISP” – that is not the programmer you want.

Trust me. I know from bitter experience!

I.4. Burn the Bootloader
In the IDE, choose the settings you require for the breadboard

ATmega328P by selecting the appropriate choices from the Tools ➤ Boards

and, if required, Tools ➤Processor and so on. Normally, your selection

here would be to simply pick the Uno as the board.

And finally, Tools ➤ Burn Bootloader is all you need.

After a couple of seconds, you should see a message that the

bootloader has been burned. You now have burned the Uno bootloader

and set the required fuses. The breadboard ATmega328P can now be

programmed with an FTDI adaptor.

 You can only select the Uno in the preceding text, if you have
the 16 MHz crystal and associated capacitors. If you don’t have, and
normduino doesn’t, then Appendix J shows how you can set up a
special breadboard device that runs at 8 MHz on the internal
oscillator – just like normduino.

APPendIx I nO ICSP? nO PrOBleM!

599© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX J

Breadboard 8 MHz
Board Setup
The following steps should be carried out with the IDE closed.

We first need to discover if your installation has the directory named

$YOUR_LOCATION/packages/arduino/hardware/avr/n.n.n/ present.

N.n.n is a version number. Mine was 1.6.3 for Arduino version 1.8.5, but as

I’ve been applying various updates, it is now at 1.8.2.

$YOUR_LOCATION is as follows:

• On Linux, look in /home/<YOUR_NAME>/.arduino15/.

• On Windows 7, look in C:\Users\<YOUR_NAME>\

AppData\Local\Arduino15a. I believe that on older

versions of Windows, the file can be found in c:\

Documents and Settings\<YOUR_NAME>\Application

Data\Arduino\.

• On MacOS, I believe you can look in /Users/<YOUR_

NAME>/Library/Arduino/, but I don’t have access to a

Mac to check, sorry.

Find the correct location and, to be sure, check to see if boards.txt,

platform.txt, and programmers.txt exist. If so, you are in the correct

location.

https://doi.org/10.1007/978-1-4842-5790-6

600

 I know this looks like a different location from all the other files
I’ve been discussing in the rest of this book, however, regardless of
where you install or download the Arduino IDE and the software,
much of the working packages and files are hidden away in the
preceding locations.

Check for the existence of an 8 MHz bootloader. There should be one

supplied for the ATmega boards. Look for a file named ATmegaBOOT_168_

atmega328_pro_8MHz.hex in the directory $YOUR_LOCATION/packages/

arduino/hardware/avr/n.n.n/bootloaders/atmega/. If you find it,

all is good.

If the 8 MHz bootloader file is not found on your system, then

please follow the instructions at www.arduino.cc/en/Tutorial/

ArduinoToBreadboard instead of mine in the following. You will need a

few more files to make the breadboard 8 MHz Arduino (or NormDuino)

work. The section you are interested in is the one with the title Minimal

Circuit (Eliminating the External Clock), specifically, the numbered list of

steps to follow on downloading and adding support for a breadboarded

8 MHz device.

I’m assuming that you did find the bootloader? If so, go to $YOUR_

LOCATION/packages/arduino/hardware/avr/n.n.n/ and add the code in

Listing J-1, to the end of boards.local.txt if it exists. If it doesn’t exist yet,

simply create a new file with that name and add the code in Listing J-1 to it.

The code defines an “Arduino” on a breadboard, which is desired to be

run on the internal oscillator, at 8 MHz, similar to NormDuino described in

Appendix H. Because the bootloader already exists, all that is needed is the

boards.local.txt file.

AppEnDIx J BrEADBoArD 8 MHz BoArD SEtup

https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard
https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard
https://doi.org/10.1007/978-1-4842-5790-6_H

601

Listing J-1. The boards.local.txt settings

B8.name=Breadboard 8 MHz

B8.upload.protocol=arduino

B8.upload.maximum_size=30720

B8.upload.speed=57600

B8.bootloader.low_fuses=0xE2

B8.bootloader.high_fuses=0xDA

B8.bootloader.extended_fuses=0x05

B8.bootloader.file=atmega/ATmegaBOOT_168_atmega328_pro_8MHz.hex

B8.bootloader.unlock_bits=0x3F

B8.bootloader.lock_bits=0x0F

B8.build.mcu=atmega328p

B8.build.f_cpu=8000000L

B8.build.core=arduino:arduino

B8.build.variant=arduino:standard

B8.build.board=BB8

B8.bootloader.tool=arduino:avrdude

B8.upload.tool=arduino:avrdude

Once the boards.local.txt file has been saved, you may restart the IDE.

You will need an ICSP, or an Arduino as an ISP as described in

Appendix I, to program the bootloader into the AVR microcontroller. The

steps are as follows:

• Open the IDE and using Tools ➤ Boards, find the entry

for “Breadboard 8 MHz.”

• Choose the appropriate programmer. Mine is

“USBtiny,” but “Arduino as ISP” is another option

especially if you still have the setup described in

Appendix I.

• Choose Tools ➤ Burn Bootloader.

AppEnDIx J BrEADBoArD 8 MHz BoArD SEtup

https://doi.org/10.1007/978-1-4842-5790-6_I
https://doi.org/10.1007/978-1-4842-5790-6_I

602

After a few seconds of activity, you should see a prompt that the

bootloader has been burned. You can now remove the ICSP device and

switch back to an FTDI converter to do the subsequent programming. Don’t

forget to select Tools ➤ Programmer in the IDE and change the programmer

back to “AVRISP mk11” so that you can start using the bootloader.

You now have an Arduino-compatible device that is running on a

breadboard at 8 MHz and doesn’t require a 16 MHz crystal and associated

capacitors and which can be easily programmed from the Arduino IDE

using an FTDI adaptor.

How easy was that?

Well, I have a confession. When I was testing these on my NormDuino,

I burned a bootloader successfully with the USBtiny and uploaded a

sketch – yes, it was the blink sketch – using the bootloader. However,

if I immediately tried to upload again with the bootloader, it failed. The

situation was such that after burning a bootloader, the IDE would only ever

upload a sketch once to the NormDuino – no matter what I did.

After much wailing and gnashing of teeth, none of which helped,

I pulled the ATmega328P from my Duemilanove and swapped it for the

NormDuino one. I then burned a Duemilanove bootloader, and sketches

could be uploaded time after time with no errors. I then chose the 8 MHz

breadboard Arduino and burned a bootloader again.

Sketches still continued to upload perfectly, while the ATmega328P sat

in my Duemilanove. Time to swap it back.

On attempting to insert the microcontroller back into the breadboard,

I realized that the capacitor between the RST pin, pin 1 on the ATmega328P,

and the FTDI’s DTR line was not connected to the AVR any more! Could this

be the solution?

After plugging the AVR back into the breadboard and reattaching the

capacitor to the RST pin, all was well.

Breadboards are fine to prototype your projects, but if you intend to

keep and use the project, then it’s a good idea to build it into a circuit

board or at least a stripboard. Too many things fall out of breadboards.

AppEnDIx J BrEADBoArD 8 MHz BoArD SEtup

603© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

 APPENDIX K

AVRAssist
AVRAssist is a set of header files which can be #included in your AVR C++

code or #included in an Arduino sketch where you want to get down and

dirty in the various hardware bits of the AVR microcontroller. The latest

version of AVRAssist can always be obtained from https://github.com/

NormanDunbar/AVRAssist/releases/latest on the AVRAssist GitHub

repository.

K.1. Components
The following AVR internal devices can be set up with the current version

of AVRAssist:

• Timer/counters – All three timer/counters have

separate header files.

• Analogue to Digital Converter.

• The Analogue Comparator.

• The Watchdog Timer.

K.2. In Use
The AVRAssist header files make configuration of the various AVR registers

a tad easier. As an example, the code in Listing K-1 will configure Timer/

counter 0 with

https://doi.org/10.1007/978-1-4842-5790-6
https://github.com/NormanDunbar/AVRAssist/releases/latest
https://github.com/NormanDunbar/AVRAssist/releases/latest

604

• Fast PWM mode with TOP = 255

• A prescaler of 64

• OCOA and OCOB = Pins 11 and 12 = Arduino D5 and D6

= AVR PD5 and PD6 in normal GPIO mode

• Interrupt to fire on Compare Match A

• Interrupt to fire on Compare Match B

Listing K-1. AVRAssist Timer/counter 0 initialization

#include <timer0.h>

using namespace AVRAssist;

...

Timer0::initialise(

 Timer0::MODE_FAST_PWM_255,

 Timer0::CLK_PRESCALE_64,

 Timer0::OCOX_DISCONNECTED,

 Timer0::INT_COMP_MATCH_A | Timer0::INT_COMP_MATCH_B

);

...

Only the first two parameters are actually required though. The rest

have sensible defaults (for certain values of sensible perhaps?).

Later on in the code, you can force a comparison between TCNT0 and

either OCR0A or OCR0B, should you have the need. This will not fire any

configured interrupts but will set OC0A or OC0B to the state they would take

without a forced compare if they happen to match TCNT0 when forced. This

is simple to do and is shown in Listing K-2.

APPENDIX K AVRAssIst

605

Listing K-2. AVRAssist Timer/counter 0 force compare

// Force a compare between TCNT0 and OCR1A and OCR1B. Does

// not fire the interrupts but will change state appropriately

// on pins OC0A and OC0B.

Timer0::forceCompare(Timer0::FORCE_COMPARE_MATCH_A |

 Timer0::FORCE_COMPARE_MATCH_B

);

The AVRAssist method is, hopefully, much easier and less prone to fat-

fingered typist syndrome (something I suffer from, frequently!) especially

when attempting to type the equivalent code for Listing K-1, as displayed

in Listing K-3.

Listing K-3. Equivalent code to Listing K-1

TCCR0A = ((0 << COM0A1) | (0 <<COM0A0) | (0 << COM0B1) |

 (0 << COM0B0) | (1 << WGM00) | (1 << WGM01));

TCCR0B = ((0 << FOC0A) | (0 << FOC0B) | (0 << WGM02) |

 (0 << CS02) | (1 << CS01) | (1 << CS00));

TIMSK0 = ((1 << OCIE0A) | (1 << OCIE0B) | (0 << TOIE0));

Well, I find it easier! And, yes I did manage to type the preceding code

incorrectly when writing this description. Sigh!

 I know, I’ve set all the 0 bits in the preceding equivalent code,
but that makes it easier to change the bits later, especially if I needed
to change the mode, prescaler, interrupts, etc.

APPENDIX K AVRAssIst

607© Norman Dunbar 2020
N. Dunbar, Arduino Software Internals, https://doi.org/10.1007/978-1-4842-5790-6

Index

A
Analogue Comparator Control and

Status Register (ACSR)
ACO bit, 494
breadboarded circuit, 500, 501
comparator outputs, 499, 500
digital input, 495, 496
enable option, 496
pin AIN1(D7), 497
pins A0-A7, 498
positive input, 493
reference voltage

source, 495, 496
external reference, 497
internal reference, 497

sampled voltage, 495
sketch source code, 502–504

analogRead() function, 93–97
analogReference() function, 92–94
Analogue to Digital Converter

(ADC), 568
analogRead() function, 505
dual in-line package (DIP), 504
init() function, 70–72
loop() function, 526–528
noise reduction mode, 518
reference voltage, 504

setupADC() function, 523, 524
setup and initiation

disable digital input, 512
enable conversion

process, 516
input source, 511, 512
interrupts, 513
left/right alignment, 509–511
power selection, 506
prescaler and frequencies,

506–508
reading steps, 505
reference voltage

source, 508, 509
single-shot/auto trigger

mode, 514–516
subsequent

conversions, 517
setup() function, 527
sketch breadboard layout,

522, 523
startADC() function, 526
temperature conversion

AVR microcontroller, 569
configuration, 570
Internet, 576
loop() function, 574–576
measuring device, 569

https://doi.org/10.1007/978-1-4842-5790-6

608

readADC() function, 573
setup() function, 571, 573

temperature measurement
Atmel/Microchip

documents, 521
calibration document, 522
data sheet states, 519
input data, 519
methods, 520
uncalibrated sensor, 519

analogWrite() function, 97–104
Arduino.h header file

avrinterrupt.h>, 52
avr/io.h file

avr/iom328p.h, 50
avr/portpins.h, 50
<avr/common.h>, 51
<avr/fuse.h>, 52
<avr/lock.h>, 52
<avr/version.h>, 51
setup option, 49

avrpgmspace.h, 49
binary.h header file, 53, 54
HardwareSerial.h, 56, 57
initialization, 47
pins_arduino.h, 57, 58
USBAPI.h, 57
WString.h, 56

Assembly language
BlinkASM sketch

code, 579, 580
language source code, 580, 581

ATmega328P
device, 561, 562
pinout diagram, 561
power

pin, 564
ports, 564
restrictions, 563, 564
total, 564

attachInterrupt() function, 158–169
attachInterrupt(), 161, 162
breadboard layout, 162, 163
documentation states, 159
external interrupts, 159
handling function, 158
INT0 interrupt, 167
interrupt functions, 168
parameters, 160
source code, 164–166
web site, 167

Automatic Voltage Regulator (AVR)
AND operator, 251
ATmega328P pins and ports,

253–256
binary logical operations, 250
bit twiddling, 263–265
digitalRead() function, 265–267
digitalToggle() function, 267,

269–271
digitalWrite() function, 260–263
features, 246
internal pullup resistors, 263
multibit bitmasks, 264
NAND and NOR gates, 250
NOT operation, 250

Analogue to Digital Converter
(ADC) (cont.)

INDEX

609

numbering systems, 247
binary numbers, 248
decimal number, 247
hexadecimal number, 248–250

OR operation, 252
pinMode() function, 257–260
PlatformIO function, 246
toggle output pins, 267
writing code, 245
XOR operation, 252

AVRAssist, 603
components, 603
configuration, 603
equivalent code, 605
fat-fingered typist

syndrome, 605
initialization, 604

B
bit() macro, 171, 172
bitClear() macro, 173
bitRead() macro, 173
bitSet() macro, 174
bitWrite() macro, 174
Boards.txt file, 18

Uno
boards.local.txt, 25
bootloader, 23, 24
build.mcu, 26
entries, 18, 20
ICSP configuration, 27
identification, 20, 21
upload button, 22

Bootloader board, 408
flash memory, 408
lock bits, 409

bits 0, 411
bits 1 description, 413
device lock bits, 409
lock bit selection, 411

Optiboot operation, 415, 416
Uno bootloader, 413, 414

Breadboard 8 MHz board
AVR microcontroller steps, 601
boards.local.txt file, 600, 601
bootloader file, 600, 602
$YOUR_LOCATION, 599

Brown-out detection (BOD)
definition, 352
enabled and

configuration, 352, 353
hysteresis, 354
voltage ranges, 354

C
cbi() macro, 177
Classes, 179

HardwareSerial (see
HardwareSerial class)

Print class, 179–189
Printable class, 189–195
stream class, 195–205
string class, 242–244

Clear Timer on Compare Match
(CTC) mode, 436

COMnA1 mode, 437

INDEX

610

COMnB1 mode, 438
loop() function, 442
mode settings, 440
PWM (see Pulse width

modulation (PWM))
setup() function, 441–443
sketch mode, 440
TCNT1 matches ICR1, 438
timer clock pulse, 436

Command Line Interface (CLI)
burning bootloader, 333–338
command line versions, 315
configuration, 318, 319
core/platform installation,

323, 324
download page, 316
installation, 316–318
MyFirstSketch.ino file, 321
serial device, 338–340
sketches

compilation, 324–327
creation, 320–323
ICSP upload, 329–333
uploading page, 327–329

Compilation
Boards.txt file, 18–27
globally defined properties, 16, 17
header file Arduino.h, 47–59
init() function, 59–72
main() function, 44–47
platform.txt file, 28–36
preferences.txt file, 9–16

programmers.txt file, 36–38
sketch, 39–43

countPulseASM() function, 124

D, E
delayMicroseconds() function,

147–151
detachInterrupt() function,

169–171
Digital input and output

digitalRead() function, 84–87
digitalWrite() function, 87–89
pinMode() function, 75–84

digitalRead() function, 84–87
replace option, 265–267

digitalToggle() function, 269–271
digitalWrite() function, 87–89

replace option, 260–263
disableTimer() function, 120–122
Duemilanove, 1
Duty Cycle, 97

F
Fuses

configuration, 342
extended fuse byte

Arduino sets, 352
BOD, 351
factory default, 352

high fuse bits
bootloader fuse, 347
factory default, 349

Clear Timer on Compare Match
(CTC) mode (cont.)

INDEX

611

program setting, 350, 351
purpose, 347
reset vector fuse, 349

low fuse
Arduino boards, 346
bits fuse, 343
CKSEL fuse bits, 344
factory default, 345
SUT fuses, 343

G
Globally defined

properties, 16, 17

H
HardwareSerial class

availableForWrite() function,
232–234

available() function, 229, 230
bool() function, 229
constructor(), 218
definition, 206
end() function, 227
function begin(unsigned long,

uint8_t)
baud rate calculations,

223–225
begin() function, 219–221, 223
low- and high-speed

communications, 227
rate errors, 226

flush() function, 234–236

function begin(unsigned long
baud), 218

HAVE_HWSERIAL0
marco, 216, 217

interrupt handlers, 207
transmit data, 209
USART data register empty,

209–212
USART receive data, 207–209

peek() function, 230
read() function, 231, 232
rx_buffer_index_t, 214
_rx_complete_irq(void), 242
Serial.begin() function, 215–217
SERIAL_RX_BUFFER_SIZE, 213
SERIAL_TX_BUFFER_SIZE,

212, 213
TX_BUFFER_ATOMIC macro, 234
tx_buffer_index_t, 214
_tx_udr_empty_irq(void), 242
write() function, 236–242

HardwareSerial class
constructor(), 218
peek() function, 231

highByte() macro, 175

I, J, K
In-circuit serial programming (ICSP)

ArduinoISP sketch
breadboard ATmega328P, 595
connections, 596, 597

boards.txt file, 27
bootloader, 23

INDEX

612

burn Bootloader, 598
CLI, 329
preferences.txt file, 12
steps, 595

init() function
Analogue to Digital Converter

(ADC), 70–72
interrupts, 59
setup() function, 71
steps, 59
timer/counter 0

analogueWrite()
function, 61

overflow interrupt, 63–67
setup option, 60–63
timer/counters 1 and 2,

67–69
USART, 72

Sketch (∗.ino)
build, 41–43
preprocessing, 39, 40

Input capture unit, 487–492
Input/output operation, See also

Digital input and output
Analogue input/output, 90–103
bits and bobs

bit() macro, 171, 172
bitClear() macro, 173
bitRead() macro, 173
bitSet() macro, 174
bitWrite() macro, 174
cbi() macro, 177

highByte() macro, 175
lowByte() macro, 175
PORTB5 definition, 178
sbi() macro, 176

disableTimer() function,
120–122

features, 73, 74
ISRs (see Interrupt service

routines (ISR))
language reference, 73
noTone() function, 119–122
pulseIn() function, 122–129
pulseInLong() function,

130–134
shiftIn() function, 134–136
shiftOut() function, 137–140
time

delay() function, 141–146
delayMicroseconds()

function, 147–151
micros() function, 151–154
millis() function, 145, 146,

155–158
yield() function, 143, 144

tone() function, 104–119
Installation paths

explanation, 6–8
language, 6
Linux/MacOS, 558
software, 2, 3
source code, 4, 5, 559
Windows file/folder, 557
$ARDINC/Arduino.h file, 4
zip file version, 2

In-circuit serial programming
(ICSP) (cont.)

INDEX

613

Integrated development
environment (IDE),
see PlatformIO IDE

Interrupts, 565
Interrupt service routines (ISR)

attachInterrupt() function,
158–169

detachInterrupt() function,
169–171

interrupts() function, 157, 158
noInterrupts() function, 158

L
lowByte() macro, 175

M
micros() function, 151–154
millis() function, 145, 146, 155–158

N, O
noInterrupts() function, 158
NormDuino

bill of materials (BOM), 593
breadboard layout, 591
schematics, 589, 590

noTone() function, 119–122

P, Q
pinMode() function, 75–84,

257–260
PlatformIO IDE

burning bootloader, 299
compilation, 313
core concept

files and directories, 282
GUI tool, 274
ICSP device, 277
initialization, 282–285
platformio.ini file, 284
project setup, 279–282
setup environment, 276, 278
setuptools package, 275
testing, 276

editing files, 312, 313
existing projects, 312
home screen option

command line, 305
import project, 307
open project, 307
PIO home tab, 310, 311
project creation, 306

IDE integration page
AVR-style project, 303–305
blocks project, 301–303
command line, 299, 300

installation, 309
modification, 308
new project, 311, 312
packages, 274
style project

AVR development
board, 293–295

blink sketch, 286
compilation, 287–290
platform.ini file, 294

INDEX

614

uploading AVR projects, 298
uploading projects, 290–293

upload/program, 314
platform.txt file, 28

meta-data, 28
pre- and post-build hooks,

34–36
recipes

file extension, 30
format, 30
steps, 29
variables and command-line

options, 31–33
Power Reduction Register

(PRR), 397
consumption

calculation, 400
data sheets, 397
peripherals, 399, 402
reduction register, 401–403

functions, 407–409
saving power

disable() function, 404–407
loop() function, 406
setup() function, 405

preferences.txt file, 9
home and end keys, 14, 15
ICSP, 12, 13
operating system, 10, 11
tab stops, 15, 16

Print class, 179
data types, 180
descendant class, 180

LiquidCrystal.h
HelloWorld code, 187–89
send() function, 186
source code, 184, 185
write8bits() function, 187
write() function, 186

println() function, 180
public members

functions, 183
numeric data, 182

virtual functions, 181
Printable class, 189

class implementation, 193
Printable.h header file, 190
printTo() function, 190, 192,

194, 195
programmers.txt file, 36–38
pulseIn() function, 122–129
pulseInLong() function, 130–134
Pulse width modulation

(PWM), 97, 444
analogWrite() function, 444
AVRAssist GitHub page, 479, 480
duty cycle, 444–447
fast mode, 448–455

COMnA1 mode, 454
COMnB1 mode, 455
data sheet, 453
details, 451
differences, 449, 450
frequencies, 451
frequencies and periods, 451
init() function, 457
loop() function, 459

PlatformIO IDE (cont.)

INDEX

615

setup() function, 457
single slope, 449
timer/counter modes, 450

frequencies, 447, 448
frequency and phase correct,

474–478
COMnA1 mode, 477
COMnB1 mode, 478
data sheet, 475
differences, 475

phase correct
analogWrite() function, 469
COMnA1 mode, 467
COMnB1 mode, 468
differences, 464
8-bit Phase, 463
frequencies and periods, 466
init() function, 469
mode settings, 469, 470
non-inverting output, 464
setup() function, 470, 472
timer modes, 465
TOP value, 461

R
readBytes() functions, 204

S
sbi() macro, 176
shiftIn() function, 134–136
shiftOut() function, 137–140
Smallest blink sketch

frequency, 587
Oscilloscope trace, 587
pio run, 586
platform.ini file, 583, 584
process, 583
source code, 584, 585

Sleep Mode Control Register
(SMCR)

ADC noise reduction mode,
382–385

AVR microcontroller, 378
extended standby mode, 392, 393
idle mode, 379–382
list of, 378
power down sleep mode,

386–388
power save sleep mode,

388–390
standby mode, 390, 391
wake-up process, 378

Stream class
class members

characters, 198
descendant class, 199
find() functions, 200, 201
findUntil()

functions, 201, 202
internal buffers, 198
LookaheadEnum

enumeration, 197
numeric values, 199
public functions, 197, 198
readBytes() functions, 203
stop scanning function, 199

INDEX

616

timedRead() function,
204, 205

data reading functions, 195
pure virtual functions, 196

String class, 242–244

T
Timer and counters, 417

clock sources, 423–425
counting mode, 480

configuration, 481
door counter system,

482, 483
loop() function, 484
results, 485, 486
setup() function, 483, 484
waveform generation

modes, 481
CTC, see Clear Timer on

Compare Match (CTC)
mode

definitions, 418
functions, 418
init() function, 417
input capture unit, 487–492
0 modes, 419, 420
normal mode

COMnA1 mode, 428
COMnB1 mode, 428
interrupts, 430
loop() function, 431, 432, 435

mode settings, 428
rolls over/overflows, 427
setup() function, 430, 433
sketch initialization, 430–436

1 modes, 420, 421
operating modes

disable mode, 425, 426
normal mode, 427–435

2 modes, 422, 423
Timer/counter 0, 565, 566
Timer/counter 1 and 2, 566, 567
tone() function, 104–119

U, V
Universal Synchronous/

Asynchronous Receiver/
Transmitter (USART)

asynchronous operation, 530
baud rates

calculation, 530–532
configuration, 529
error rate, 532, 533

communicate()
function, 553, 554

definition, 528
double speed, 530
initialization, 536

asynchronous and
synchronous mode, 538

baud rate, 539
checks, 544
control registers, 536

Stream class (cont.)

INDEX

617

data Overrun, 546
data register empty, 545
data transmission, 543
data width, 540
double-speed mode, 541
enable data receipt, 543
frame, 539
framing error, 546
interrupts, 542
Master SPI mode, 538
parity error, 547
parity modes, 539
powering option, 537
receive completion, 545
stop bits, 540
transmissions/receiving

data, 544
transmit, 545

interrupts, 535
loop() function, 554
parity, 534
receiveByte() function, 549, 550
sendByte() function, 551
sendNumber()

function, 552, 553
sendText() function, 552
serial frame, 533
setup() function, 554
setupUSART() function,

547, 548
USART receive data interrupt,

207–209

W, X
Watchdog Interrupt (WDI) mode,

356, 362
Watchdog Reset (WDR) mode,

355, 362
Watchdog Timer (WDT)

analogue comparator interrupt,
394–397

AVR microcontroller
flashLED() function, 374
header file, 373
loop() function, 375, 376
setup() function, 374
sleep modes, 372, 373
source code, 373

control register, 360–362
definition, 355
disabled mode, 370, 371
enabling mode, 364
loop() function, 396
modes of operation, 355–358
reset option, 359
setup() code, 358, 359
setupComparator() function, 394
setup() function, 395
sleep modes (see Sleep Mode

Control Register (SMCR))
timeout period, 365–370

Y, Z
yield() function, 143, 144

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction
	1.1.	 Arduino Installation Paths
	1.2.	 Coding Style
	1.3.	 The Arduino Language
	1.4.	 Coming Up

	Chapter 2: Arduino Compilation
	2.1.	 Preferences.txt
	2.1.1. Using an ICSP for All Uploads
	2.1.2. Change the Action of Home and End Keys
	2.1.3. Setting Tab Stops

	2.2.	 Globally Defined Paths
	2.3.	 Boards.txt
	2.3.1. Arduino Uno Example
	2.3.1.1. Board Identifier
	2.3.1.2. Identification Settings
	2.3.1.3. Upload Settings
	2.3.1.4. Bootloader Settings
	2.3.1.4.1. Boards.local.txt

	2.3.1.5. Build Settings
	2.3.1.6. Configuring an ICSP

	2.4.	 Platform.txt
	2.4.1. Build Recipes
	2.4.2. Pre- and Post-build Hooks

	2.5.	 Programmers.txt
	2.6.	 Compiling a Sketch
	2.6.1. Arduino Sketch (*.ino) Preprocessing
	2.6.2. Arduino Sketch (*.ino) Build

	2.7.	 The Arduino main() Function
	2.8.	 Header File Arduino.h
	2.8.1. Header File avr\pgmspace.h
	2.8.2. Header File avr\io.h
	2.8.2.1. Header File avr/iom328p.h
	2.8.2.2. Header File avr/portpins.h
	2.8.2.3. Header File <avr/common.h>
	2.8.2.4. Header File <avr/version.h>
	2.8.2.5. Header File <avr/fuse.h>
	2.8.2.6. Header File <avr/lock.h>

	2.8.3. Header File avr\interrupt.h
	2.8.4. Header File binary.h
	2.8.5. Header File WCharacter.h
	2.8.6. Header File WString.h
	2.8.7. Header File HardwareSerial.h
	2.8.8. Header File USBAPI.h
	2.8.9. Header File pins_arduino.h

	2.9.	 The init() Function
	2.9.1. Enabling the Global Interrupt Flag
	2.9.2. Enabling Timer/counter 0
	2.9.3. Timer/counter 0 Overflow Interrupt
	2.9.4. Configuring Timer/counter 1 and Timer/counter 2
	2.9.5. Initializing the Analogue to Digital Converter
	2.9.6. Disabling the USART

	Chapter 3: Arduino Language Reference
	3.1. Digital Input/Output
	3.1.1. Function pinMode()
	3.1.2. Function digitalRead()
	3.1.3. Function digitalWrite()

	3.2. Analogue Input/Output
	3.2.1. Function analogReference()
	3.2.2. Function analogRead()
	3.2.3. Function analogWrite()

	3.3. Advanced Input/Output
	3.3.1. Function tone()
	3.3.2. Function noTone()
	3.3.3. Function pulseIn()
	3.3.4. Function pulseInLong()
	3.3.5. Function shiftIn()
	3.3.6. Function shiftOut()

	3.4. Time
	3.4.1. Function delay()
	3.4.2. Function delayMicroseconds()
	3.4.3. Function micros()
	3.4.4. Function millis()

	3.5. Interrupts
	3.5.1. Function interrupts()
	3.5.2. Function noInterrupts()
	3.5.3. Function attachInterrupt()
	3.5.4. Function detachInterrupt()

	3.6. Bits and Bobs
	3.6.1. Macro bit()
	3.6.2. Macro bitClear()
	3.6.3. Macro bitRead()
	3.6.4. Macro bitSet()
	3.6.5. Macro bitWrite()
	3.6.6. Macro highByte()
	3.6.7. Macro lowByte()
	3.6.8. Macro sbi()
	3.6.9. Macro cbi()

	Chapter 4: Arduino Classes
	4.1.	 The Print Class
	4.1.1. Class Members
	4.1.2. Using the Print Class

	4.2.	 The Printable Class
	4.2.1. An Example Printable Class

	4.3.	 The Stream Class
	4.3.1. Class Members

	4.4.	 The HardwareSerial Class
	4.4.1. Interrupt Handlers
	4.4.1.1. USART Receive Complete Interrupt
	4.4.1.2. USART Data Register Empty Interrupt

	4.4.2. Class Functions and Macros
	4.4.2.1. Macro SERIAL_TX_BUFFER_SIZE
	4.4.2.2. Macro SERIAL_RX_BUFFER_SIZE
	4.4.2.3. Typedefs tx_buffer_index_t and rx_buffer_index_t
	4.4.2.4. Serial Communications Parameters
	4.4.2.5. Macro HAVE_HWSERIAL0
	4.4.2.6. Constructor HardwareSerial()
	4.4.2.7. Function begin(unsigned long baud)
	4.4.2.8. Function begin(unsigned long, uint8_t)
	4.4.2.8.1. Notes on Baud Rate Calculations
	4.4.2.8.2. Notes on Baud Rate Errors
	4.4.2.8.3. Notes on Low- and High-Speed Communications

	4.4.2.9. Function end()
	4.4.2.10. Operator bool()
	4.4.2.11. Function available(void)
	4.4.2.12. Function peek(void)
	4.4.2.13. Function read(void)
	4.4.2.14. Function availableForWrite(void)
	4.4.2.15. Function flush(void)
	4.4.2.16. Function write(uint8_t)
	4.4.2.17. Function _rx_complete_irq(void)
	4.4.2.18. Function _tx_udr_empty_irq(void)

	4.5.	 The String Class

	Chapter 5: Converting to the AVR Language
	5.1. Introduction
	5.2. Numbering Systems
	5.2.1. Decimal Numbering
	5.2.2. Binary Numbering
	5.2.3. Hexadecimal Numbering

	5.3. Binary Logical Operations
	5.4. NOT
	5.5. AND
	5.6. OR
	5.7. XOR
	5.8. Replacing the Arduino Language
	5.8.1. The ATmega328P Pins and Ports

	5.9. Replacing pinMode()
	5.10. Replacing digitalWrite()
	5.10.1. Enabling Internal Pullup Resistors
	5.10.2. Bit Twiddling

	5.11. Replacing digitalRead()
	5.11.1. Toggling Output Pins
	5.11.2. Installing digitalToggle()

	Chapter 6: Alternatives to the Arduino IDE
	6.1. PlatformIO
	6.1.1. Installing PlatformIO Core
	6.1.2. Testing PlatformIO Core
	6.1.2.1. Set Up Your Environment
	6.1.2.2. Set Up a New Project
	6.1.2.3. Initialize the Project
	6.1.2.4. Arduino-Style Projects
	6.1.2.4.1. Compiling Arduino Projects
	6.1.2.4.2. Uploading Arduino Projects

	6.1.2.5. AVR-Style Projects
	6.1.2.5.1. Compiling AVR Projects
	6.1.2.5.2. Uploading AVR Projects

	6.1.3. Burning Bootloaders
	6.1.4. PlatformIO in an IDE
	6.1.4.1. Set Up a New Code::Blocks Arduino Project
	6.1.4.2. Set Up a New Code::Blocks AVR Project

	6.1.5. PlatformIO Home
	6.1.5.1. Creating Projects
	6.1.5.2. Opening Projects
	6.1.5.3. Importing Arduino Sketches

	6.1.6. PlatformIO IDE
	6.1.6.1. Installation
	6.1.6.2. PIO Home Tab
	6.1.6.3. Creating a New Project
	6.1.6.4. Opening Existing Projects
	6.1.6.5. Editing the Project
	6.1.6.6. Compiling a Project
	6.1.6.7. Upload or Program a Project

	6.2. Arduino Command Line
	6.2.1. Obtaining the Arduino CLI
	6.2.2. Installing
	6.2.3. Configuring the CLI
	6.2.4. Creating Sketches
	6.2.5. Installing Platforms
	6.2.6. Compiling Sketches
	6.2.7. Uploading Sketches
	6.2.8. Uploading Sketches with an ICSP
	6.2.9. Burning Bootloaders
	6.2.10. Serial Usage

	Chapter 7: ATmega328P Configuration and Management
	7.1.	 ATmega328P Fuses
	7.1.1. Low Fuse Bits
	7.1.1.1. SUT Fuse Bits
	7.1.1.2. CKSEL Fuse Bits

	7.1.2. Low Fuse Factory Default
	7.1.3. Arduino Low Fuse Settings
	7.1.4. High Fuse Bits
	7.1.5. High Fuse Factory Default
	7.1.6. Arduino High Fuse Settings
	7.1.7. Extended Fuse Bits
	7.1.8. Extended Fuse Factory Default
	7.1.9. Arduino Extended Fuse Settings

	7.2.	 Brown-Out Detection
	7.3.	 The Watchdog Timer
	7.3.1. Watchdog Timer Modes of Operation
	7.3.2. Amended Sketch setup() Function
	7.3.3. Watchdog Timer Reset
	7.3.4. The Watchdog Timer Control Register
	7.3.5. Enabling the Watchdog Timer
	7.3.6. Setting the Watchdog Timer Timeout
	7.3.7. Disabling the Watchdog Timer
	7.3.8. Putting the AVR to Sleep
	7.3.9. Sleep Modes
	7.3.9.1. Idle Sleep Mode
	7.3.9.2. ADC Noise Reduction Sleep Mode
	7.3.9.3. Power Down Sleep Mode
	7.3.9.4. Power Save Sleep Mode
	7.3.9.5. Standby Sleep Mode
	7.3.9.6. Extended Standby Sleep Mode

	7.3.10. Analogue Comparator

	7.4.	 Power Reduction
	7.4.1. Power Consumption
	7.4.1.1. Calculating Power Requirements

	7.4.2. Power Reduction Register
	7.4.3. Saving Arduino Power
	7.4.4. The Power Functions

	7.5.	 Bootloaders
	7.5.1. Flash Memory
	7.5.2. Lock Bits
	7.5.2.1. Device Lock Bits
	7.5.2.2. Bootloader Lock Bits
	7.5.2.2. Bootloader Lock Bits 0
	7.5.2.2. Bootloader Lock Bits 1

	7.5.3. Installing the Uno (Optiboot) Bootloader
	7.5.4. Optiboot Bootloader Operation

	Chapter 8: ATmega328P Hardware: Timers and Counters
	8.1.	 Timer/Counters
	8.1.1. Timer/Counter 0 (8 Bits)
	8.1.2. Timer/Counter 1 (8, 9, 10, and/or 16 Bits)
	8.1.3. Timer/Counter 2 (8 Bits)
	8.1.4. Timer/Counter Clock Sources
	8.1.5. Timer/Counter Operating Modes
	8.1.5.1. Timers Disabled
	8.1.5.1.1. Disabling the Timers

	8.1.5.2. Normal Mode
	8.1.5.2.1. Setting Normal Mode
	8.1.5.2.2. Example Sketch

	8.1.6. Clear Timer on Compare Match Mode
	8.1.6.1. Setting CTC Mode
	8.1.6.2. Example Sketch

	8.1.7. PWM Modes
	8.1.7.1. Duty Cycle
	8.1.7.2. PWM Frequencies
	8.1.7.3. Fast PWM Mode
	8.1.7.3.1. Setting Fast PWM Mode
	8.1.7.3.2. Example Sketch

	8.1.7.4. Phase Correct PWM Mode
	8.1.7.4.1. Setting Phase Correct PWM Mode
	8.1.7.4.2. Example Sketch

	8.1.7.5. Phase and Frequency Correct PWM Mode
	8.1.7.5.1. Setting Phase and Frequency Correct PWM Mode

	8.1.8. Too Much to Remember? Try AVRAssist

	8.2.	 Counting
	8.2.1. Setting External Counting
	8.2.2. Counter Example

	8.3.	 Input Capture Unit

	Chapter 9: ATmega328P Hardware: ADC and USART
	9.1. The Analogue Comparator
	9.1.1. Reference Voltage
	9.1.2. Sampled Voltage
	9.1.3. Digital Input
	9.1.4. Enable the Analogue Comparator
	9.1.5. Select Reference Voltage Source
	9.1.5.1. External Reference
	9.1.5.2. Internal Bandgap Reference

	9.1.6. Select Sampled Voltage Source Pin
	9.1.6.1. Sample Voltage on Pin AIN1
	9.1.6.2. Sample Voltage on Pins A0–A7

	9.1.7. Sampled Voltage Summary
	9.1.8. Comparator Outputs
	9.1.9. Comparator Example

	9.2. Analogue to Digital Converter (ADC)
	9.2.1. ADC Setup and Initiation
	9.2.1.1. Powering the ADC
	9.2.1.2. Selecting the Prescaler
	9.2.1.3. Selecting the Reference Voltage Source
	9.2.1.4. Left or Right Alignment?
	9.2.1.5. Selecting an Input Source
	9.2.1.6. Disable Digital Input
	9.2.1.7. ADC Interrupt
	9.2.1.8. Single-Shot or Auto Trigger?
	9.2.1.9. Enabling the ADC and Initiating Conversions
	9.2.1.10. ADC Conversions

	9.2.2. Noise Reduction
	9.2.3. Temperature Measurement
	9.2.4. ADC Example

	9.3. USART
	9.3.1. Baud Rates
	9.3.2. Double Speed
	9.3.3. Baud Rate Calculations
	9.3.4. Baud Rate Errors
	9.3.5. What Is a Frame?
	9.3.6. Parity
	9.3.7. Interrupts
	9.3.7.1. TX Complete Interrupt
	9.3.7.2. TX Data Register Empty Interrupt
	9.3.7.3. RX Complete

	9.3.8. Initializing the USART
	9.3.8.1. Powering the USART
	9.3.8.2. Choosing the USART Mode
	9.3.8.3. Baud Rate Setting
	9.3.8.4. Frame Settings
	9.3.8.5. Setting Parity
	9.3.8.6. Setting Stop Bits
	9.3.8.7. Setting Data Width
	9.3.8.8. Enabling Double-Speed Mode
	9.3.8.9. Enabling Interrupts
	9.3.8.10. Enabling Data Transmission
	9.3.8.11. Enabling Data Receipt
	9.3.8.12. Transmitting or Receiving 9-Bit Data

	9.3.9. USART Checks
	9.3.9.1. USART Receive Complete
	9.3.9.2. USART Transmit Complete
	9.3.9.3. USART Data Register Empty
	9.3.9.4. USART Frame Error
	9.3.9.5. USART Data Overrun
	9.3.9.6. USART Parity Error

	9.3.10. USART Example

	Appendix A:Arduino Paths
	Appendix B:ATmega328P Pinout
	Appendix C:ATmega328P Power Restrictions
	C.1. Power in Total
	C.2. Power per Port
	C.3. Power per Pin

	Appendix D:Predefined Settings
	D.1. Global Interrupts
	D.2. Timer/counter 0
	D.3. Timer/counters 1 and 2
	D.4. USART
	D.5. Analogue to Digital Converter

	Appendix E:ADC Temperature Measuring
	Appendix F:Assembly Language: Briefly
	Appendix G:Smallest Blink Sketch?
	Appendix H:NormDuino
	Appendix I:No ICSP? No Problem!
	I.1. ArduinoISP Sketch
	I.2. Connections
	I.3. Choose Your Programmer
	I.4. Burn the Bootloader

	Appendix J:Breadboard 8 MHz Board Setup
	Appendix K: AVRAssist
	K.1. Components
	K.2. In Use

	Index

