Development Engineering

Development of Surface of Objects
Applications by Mathematics Equations

First Edition

$$
X=\left(p^{*}\left\|^{*}\right\|^{* j}\right) / 180
$$

DEVELOPMENT ENGINEERING DEVELOPMENT OF SURFACE OF OBJECTS Applications by Mathematics Equations

Copyright © 2017 by Hazem Albadry

All rights reserved. This publication is fully protected by copyright and nothing that appears in it may be reprinted, either wholly or in part, without special permission.
The Author specifically excludes warranties, express or implied, as to the accuracy of the data and other information set forth in this publication and does not assume liability for any losses or damage resulting from the use of the materials or application of the data discussed in this publication.

First Edition: 09 / 2017
Printed in the United States of America
ISBN: 978-1-387-23551-3

The Author
Hazem Hameed Rashid Albadry
Email: Hazem.dev_eng@yahoo.com

Dedication

To whom shall i guide the way of life to my dear Father
To whom satisfied me with her tenderness to my tender mother
To whom i loved in all the meaning of love to my beloved wife
To those who planted in all the meaning of a sweet life to my beloved children
To those who advise me and support me after God Almighty in this world
to my dear brothers and sisters

Contents

FOREWORD 7
CHAPTER - 1 Cylinder 10
1-1 Cylinder cut 1 11
1-2 Cylinder cut 2 13
1-3 Cylinder cut 3 14
1-4 Cylinder cut 4 17
CHAPTER - 2 Two Cylinders 19
2-1 Two same cylinders orthogonal 20
2-2 Two different cylinders orthogonal 22
2-3 Two same cylinders not orthogonal 24
2-4 Two different cylinders not orthogonal. 27
2-5 Two different cylinders orthogonal with shifting. 31
2-6 Two different cylinders non orthogonal with shifting. 34
CHAPTER - 3 Cones 37
3-1 Right Circular Cone 38
3-2 Oblique Cone 39
3-3 Scalene Cone 42
3-4 Obtuse Cone 45
3-5 Truncated Cone 48
3-6 Right Circular Cone cut from top with angle. 49
3-7 Right Circular Cone cut from side 52
3-8 Oblique Cone cut from top 55
3-9 Oblique Cone cut from top with angle 59
3-10 Oblique Cone cut from side 63
3-11 Truncated Scalene Cone 68
3-12 Truncated Obtusee Cone 72
CHAPTER - 4 Cones with Cylinders 76
4-1 Right Circular Cone with horizontal cylinder 77
4-2 Right Circular Cone with vertical cylinder 80
4-3 Inverted Right Circular Cone with Horizontal cylinder 83
4-4 Horizontal cylinder with Right Circular Cone 88
CHAPTER - 5 Transition 92
5-1 Concentric and Eccentric Transition 93
CHAPTER - 6 Elbow with Cylinders 119
6-1 Elbow with Cylinder (Centered) 120
6-2 Elbow with Cylinder (Same bottom elevation) 122
6-3 Elbow with Cylinder (Eccentric) 124
CHAPTER - 7 Sphare with Cylinder 126
7-1 Sphare with Cylinder 127
CHAPTER - 8 Part of Elbow 129
8-1 Part of Elbow 130
CHAPTER - 9 Sphare 132
9-1 Sphare 134
CHAPTER - 10 Fan 135
10-1 Fan 136
CHAPTER - 11 Pyramids 139
11-1 Pyramids 140
11-2 orthogonal Pyramid four sides 142
11-3 orthogonal Pyramid four sides. 144
11-4 orthogonal Pyramid three sides 146
11-5 orthogonal Pyramid three sides 148

FOREWORD

In industrial world, an engineer is frequently confronted with problems where the development of surfaces of an object has to be made to help him to go ahead with the design and manufacturing processes. For example, in sheet metal work, it plays a vital role, thus enabling a mechanic to cut proper size of the plate from the development and then to fold at proper places to form the desired objects, namely, boilers, boxes, buckets, packing boxes, chimneys, hoppers, air-conditioning ducts etc.
"The development of surface of an object means the unrolling and unfolding of all surfaces of the object on a plane."
"If the surface of a solid is laid out on a plain surface, the shape thus obtained is called the development of that solid."

In other words, the development of a solid is the shape of a plain sheet that by proper folding could be converted into the shape of the concerned solid.

Importance of Development:

Knowledge of development is very useful in sheet metal work, construction of storage vessels, chemical vessels, boilers, and chimneys. Such vessels are manufactured from plates that are cut according to these developments and then properly bend into desired shaped. The joints are then welded or riveted.

Principle of Development:

Every line on the development should show the true length of the corresponding line on the surface which is developed.

Methods of Development:
(a) Parallel-line development
(b) Radial-line development
(c) Triangulation development
(d) Approximate development

Parallel-line Method:

It is used for developing prisms and single curved surfaces like cylinders, in which all the edges/generation of lateral surfaces are parallel in each other.

Radial-line Method:

It is employed for pyramids and single curved surfaces like cones in which the apex is taken as centre and the slant edge or generator as radius of its development.

Triangulation Method:

It is used for developing transition pieces.

Approximate Method:

It is employed for double curved surfaces like spheres, as they are theoretically not possible to develop. The surface of the sphere is developed by approximate method. When the surface is cut by a series of cutting planes, the cut surfaces is called a zone.
The new in this book is to rely on mathematical equations in the design of geometric shapes, which means the accuracy of the results and the speed of implementation and not to fall into the mistakes that will often be known after the manufacturing process, resulting in loss of cost and time.
In addition, an engineering program that gives digital and visual results has been done for all objects in this book.

CHAPTER - 1

CYLINDER

1-1 Cylinder cut
 (In case B \leq A)

Cylinder dimensions
Cylinder after rolling

Cylinder before rolling
$s=180-\cos ^{-1}\left(\frac{A-B}{A}\right)$

For $\mathrm{i}=\mathrm{s}$ to 180

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

1-2 Cylinder cut (In case B > A)

Cylinder dimensions

Cylinder before rolling

$$
s=180-\cos ^{-1}\left(\frac{B-A}{A}\right)
$$

For $\mathrm{i}=\mathrm{s}$ to 180

$$
\mathbf{X}=\frac{\boldsymbol{\pi} * \mathbf{A} * \mathbf{i}}{\mathbf{1 8 0}}
$$

$$
Y=\tan (C) * A *(1+\cos i)
$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

1-3 Cylinder cut

(In case full cut)

Cylinder dimensions
Cylinder after rolling

Cylinder before rolling

For $\mathrm{i}=0$ to 180

$$
X=\frac{\pi * A * i}{180}
$$

$$
Y=\tan (C) * A *(1+\cos i)
$$

Notes:

- The length of cylinder is optional.

The left curve is same as right curve.

- The steps of (i) are optionals.

1-4 Cylinder cut (In case full cut along)

Cylinder dimensions

Cylinder after rolling

Cylinder before rolling

For $\mathrm{i}=0$ to 90

$$
Y=B^{*} \cos i
$$

Notes:

- The length of cylinder is B.
- The left curve is same as right curve.
- The steps of (i) are optionals.

CHAPTER - 2

TWO CYLINDERS

2-1 Two same cylinders orthogonals

Cylinders dimensions

Cylinders after rolling

Vertical Cylinder before rolling

2-1-1 Vertical Cylinder

For $\mathrm{i}=0$ to 180

Horizontal Cylinder before rolling
2-1-2 Horizontal Cylinder
For $\mathrm{i}=0$ to 90

Notes:

$$
X=A^{*} \cos i
$$

$$
\mathbf{Y}=\frac{\boldsymbol{\pi} * \mathrm{~A} * \mathbf{i}}{180}
$$

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

2-2 Two different cylinders orthogonals

Cylinders dimensions
Cylinders after rolling

Vertical Cylinder before rolling

2-2-1 Vertical Cylinder
For $\mathrm{i}=0$ to 180

$$
\mathbf{X}=\frac{\boldsymbol{\pi} * \mathbf{A} * \mathbf{i}}{\mathbf{1 8 0}}
$$

$$
\mathbf{Y}=\mathbf{B}-\sqrt{\mathbf{B}^{2}-\mathbf{A}^{2} *(\operatorname{Cos} \mathbf{i})^{2}}
$$

Horizontal Cylinder before rolling 2-2-2 Horizontal Cylinder

For $\mathrm{i}=0$ to 90

$$
\begin{aligned}
& \mathrm{k}=\sqrt{\mathrm{B}^{2}-\mathrm{A}^{2} *(\cos \mathrm{i})^{2}} \\
& \mathrm{~m}=\tan ^{-1}\left(\frac{\mathrm{~A} * \cos \mathrm{i}}{\mathrm{k}}\right) * \frac{\pi}{180}
\end{aligned}
$$

$$
\mathbf{X}=\mathbf{A} * \sin \mathbf{i}
$$

$$
\mathbf{Y}=\mathbf{m} * \mathbf{B}
$$

2-3 Two same cylinders not orthogonals

Cylinders dimensions

Cylinders after rolling

Diagonal Cylinder before rolling

2-3-1 Diagonal Cylinder

$$
\text { For } \mathrm{i}=0 \text { to } 180
$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

2-3-2 Horizontal Cylinder

Horizontal Cylinder before rolling

$$
\mathbf{Y}=\frac{\mathbf{\pi} * \mathbf{A} * \mathbf{i}}{\mathbf{1 8 0}}
$$

1- The top right curve formula:
For $\mathrm{i}=0$ to 90 step R

$$
X=-\frac{A *(1-\operatorname{Cos} i) *(1+\cos B)}{\operatorname{Sin} B}
$$

2- The top left curve formula:
For $\mathrm{i}=(90-\mathrm{R})$ to 0 step -R

$$
X=-\frac{2 * A-A *(1-\operatorname{Cos} i) *(1-\cos B)}{\operatorname{Sin} B}
$$

Notes:

- The length of cylinder is optional.
- The down curve is same as top curve.
- The steps (R) are optionals.

2-4 Two different cylinders not orthogonals

Cylinders dimensions

Cylinders after rolling

Diagonal Cylinder before rolling

2-4-1 Diagonal Cylinder

$$
\text { For } \mathrm{i}=0 \text { to } 180
$$

$$
X=\frac{\pi * A * i}{180}
$$

$$
Y=\frac{B-\sqrt{B^{2}-A^{2} *(\sin i)^{2}}}{\sin C}+\frac{A *(1+\cos i)}{\tan C}
$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

2-4-2 Horizontal Cylinder

Horizontal Cylinder before rolling

1- The top right curve formulas:
For $\mathrm{i}=0$ to 90 step R

$$
m=B-\sqrt{B^{2}-A^{2} *(\sin i)^{2}}
$$

$$
X=-\frac{A *(1-\cos i) * \cos (C)+m}{\tan C}+A * \sin (C) *(1-\cos i)
$$

$$
\mathrm{Y}=\frac{\mathrm{B} * \pi}{180} * \tan ^{-1}\left(\frac{A * \sin \mathrm{i}}{\sqrt{\mathrm{~B}^{2}-\mathrm{A}^{2} *(\sin \mathrm{i})^{2}}}\right)
$$

Continue 2-4-2 Horizontal Cylinder

2- The top left curve formulas:

$$
\begin{aligned}
& \text { For } i=(90-R) \text { to } 0 \text { step }-R \\
& m=B-\sqrt{B^{2}-A^{2} *(\sin i)^{2}}
\end{aligned}
$$

$$
X=\frac{1}{\sin C} *\{2 * A-A *(1-\cos i)+m * \cos C\}
$$

$$
\mathrm{Y}=\mathrm{B} * \tan ^{-1}\left(\frac{\mathrm{~A} * \sin \mathrm{i}}{\sqrt{\mathrm{~B}^{2}-\mathrm{A}^{2} *(\sin \mathbf{i})^{2}}}\right)
$$

Notes:

- The length of cylinder is optional.
- The upper curve is same as lower curve.
- The steps (R) are optionals.

2-5 Two different cylinders orthogonals with shifting

Cylinders dimensions

Vertical Cylinder before rolling

2-5-1 Vertical Cylinder

For $\mathrm{i}=0$ to 180

$$
\mathbf{X}=\frac{\mathbf{\pi} * \mathbf{A} * \mathbf{i}}{\mathbf{1 8 0}}
$$

$$
\mathbf{Y}=\mathbf{B}-\sqrt{\mathbf{B}^{2}-(\mathbf{A} * \cos (\mathbf{i})+\mathbf{C})^{2}}
$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

2-5-2 Horizontal Cylinder

Horizontal Cylinderb efore rolling

For $\mathrm{i}=0$ to 180

$$
\mathrm{f}=\tan ^{-1}\left(\frac{\mathrm{~A}+\mathrm{C}}{\sqrt{\mathrm{~B}^{2}-(\mathrm{A}+\mathrm{C})^{2}}}\right)
$$

$$
\mathrm{k}=\tan ^{-1}\left(\frac{\mathrm{~A} * \cos (\mathrm{i})+\mathrm{C}}{\sqrt{\mathrm{~B}^{2}-(\mathrm{A} * \cos (\mathrm{i})+\mathrm{C})^{2}}}\right)
$$

$$
\mathrm{m}=\mathrm{B} * \tan ^{-1}\left(\frac{\sqrt{\mathrm{~B}^{2}-(\mathrm{A}+\mathrm{C})^{2}}}{\mathrm{~A}+\mathrm{C}}\right)
$$

$$
\begin{gathered}
X=\frac{\pi * B *(f-k)}{180} \\
Y=A^{*} \sin i
\end{gathered}
$$

Notes:

- The length of cylinder is optional.
- The lower curve is same as upper curve.
- The steps of (i) are optionals.

2-6 Two different cylinders non orthogonals with shifting

Cylinders dimensions
Cylinders after rolling

Cylinders dimensions

2-6-1 Diagonal Cylinder

Diagonal Cylinder before rolling
For $\mathrm{i}=0$ to 360

$$
f=\sqrt{B^{2}-(C-A)^{2}}-B * \cos S
$$

$$
X=\frac{\pi * A * i}{180}
$$

$$
Y=\frac{f}{\tan S}+\frac{A * \sin i}{\sin S}
$$

2-6-2 Horizontal Cylinder

Big Cylinder before rolling
For $\mathrm{i}=0$ to 360

$$
\begin{aligned}
& \mathrm{k}=\tan ^{-1}\left(\frac{\mathrm{C}-\mathrm{A}}{\sqrt{\mathrm{~B}^{2}-(\mathrm{C}-\mathrm{A})^{2}}}\right) \\
& \mathrm{t}=\tan ^{-1}\left(\frac{\mathrm{C}-\mathrm{A} * \cos (\mathrm{i})}{\sqrt{\mathrm{B}^{2}-(\mathrm{C}-\mathrm{A} * \cos (\mathrm{i}))^{2}}}\right)
\end{aligned}
$$

$$
f=\sqrt{B^{2}-(C-A)^{2}}-B^{*} \cos t
$$

$$
\mathrm{D}=\frac{\pi * \mathrm{~B} * \mathrm{k}}{180}
$$

$$
X=\frac{-f}{\tan S}-\frac{A * \sin i}{\sin S}
$$

$$
Y=\frac{-\pi * b *(t-k)}{180}
$$

CHAPTER - 3
CONES

3-1 Right Circular Cone

Cone after rolling

Cone before rolling
$\mathbf{R}=\sqrt{\mathbf{A}^{2}+\mathbf{B}^{2}}$
$\mathrm{C}=\frac{360 * \mathrm{~A}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}$

3-2 Oblique Cone

Cone dimensions

Cone after rolling

Cone before rolling

Continue 3-2

For $\mathrm{i}=0$ to 180 step s

$$
k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{i}{2}\right)^{2}}
$$

$m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{i}{2}+\frac{s}{2}\right)^{2}}$
$\mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4 * \mathrm{~A}^{2} *\left(\sin \frac{\mathrm{~s}}{2}\right)^{2}$
$\mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$\mathrm{f}=\sum \mathrm{t}$

$$
C^{\circ}=2 *(f-t)
$$

For $w=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}\right)^{2}} \\
& m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}+\frac{s}{2}\right)^{2}} \\
& z=k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

Continue 3-2

$\mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$\mathrm{ff}=\sum \mathrm{tt}$

$$
X=k^{*} \operatorname{Sin}(f f-t t)
$$

$$
Y=k^{*} \operatorname{Cos}(f f-t t)-B * \operatorname{Cos}(f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-3 Scalene Cone

Cone dimensions

Cone after rolling

Cone before rolling

Continue 3-3

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A * \cos (i)+A-C)^{2}} \\
& m=\sqrt{B^{2}+A^{2} *(\sin (i+s))^{2}+(A * \cos (i+s)+A-C)^{2}} \\
& z=k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2} \\
& t=\tan ^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2}-z^{2}}}{z}\right) \\
& f=\sum t \\
& L=\sqrt{B^{2}+C^{2}} \\
& D^{\circ}=2 *(f-t)
\end{aligned}
$$

For $w=0$ to 180 step s

$$
k=\sqrt{B^{2}+A^{2} *(\sin w)^{2}+(A * \cos (w)+A-C)^{2}}
$$

$$
\mathrm{m}=\sqrt{\mathrm{B}^{2}+\mathrm{A}^{2} *(\sin (\mathrm{w}+\mathrm{s}))^{2}+(\mathrm{A} * \cos (\mathrm{i}+\mathrm{s})+\mathrm{A}-\mathrm{C})^{2}}
$$

Continue 3-3

$$
\begin{aligned}
& \mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4 * \mathrm{~A}^{2} *\left(\sin \frac{\mathrm{~s}}{2}\right)^{2} \\
& \mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right) \\
& \mathrm{ff}=\sum \mathrm{tt}
\end{aligned}
$$

$$
X=k * \operatorname{Sin}(f f-t t)
$$

$$
Y=k * \operatorname{Cos}(f f-t t)-\sqrt{B^{2}+C^{2}} * \operatorname{Cos}(f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-4 Obtuse Cone

Cone dimensions

Cone after rolling

Cone before rolling

Continue 3-4

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A * \cos (i)+A+C)^{2}} \\
& m=\sqrt{B^{2}+A^{2} *(\sin (i+s))^{2}+(A * \cos (i+s)+A+C)^{2}} \\
& z=k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2} \\
& t=\tan ^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2}-z^{2}}}{z}\right) \\
& f=\sum t \\
& L=\sqrt{b^{2}+c^{2}} \\
& D^{\circ}=2 *(f-t)
\end{aligned}
$$

For $w=0$ to 180 step s

$$
\begin{aligned}
k & =\sqrt{B^{2}+A *(\sin w)^{2}+(A * \cos (w)+A+C)^{2}} \\
m & =\sqrt{B^{2}+A^{2} *(\sin (w+s))^{2}+(A * \cos (w+s)+A+C)^{2}} \\
z & =k^{2}+m^{2}-4 * A^{2} *\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

Continue 3-4

$\mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$f f=\sum t t$

$$
X=k * \operatorname{Sin}(f-t)
$$

$$
Y=k * \operatorname{Cos}(f f-t t)-\sqrt{B^{2}+C^{2}} * \operatorname{Cos}(f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

Before rolling

$$
R 1=\sqrt{\left(\frac{A * C}{(B-A)}\right)^{2}+A^{2}}
$$

$$
R 2=\sqrt{\left(\frac{B * C}{(B-A)}\right)^{2}+B^{2}}
$$

$$
S=\frac{360 * B}{R 2}
$$

3-6 Right Circular Cone cut from top with angle

Dimensions

After rolling

3-6-1 Cone before rolling

Before rolling

50

Continue 3-6-1

$$
R=\sqrt{A^{2}+B^{2}}
$$

$$
S=\frac{360 * A}{R}
$$

For $\mathrm{i}=0$ to 180 and $\mathrm{i} \neq 90$

$$
\begin{aligned}
& \mathrm{m}=\frac{(\mathrm{B}-\mathrm{C}) *(\cos (\mathrm{i})-1)}{\tan (\mathrm{D}) * \cos (\mathrm{i})-\frac{B}{A}} \\
& \mathrm{~h}=\frac{\left(\mathrm{A}-\frac{\mathrm{C} * \mathrm{~A}}{\mathrm{~B}}-\mathrm{m}\right) * \mathrm{~B}}{\mathrm{~A} * \cos \mathrm{i}} \\
& \mathrm{k}=\frac{\mathrm{h} * \sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}{\mathrm{~B}}
\end{aligned}
$$

$$
X=\mathbf{k} * \sin \left(\frac{i * s}{360}\right)
$$

$$
\mathbf{Y}=-\frac{(\mathbf{B}-\mathbf{C}) * \sqrt{\mathbf{A}^{2}+\mathbf{B}^{2}}}{\mathbf{B}}-\mathbf{k} * \cos \left(\frac{\mathbf{i} * \mathbf{S}}{360}\right)
$$

3-6-2 View-F
F

View - F

$$
\mathrm{k}=\frac{2 * \mathrm{~A} *(\mathrm{~B}-\mathrm{C})}{\mathrm{B} *(\cos (\mathrm{D})+\sin (\mathrm{D}) * \tan \mathrm{E})}
$$

For $\mathrm{i}=0$ to k

$$
m=\tan (E) *\left[B-\left\{i^{*} \sin (D)+C\right\}\right]
$$

$$
X=\mathbf{i}
$$

$$
\mathbf{Y}=\sqrt{\mathbf{m}^{2}-[\mathbf{A}-\{\mathbf{i} * \cos (D)+C * \tan E\}]^{2}}
$$

Notes:

- The bottom curve is same as top curve.
- The steps of (i) are optionals.

3-7 Right Circular Cone cut from side

Dimensions

After rolling

3-7-1 The Cone

$$
R=\sqrt{A^{2}+B^{2}}
$$

$$
S=\frac{360 * A}{\sqrt{A^{2}+B^{2}}}
$$

3-7-2 The cut
If $\mathrm{A}>\mathrm{C}$ Then
$\mathrm{k}=\tan ^{-1}\left(\frac{\sqrt{\mathrm{~A}^{2}-(\mathrm{A}-\mathrm{C})^{2}}}{\mathrm{~A}-\mathrm{C}}\right)$
If $A=C$ Then
$\mathrm{k}=90$
If $\mathrm{A}<\mathrm{C}$ Then
$k=90+\tan ^{-1} \frac{C-A}{\sqrt{A^{2}-(C-A)^{2}}}$
For $\mathrm{i}=0$ to k

$$
\begin{aligned}
& m=B * \operatorname{Cos}(D)+A * \operatorname{Cos} i^{*} \operatorname{Sin} D \\
& f=B * \operatorname{Cos}(D)+\operatorname{Sin}(D) *(A-C) \\
& q=B * \operatorname{Cos}(D)+A * \operatorname{Sin} D
\end{aligned}
$$

$$
\mathrm{H}=\mathrm{R} * \mathrm{f} / \mathrm{m}
$$

$$
\mathbf{X}=\mathbf{R} * \frac{\mathbf{f}}{\mathbf{m}} * \sin \left(\frac{\mathbf{i} * \mathbf{S}}{360}\right)
$$

$$
Y=\frac{\mathbf{R} * \mathbf{f}}{\mathbf{m}} * \cos \left(\frac{\mathbf{i} * S}{360}\right)-\frac{\mathbf{R} * \mathbf{f}}{\mathbf{q}}
$$

3-7-3 View - F

View - F
For $\mathrm{i}=0$ to k
$h=\frac{A * \cos (i)-A+C}{\frac{1}{\tan D}+\frac{A * \cos i}{B}}$

$$
X=\left(A-\frac{A * h}{B}\right) * \sin i
$$

$$
Y=\frac{h}{\sin D}
$$

Notes:

- The left curve is same as right curve.
- The steps of (i) are optionals.

3-8 Oblique Cone cut from top

Dimensions

After rolling

Before rolling

3-8-1 The Base of Cone

For $\mathrm{i}=0$ to 180 step s

$$
\mathrm{k}=\sqrt{\left(\frac{\mathrm{B} * \mathrm{C}}{\mathrm{~B}-\mathrm{A}}\right)^{2}+4 * \mathrm{~B}^{2} *\left(\cos \frac{\mathrm{i}}{2}\right)^{2}}
$$

$$
m=\sqrt{\left(\frac{B * C}{B-A}\right)^{2}+4 * B^{2} *\left(\cos \frac{i}{2}+\frac{s}{2}\right)^{2}}
$$

$$
\mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4^{*} \mathrm{~B}^{2 *}\left(\sin \frac{\mathrm{~s}}{2}\right)^{2}
$$

$$
\mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)
$$

$$
\mathrm{f}=\sum \mathrm{t}
$$

For $w=0$ to 180 step s

$$
\begin{aligned}
& \mathrm{k}=\sqrt{\left(\frac{\mathrm{B} * \mathrm{C}}{\mathrm{~B}-\mathrm{A}}\right)^{2}+4 * \mathrm{~B}^{2} *\left(\cos \frac{\mathrm{w}}{2}\right)^{2}} \\
& \mathrm{~m}=\sqrt{\left(\frac{\mathrm{B} * \mathrm{C}}{\mathrm{~B}-\mathrm{A}}\right)^{2}+4 * \mathrm{~B}^{2} *\left(\cos \frac{\mathrm{w}}{2}+\frac{\mathrm{s}}{2}\right)^{2}} \\
& \mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4 * \mathrm{~B}^{2} *\left(\sin \frac{\mathrm{~s}}{2}\right)^{2} \\
& \mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right) \\
& \mathrm{ff}=\sum \mathrm{tt}
\end{aligned}
$$

Continue 3-8-1

$$
X=\mathbf{k}^{*} \operatorname{Sin}(\mathbf{f f}-\mathbf{t t})
$$

$$
Y=k * \operatorname{Cos}(f f-t t)-\frac{B * C}{B-A} * \operatorname{Cos}(f-t)
$$

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.

3-8-2 The Top of Cone

For $\mathrm{i}=0$ to 180 step s

$$
k=\sqrt{\left(\frac{A * C}{B-A}\right)^{2}+4 * A^{2} *\left(\cos \frac{i}{2}\right)^{2}}
$$

$$
\begin{aligned}
& \mathrm{m}=\sqrt{\left(\frac{\mathrm{A} * \mathrm{C}}{\mathrm{~B}-\mathrm{A}}\right)^{2}+4 * A^{2} *\left(\cos \frac{\mathrm{i}}{2}+\frac{\mathrm{s}}{2}\right)^{2}} \\
& \mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4 * A^{2} *\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

$$
\mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)
$$

$$
\mathrm{f}=\sum \mathrm{t}
$$

$$
\mathrm{D}^{\circ}=\mathrm{f}
$$

58

Continue 3-8-2

For $w=0$ to 180 step s

$$
\begin{aligned}
& \mathrm{k}=\sqrt{\left(\frac{\mathrm{A} * \mathrm{C}}{\mathrm{~B}-A}\right)^{2}+4 * A^{2} *\left(\cos \frac{\mathrm{w}}{2}\right)^{2}} \\
& \mathrm{~m}=\sqrt{\left(\frac{\mathrm{A} * \mathrm{C}}{\mathrm{~B}-\mathrm{A}}\right)^{2}+4 * A^{2} *\left(\cos \frac{\mathrm{w}}{2}+\frac{s}{2}\right)^{2}} \\
& \mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

$$
\mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)
$$

$$
\mathrm{ff}=\sum \mathrm{tt}
$$

$$
X=k * \operatorname{Sin}(f f-t t)
$$

$$
Y=\mathbf{k}^{*} \cos (\mathbf{f f}-\mathbf{t t})-\frac{A * C}{B-A} * \cos (f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-9 Oblique Cone cut from top with angle

Dimensions

After rolling

Before rolling

3-9-1 The Base of Cone

For $\mathrm{i}=0$ to 180 step s
$k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{i}{2}\right)^{2}}$
$m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{i}{2}+\frac{s}{2}\right)^{2}}$
$\mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4^{*} \mathrm{~A}^{2 *}\left(\sin \frac{\mathrm{~s}}{2}\right)^{2}$
$\mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$\mathrm{f}=\sum \mathrm{t}$
$E^{\circ}=2$ * $(f-t)$

For $w=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}\right)^{2}} \\
& m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}+\frac{s}{2}\right)^{2}} \\
& z=k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

Continue 3-9-1

$$
\begin{aligned}
& \mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right) \\
& \mathrm{ff}=\sum \mathrm{tt}
\end{aligned}
$$

$$
X^{\prime}=\mathbf{k}^{*} \operatorname{Sin}(\mathbf{f f}-\mathrm{tt})
$$

$$
Y^{\prime}=k^{*} \operatorname{Cos}(f f-t t)-B * \operatorname{Cos}(f-t)
$$

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.

3-9-2 The Top of Cone

For $w=0$ to 180 step s

$$
k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}\right)^{2}}
$$

$$
m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}+\frac{s}{2}\right)^{2}}
$$

$$
\mathrm{n}=\frac{\mathrm{A} *(\mathrm{~B}-\mathrm{C}) *(1+\cos \mathrm{w})}{\mathrm{B}-(1+\cos \mathrm{w}) * \mathrm{~A} * \tan \mathrm{D}}
$$

62

Continue 3-9-2

If $\mathrm{w}=180$ then
$z=B-C$

Else
$Z=\sqrt{\left(\frac{n}{\cos \frac{w}{2}}\right)^{2}+(n * \tan (D)+(B-C))^{2}}$
$p=k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2}$
$\mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{p}^{2}}}{\mathrm{p}}\right)$
$\mathrm{f}=\sum \mathrm{t}$

$$
X=z^{*} \operatorname{Sin}(f-t)
$$

$$
Y=z^{*} \operatorname{Cos}(f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-10 Oblique Cone cut from side

Cone dimensions

Cone after rolling

Cone before rolling

3-10-1 The Base of Cone

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{i}{2}\right)^{2}} \\
& m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{i}{2}+\frac{s}{2}\right)^{2}} \\
& z=k^{2}+m^{2}-4^{*} A^{2 *}\left(\sin \frac{s}{2}\right)^{2} \\
& t=\tan ^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2}-\mathrm{z}^{2}}}{z}\right) \\
& f=\sum t
\end{aligned}
$$

$E=2$ * $(f-t)$

For $w=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{w}{2}\right)^{2}} \\
& m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \frac{\mathrm{w}}{2}+\frac{\mathrm{s}}{2}\right)^{2}}
\end{aligned}
$$

Continue 3-10-1

$z=k^{2}+m^{2}-4 * A^{2} *\left(\sin \frac{s}{2}\right)^{2}$
$\mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$\mathrm{ff}=\sum \mathrm{tt}$

$$
X=k^{*} \operatorname{Sin}(\mathbf{f f}-\mathbf{t t})
$$

$$
Y=k^{*} \operatorname{Cos}(f f-t t)-B * \operatorname{Cos}(f-t)
$$

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.

3-10-2 The Side of Cone

If $\mathrm{A}=\mathrm{C}$ Then

$$
g=90
$$

ElseIf C > A Then

$$
\mathrm{g}=90+\tan ^{-1}\left(\frac{\mathrm{C}-\mathrm{A}}{\sqrt{\mathrm{~A}^{2}-(\mathrm{C}-\mathrm{A})^{2}}}\right)
$$

ElseIf $\mathrm{A}>\mathrm{C}$ Then

$$
g=\tan ^{-1}\left(\frac{\sqrt{A^{2}-(C-A)^{2}}}{A-C}\right)
$$

For $\mathrm{i}=0$ to g step p

Continue 3-10-2

$$
\begin{aligned}
& k=\sqrt{B^{2}+4 * A^{2} *\left(\cos \left(\frac{i}{2}\right)\right)^{2}} \\
& m=\sqrt{B^{2}+4 * A^{2} *\left(\cos \left(\frac{1}{2}+\frac{s}{2}\right)\right)^{2}} \\
& q=\frac{A *(1+\cos i)-(2 * A-C)}{A * \tan (D) *\left(\frac{1+\cos i}{B}+1\right)} \\
& z=\sqrt{\left\{\frac{q-C+2 * A}{\left.\cos \left(\frac{i}{2}\right)\right\}^{2}+(B-q * \tan D)^{2}}\right.} \\
& t=\sqrt{\left\{\frac{q-C+2 * A}{\cos \left(\frac{i}{2}+\frac{s}{2}\right)}\right\}^{2}+(B-q * \tan D)^{2}} \\
& j=z^{2}+t^{2}-4 * A^{2} *(\sin s)^{2} \\
& p 1=\tan ^{-1}\left(\frac{\sqrt{4 * z^{2} * t^{2}-j^{2}}}{j}\right)
\end{aligned}
$$

Continue 3-10-2

$$
\mathrm{p} 2=\sum \mathrm{p} 1
$$

$$
\mathrm{f}=\frac{\mathrm{A} * 2-(2 * \mathrm{~A}-\mathrm{C})}{\frac{2 * \mathrm{~A} * \tan \mathrm{D}}{\mathrm{~B}}+1}
$$

$$
H=\sqrt{(f-C+2 * A)^{2}+(B-f * \tan D)^{2}}
$$

$$
X=t^{*} \operatorname{Sin}(p 2-p 1)
$$

$$
\mathbf{Y}=\mathrm{t}^{*} \operatorname{Cos}(\mathbf{p} 2-\mathrm{p} 1)
$$

3-11 Truncated Scalene Cone

Cone dimensions

Cone after rolling

Cone before rolling

3-11-1 The Base of Cone

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A * \cos (i)+A-C)^{2}} \\
& m=\sqrt{B^{2}+A^{2} *(\sin (i+s))^{2}+(A * \cos (i+s)+A-C)^{2}} \\
& z=k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2} \\
& t=\tan ^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2}-z^{2}}}{z}\right) \\
& f=\sum t \\
& L=\sqrt{B^{2}+C^{2}} \\
& S^{\circ}=2 *(f-t)
\end{aligned}
$$

For $w=0$ to 180 step s

$$
k=\sqrt{B^{2}+A^{2} *(\sin w)^{2}+(A * \cos (w)+A-C)^{2}}
$$

$$
\mathrm{m}=\sqrt{\mathrm{B}^{2}+\mathrm{A}^{2} *(\sin (\mathrm{w}+\mathrm{s}))^{2}+(\mathrm{A} * \cos (\mathrm{i}+\mathrm{s})+\mathrm{A}-\mathrm{C})^{2}}
$$

70

Continue 3-11-1

$$
\begin{aligned}
& \mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4^{*} \mathrm{~A}^{2 *}\left(\sin \frac{\mathrm{~s}}{2}\right)^{2} \\
& \mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right) \\
& \mathrm{ff}=\sum \mathrm{tt}
\end{aligned}
$$

$$
\mathbf{X 1}=\mathbf{k}^{*} \operatorname{Sin}(\mathbf{f f}-\mathbf{t t})
$$

$$
\mathbf{Y} 1=\mathbf{k} * \operatorname{Cos}(\mathbf{f f}-\mathbf{t t})-\sqrt{(B-E)^{2}+\mathbf{C}^{2}} * \operatorname{Cos}(\mathbf{f}-\mathbf{t})
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionasl.

3-11-2 The Top of Cone

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{(B-E)^{2}+D^{2} *(\sin i)^{2}+(D * \cos (i)+D-C)^{2}} \\
& m=\sqrt{(B-E)^{2}+D^{2} *(\sin (i+s))^{2}+(D * \cos (i+s)+D-C)^{2}} \\
& z=k^{2}+m^{2}-4 * D^{2 *}\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

Continue 3-11-2

$$
\begin{aligned}
& \mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right) \\
& \mathrm{f}=\sum \mathrm{t}
\end{aligned}
$$

For $w=0$ to 180 step s

$$
\mathrm{k}=\sqrt{(\mathrm{B}-\mathrm{E})^{2}+\mathrm{D}^{2} *(\sin \mathrm{w})^{2}+(\mathrm{D} * \cos (\mathrm{w})+\mathrm{D}-\mathrm{C})^{2}}
$$

$$
m=\sqrt{(B-E)^{2}+D^{2} *(\sin (w+s))^{2}+(D * \cos (i+s)+D-C)^{2}}
$$

$$
\mathrm{z}=\mathrm{k}^{2}+\mathrm{m}^{2}-4 * \mathrm{D}^{2 *}\left(\sin \frac{s}{2}\right)^{2}
$$

$$
\mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)
$$

$\mathrm{ff}=\sum \mathrm{tt}$

$$
X=k^{*} \operatorname{Sin}(f f-t t)
$$

$$
\mathbf{Y}=\mathbf{k}^{*} \operatorname{Cos}(\mathbf{f f}-\mathbf{t t})-\sqrt{(\mathbf{B}-\mathbf{E})^{2}+\mathbf{C}^{2}} * \operatorname{Cos}(\mathbf{f}-\mathbf{t})
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-12 Truncated Obtuse Cone

Cone dimensions

Cone after rolling

Cone before rolling

3-12-1 The Base of Cone

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A * \cos (i)+A+C)^{2}} \\
& m=\sqrt{B^{2}+A^{2} *(\sin (i+s))^{2}+(A * \cos (i+s)+A+C)^{2}} \\
& z=k^{2}+m^{2}-4^{*} A^{2 *}\left(\sin \frac{s}{2}\right)^{2} \\
& t=\tan ^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2}-z^{2}}}{z}\right) \\
& f=\sum t \\
& L=\sqrt{b^{2}+c^{2}} \\
& S^{\circ}=2 *(f-t)
\end{aligned}
$$

For $w=0$ to 180 step s

$$
\begin{aligned}
k & =\sqrt{B^{2}+A *(\sin w)^{2}+(A * \cos (w)+A+C)^{2}} \\
m & =\sqrt{B^{2}+A^{2} *(\sin (w+s))^{2}+(A * \cos (w+s)+A+C)^{2}} \\
z & =k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

74

Continue 3-12-1

$\mathrm{tt}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$f f=\sum t t$

$$
X=k * \operatorname{Sin}(f-t)
$$

$$
Y=k * \operatorname{Cos}(f f-t t)-\sqrt{B^{2}+C^{2}} * \operatorname{Cos}(f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-12-2 The Top of Cone

For $\mathrm{i}=0$ to 180 step s

$$
\begin{aligned}
& k=\sqrt{(B-E)^{2}+D^{2} *(\sin i)^{2}+(D * \cos (i)+D+C)^{2}} \\
& m=\sqrt{(B-E)^{2}+D^{2} *(\sin (i+s))^{2}+(D * \cos (i+s)+D+C)^{2}} \\
& z=k^{2}+m^{2}-4 * D^{2} *\left(\sin \frac{s}{2}\right)^{2}
\end{aligned}
$$

Continue 3-12-2

$\mathrm{t}=\tan ^{-1}\left(\frac{\sqrt{4 * \mathrm{k}^{2} * \mathrm{~m}^{2}-\mathrm{z}^{2}}}{\mathrm{z}}\right)$
$\mathrm{f}=\sum \mathrm{t}$
For $w=0$ to 180 step s

$$
\begin{aligned}
\mathrm{k} & =\sqrt{\mathrm{B}^{2}+A *(\sin w)^{2}+(A * \cos (w)+A+C)^{2}} \\
m & =\sqrt{B^{2}+A^{2} *(\sin (w+s))^{2}+(A * \cos (w+s)+A+C)^{2}} \\
z & =k^{2}+m^{2}-4 * A^{2 *}\left(\sin \frac{s}{2}\right)^{2} \\
t & =\tan ^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2}-z^{2}}}{z}\right) \\
\mathrm{ff} & =\sum \mathrm{tt}
\end{aligned}
$$

$$
X=k * \operatorname{Sin}(f-t)
$$

$$
Y=k * \operatorname{Cos}(f f-t t)-\sqrt{B^{2}+C^{2}} * \operatorname{Cos}(f-t)
$$

Notes:

- The values (f) and (t) in the last equation are when $\mathrm{i}=180$.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

CHAPTER - 4
CONES WITH CYLINDERS

4-1 Right Circular Cone with horizontal cylinder

Assembly dimensions

Assembly after rolling

Cylinder before rolling

78

Cone before rolling

4-1-1 Horizontal Cylinder

For $\mathrm{u}=0$ to 180

$$
\mathrm{t}=\frac{\mathrm{B} *\{\mathrm{D}+\mathrm{A} *(1-\cos \mathrm{u})\}}{\mathrm{C}}
$$

$$
X=\frac{A * \pi * u}{180}
$$

$$
\mathbf{Y}=\mathbf{t}-\sqrt{\mathbf{t}^{2}-\left\{(\mathbf{A} * \sin (\mathbf{u})\}^{2}\right.}+\frac{\mathbf{A} * \mathbf{B} *(\mathbf{1}+\cos \mathbf{u})}{\mathbf{C}}
$$

4-1-2 Cone

For $\mathrm{u}=0$ to 180

$$
\mathrm{q}=\frac{\mathrm{B} *\{\mathrm{D}+\mathrm{A} *(1-\cos \mathrm{u})\}}{C}
$$

$$
\mathrm{t}=\frac{360 * \mathrm{~B}}{\sqrt{\left(\mathrm{C}^{2}-\mathrm{B}^{2}\right)}}
$$

$$
\mathrm{z}=\frac{360 * \mathrm{t} * \tan ^{-1}(\mathrm{~A} * \sin \mathrm{u})}{\sqrt{\mathrm{q}^{2}-(\mathrm{A} * \sin \mathrm{u})^{2}}}
$$

$$
\mathrm{M}=\frac{\mathrm{D} * \sqrt{\left(\mathrm{~B}^{2}+\mathrm{C}^{2}\right.}}{\mathrm{C}}
$$

$$
\mathrm{k}=\frac{\{\mathrm{D}+\mathrm{A} *(1-\cos \mathrm{u})\} * \sqrt{\left(\mathrm{~B}^{2}+\mathrm{C}^{2}\right.}}{\mathrm{C}}
$$

$$
\mathbf{Y}=\mathbf{k}^{*} \operatorname{Cos}(\mathrm{z})-\mathbf{M}
$$

4-2 Right Circular Cone with vertical cylinder

Assembly dimensions

Assembly after rolling

Cylinder before rolling

Cone before rolling

4-2-1 Vertical Cylinder

For $\mathrm{u}=0$ to 180

$$
m=\sqrt{A^{2}+D^{2}+2 * D * A * \cos u}
$$

$$
X=\frac{A * \pi * \mathbf{u}}{180}
$$

$$
\mathbf{Y}=\frac{\mathbf{C} *(\mathbf{m}+\mathbf{A}-\mathbf{D})}{\mathbf{B}}
$$

82

4-2-2 Cone

For $\mathrm{u}=0$ to 180

$$
\begin{aligned}
& m=\sqrt{A^{2}+D^{2}-2 * D * A * \cos u} \\
& t=\frac{360 * B}{\sqrt{\left(C^{2}+B^{2}\right)}} \\
& z=\frac{360 * t * \tan ^{-1}(A * \sin u)}{\sqrt{m^{2}-(A * \sin)^{2}}} \\
& k=\frac{(D-A) * \sqrt{B^{2}+C^{2}}}{B} \\
& j=\frac{m * \sqrt{B^{2}+C^{2}}}{B} \\
& q=\frac{C *(D-A)}{B}
\end{aligned}
$$

$$
E=\sqrt{(D-A)^{2}+q^{2}}
$$

$$
X=j^{*} \sin z
$$

$$
\mathbf{Y}=\mathrm{j}^{*} \operatorname{Cos}(\mathrm{z})-\mathrm{k}
$$

4-3 Inverted Right Circular Cone with Horizontal cylinder

Assembly dimensions

Assembly after rolling

Cylinder before rolling

Hazem Hameed Rashid Albadry

Cone before rolling

4-3-1 Pipe

$$
\begin{aligned}
& \mathrm{k}=90-\left[\tan ^{-1}\left\{\frac{(\mathrm{C}-\mathrm{A})}{\mathrm{B}}\right\}+\tan ^{-1}\left\{\frac{\mathrm{~A}}{\sqrt{\mathrm{~B}^{2}-\mathrm{A}^{2}+(\mathrm{C}-\mathrm{A})^{2}}}\right\}\right] \\
& \mathrm{h}=\frac{\mathrm{B}}{\tan \mathrm{k}} \\
& \mathrm{z}=90-\mathrm{k}
\end{aligned}
$$

Continue 4-3-1

For $\mathrm{u}=0$ to z

$$
\mathrm{m}=\frac{\mathrm{B} *\{(\mathrm{~h}-\mathrm{C})+\mathrm{A} *(1-\cos \mathrm{u})\}}{\mathrm{h}}
$$

$$
\mathrm{R}=\sqrt{\left(\mathrm{h}^{2}+\mathrm{B}^{2}\right.}
$$

$$
S=\frac{360 * B}{\sqrt{{\left(h^{2}+\mathrm{B}^{2}\right.}}}
$$

$$
\mathbf{X}=\frac{\mathbf{A} * \pi * \mathbf{u}}{180}
$$

$$
\mathbf{Y}=\mathbf{m}+\sqrt{\mathbf{m}^{2}-(\mathbf{A} * \sin \mathbf{u})^{2}}+\frac{\mathbf{A} * \mathbf{B} *(\mathbf{1}+\cos \mathbf{u})}{\mathbf{C}}
$$

For $\mathrm{u}=\mathrm{z}$ to 180

$$
\mathbf{Y}=\mathbf{m}-\sqrt{\mathbf{m}^{2}-(\mathbf{A} * \sin \mathbf{u})^{2}}+\frac{\mathbf{A} * \mathbf{B} *(\mathbf{1}+\cos \mathbf{u})}{\mathbf{C}}
$$

4-3-2 Cone

$$
\begin{aligned}
\mathrm{k} & =90-\left[\tan ^{-1}\left\{\frac{(\mathrm{C}-\mathrm{A})}{\mathrm{B}}\right\}+\tan ^{-1}\left\{\frac{\mathrm{~A}}{\sqrt{\mathrm{~B}^{2}-\mathrm{A}^{2}+(\mathrm{C}-\mathrm{A})^{2}}}\right\}\right] \\
\mathrm{h} & =\frac{\mathrm{B}}{\tan \mathrm{k}} \\
\mathrm{z} & =90-\mathrm{k}
\end{aligned}
$$

For $\mathrm{u}=180$ to z

$$
\mathrm{m}=\frac{\mathrm{B} *\{(\mathrm{~h}-\mathrm{C})+\mathrm{A} *(1-\cos \mathrm{u})\}}{\mathrm{h}}
$$

$$
q=\frac{360 * B}{\sqrt{h^{2}+B^{2}}}
$$

$$
\mathrm{j}=\mathrm{q} * \tan ^{-1}\left(\frac{\mathrm{~A} * \sin \mathrm{u}}{\sqrt{\mathrm{~m}^{2}-(\mathrm{A} * \sin \mathrm{u})^{2}}}\right)
$$

$$
\mathrm{f}=\left[\frac{\{(\mathrm{h}-\mathrm{C})+\mathrm{A} *(1-\cos \mathrm{u})\} * \sqrt{\mathrm{~h}^{2}+\mathrm{B}^{2}}}{\mathrm{~h}}\right]
$$

$$
X=f^{*} \sin j
$$

$$
\mathbf{Y}=\mathbf{f}^{*} \operatorname{Cos} \mathbf{j}
$$

Continue 4-3-2

For $\mathrm{u}=\mathrm{z}$ to 0

$$
\begin{aligned}
& \mathrm{m}=\frac{\mathrm{B} *\{(\mathrm{~h}-\mathrm{C})+\mathrm{A} *(1-\cos \mathrm{u})\}}{\mathrm{h}} \\
& \mathrm{q}=\frac{360 * \mathrm{~B}}{\sqrt{\mathrm{~h}^{2}+\mathrm{B}^{2}}} \\
& \mathrm{~g}=\frac{\mathrm{q}}{360} * \tan ^{-1}\left(\frac{\mathrm{~A} * \sin \mathrm{u}}{\sqrt{\left(\mathrm{~m}^{2}+(\mathrm{A} * \sin \mathrm{u})^{2}\right.}}\right)
\end{aligned}
$$

Note: the value of (j) below is when $(\mathrm{u})=(\mathrm{z})$

$$
\begin{aligned}
& \mathrm{w}=2 * \mathrm{j}-\mathrm{g} \\
& \mathrm{f}=\left[\frac{\{(\mathrm{h}-\mathrm{C})+\mathrm{A} *(1-\cos \mathrm{u})\} * \sqrt{\mathrm{~h}^{2}+\mathrm{B}^{2}}}{\mathrm{~h}}\right]
\end{aligned}
$$

$$
\mathrm{X}=\mathrm{f}^{*} \sin \mathrm{w}
$$

$$
\mathbf{Y}=\mathbf{f}^{*} \operatorname{Cos} \mathbf{w}
$$

4-4 Horizontal cylinder with Right Circular Cone

Assembly dimensions
Assembly after rolling

Cone before rolling

4-4-1 Cone

$R=\frac{A}{\tan B}$

$$
S=\frac{360 * A}{R}
$$

$$
g=360 * \operatorname{Sin} B
$$

For $i=0$ to $(90-B-p)$ step p
$f=A *\left\{\frac{1}{\cos B}-\operatorname{Cos}(i) * \operatorname{Tan} B\right\}$

Continue 4-4-1

$$
\mathrm{t}=\tan ^{-1}\left(\frac{\mathrm{~A} * \sin \mathrm{i}}{\sqrt{\left(\mathrm{f}^{2}-(\mathrm{A} * \sin \mathrm{i})^{2}\right.}}\right)
$$

$h=t * \operatorname{Sin} B$
$r=\frac{f}{\sin B}$

$$
X=r^{*} \sin h
$$

$$
Y=r * \cos (h)-\frac{A * \cos \left(\frac{g}{2}\right) *\left(\frac{1}{\sin B}-1\right)}{\cos B}
$$

4-4-2 Cylinder before rolling

Cylinder before rolling

$$
\begin{aligned}
& \text { For } i=0 \text { to }(90-B-p) \text { step } p \\
& f=A *\left\{\frac{1}{\cos B}-\operatorname{Cos}(i) * \operatorname{Tan} B\right\}
\end{aligned}
$$

The last point should be as following:

$$
X=\frac{A * \pi *(90-B)}{180}
$$

$$
Y=0
$$

CHAPTER - 5

TRANSITIONS

5-1 Concentric and Eccentric Transition - Square or regtangular to

Front View

Continue 5-1

The Four Corners before rolling

Note: if the assembly is concentric then $\mathrm{E}=0$ and $\mathrm{F}=0$
5-1 Corner no. 1

$$
\mathrm{w}=\sqrt{\left(\frac{\mathrm{C}}{2}+\mathrm{E}\right)^{2}+\left(\frac{\mathrm{D}}{2}+\mathrm{F}\right)^{2}}
$$

******** If \mathbf{w} > A Then ${ }^{* * * * * * * * * ~}$
$j=w-A$
$\mathrm{H}=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}$

Continue 5-1

a- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}-F}{\frac{C}{2}+E}\right)
$$

b- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}-F}\right)
$$

For $\mathrm{i}=0$ To m Step p

$$
\begin{aligned}
& r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}} \\
& g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(A+j-A * \cos (i+p))^{2}} \\
& q=r^{2}+g^{2}-4 * A^{2 *\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}} \\
& v=2 * r * g
\end{aligned}
$$

If $q>v$ Then

Continue 5-1

$$
l=0
$$

ElseIf v > q Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{v^{2}-q^{2}}}{q}\right)
$$

$$
\mathrm{k}=\sum l
$$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathrm{r}^{*} \operatorname{Cos}(\mathrm{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

Continue 5-1

$$
\mathrm{j}=\mathrm{w}-\mathrm{A}
$$

$$
\mathrm{H}=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}
$$

a- For Right curve (+ X, Y)

$$
\mathrm{m}=\tan ^{-1}\left(\frac{\frac{\mathrm{D}}{2}-\mathrm{F}}{\frac{\mathrm{C}}{2}+E}\right)
$$

b- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}-F}\right)
$$

For $\mathrm{i}=0$ To m Step p
$r=\sqrt{B^{2}+4 * A^{2} *\left(\sin \frac{i}{2}\right)^{2}}$

98

Continue 5-1

$g=\sqrt{B^{2}+4 * A^{2} *\left(\sin \left(\frac{i}{2}+\frac{p}{2}\right)\right)^{2}}$
$q=r^{2}+g^{2}-4^{*} A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}$
$\mathrm{v}=2{ }^{*} \mathrm{r} * \mathrm{~g}$
If $q>v$ Then

$$
l=0
$$

ElseIf v > q Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)
$$

$$
\mathrm{k}=\sum l
$$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathrm{k}-l)-\mathbf{B}
$$

Continue 5-1

******** If $\mathbf{w}<\mathrm{A}$ Then $* * * * * * * * *$

$$
\mathrm{j}=\mathrm{A}-\mathrm{W}
$$

$$
H=\sqrt{j^{2}+B^{2}}
$$

a- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}-F}{\frac{C}{2}+E}\right)
$$

b- For Left curve (-X, Y)

$m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}-F}\right)$
For $\mathrm{i}=0$ To m Step p
$r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}}$
$g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(j-A+A * \cos (i+p))^{2}}$
$\mathrm{q}=\mathrm{r}^{2}+\mathrm{g}^{2}-4^{*} \mathrm{~A}^{2} *\left(\operatorname{Sin}\left(\frac{\mathrm{p}}{2}\right)\right)^{2}$

100

Continue 5-1

$\mathrm{v}=2$ * $\mathrm{r} * \mathrm{~g}$

If $q>v$ Then
$l=0$

ElseIf $\mathrm{v}>\mathrm{q}$ Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)
$$

$\mathrm{k}=\sum l$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathbf{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

5-2 Corner no. 2

$\mathrm{w}=\sqrt{\left(\frac{C}{2}-E\right)^{2}+\left(\frac{D}{2}+F\right)^{2}}$
******** If w > A Then ${ }^{* * * * * * * * * ~}$
$j=w-A$
$H=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}$
a- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}+F}{\frac{C}{2}-E}\right)
$$

b- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}-E}{\frac{D}{2}+F}\right)
$$

For $\mathrm{i}=0$ To m Step p

Continue 5-2

$r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}}$

$$
\begin{aligned}
& g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(A+j-A * \cos (i+p))^{2}} \\
& q=r^{2}+g^{2}-4^{*} A^{2 *\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}} \\
& v=2 * r * g \\
& \text { If } q>v \text { Then } \\
& l=0
\end{aligned}
$$

ElseIf $\mathrm{v}>\mathrm{q}$ Then
$l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)$
$\mathrm{k}=\sum l$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathbf{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

Continue 5-2

******** If $\mathbf{w}=\mathrm{A}$ Then ${ }^{* * * * * * * * * ~}$
$j=w-A$
$\mathrm{H}=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}$
a- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}-F}{\frac{C}{2}+E}\right)
$$

b- For Left curve (-X, Y)
$m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}-F}\right)$
For $\mathrm{i}=0$ To m Step p
$r=\sqrt{B^{2}+4 * A^{2} *\left(\sin \frac{i}{2}\right)^{2}}$

Continue 5-2

$g=\sqrt{B^{2}+4 * A^{2} *\left(\sin \left(\frac{i}{2}+\frac{p}{2}\right)\right)^{2}}$
$q=r^{2}+g^{2}-4 * A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}$
$\mathrm{v}=2 * \mathrm{r} * \mathrm{~g}$
If $q>v$ Then
$l=0$

ElseIf v > q Then
$l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)$
$\mathrm{k}=\sum l$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathrm{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathrm{k}-l)-\mathbf{B}
$$

Continue 5-2

******** If $\mathbf{w}<\mathrm{A}$ Then $* * * * * * * * *$

$$
j=A-W
$$

$$
\mathrm{H}=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}
$$

c- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}+F}{\frac{C}{2}-E}\right)
$$

d- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}-E}{\frac{D}{2}+F}\right)
$$

For $\mathrm{i}=0$ To m Step p

$$
\begin{aligned}
& r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}} \\
& g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(j-A+A * \cos (i+p))^{2}} \\
& q=r^{2}+g^{2}-4^{*} A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}
\end{aligned}
$$

106

Continue 5-2

$$
\mathrm{V}=2 * \mathrm{r} * \mathrm{~g}
$$

If $q>v$ Then

$$
l=0
$$

Elself v > q Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)
$$

$$
\mathrm{k}=\sum l
$$

$$
X=r * \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathrm{r}^{*} \operatorname{Cos}(\mathrm{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

5-3 Corner no. 3

$$
w=\sqrt{\left(\frac{C}{2}+E\right)^{2}+\left(\frac{D}{2}-F\right)^{2}}
$$

******** If \mathbf{w} A Then ${ }^{* * * * * * * * * ~}$
$j=w-A$
$\mathrm{H}=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}$
a- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}+F}{\frac{C}{2}+E}\right)
$$

b- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}+F}\right)
$$

For $\mathrm{i}=0$ To m Step p

108

Continue 5-3

$r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}}$
$g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(A+j-A * \cos (i+p))^{2}}$
$q=r^{2}+g^{2}-4 * A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}$
$\mathrm{v}=2{ }^{*} \mathrm{r} * \mathrm{~g}$
If $q>v$ Then
$l=0$

ElseIf $\mathrm{v}>\mathrm{q}$ Then
$l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)$
$\mathrm{k}=\sum l$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathbf{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

Continue 5-3

$$
\mathrm{j}=\mathrm{w}-\mathrm{A}
$$

$$
H=\sqrt{j^{2}+B^{2}}
$$

c- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}+F}{\frac{C}{2}+E}\right)
$$

d- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}-F}\right)
$$

For $\mathrm{i}=0$ To m Step p
$r=\sqrt{B^{2}+4 * A^{2} *\left(\sin \frac{i}{2}\right)^{2}}$

110

Continue 5-3
$g=\sqrt{B^{2}+4 * A^{2} *\left(\sin \left(\frac{i}{2}+\frac{p}{2}\right)\right)^{2}}$
$q=r^{2}+g^{2}-4^{*} A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}$
$\mathrm{V}=2{ }^{*} \mathrm{r} * \mathrm{~g}$
If $q>v$ Then
$l=0$
ElseIf $\mathrm{v}>\mathrm{q}$ Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)
$$

$$
\mathrm{k}=\sum l
$$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathrm{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathrm{k}-l)-\mathbf{B}
$$

Continue 5-3

******** If $\mathbf{w}<\mathrm{A}$ Then $* * * * * * * * *$

$$
\mathrm{j}=\mathrm{A}-\mathrm{W}
$$

$$
H=\sqrt{j^{2}+B^{2}}
$$

c- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}+F}{\frac{C}{2}+E}\right)
$$

d- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}+E}{\frac{D}{2}+F}\right)
$$

$$
\text { For } \mathrm{i}=0 \text { To } \mathrm{m} \text { Step } \mathrm{p}
$$

$$
r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}}
$$

$$
g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(j-A+A * \cos (i+p))^{2}}
$$

$$
\mathrm{q}=\mathrm{r}^{2}+\mathrm{g}^{2}-4^{*} \mathrm{~A}^{2 *}\left(\operatorname{Sin}\left(\frac{\mathrm{p}}{2}\right)\right)^{2}
$$

112

Continue 5-3

$$
\mathrm{V}=2 * \mathrm{r} * \mathrm{~g}
$$

If $q>v$ Then

$$
l=0
$$

Elself $\mathrm{v}>\mathrm{q}$ Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)
$$

$\mathrm{k}=\sum \mathrm{l}$

$$
X=r * \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r} * \operatorname{Cos}(\mathrm{k}-l)-\mathbf{B}
$$

5-4 Corner no. 4

$$
\mathrm{w}=\sqrt{\left(\frac{\mathrm{C}}{2}-\mathrm{E}\right)^{2}+\left(\frac{\mathrm{D}}{2}-\mathrm{F}\right)^{2}}
$$

******** If $\mathrm{w}>\mathrm{A}$ Then ${ }^{* * * * * * * * * ~}$
$j=w-A$
$\mathrm{H}=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}$
c- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}-F}{\frac{C}{2}-E}\right)
$$

d- For Left curve (-X, Y)
$m=\tan ^{-1}\left(\frac{\frac{C}{2}-E}{\frac{D}{2}-F}\right)$
For $\mathrm{i}=0$ To m Step p

Continue 5-4

$r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}}$
$g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(A+j-A * \cos (i+p))^{2}}$
$q=r^{2}+g^{2}-4 * A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}$
$\mathrm{v}=2{ }^{*} \mathrm{r} * \mathrm{~g}$
If $q>v$ Then
$l=0$

ElseIf $v>q$ Then
$l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)$
$\mathrm{k}=\sum l$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r}^{*} \operatorname{Cos}(\mathbf{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

Continue 5-4

******** If $\mathbf{w}=\mathrm{A}$ Then ${ }^{* * * * * * * * * ~}$

$$
\begin{aligned}
& j=w-A \\
& H=\sqrt{j^{2}+B^{2}}
\end{aligned}
$$

e- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}-F}{\frac{C}{2}-E}\right)
$$

f- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}-E}{\frac{D}{2}-F}\right)
$$

For $\mathrm{i}=0$ To m Step p

$$
r=\sqrt{B^{2}+4 * A^{2} *\left(\sin \frac{i}{2}\right)^{2}}
$$

116

Continue 5-4

$g=\sqrt{B^{2}+4 * A^{2} *\left(\sin \left(\frac{i}{2}+\frac{p}{2}\right)\right)^{2}}$
$\mathrm{q}=\mathrm{r}^{2}+\mathrm{g}^{2}-4^{*} \mathrm{~A}^{2} *\left(\operatorname{Sin}\left(\frac{\mathrm{p}}{2}\right)\right)^{2}$
$\mathrm{v}=2$ * r g
If $q>v$ Then
$l=0$

ElseIf $\mathrm{v}>\mathrm{q}$ Then
$l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)$
$\mathrm{k}=\sum \mathrm{l}$

$$
X=r * \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathbf{r} * \operatorname{Cos}(\mathrm{k}-l)-\mathbf{B}
$$

Continue 5-4

******** If $\mathbf{w}<\mathrm{A}$ Then ${ }^{* * * * * * * * * ~}$

$$
\mathrm{j}=\mathrm{A}-\mathrm{W}
$$

$$
H=\sqrt{\mathrm{j}^{2}+\mathrm{B}^{2}}
$$

e- For Right curve (+ X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{D}{2}-F}{\frac{C}{2}-E}\right)
$$

f- For Left curve (-X, Y)

$$
m=\tan ^{-1}\left(\frac{\frac{C}{2}-E}{\frac{D}{2}-F}\right)
$$

For $\mathrm{i}=0$ To m Step p

$$
\begin{aligned}
& r=\sqrt{B^{2}+A^{2} *(\sin i)^{2}+(A+j-A * \cos i)^{2}} \\
& g=\sqrt{B^{2}+A^{2} *(\sin (i+p))^{2}+(j-A+A * \cos (i+p))^{2}} \\
& q=r^{2}+g^{2}-4 * A^{2 *}\left(\operatorname{Sin}\left(\frac{p}{2}\right)\right)^{2}
\end{aligned}
$$

Continue 5-4

$$
\mathrm{v}=2 * \mathrm{r}^{*} \mathrm{~g}
$$

If $q>v$ Then

$$
l=0
$$

ElseIf v > q Then

$$
l=\tan ^{-1}\left(\frac{\sqrt{\mathrm{v}^{2}-\mathrm{q}^{2}}}{\mathrm{q}}\right)
$$

$$
\mathrm{k}=\sum l
$$

$$
X=r^{*} \operatorname{Sin}(k-l)
$$

$$
\mathbf{Y}=\mathrm{r}^{*} \operatorname{Cos}(\mathrm{k}-l)-\sqrt{\mathbf{j}^{2}+\mathbf{B}^{2}}
$$

CHAPTER - 6

ELBOWS WITH CYLINDERS

6-1 Elbow with Cylinder (Centered)

Assembly dimensions

Cylinder after rolling

Cylinder before rolling

Continue 6-1

For $w=0$ To 180
$n=\sqrt{B^{2}-A^{2} *(\sin w)^{2}}$

$$
X=w^{*} A * p i / 180
$$

$g=\sqrt{(C+n)^{2}-(C+A * \cos w)^{2}}$

$$
\mathbf{Y}=\sqrt{\left.(\mathbf{C}+\mathbf{B})^{2}-(\mathbf{C}-\mathbf{A})^{2}\right)}-\mathbf{g}
$$

6-2 Elbow with Cylinder (Same bottom elevation)

Assembly dimensions

Cylinder before rolling

Continue 6-2

For $w=0$ To 180

$$
\begin{aligned}
& h=\sqrt{(C+B)^{2}-(C+B-2 * A)^{2}} \\
& r=c+\sqrt{B^{2}-A^{2} *(\sin w)^{2}} \\
& m=A *(1-\cos w)-B+\sqrt{B^{2}-A^{2} *(\sin w)^{2}}
\end{aligned}
$$

$$
X=w^{*} A * p i / 180
$$

$$
\mathbf{Y}=\mathbf{h}-\sqrt{\mathbf{r}^{2}-(\mathbf{r}-\mathbf{m})^{2}}
$$

6-3 Elbow with Cylinder (Eccentric)

Assembly dimensions
Cylinder after rolling

Cylinder before rolling

Continue 6-3

For $w=180$ To 0

$$
\mathrm{m}=\mathrm{C}+\mathrm{D}-\mathrm{A} * \operatorname{Cos} \mathrm{w}
$$

$r=c+\sqrt{B^{2}-A^{2} *(\sin w)^{2}}$
$k=r-\sqrt{r^{2}-m^{2}}$
$f=C+B-\sqrt{(C+B)^{2}-(C+D-A)^{2}}$

$$
X=(180-w) * A * \pi / 180
$$

$$
\mathbf{Y}=\mathbf{k}+\mathbf{B}-\mathbf{f}-\sqrt{\mathbf{B}^{2}-\mathbf{A}^{2} *(\boldsymbol{\operatorname { s i n }} \mathbf{W})^{2}}
$$

CHAPTER - 7

SPHARE WITH CYLINDER

Cylinder before rolling

128

Continue 7-1

For $\mathrm{i}=0$ To 180

$$
X=\frac{i * \pi * A}{180}
$$

$$
\mathbf{Y}=\sqrt{\mathbf{B}^{2}-(\mathbf{C}-\mathbf{A})^{2}}-\sqrt{\mathbf{B}^{2}-(\mathbf{A} * \cos (\mathbf{i})+\mathbf{C})^{2}}
$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.
- $\quad \mathrm{B}>(\mathrm{C}+\mathrm{A})$

CHAPTER - 8
ELBOWS

8-1 Part of Elbow

View - F

Dimensions

Part of Elbow after rolling

Part of Elbow before rolling

Continue 8-1

$$
G=\frac{\pi * C * D}{180}
$$

$$
H=\frac{\pi * A * B}{180}
$$

$$
\mathrm{m}=\frac{\mathrm{B} * \pi *\left\{\mathrm{~A}-\mathrm{C} *\left(1-\cos \frac{\mathrm{D}}{2}\right)\right\}}{180}
$$

$$
\mathrm{K}=\frac{\mathrm{m}}{\mathrm{E}-1}
$$

Note : E is the number of pieces required (for example the number of pieces in drawing above is 4 .

$$
1=\frac{u-m}{a-1}
$$

CHAPTER - 9

SPHARES

9-1 Sphare

Dimensions of one part

Sphare after rolling

Note: B is the number of pieces

$$
\mathrm{r}=\mathrm{B} * \mathrm{~A} * \pi *\left(\frac{\frac{1}{\mathrm{~B}^{2}}+0.25}{2}\right)
$$

Continue 9-1

$$
\mathrm{k}=\mathrm{r}^{*} \tan ^{-1}\left(\frac{\mathrm{~A} * \pi}{\left.\sqrt{\left(4 * \mathrm{r}^{2}-\mathrm{A}^{2} * \pi^{2}\right)}\right)}\right)
$$

$$
\mathrm{c}=\left\{\frac{180 *\left(\mathrm{k}-\mathrm{A} * \frac{\pi}{2}\right)}{\mathrm{r} * \pi}\right\}
$$

$$
S=\tan ^{-1}\left\{\frac{\operatorname{Sin} c}{\cos (c)-1+\frac{A * \pi}{B * r}}\right\}
$$

$$
\mathrm{W}=\frac{\mathrm{A} * \pi}{2}
$$

For $\mathrm{i}=0 \mathrm{To} \mathrm{w}$

$$
X=\frac{A * \pi * \cos \left(\frac{180 * i}{A * \pi}\right)}{B}
$$

$$
\mathbf{Y}=\mathbf{i}
$$

CHAPTER - 10

FANS

10-1 Fan

Dimensions
Fan after Connection

Fan Top view
Fan before installation

10-1 Left curve (From -X to 0 axis)
If $B=0$ Then
$B=1000000$
$z=\sqrt{B^{2}-\frac{A^{2} *(\sin D)^{2}}{(\cos C)^{2}}}$
$k=z * \operatorname{Sin} C$
For $\mathrm{u}=\left(90-\frac{\mathrm{D}}{2}\right)$ to 90

$$
\mathrm{Y}=\mathrm{A}^{*}(1-\operatorname{Sin} \mathbf{u})
$$

$m=\tan ^{-1}\left\{\frac{\sqrt{\mathrm{~B}^{2}-\mathrm{z}^{2} *(\sin \mathrm{k})^{2}}}{\mathrm{z} * \sin \mathrm{k}}\right\}$
$n=\tan ^{-1}\left\{\frac{\sqrt{B^{2}-(A * \cos (u)+z * \sin k)^{2}}}{A * \cos (u)+z * \sin k}\right\}$

$$
\mathbf{X}=\frac{\boldsymbol{\pi} * \mathbf{B} *(\mathbf{m}-\mathbf{n})}{180}
$$

10-2 Right curve (From 0 to +X axis)
For $u=90$ to $\left(90+\frac{\mathrm{D}}{2}\right)$

$$
\mathbf{Y}=A^{*}(1-\operatorname{Sin} u)
$$

$m=\tan ^{-1}\left\{\frac{\sqrt{B^{2}-z^{2} *(\sin k)^{2}}}{z * \sin k}\right\}$
$n=\tan ^{-1}\left\{\frac{\sqrt{B^{2}-(A * \cos (u)+z * \sin k)^{2}}}{A * \cos (u)+z * \sin k}\right\}$

$$
X=\frac{\pi * B *(\mathbf{n}-\mathbf{m})}{180}
$$

CHAPTER - 11

PYRAMIDS

11-1 Pyramids

Pyramid after connection
H

Pyramid before assembly

Continue 11-1

Note: C is the number of sides required
$\mathrm{k}=\sqrt{\mathrm{B}^{2}+\left\{\frac{\mathrm{A}}{2 * \sin \left(\frac{180}{\mathrm{C}}\right)}\right\}^{2}}$

$$
\mathrm{g}=2 * \mathrm{C} * \tan ^{-1}\left(\frac{\mathrm{~A}}{\sqrt{4 * \mathrm{k}^{2}-\mathrm{A}^{2}}}\right)
$$

$$
\mathrm{H}=2 * \mathrm{k} * \cos \left(90-\frac{\mathrm{g}}{2}\right)
$$

If C is even nember then

$$
\mathrm{J}=\mathrm{k}
$$

If C is odd number then

$$
\mathrm{J}=\sqrt{\mathrm{k}^{2}-\left(\frac{\mathrm{A}}{2}\right)^{2}}
$$

11-2 Orthogonal Pyramid Four Sides

Continue 11-2

$$
L^{L=\sqrt{B^{2}+\frac{A^{2}}{4}}}
$$

$$
\mathrm{T}^{\circ}=2 * \tan ^{-1}\left(\frac{\mathrm{~A}}{2 * \mathrm{~B}}\right)
$$

$\mathrm{n}=\frac{\mathrm{L}^{2}-\mathrm{A}^{2}+\mathrm{F}^{2}}{2 * \mathrm{~F}}$

$$
S^{\circ}=\cos ^{-1}\left(\frac{\mathrm{n}}{\mathrm{~L}}\right)
$$

$$
\mathrm{P}^{\circ}=2 * \sin ^{-1}\left(\frac{\mathrm{~A}}{2 * \mathrm{~F}}\right)
$$

11-3 Orthogonal Pyramid Four Sides

Continue 11-3

$$
F=\sqrt{B^{2}+A^{2}}
$$

$$
L=\sqrt{B^{2}+2 * A^{2}}
$$

$$
S^{\circ}=\tan ^{-1}\left(\frac{A}{B}\right)
$$

$$
\mathrm{n}=\frac{\mathrm{F}^{2}-\mathrm{A}^{2}+\mathrm{L}^{2}}{2 * \mathrm{~L}}
$$

$$
\mathrm{T}^{\circ}=\cos ^{-1}\left(\frac{\mathrm{n}}{\mathrm{~F}}\right)
$$

11-4 Orthogonal Pyramid Three Sides

Continue 11-4

$F=\sqrt{B^{2}+\frac{3 * A^{2}}{4}}$

$$
\mathrm{T}^{\circ}=2 * \tan ^{-1}\left(\frac{\mathrm{~A}}{2 * \mathrm{~B}}\right)
$$

$$
\mathrm{n}=\frac{\mathrm{L}^{2}-\mathrm{A}^{2}+\mathrm{F}^{2}}{2 * \mathrm{~F}}
$$

$$
S^{\circ}=\cos ^{-1}\left(\frac{\mathrm{n}}{\mathrm{~L}}\right)
$$

11-5 Orthogonal Pyramid Three Sides

Continue 11-5

$$
F=\sqrt{B^{2}+A^{2}}
$$

$$
S^{\circ}=\tan ^{-1}\left(\frac{A}{B}\right)
$$

$$
\mathrm{T}^{\circ}=2 * \sin ^{-1}\left(\frac{\mathrm{~A}}{2 * \mathrm{~F}}\right)
$$

