Development Engineering Development of Surface of Objects Applications by Mathematics Equations

First Edition

X= (pi * A * i) 180

Hazem Albadry

DEVELOPMENT OF SURFACE OF OBJECTS Applications by Mathematics Equations

Copyright © 2017 by Hazem Albadry

All rights reserved. This publication is fully protected by copyright and nothing that appears in it may be reprinted, either wholly or in part, without special permission.

The Author specifically excludes warranties, express or implied, as to the accuracy of the data and other information set forth in this publication and does not assume liability for any losses or damage resulting from the use of the materials or application of the data discussed in this publication.

> First Edition: 09 / 2017 Printed in the United States of America ISBN: 978-1-387-23551-3

Hazeın H. R.

The Author Hazem Hameed Rashid Albadry Email: Hazem.dev_eng@yahoo.com

Dedication

To whom shall i guide the way of life **to my dear Father** To whom satisfied me with her tenderness **to my tender mother** To whom i loved in all the meaning of love **to my beloved wife** To those who planted in all the meaning of a sweet life **to my beloved children** To those who advise me and support me after God Almighty in this world **to my dear brothers and sisters**

Contents

FOREWORD
CHAPTER – 1 Cylinder10
1-1 Cylinder cut 111
1-2 Cylinder cut 2
1-3 Cylinder cut 314
1-4 Cylinder cut 417
CHAPTER – 2 Two Cylinders19
2-1 Two same cylinders orthogonal20
2-2 Two different cylinders orthogonal
2-3 Two same cylinders not orthogonal24
2-4 Two different cylinders not orthogonal27
2-5 Two different cylinders orthogonal with shifting
2-6 Two different cylinders non orthogonal with shifting34
CHAPTER – 3 Cones
3-1 Right Circular Cone
3-2 Oblique Cone
3-3 Scalene Cone
3-4 Obtuse Cone
3-5 Truncated Cone
3-6 Right Circular Cone cut from top with angle49
3-7 Right Circular Cone cut from side
3-8 Oblique Cone cut from top55
3-9 Oblique Cone cut from top with angle
3-10 Oblique Cone cut from side63
3-11 Truncated Scalene Cone
3-12 Truncated Obtusee Cone72
CHAPTER – 4 Cones with Cylinders76
4-1 Right Circular Cone with horizontal cylinder77
4-2 Right Circular Cone with vertical cylinder80
4-3 Inverted Right Circular Cone with Horizontal cylinder83
4-4 Horizontal cylinder with Right Circular Cone
CHAPTER – 5 Transition

5-1 Concentric and Eccentric Transition	93
CHAPTER - 6 Elbow with Cylinders	119
6-1 Elbow with Cylinder (Centered)	120
6-2 Elbow with Cylinder (Same bottom elevation)	122
6-3 Elbow with Cylinder (Eccentric)	124
CHAPTER - 7 Sphare with Cylinder	
7-1 Sphare with Cylinder	
CHAPTER – 8 Part of Elbow	
8-1 Part of Elbow	130
CHAPTER – 9 Sphare	132
9-1 Sphare	134
CHAPTER – 10 Fan	
10-1 Fan	136
CHAPTER – 11 Pyramids	139
11-1 Pyramids	
11-2 orthogonal Pyramid four sides	142
11-3 orthogonal Pyramid four sides	144
11-4 orthogonal Pyramid three sides	
11-5 orthogonal Pyramid three sides	148
-	

FOREWORD

In industrial world, an engineer is frequently confronted with problems where the development of surfaces of an object has to be made to help him to go ahead with the design and manufacturing processes. For example, in sheet metal work, it plays a vital role, thus enabling a mechanic to cut proper size of the plate from the development and then to fold at proper places to form the desired objects, namely, boilers, boxes, buckets, packing boxes, chimneys, hoppers, air-conditioning ducts etc.

"The development of surface of an object means the unrolling and unfolding of all surfaces of the object on a plane." "If the surface of a solid is laid out on a plain surface, the shape thus obtained is called the development of that solid."

In other words, the development of a solid is the shape of a plain sheet that by proper folding could be converted into the shape of the concerned solid.

Importance of Development:

Knowledge of development is very useful in **sheet metal work**, **construction of storage vessels**, **chemical vessels**, **boilers**, and **chimneys**. Such vessels are manufactured from plates that are cut according to these developments and then properly bend into desired shaped. The joints are then **welded or riveted**.

Principle of Development:

Every line on the development should show the true length of the corresponding line on the surface which is developed.

Methods of Development:

(a) Parallel-line development

8 Hazem Hameed Rashid Albadry

- (b) Radial-line development
- (c) Triangulation development
- (d) Approximate development

Parallel-line Method:

It is used for developing prisms and single curved surfaces like cylinders, in which all the edges/generation of lateral surfaces are parallel in each other.

Radial-line Method:

It is employed for pyramids and single curved surfaces like cones in which the apex is taken as centre and the slant edge or generator as radius of its development.

Triangulation Method:

It is used for developing transition pieces.

Approximate Method:

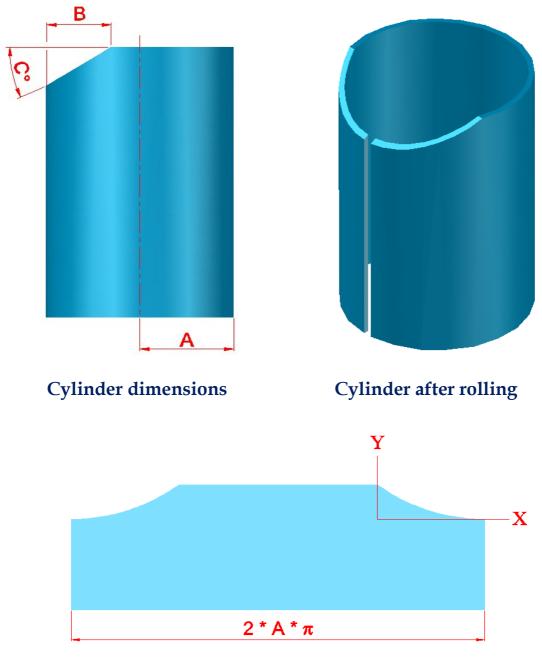
It is employed for double curved surfaces like spheres, as they are theoretically not possible to develop. The surface of the sphere is developed by approximate method. When the surface is cut by a series of cutting planes, the cut surfaces is called a zone.

The new in this book is to rely on mathematical equations in the design of geometric shapes, which means the accuracy of the results and the speed of implementation and not to fall into the mistakes that will often be known after the manufacturing process, resulting in loss of cost and time.

In addition, an engineering program that gives digital and visual results has been done for all objects in this book.

CHAPTER – 1 CYLINDER

1-1 Cylinder cut (In case B ≤ A)



Cylinder before rolling

Hazem Hameed Rashid Albadry

$$s = 180 - \cos^{-1}(\frac{A-B}{A})$$

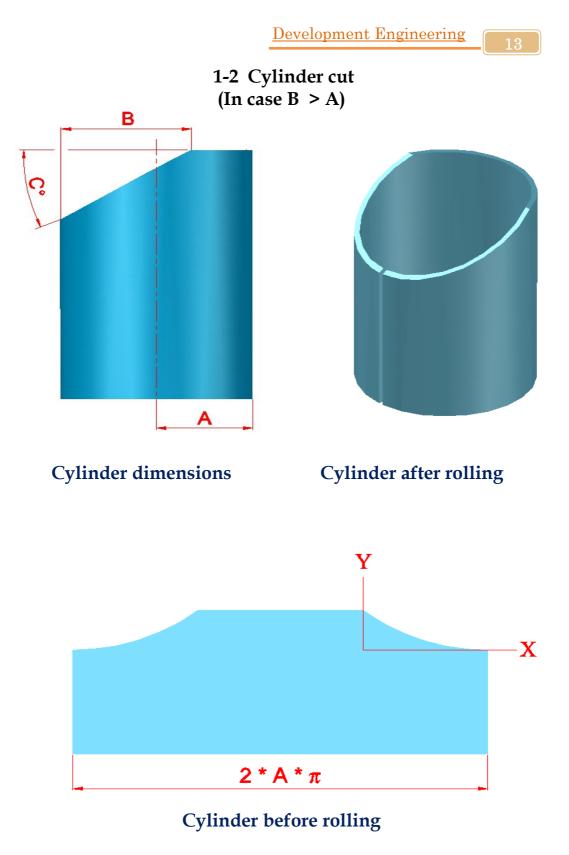
For i = s to 180

$$X = \frac{\pi * A * i}{180}$$

$$Y = tan(C) * A * (1 - cos (180 - i))$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.



Hazem Hameed Rashid Albadry

$$s = 180 - \cos^{-1}(\frac{B-A}{A})$$

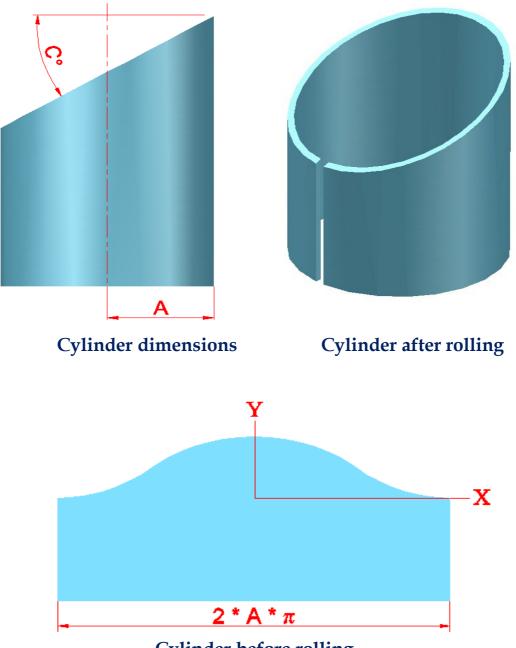
For i = s to 180

$$X = \frac{\pi * A * i}{180}$$

$$Y = tan(C) * A * (1 + cos i)$$

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

1-3 Cylinder cut (In case full cut)



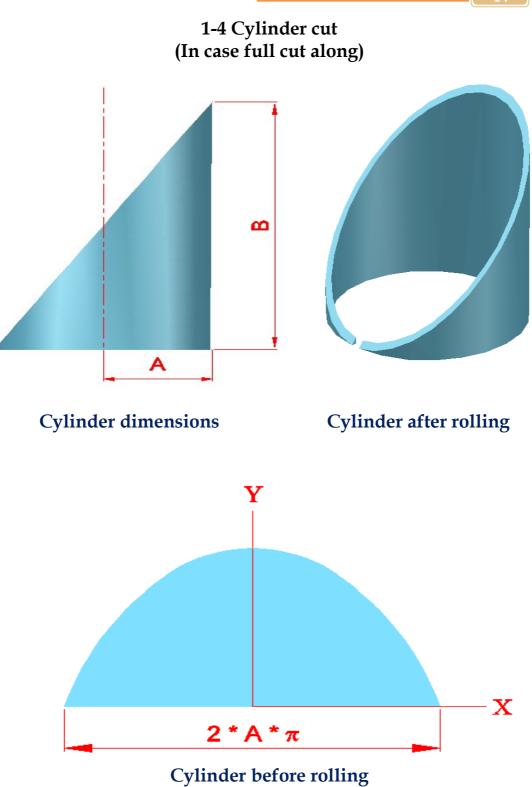
Cylinder before rolling

For i = 0 to 180

$$X = \frac{\pi * A * i}{180}$$

$$Y = tan(C) * A * (1 + cos i)$$

- The length of cylinder is optional. The left curve is same as right curve.
- The steps of (i) are optionals.



For i = 0 to 90

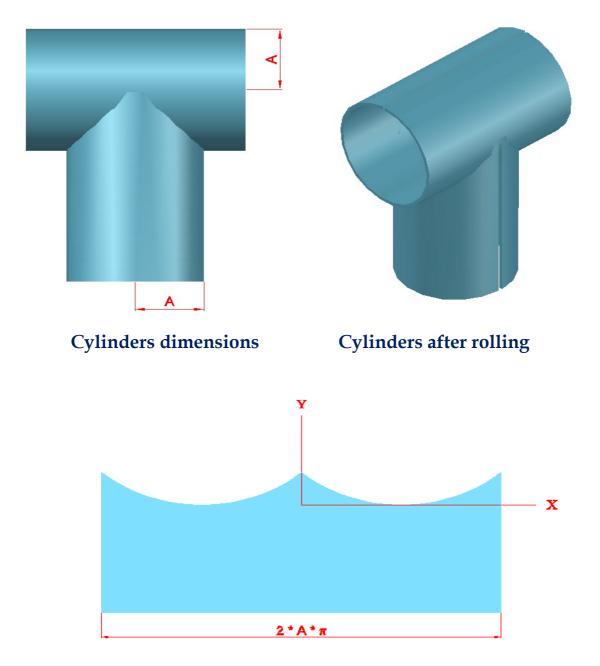
$$X = \frac{\pi * A * i}{180}$$

- The length of cylinder is B.
- The left curve is same as right curve.
- The steps of (i) are optionals.

CHAPTER – 2

TWO CYLINDERS

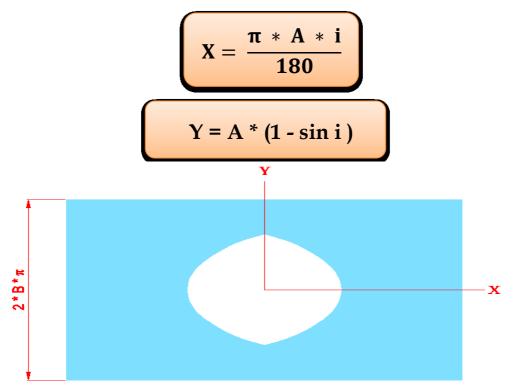
2-1 Two same cylinders orthogonals



Vertical Cylinder before rolling

2-1-1 Vertical Cylinder

For i = 0 to 180



Horizontal Cylinder before rolling

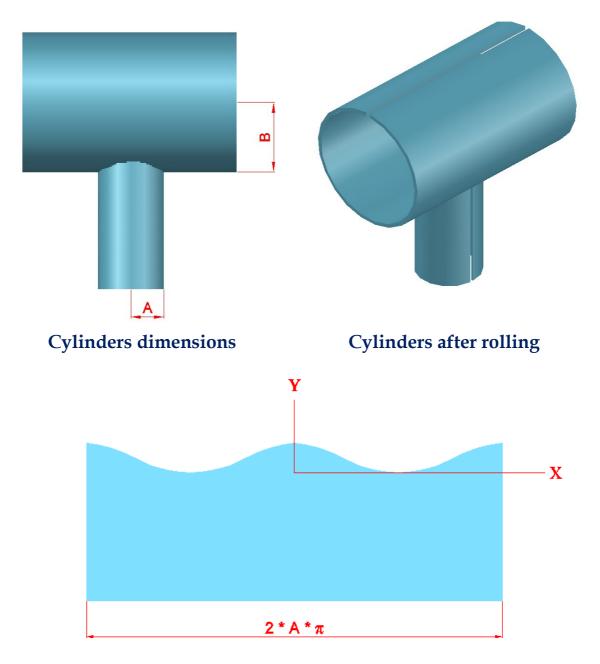
2-1-2 Horizontal Cylinder

For i = 0 to 90

$$X = A * \cos i$$
$$Y = \frac{\pi * A * i}{180}$$

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

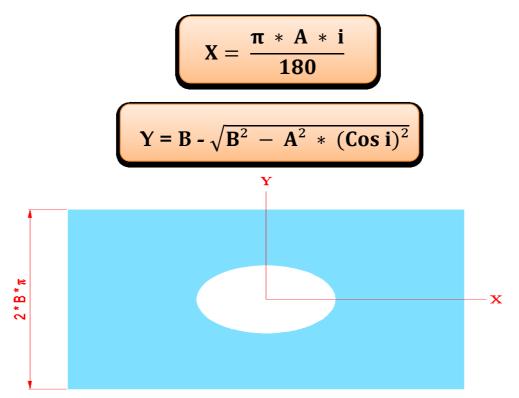
2-2 Two different cylinders orthogonals



Vertical Cylinder before rolling

2-2-1 Vertical Cylinder

For i = 0 to 180



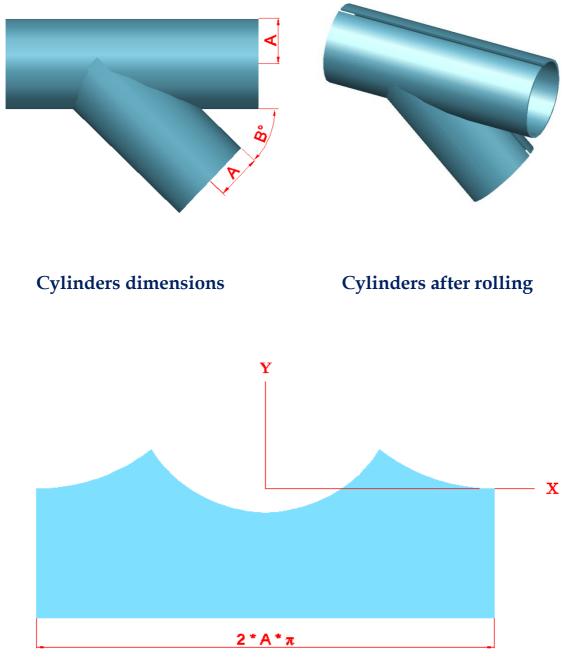
Horizontal Cylinder before rolling 2-2-2 Horizontal Cylinder

For i = 0 to 90

$$k = \sqrt{B^2 - A^2 * (\cos i)^2}$$

m = tan⁻¹ ($\frac{A * \cos i}{k}$) * $\frac{\pi}{180}$
X = A * sin i
Y = m * B

2-3 Two same cylinders not orthogonals



Diagonal Cylinder before rolling

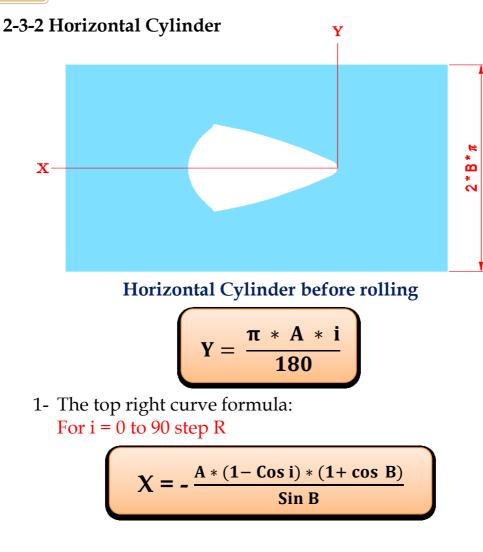
2-3-1 Diagonal Cylinder

For i = 0 to 180

$$\mathbf{X} = \frac{\mathbf{\pi} \, \ast \, \mathbf{A} \, \ast \, \mathbf{i}}{\mathbf{180}}$$

$$Y = A * \left[\left\{ \frac{1 - Abs(Cos i)}{Sin B} \right\} + \left\{ \frac{1 + Cos i}{tan B} \right\} \right]$$

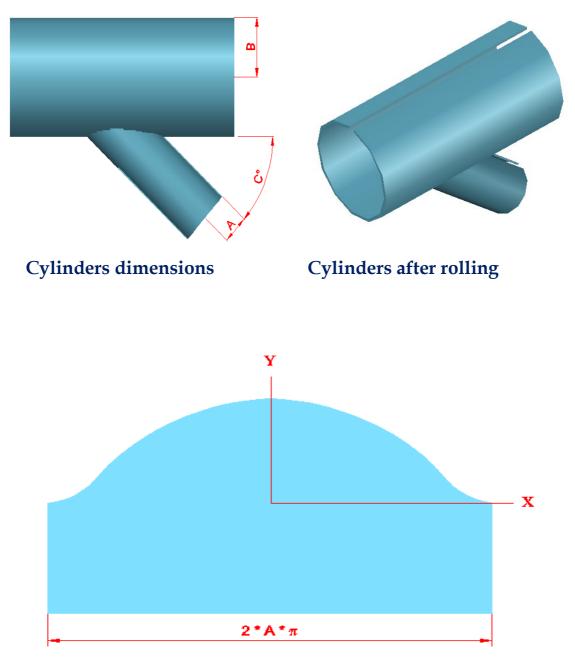
- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.



2- The top left curve formula: For i = (90 - R) to 0 step -R

$$X = -\frac{2 * A - A * (1 - \cos i) * (1 - \cos B)}{\sin B}$$

- The length of cylinder is optional.
- The down curve is same as top curve.
- The steps (R) are optionals.



2-4 Two different cylinders not orthogonals

Diagonal Cylinder before rolling

2-4-1 Diagonal Cylinder

For i = 0 to 180

$$X = \frac{\pi * A * i}{180}$$

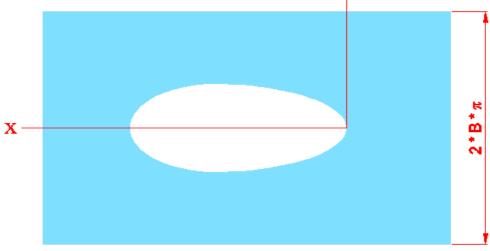
$$Y = \frac{B - \sqrt{B^2 - A^2 * (\sin i)^2}}{\sin C} + \frac{A * (1 + \cos i)}{\tan C}$$

Notes:

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.

 Development Engineering
 29

 2-4-2 Horizontal Cylinder
 Y



Horizontal Cylinder before rolling

1- The top right curve formulas:

For i = 0 to 90 step R

$$m = B - \sqrt{B^2 - A^2 * (\sin i)^2}$$

 $X = -\frac{A * (1 - \cos i) * \cos(C) + m}{\tan C} + A * \sin(C) * (1 - \cos i)$

$$Y = \frac{B * \pi}{180} * \tan^{-1}(\frac{A * \sin i}{\sqrt{B^2 - A^2 * (\sin i)^2}})$$

Hazem Hameed Rashid Albadry

Continue 2-4-2 Horizontal Cylinder

2- The top left curve formulas:

For i = (90 - R) to 0 step -R

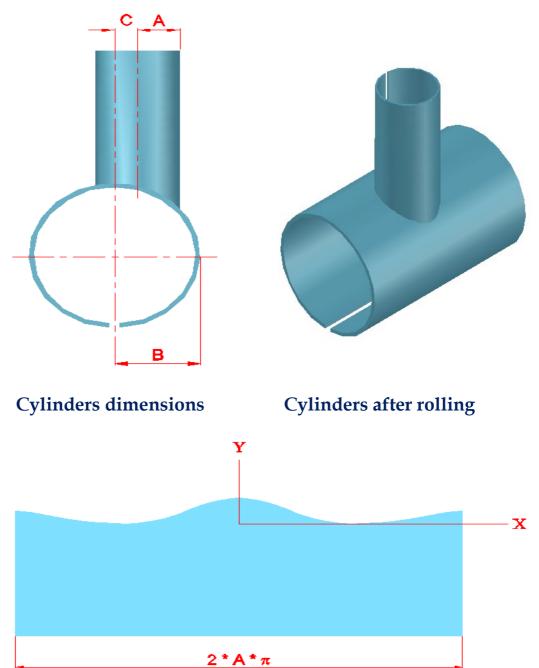
$$m = B - \sqrt{B^2 - A^2} * (\sin i)^2$$

$$X = \frac{1}{\sin C} * \{2 * A - A * (1 - \cos i) + m * \cos C\}$$

Y = B * tan⁻¹ (
$$\frac{A * \sin i}{\sqrt{B^2 - A^2 * (\sin i)^2}}$$
)

Notes:

- The length of cylinder is optional.
- The upper curve is same as lower curve.
- The steps (R) are optionals.



2-5 Two different cylinders orthogonals with shifting

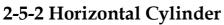
Vertical Cylinder before rolling

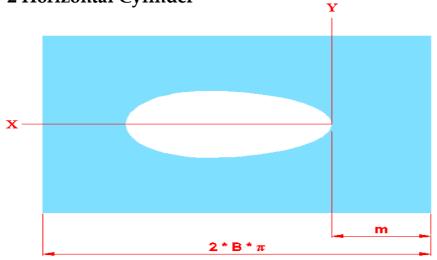
2-5-1 Vertical Cylinder For i = 0 to 180

$$X = \frac{\pi * A * i}{180}$$

Y = **B**
$$-\sqrt{B^2 - (A * \cos(i) + C)^2}$$

- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.





Horizontal Cylinderb efore rolling For i = 0 to 180

$$f = \tan^{-1}(\frac{A + C}{\sqrt{B^2 - (A + C)^2}})$$

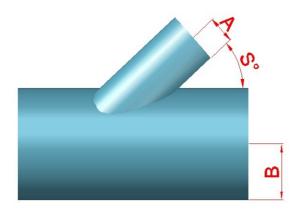
$$k = \tan^{-1} \left(\frac{A * \cos(i) + C}{\sqrt{B^2 - (A * \cos(i) + C)^2}} \right)$$
$$m = B * \tan^{-1} \left(\frac{\sqrt{B^2 - (A + C)^2}}{A + C} \right)$$

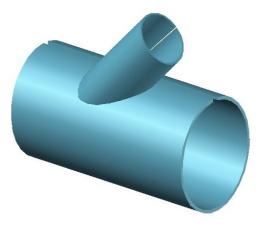
$$X = \frac{\pi * B * (f-k)}{180}$$
$$Y = A * \sin i$$

Notes:

- The length of cylinder is optional.
- The lower curve is same as upper curve.
- The steps of (i) are optionals.

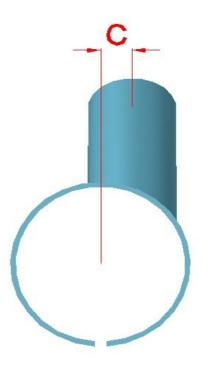
2-6 Two different cylinders non orthogonals with shifting





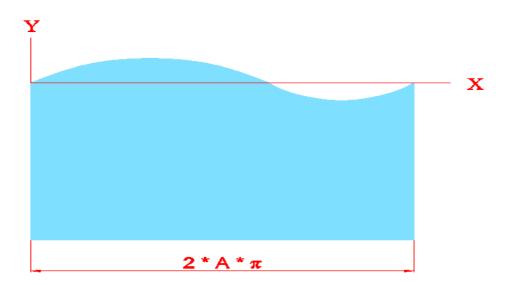
Cylinders dimensions

Cylinders after rolling



Cylinders dimensions

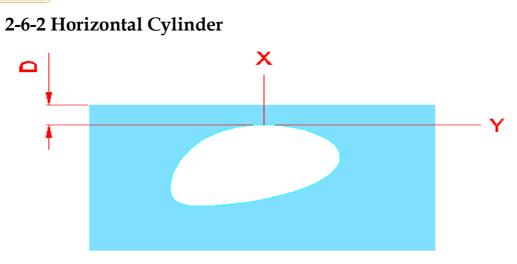
2-6-1 Diagonal Cylinder



Diagonal Cylinder before rolling

For i = 0 to 360

$$f = \sqrt{B^2 - (C - A)^2} - B * \cos S$$
$$X = \frac{\pi * A * i}{180}$$
$$Y = \frac{f}{\tan S} + \frac{A * \sin i}{\sin S}$$

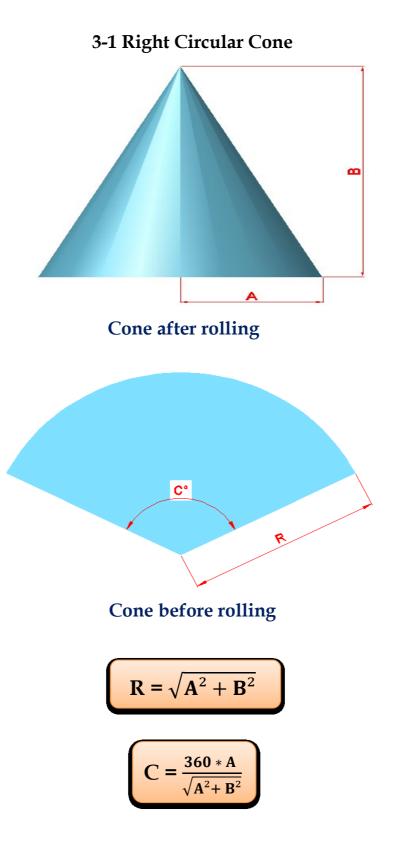


Big Cylinder before rolling

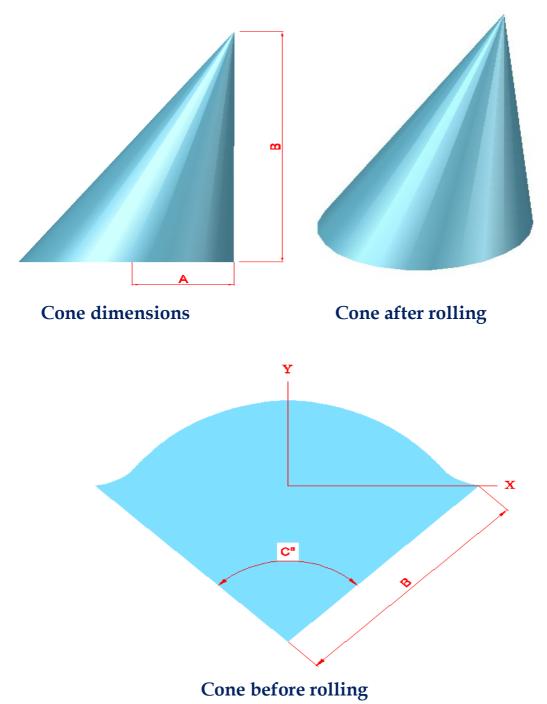
For i = 0 to 360

$$k = \tan^{-1}\left(\frac{C-A}{\sqrt{B^2 - (C-A)^2}}\right)$$
$$t = \tan^{-1}\left(\frac{C-A * \cos(i)}{\sqrt{B^2 - (C-A * \cos(i))^2}}\right)$$
$$f = \sqrt{B^2 - (C-A)^2} - B * \cos t$$
$$D = \frac{\pi * B * k}{180}$$
$$X = \frac{-f}{\tan S} - \frac{A * \sin i}{\sin S}$$
$$Y = \frac{-\pi * b * (t-k)}{180}$$

CHAPTER – 3 CONES



3-2 Oblique Cone



Continue 3-2

For $\mathbf{i} = 0$ to 180 step \mathbf{s}

$$k = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{i}{2})^{2}}$$
$$m = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{i}{2} + \frac{s}{2})^{2}}$$
$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$
$$t = \tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

$$f = \sum t$$

$$C^{\circ} = 2 * (f - t)$$

$$k = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{w}{2})^{2}}$$
$$m = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{w}{2} + \frac{s}{2})^{2}}$$
$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$

Continue 3-2

$$tt = tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

$$ff = \sum tt$$

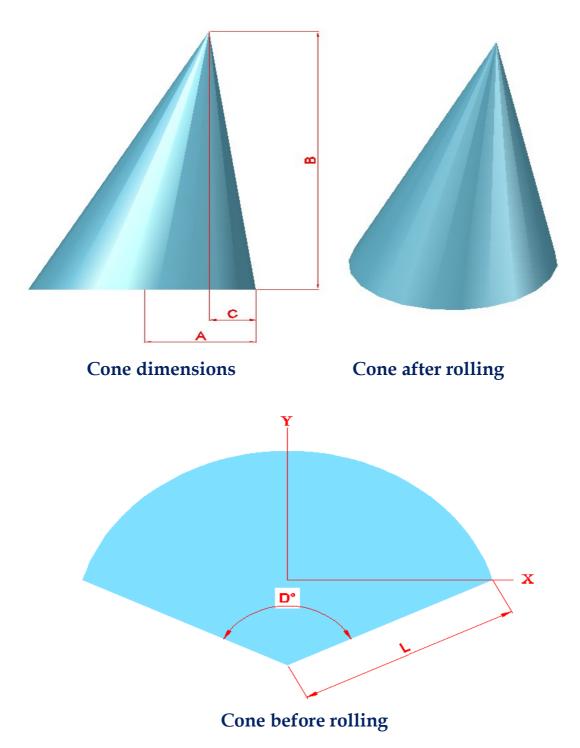
$$X = k * Sin(ff - tt)$$

$$Y = k * Cos(ff - tt) - B * Cos(f - t)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-3 Scalene Cone



Continue 3-3

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{B^2 + A^2 * (\sin i)^2 + (A * \cos(i) + A - C)^2}$$

$$m = \sqrt{B^2 + A^2 * (sin(i + s))^2 + (A * cos(i + s) + A - C)^2}$$

$$z = k^2 + m^2 - 4 * A^2 * (\sin \frac{s}{2})^2$$

$$t = \tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

$$f = \sum t$$

$$L = \sqrt{B^2 + C^2}$$
$$D^\circ = 2 * (f - t)$$

$$k = \sqrt{B^2 + A^2 * (\sin w)^2 + (A * \cos(w) + A - C)^2}$$

$$m = \sqrt{B^2 + A^2 * (\sin(w + s))^2 + (A * \cos(i + s) + A - C)^2}$$

Continue 3-3

$$z = k^2 + m^2 - 4 * A^2 * (\sin \frac{s}{2})^2$$

$$tt = tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

ff = \sum tt

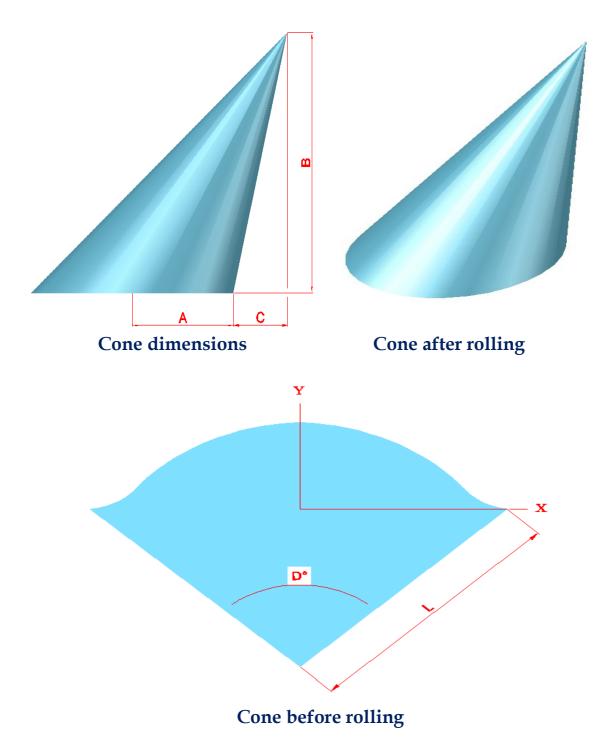
X = k * Sin(ff - tt)

$$Y = k * Cos(ff - tt) - \sqrt{B^2 + C^2} * Cos(f - t)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-4 Obtuse Cone



Continue 3-4

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{B^{2} + A^{2} * (\sin i)^{2} + (A * \cos(i) + A + C)^{2}}$$

$$m = \sqrt{B^{2} + A^{2} * (\sin(i + s))^{2} + (A * \cos(i + s) + A + C)^{2}}$$

$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin\frac{s}{2})^{2}$$

$$t = \tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

 $k = \sqrt{B^2 + A * (\sin w)^2 + (A * \cos(w) + A + C)^2}$

 $m = \sqrt{B^2 + A^2 * (\sin(w + s))^2 + (A * \cos(w + s) + A + C)^2}$

$$f = \sum t$$
$$L = \sqrt{b^2 + c^2}$$
$$D^\circ = 2 * (f - t)$$

For w = 0 to 180 step s

 $z = k^2 + m^2 - 4 * A^2 * (sin \frac{s}{2})^2$

$$L = \sqrt{b^2 + c^2}$$
$$D^\circ = 2 * (f - t)$$

Continue 3-4

$$tt = tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

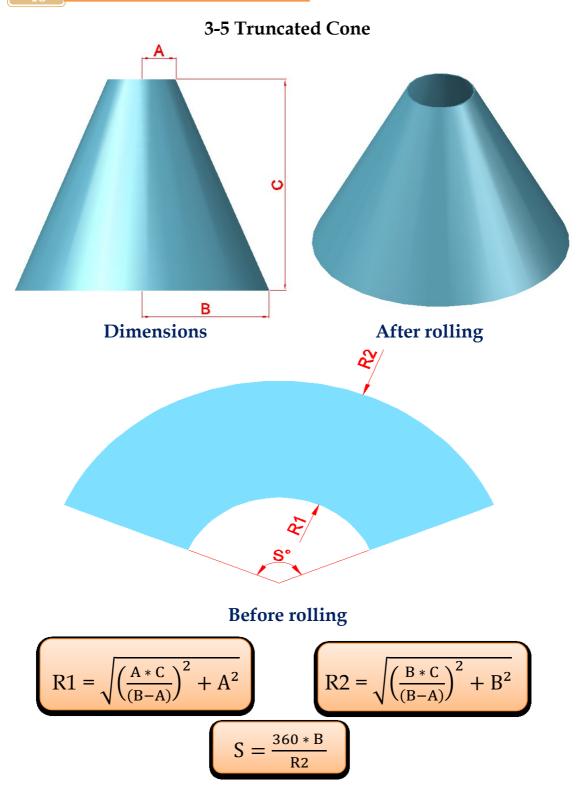
$$ff = \sum tt$$

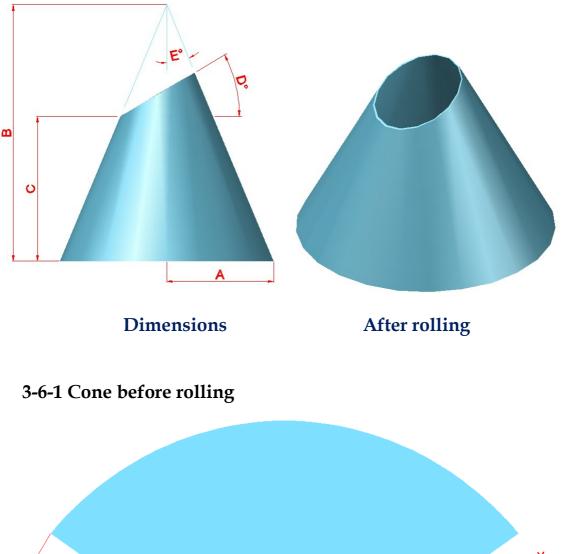
$$X = k * Sin(f - t)$$

$$Y = k * Cos(ff - tt) - \sqrt{B^2 + C^2} * Cos(f - t)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.





3-6 Right Circular Cone cut from top with angle

x s y Before rolling Continue 3-6-1

$$R = \sqrt{A^2 + B^2}$$
$$S = \frac{360 * A}{R}$$

For $\mathbf{i} = 0$ to 180 and $\mathbf{i} \neq 90$

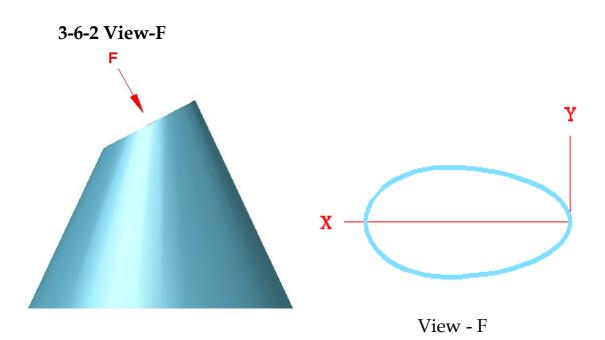
$$m = \frac{(B - C) * (\cos(i) - 1)}{\tan(D) * \cos(i) - \frac{B}{A}}$$

$$h = \frac{\left(A - \frac{C * A}{B} - m\right) * B}{A * \cos i}$$

$$k = \frac{h * \sqrt{A^2 + B^2}}{B}$$

$$X = k * \sin(\frac{i * S}{360})$$

$$Y = -\frac{(B - C) * \sqrt{A^2 + B^2}}{B} - k * \cos(\frac{i * S}{360})$$



$$k = \frac{2 * A * (B-C)}{B * (\cos(D) + \sin(D) * \tan E)}$$

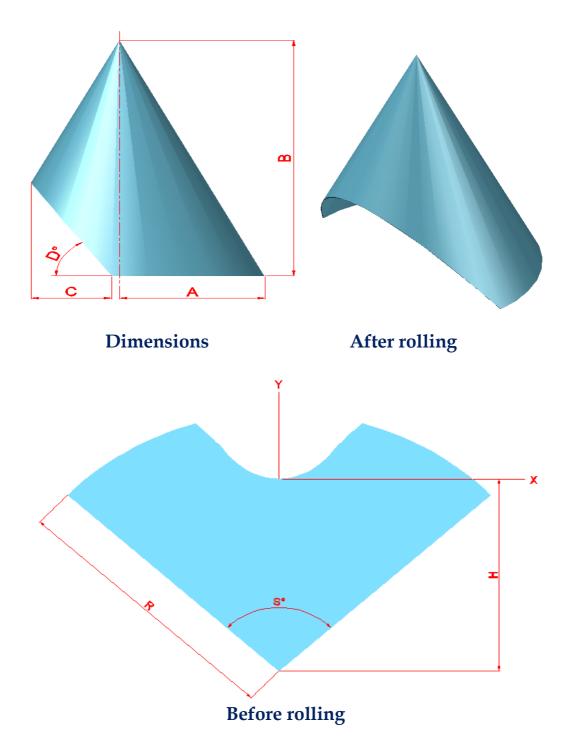
For $\mathbf{i} = 0$ to \mathbf{k}

$$m = tan (E) * [B - { i * sin(D) + C }]$$

$$\mathbf{X} = \mathbf{i}$$
$$\mathbf{Y} = \sqrt{\mathbf{m}^2 - [\mathbf{A} - \{\mathbf{i} * \cos(\mathbf{D}) + \mathbf{C} * \tan \mathbf{E}\}]^2}$$

Notes:

- The bottom curve is same as top curve.
- The steps of (i) are optionals.



3-7-1 The Cone

$$R = \sqrt{A^2 + B^2}$$
$$S = \frac{360 * A}{\sqrt{A^2 + B^2}}$$

3-7-2 The cut
If A > C Then

$$k = \tan^{-1}\left(\frac{\sqrt{A^2 - (A - C)^2}}{A - C}\right)$$
If A = C Then

$$k = 90$$
If A < C Then

$$k = 90 + \tan^{-1}\frac{C - A}{\sqrt{A^2 - (C - A)^2}}$$
For i = 0 to k

$$m = B * \cos(D) + A * \cos i * \sin D$$

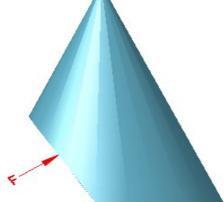
$$f = B * \cos(D) + \sin(D) * (A - C)$$

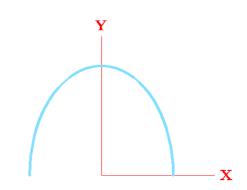
$$q = B * \cos(D) + A * \sin D$$

H = R * f / m

$$\mathbf{X} = \mathbf{R} * \frac{\mathbf{f}}{\mathbf{m}} * \sin(\frac{\mathbf{i} * \mathbf{S}}{360})$$

$$\mathbf{Y} = \frac{\mathbf{R} * \mathbf{f}}{\mathbf{m}} * \cos\left(\frac{\mathbf{i} * \mathbf{S}}{360}\right) - \frac{\mathbf{R} * \mathbf{f}}{\mathbf{q}}$$





View - F

For $\mathbf{i} = 0$ to \mathbf{k}

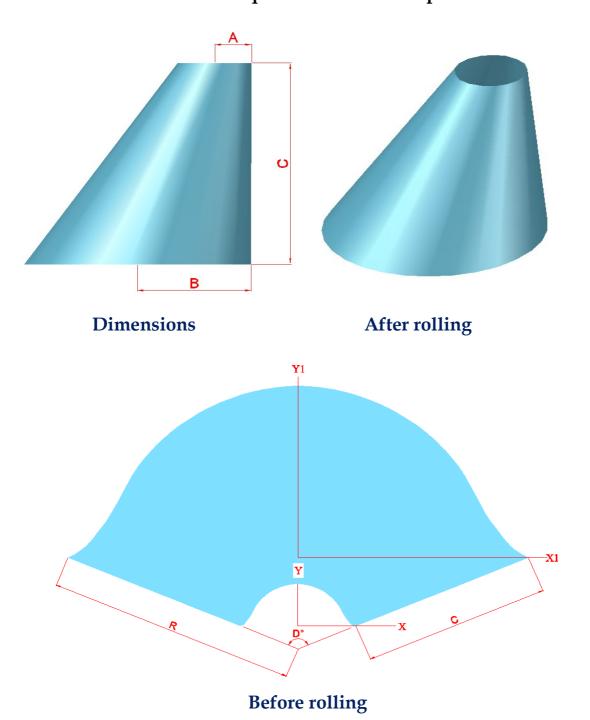
$$h = \frac{A * \cos (i) - A + C}{\frac{1}{\tan D} + \frac{A * \cos i}{B}}$$

$$X = (A - \frac{A \cdot h}{B}) \cdot \sin i$$

$$Y = \frac{h}{\sin D}$$

Notes:

- The left curve is same as right curve.
- The steps of (i) are optionals.



3-8-1 The Base of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{\left(\frac{B*C}{B-A}\right)^2 + 4*B^2 * \left(\cos\frac{i}{2}\right)^2}$$
$$m = \sqrt{\left(\frac{B*C}{B-A}\right)^2 + 4*B^2 * \left(\cos\frac{i}{2} + \frac{s}{2}\right)^2}$$
$$z = k^2 + m^2 - 4*B^2 * \left(\sin\frac{s}{2}\right)^2$$

$$t = \tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

$$f = \sum t$$

$$k = \sqrt{\left(\frac{B*C}{B-A}\right)^2 + 4*B^2*\left(\cos\frac{w}{2}\right)^2}$$
$$m = \sqrt{\left(\frac{B*C}{B-A}\right)^2 + 4*B^2*\left(\cos\frac{w}{2} + \frac{s}{2}\right)^2}$$
$$z = k^2 + m^2 - 4*B^2*\left(\sin\frac{s}{2}\right)^2$$
$$tt = \tan^{-1}\left(\frac{\sqrt{4*k^2*m^2-z^2}}{z}\right)$$
$$ff = \sum tt$$

Continue 3-8-1

$$X = k * Sin(ff - tt)$$
$$Y = k * Cos(ff - tt) - \frac{B*C}{B-A} * Cos(f - t)$$

- The values (f) and (t) in the last equation are when i = 180.

3-8-2 The Top of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{\left(\frac{A * C}{B - A}\right)^{2} + 4 * A^{2} * \left(\cos\frac{i}{2}\right)^{2}}$$

$$m = \sqrt{\left(\frac{A * C}{B - A}\right)^{2} + 4 * A^{2} * \left(\cos\frac{i}{2} + \frac{s}{2}\right)^{2}}$$

$$z = k^{2} + m^{2} - 4 * A^{2} * \left(\sin\frac{s}{2}\right)^{2}$$

$$t = \tan^{-1}\left(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z}\right)$$

$$f = \sum t$$

$$D^{\circ} = f$$

Continue 3-8-2

For w = 0 to 180 step s

$$k = \sqrt{\left(\frac{A * C}{B - A}\right)^2 + 4 * A^2 * \left(\cos\frac{w}{2}\right)^2}$$

m =
$$\sqrt{\left(\frac{A*C}{B-A}\right)^2 + 4*A^2*\left(\cos\frac{w}{2} + \frac{s}{2}\right)^2}$$

$$z = k^2 + m^2 - 4 * A^2 * (\sin \frac{s}{2})^2$$

$$tt = \tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

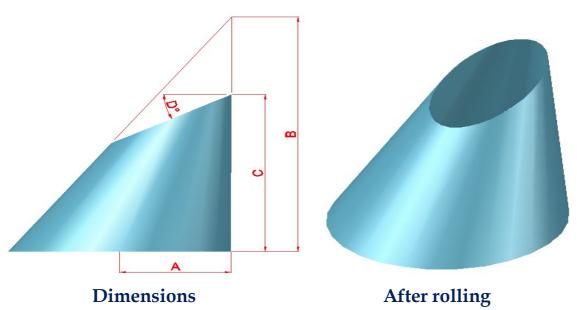
$$ff = \sum tt$$

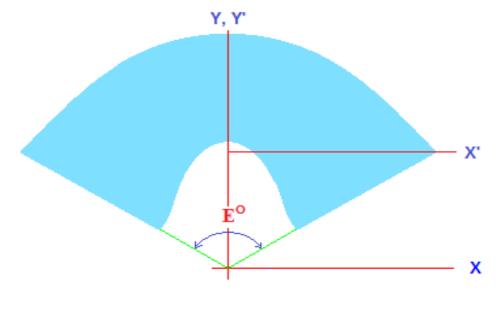
$$X = k * Sin(ff - tt)$$

$$Y = k * cos(ff - tt) - \frac{A * C}{B - A} * cos(f - t)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.





Before rolling

3-9 Oblique Cone cut from top with angle

3-9-1 The Base of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{i}{2})^{2}}$$
$$m = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{i}{2} + \frac{s}{2})^{2}}$$
$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$
$$t = \tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

$$f = \sum t$$

$$E^{\circ} = 2 * (f - t)$$

$$k = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{w}{2})^{2}}$$
$$m = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{w}{2} + \frac{s}{2})^{2}}$$
$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$

Continue 3-9-1

$$tt = tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

$$ff = \sum tt$$

- The values (f) and (t) in the last equation are when i = 180.

3-9-2 The Top of Cone

$$k = \sqrt{B^2 + 4 * A^2 * (\cos\frac{w}{2})^2}$$

$$m = \sqrt{B^2 + 4 * A^2 * (\cos\frac{w}{2} + \frac{s}{2})^2}$$

$$n = \frac{A * (B-C) * (1+\cos w)}{B - (1+\cos w) * A * \tan D}$$

Continue 3-9-2

If w = 180 then

$$z = B - C$$

Else

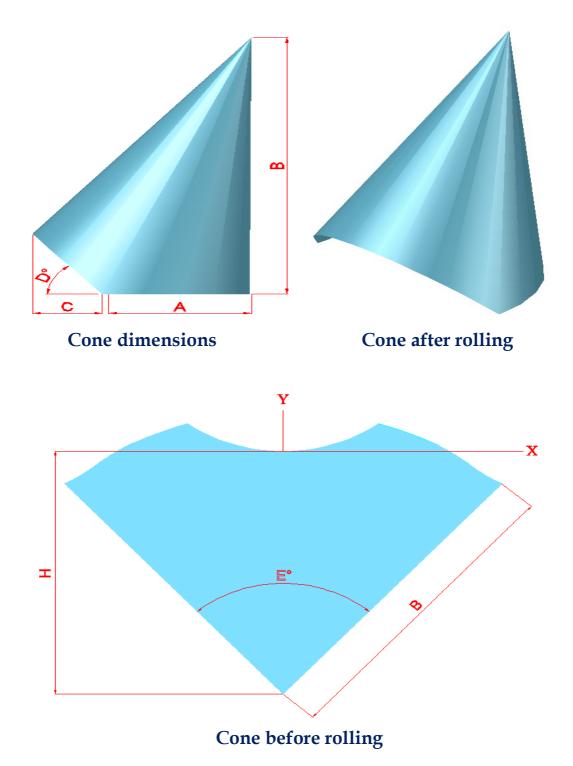
$$Z = \sqrt{\left(\frac{n}{\cos\frac{w}{2}}\right)^2 + (n * \tan(D) + (B - C))^2}$$
$$p = k^2 + m^2 - 4 * A^2 * (\sin\frac{s}{2})^2$$
$$t = \tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - p^2}}{p})$$
$$f = \sum t$$

$$X = z * Sin(f - t)$$
$$Y = z * Cos(f - t)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-10 Oblique Cone cut from side



3-10-1 The Base of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{i}{2})^{2}}$$

$$m = \sqrt{B^{2} + 4 * A^{2} * (\cos \frac{i}{2} + \frac{s}{2})^{2}}$$

$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$

$$t = \tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

$$f = \sum t$$

$$E = 2 * (f - t)$$

$$k = \sqrt{B^2 + 4 * A^2 * (\cos\frac{w}{2})^2}$$

$$m = \sqrt{B^2 + 4 * A^2 * (\cos\frac{w}{2} + \frac{s}{2})^2}$$

Continue 3-10-1

$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$

$$tt = \tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

$$ff = \sum tt$$

$$X = k * Sin(ff - tt)$$

$$Y = k * Cos(ff - tt) - B * Cos(f - t)$$

- The values (f) and (t) in the last equation are when i = 180.

3-10-2 The Side of Cone

If A = C Then
g = 90
ElseIf C > A Then
g = 90 + tan⁻¹(
$$\frac{C-A}{\sqrt{A^2-(C-A)^2}}$$
)
ElseIf A > C Then
g = tan⁻¹($\frac{\sqrt{A^2-(C-A)^2}}{A-C}$)

For i = 0 to g step p

Continue 3-10-2

$$k = \sqrt{B^{2} + 4 * A^{2} * \left(\cos(\frac{i}{2})\right)^{2}}$$
$$m = \sqrt{B^{2} + 4 * A^{2} * \left(\cos(\frac{i}{2} + \frac{s}{2})\right)^{2}}$$

q =
$$\frac{A * (1 + \cos i) - (2 * A - C)}{A * \tan(D) * (\frac{1 + \cos i}{B} + 1)}$$

$$z = \sqrt{\left\{\frac{q - C + 2 * A}{\cos\left(\frac{i}{2}\right)}\right\}^2 + (B - q * \tan D)^2}$$

$$t = \sqrt{\left\{\frac{q - C + 2 * A}{\cos\left(\frac{i}{2} + \frac{s}{2}\right)}\right\}^2 + (B - q * \tan D)^2}$$

$$j = z^2 + t^2 - 4 * A^2 * (\sin s)^2$$

$$p1 = \tan^{-1}(\frac{\sqrt{4 * z^2 * t^2 - j^2}}{j})$$

Continue 3-10-2

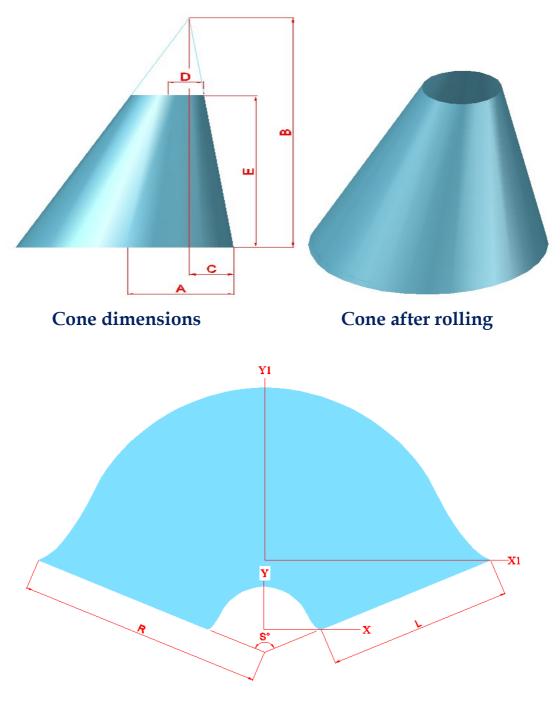
$$f = \frac{A * 2 - (2 * A - C)}{\frac{2 * A * \tan D}{B} + 1}$$

H =
$$\sqrt{(f - C + 2 * A)^2 + (B - f * tan D)^2}$$

$$X = t * Sin(p2 - p1)$$

$$Y = t * Cos(p2 - p1)$$

3-11 Truncated Scalene Cone



Cone before rolling

3-11-1 The Base of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{B^{2} + A^{2} * (\sin i)^{2} + (A * \cos(i) + A - C)^{2}}$$

$$m = \sqrt{B^{2} + A^{2} * (\sin(i + s))^{2} + (A * \cos(i + s) + A - C)^{2}}$$

$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin\frac{s}{2})^{2}$$

$$t = \tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

$$f = \sum t$$

$$L = \sqrt{B^2 + C^2}$$
$$S^\circ = 2 * (f - t)$$

$$k = \sqrt{B^2 + A^2 * (\sin w)^2 + (A * \cos(w) + A - C)^2}$$

$$m = \sqrt{B^2 + A^2 * (\sin(w + s))^2 + (A * \cos(i + s) + A - C)^2}$$

Continue 3-11-1

$$z = k^2 + m^2 - 4 * A^2 * (\sin \frac{s}{2})^2$$

$$tt = tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

 $ff = \sum tt$

Y1 = k * Cos(ff - tt) -
$$\sqrt{(B - E)^2 + C^2}$$
 * Cos(f - t)

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionasl.

3-11-2 The Top of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{(B - E)^2 + D^2 * (\sin i)^2 + (D * \cos(i) + D - C)^2}$$

$$m = \sqrt{(B - E)^2 + D^2 * (\sin(i + s))^2 + (D * \cos(i + s) + D - C)^2}$$

$$z = k^2 + m^2 - 4 * D^2 * (\sin \frac{s}{2})^2$$

Continue 3-11-2

$$t = \tan^{-1}\left(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z}\right)$$
$$f = \sum t$$

For w = 0 to 180 step s

$$k = \sqrt{(B - E)^2 + D^2 * (\sin w)^2 + (D * \cos(w) + D - C)^2}$$

$$m = \sqrt{(B - E)^2 + D^2 * (\sin(w + s))^2 + (D * \cos(i + s) + D - C)^2}$$

$$z = k^{2} + m^{2} - 4 * D^{2} * (\sin \frac{s}{2})^{2}$$

$$tt = tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

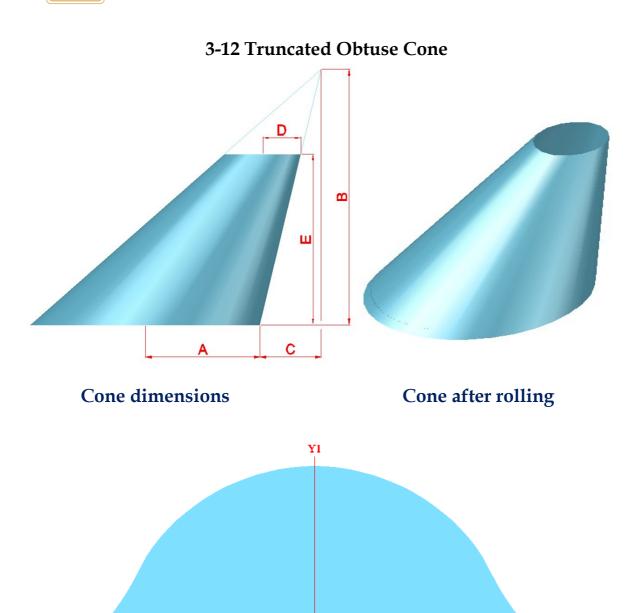
$$ff = \sum tt$$

$$X = k * Sin(ff - tt)$$

$$Y = k * Cos(ff - tt) - \sqrt{(B - E)^{2} + C^{2}} * Cos(f - t)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.



- **X**

Y

S°

-X1

3-12-1 The Base of Cone

For $\mathbf{i} = 0$ to 180 step s $k = \sqrt{B^2 + A^2 * (\sin i)^2 + (A * \cos(i) + A + C)^2}$ $m = \sqrt{B^2 + A^2 * (sin(i + s))^2 + (A * cos(i + s) + A + C)^2}$ $z = k^2 + m^2 - 4 * A^2 * (sin \frac{s}{2})^2$ $t = \tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$ $f = \sum t$ $L = \sqrt{b^2 + c^2}$ $S^{\circ} = 2 * (f - t)$

For w = 0 to 180 step s

$$k = \sqrt{B^{2} + A * (\sin w)^{2} + (A * \cos(w) + A + C)^{2}}$$

$$m = \sqrt{B^{2} + A^{2} * (\sin(w + s))^{2} + (A * \cos(w + s) + A + C)^{2}}$$

$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin\frac{s}{2})^{2}$$

Continue 3-12-1

$$tt = tan^{-1}(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z})$$

$$ff = \sum tt$$

$$X = k * Sin(f - t)$$

$$Y = k * Cos(ff - tt) - \sqrt{B^2 + C^2} * Cos(f - tt)$$

Notes:

- The values (f) and (t) in the last equation are when i = 180.

t)

- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

3-12-2 The Top of Cone

For $\mathbf{i} = 0$ to 180 step s

$$k = \sqrt{(B - E)^2 + D^2 * (\sin i)^2 + (D * \cos(i) + D + C)^2}$$

$$m = \sqrt{(B - E)^2 + D^2 * (\sin(i + s))^2 + (D * \cos(i + s) + D + C)^2}$$

$$z = k^2 + m^2 - 4 * D^2 * (\sin \frac{s}{2})^2$$

74

Continue 3-12-2

$$t = \tan^{-1}\left(\frac{\sqrt{4 * k^2 * m^2 - z^2}}{z}\right)$$
$$f = \sum t$$

For w = 0 to 180 step s

$$k = \sqrt{B^{2} + A * (\sin w)^{2} + (A * \cos(w) + A + C)^{2}}$$

$$m = \sqrt{B^{2} + A^{2} * (\sin(w + s))^{2} + (A * \cos(w + s) + A + C)^{2}}$$

$$z = k^{2} + m^{2} - 4 * A^{2} * (\sin \frac{s}{2})^{2}$$

$$t = tan^{-1}(\frac{\sqrt{4 * k^{2} * m^{2} - z^{2}}}{z})$$

$$ff = \sum tt$$

$$X = k * Sin(f - t)$$

$$Y = k * Cos(ff - tt) - \sqrt{B^{2} + C^{2}} * Cos(f - t)$$

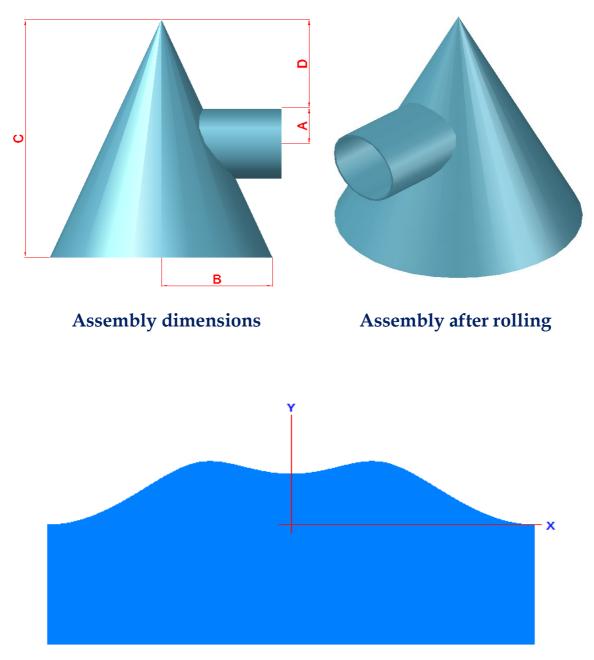
Notes:

- The values (f) and (t) in the last equation are when i = 180.
- The left curve is same as right curve.
- The steps of (i) and (w) are sames and optionals.

75

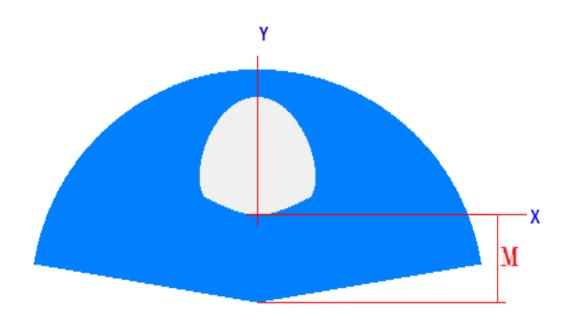
CHAPTER – 4

CONES WITH CYLINDERS



4-1 Right Circular Cone with horizontal cylinder

Cylinder before rolling



Cone before rolling

4-1-1 Horizontal Cylinder

For **u**= 0 to 180

$$t = \frac{B * \{D + A * (1 - \cos u)\}}{C}$$
$$X = \frac{A * \pi * u}{180}$$
$$Y = t - \sqrt{t^2 - \{(A * \sin(u)\}^2 + \frac{A * B * (1 + \cos u)}{C}\}}$$

4-1-2 Cone

For **u**= 0 to 180

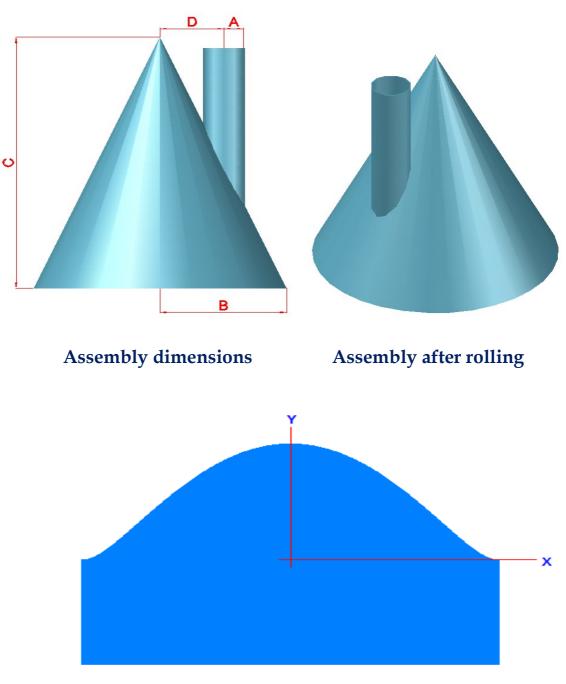
$$q = \frac{B * \{D + A * (1 - \cos u)\}}{C}$$
$$t = \frac{360 * B}{\sqrt{(C^2 - B^2)}}$$

$$z = \frac{360 * t * tan^{-1}(A * sin u)}{\sqrt{q^2 - (A * sin u)^2}}$$

$$M = \frac{D * \sqrt{(B^2 + C^2)}}{C}$$

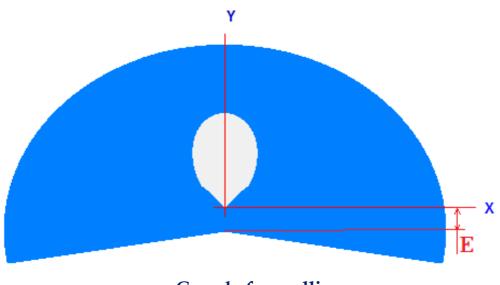
$$k = \frac{\{D + A * (1 - \cos u)\} * \sqrt{(B^2 + C^2)}}{C}$$

$$X = k * \sin z$$
$$Y = k * Cos(z) - M$$



4-2 Right Circular Cone with vertical cylinder

Cylinder before rolling



Cone before rolling

4-2-1 Vertical Cylinder

For **u**= 0 to 180

 $m = \sqrt{A^2 + D^2 + 2 * D * A * \cos u}$

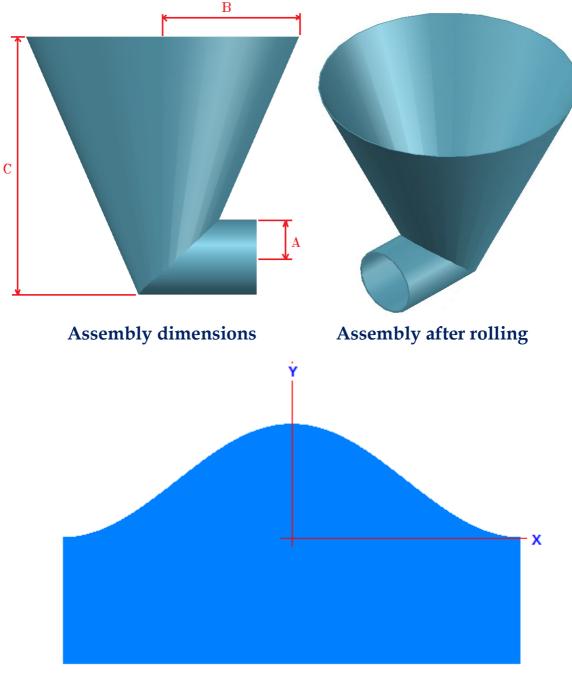
$$X = \frac{A * \pi * u}{180}$$
$$Y = \frac{C * (m + A - D)}{B}$$

31

4-2-2 Cone

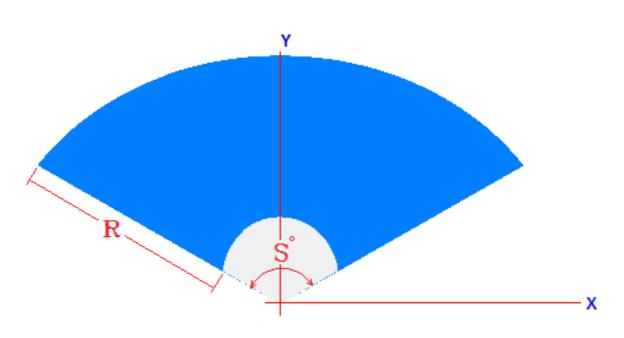
For u = 0 to 180 $m = \sqrt{A^2 + D^2 - 2 * D * A * \cos u}$ $t = \frac{360 * B}{\sqrt{(C^2 + B^2)}}$ $z = \frac{360 * t * tan^{-1}(A * sin u)}{\sqrt{m^2 - (A * sin u)^2}}$ $k = \frac{(D-A) * \sqrt{B^2 + C^2}}{B}$ $j = \frac{m * \sqrt{B^2 + C^2}}{B}$ $q = \frac{C * (D - A)}{B}$ $E = \sqrt{(D - A)^2 + q^2}$ $X = j * \sin z$

Y = j * Cos(z) - k



4-3 Inverted Right Circular Cone with Horizontal cylinder

Cylinder before rolling



Cone before rolling

4-3-1 Pipe

$$k = 90 - \left[\tan^{-1}\left\{\frac{(C-A)}{B}\right\} + \tan^{-1}\left\{\frac{A}{\sqrt{B^2 - A^2 + (C-A)^2}}\right\}\right]$$
$$h = \frac{B}{\tan k}$$
$$z = 90 - k$$

Continue 4-3-1

For $\mathbf{u} = 0$ to z

$$m = \frac{B * \{(h - C) + A * (1 - \cos u)\}}{h}$$

$$R = \sqrt{(h^2 + B^2)}$$

$$S = \frac{360 * B}{\sqrt{(h^2 + B^2)}}$$

$$X = \frac{A * \pi * u}{180}$$

$$Y = m + \sqrt{m^2 - (A * \sin u)^2} + \frac{A * B * (1 + \cos u)}{C}$$

For $\mathbf{u} = \mathbf{z}$ to 180

$$Y = m - \sqrt{m^2 - (A * \sin u)^2} + \frac{A * B * (1 + \cos u)}{C}$$

4-3-2 Cone

$$k = 90 - \left[\tan^{-1}\left\{\frac{(C-A)}{B}\right\} + \tan^{-1}\left\{\frac{A}{\sqrt{B^2 - A^2 + (C-A)^2}}\right\}\right]$$

$$h = \frac{B}{\tan k}$$

$$z = 90 - k$$

For
$$\mathbf{u} = 180$$
 to z

$$m = \frac{B * \{(h - C) + A * (1 - \cos u)\}}{h}$$

$$q = \frac{360 * B}{\sqrt{h^2 + B^2}}$$

$$j = q * \tan^{-1}\left(\frac{A * \sin u}{\sqrt{m^2 - (A * \sin u)^2}}\right)$$

$$f = \left[\frac{\{(h-C) + A * (1-\cos u)\} * \sqrt{h^2 + B^2}}{h}\right]$$
$$X = f * \sin j$$
$$Y = f * \cos j$$

Continue 4-3-2

For u = z to 0 $m = \frac{B * \{(h - C) + A * (1 - \cos u)\}}{h}$ $q = \frac{360 * B}{\sqrt{h^2 + B^2}}$ $g = \frac{q}{360} * \tan^{-1}(\frac{A * \sin u}{\sqrt{(m^2 + (A * \sin u)^2})})$

Note: the value of (j) below is when (u) = (z)

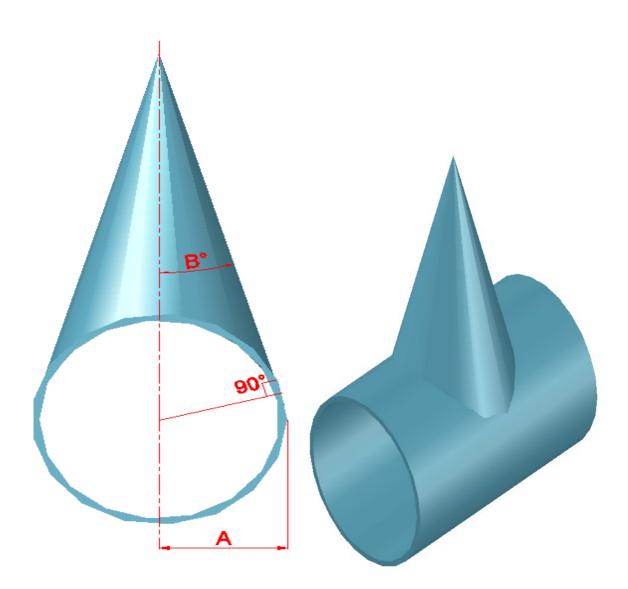
$$w = 2 * j - g$$

$$f = \left[\frac{\{(h-C) + A * (1-\cos u)\} * \sqrt{h^2 + B^2}}{h}\right]$$

$$X = f * \sin w$$

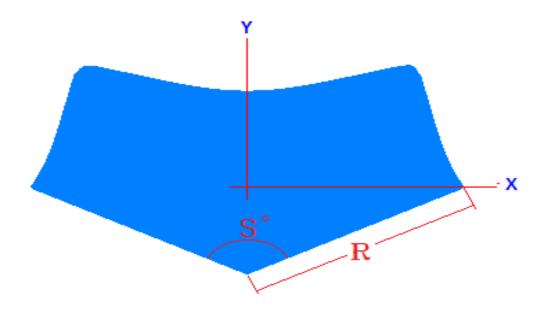
$$Y = f * \cos w$$

4-4 Horizontal cylinder with Right Circular Cone



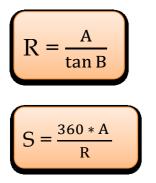
Assembly dimensions

Assembly after rolling



Cone before rolling

4-4-1 Cone



g = 360 * Sin B

For $\mathbf{i} = 0$ to $(90 - B - \mathbf{p})$ step \mathbf{p}

$$f = A * \left\{ \frac{1}{\cos B} - \cos(i) * \operatorname{Tan} B \right\}$$

Continue 4-4-1

$$t = \tan^{-1} \left(\frac{A * \sin i}{\sqrt{(f^2 - (A * \sin i)^2})} \right)$$

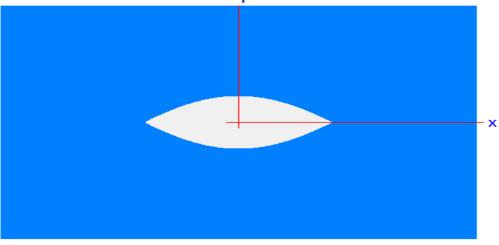
$$h = t * \sin B$$

$$r = \frac{f}{\sin B}$$

$$X = r * \sin h$$

$$Y = r * \cos(h) - \frac{A * \cos\left(\frac{g}{2}\right) * (\frac{1}{\sin B} - 1)}{\cos B}$$

4-4-2 Cylinder before rolling



Cylinder before rolling

Continue 4-4-2

For $\mathbf{i} = 0$ to $(90 - B - \mathbf{p})$ step \mathbf{p}

$$f = A * \left\{ \frac{1}{\cos B} - \cos(i) * \operatorname{Tan} B \right\}$$

$$X = \frac{A * \pi * i}{180}$$
$$Y = \sqrt{f^2 - A^2 * (\sin i)^2}$$

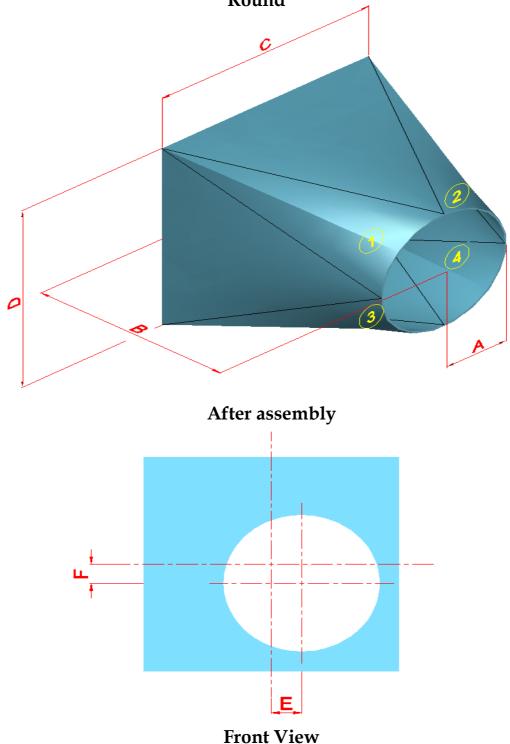
The last point should be as following:

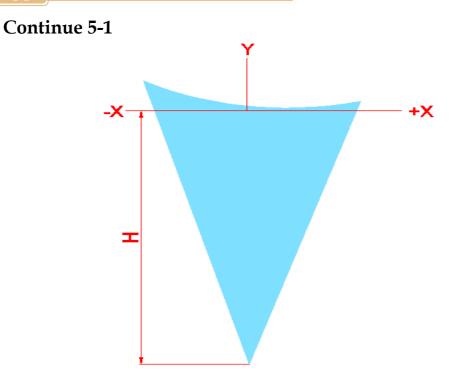
$$X = \frac{A * \pi * (90 - B)}{180}$$

 $\mathbf{Y} = \mathbf{0}$

CHAPTER – 5

TRANSITIONS





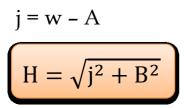
The Four Corners before rolling

Note: if the assembly is concentric then E = 0 and F = 0

5-1 Corner no. 1

w =
$$\sqrt{\left(\frac{C}{2} + E\right)^2 + \left(\frac{D}{2} + F\right)^2}$$

********** If w > A Then ********



a- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} + E})$$

b-For Left curve (-X, Y)

$$m = \tan^{-1}\left(\frac{\frac{C}{2} + E}{\frac{D}{2} - F}\right)$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^{2} + A^{2} * (\sin i)^{2} + (A + j - A * \cos i)^{2}}$$

$$g = \sqrt{B^{2} + A^{2} * (\sin(i + p))^{2} + (A + j - A * \cos(i + p))^{2}}$$

$$q = r^{2} + g^{2} - 4 * A^{2} * (Sin(\frac{p}{2}))^{2}$$

$$v = 2 * r * g$$
If q > v Then

l = 0

ElseIf v > q Then

$$l = \tan^{-1}\left(\frac{\sqrt{v^2 - q^2}}{q}\right)$$
$$k = \sum l$$
$$X = r * \operatorname{Sin}(k - l)$$

$$Y = r * Cos(k - l) - \sqrt{j^2 + B^2}$$

********** If w = A Then *********

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

a- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} + E})$$

b-For Left curve (-X, Y)

$$m = \tan^{-1}\left(\frac{\frac{C}{2} + E}{\frac{D}{2} - F}\right)$$

For $\mathbf{i} = 0$ To m Step \mathbf{p}

$$r = \sqrt{B^2 + 4 * A^2 * (\sin\frac{i}{2})^2}$$

$$g = \sqrt{B^2 + 4 * A^2 * (\sin(\frac{i}{2} + \frac{p}{2}))^2}$$

$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

$$v = 2 * r * g$$

If q > v Then

$$l = 0$$

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$$

$$k = \sum l$$

$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - B$$

********** If w < A Then *********

$$j = A - w$$
$$H = \sqrt{j^2 + B^2}$$

a- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} + E})$$

b-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} + E}{\frac{D}{2} - F})$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^{2} + A^{2} * (\sin i)^{2} + (A + j - A * \cos i)^{2}}$$
$$g = \sqrt{B^{2} + A^{2} * (\sin(i + p))^{2} + (j - A + A * \cos(i + p))^{2}}$$
$$q = r^{2} + g^{2} - 4 * A^{2} * (Sin(\frac{p}{2}))^{2}$$

v = 2 * r * g

If
$$q > v$$
 Then

$$l = 0$$

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$$

$$k = \sum l$$

$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - \sqrt{j^2 + B^2}$$

5-2 Corner no. 2

$$w = \sqrt{\left(\frac{C}{2} - E\right)^2 + \left(\frac{D}{2} + F\right)^2}$$

************ If w > A Then *********

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

a- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} + F}{\frac{C}{2} - E})$$

b-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} - E}{\frac{D}{2} + F})$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^2 + A^2 * (\sin i)^2 + (A + j - A * \cos i)^2}$$

$$g = \sqrt{B^{2} + A^{2} * (\sin(i + p))^{2} + (A + j - A * \cos(i + p))^{2}}$$

$$q = r^{2} + g^{2} - 4 * A^{2} * (Sin(\frac{p}{2}))^{2}$$

$$v = 2 * r * g$$
If q > v Then

l = 0

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$$

k = $\sum l$

$$Y = r * Cos(k - l) - \sqrt{j^2 + B^2}$$

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

a- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} + E})$$

b-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} + E}{\frac{D}{2} - F})$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^2 + 4 * A^2 * (\sin\frac{i}{2})^2}$$

$$g = \sqrt{B^2 + 4 * A^2 * (\sin(\frac{i}{2} + \frac{p}{2}))^2}$$

$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

$$v = 2 * r * g$$

If q > v Then

$$l = 0$$

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$$

 $k = \sum l$

$$X = r * Sin(k - l)$$
$$Y = r * Cos(k - l) - B$$

104

$$j = A - w$$
$$H = \sqrt{j^2 + B^2}$$

c- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} + F}{\frac{C}{2} - E})$$

d-For Left curve (-X, Y)

$$m = \tan^{-1}\left(\frac{\frac{C}{2} - E}{\frac{D}{2} + F}\right)$$

For $\mathbf{i} = 0$ To m Step p

Г

$$r = \sqrt{B^2 + A^2 * (\sin i)^2 + (A + j - A * \cos i)^2}$$

$$g = \sqrt{B^2 + A^2 * (\sin(i+p))^2 + (j - A + A * \cos(i+p))^2}$$
$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

- v = 2 * r * g
- If q > v Then
- l = 0

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$$

$$k = \sum l$$

$$X = r * Sin(k - l)$$

Y = r * Cos(k - l) -
$$\sqrt{j^2 + B^2}$$

5-3 Corner no. 3

$$w = \sqrt{\left(\frac{C}{2} + E\right)^2 + \left(\frac{D}{2} - F\right)^2}$$

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

a- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} + F}{\frac{C}{2} + E})$$

b-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} + E}{\frac{D}{2} + F})$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^2 + A^2 * (\sin i)^2 + (A + j - A * \cos i)^2}$$

$$g = \sqrt{B^2 + A^2 * (\sin(i+p))^2 + (A+j - A * \cos(i+p))^2}$$

$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

$$v = 2 * r * g$$

If q > v Then

$$l = 0$$

l

ElseIf v > q Then

$$l = \tan^{-1}\left(\frac{\sqrt{v^2 - q^2}}{q}\right)$$
$$k = \sum l$$
$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - \sqrt{j^2 + B^2}$$

********** If w = A Then *********

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

c- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} + F}{\frac{C}{2} + E})$$

d-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} + E}{\frac{D}{2} - F})$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^2 + 4 * A^2 * (\sin\frac{i}{2})^2}$$

$$g = \sqrt{B^2 + 4 * A^2 * (\sin(\frac{i}{2} + \frac{p}{2}))^2}$$

$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

$$v = 2 * r * g$$

If
$$q > v$$
 Then

$$l = 0$$

k

ElseIf v > q Then

$$l = \tan^{-1}\left(\frac{\sqrt{v^2 - q^2}}{q}\right)$$
$$k = \sum l$$
$$X = r * Sin(k - l)$$
$$Y = r * Cos(k - l) - B$$

$$j = A - w$$
$$H = \sqrt{j^2 + B^2}$$

c- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} + F}{\frac{C}{2} + E})$$

d-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} + E}{\frac{D}{2} + F})$$

For $\mathbf{i} = 0$ To m Step p

Г

$$r = \sqrt{B^2 + A^2 * (\sin i)^2 + (A + j - A * \cos i)^2}$$

$$g = \sqrt{B^2 + A^2 * (\sin(i+p))^2 + (j - A + A * \cos(i+p))^2}$$
$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

- v = 2 * r * g
- If q > v Then
- l = 0

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{\mathbf{v}^2 - \mathbf{q}^2}}{\mathbf{q}})$$

 $k = \sum l$

$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - B$$

5-4 Corner no. 4

$$w = \sqrt{\left(\frac{C}{2} - E\right)^2 + \left(\frac{D}{2} - F\right)^2}$$

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

c- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} - E})$$

d-For Left curve (-X, Y)

$$m = \tan^{-1}(\frac{\frac{C}{2} - E}{\frac{D}{2} - F})$$

For i = 0 To m Step p

$$r = \sqrt{B^2 + A^2 * (\sin i)^2 + (A + j - A * \cos i)^2}$$

$$g = \sqrt{B^2 + A^2 * (\sin(i+p))^2 + (A+j-A * \cos(i+p))^2}$$

$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

v = 2 * r * g

If q > v Then

l = 0

ElseIf v > q Then

 $l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$

 $k = \sum l$

$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - \sqrt{j^2 + B^2}$$

********** If w = A Then *********

$$j = w - A$$
$$H = \sqrt{j^2 + B^2}$$

e- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} - E})$$

f- For Left curve (-X, Y)

$$m = \tan^{-1}\left(\frac{\frac{C}{2} - E}{\frac{D}{2} - F}\right)$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^2 + 4 * A^2 * (\sin \frac{i}{2})^2}$$

$$g = \sqrt{B^{2} + 4 * A^{2} * (\sin(\frac{i}{2} + \frac{p}{2}))^{2}}$$

$$q = r^{2} + g^{2} - 4 * A^{2} * (Sin(\frac{p}{2}))^{2}$$

$$v = 2 * r * g$$
If q > v Then
$$l = 0$$

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{v^2 - q^2}}{q})$$

$$k = \sum l$$

$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - B$$

116

$$j = A - w$$
$$H = \sqrt{j^2 + B^2}$$

e- For Right curve (+X, Y)

$$m = \tan^{-1}(\frac{\frac{D}{2} - F}{\frac{C}{2} - E})$$

f- For Left curve (-X, Y)

$$m = \tan^{-1}\left(\frac{\frac{C}{2} - E}{\frac{D}{2} - F}\right)$$

For $\mathbf{i} = 0$ To m Step p

$$r = \sqrt{B^2 + A^2 * (\sin i)^2 + (A + j - A * \cos i)^2}$$

$$g = \sqrt{B^2 + A^2 * (\sin(i+p))^2 + (j - A + A * \cos(i+p))^2}$$
$$q = r^2 + g^2 - 4 * A^2 * (Sin(\frac{p}{2}))^2$$

118 Hazem Hameed Rashid Albadry

Continue 5-4

- v = 2 * r * g
 - If q > v Then

l = 0

 $k = \sum$

ElseIf v > q Then

$$l = \tan^{-1}(\frac{\sqrt{\mathbf{v}^2 - \mathbf{q}^2}}{\mathbf{q}})$$

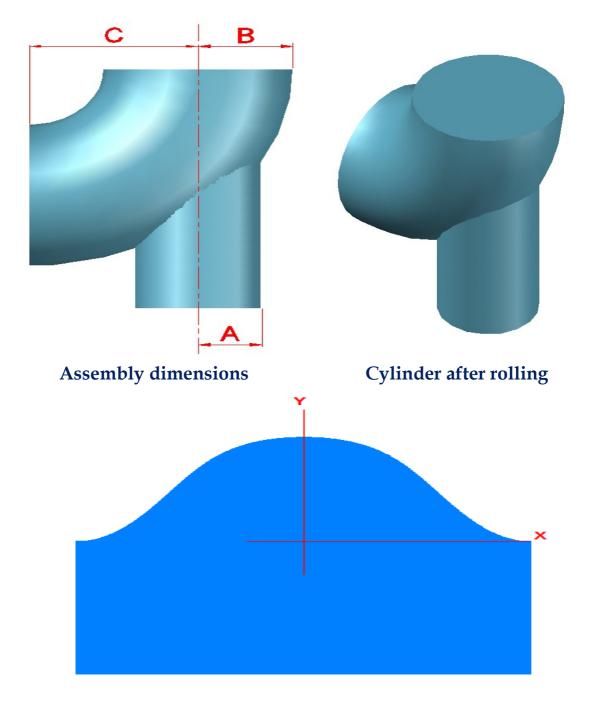
$$X = r * Sin(k - l)$$

$$Y = r * Cos(k - l) - \sqrt{j^2 + B^2}$$

CHAPTER – 6

ELBOWS WITH CYLINDERS

6-1 Elbow with Cylinder (Centered)



Cylinder before rolling

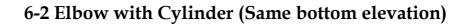
For **w** = 0 To 180

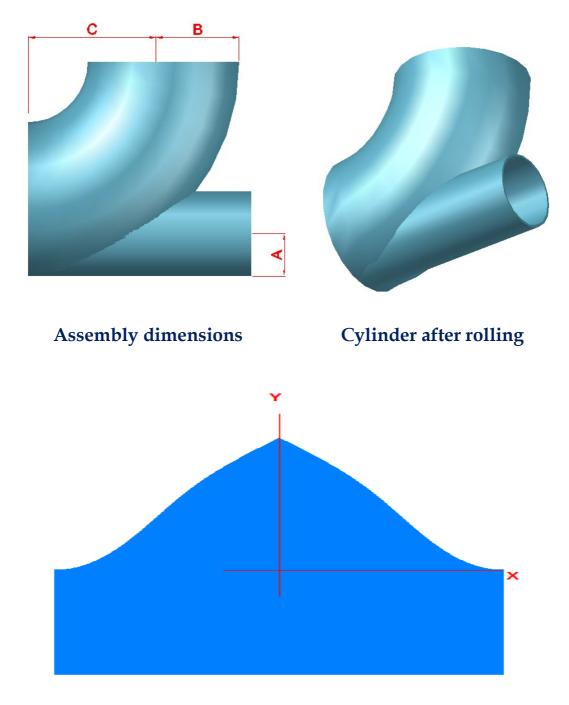
$$n = \sqrt{B^2 - A^2 * (\sin w)^2}$$

$$X = w * A * pi / 180$$

$$g = \sqrt{(C + n)^2 - (C + A * \cos w)^2}$$

$$Y = \sqrt{(C + B)^2 - (C - A)^2)} - g$$





Cylinder before rolling

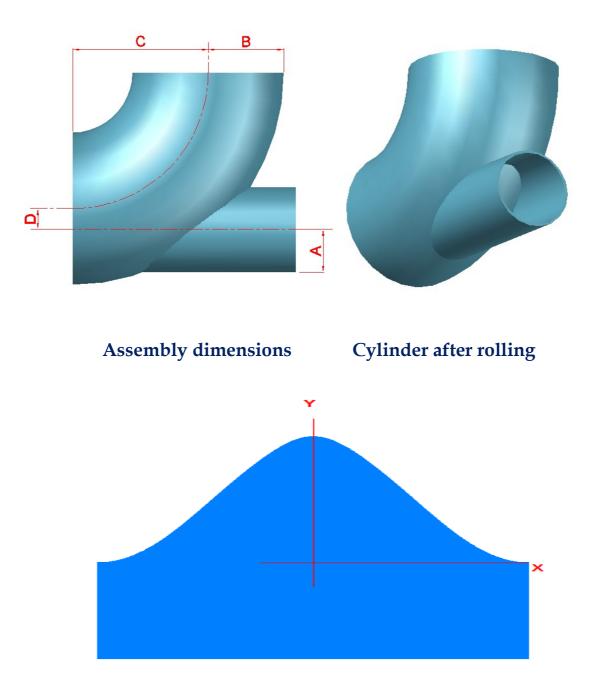
For **w** = 0 To 180

$$h = \sqrt{(C + B)^2 - (C + B - 2 * A)^2}$$

$$r = c + \sqrt{B^2 - A^2 * (\sin w)^2}$$

m = A * (1 - cos w) - B +
$$\sqrt{B^2 - A^2 * (sin w)^2}$$

$$\mathbf{Y} = \mathbf{h} - \sqrt{\mathbf{r}^2 - (\mathbf{r} - \mathbf{m})^2}$$



6-3 Elbow with Cylinder (Eccentric)

Cylinder before rolling

For **w** = 180 To 0

$$m = C + D - A * Cos w$$

$$\mathbf{r} = \mathbf{c} + \sqrt{\mathbf{B}^2 - \mathbf{A}^2 * (\sin w)^2}$$

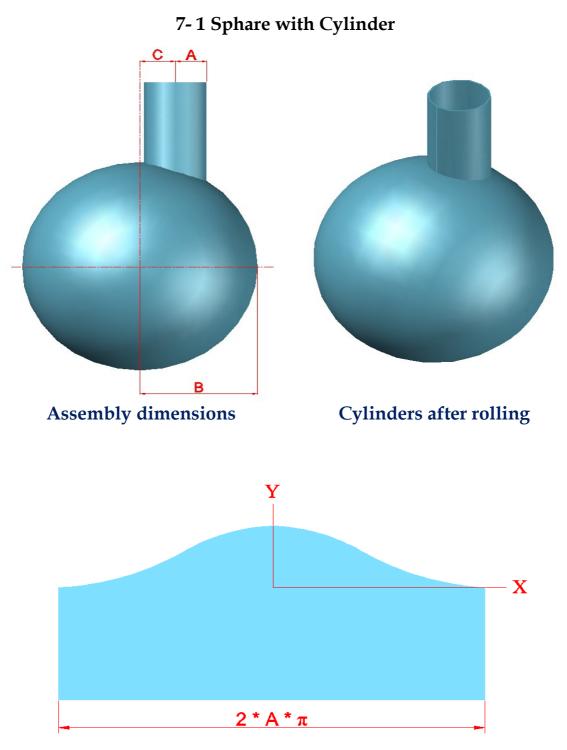
$$k = r - \sqrt{r^2 - m^2}$$

$$f = C + B - \sqrt{(C + B)^2 - (C + D - A)^2}$$

$$X = (180 - w) * A * \pi / 180$$

$$\mathbf{Y} = \mathbf{k} + \mathbf{B} - \mathbf{f} - \sqrt{\mathbf{B}^2 - \mathbf{A}^2 * (\sin w)^2}$$

CHAPTER – 7 SPHARE WITH CYLINDER



Cylinder before rolling

127

For **i** = 0 To 180

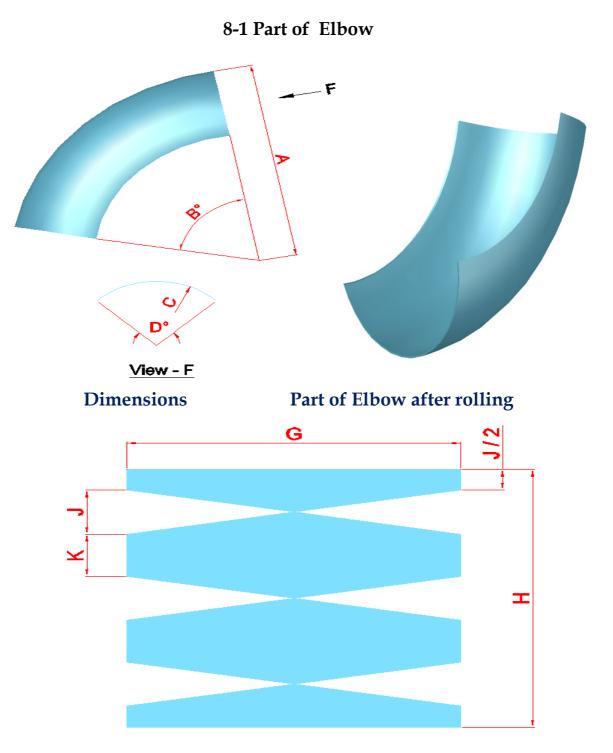
$$X = \frac{i * \pi * A}{180}$$
$$Y = \sqrt{B^2 - (C - A)^2} - \sqrt{B^2 - (A * \cos(i) + C)^2}$$

Notes:

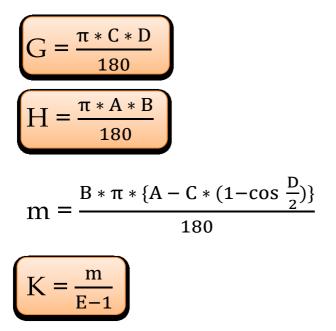
- The length of cylinder is optional.
- The left curve is same as right curve.
- The steps of (i) are optionals.
- B > (C + A)

CHAPTER – 8

ELBOWS



Part of Elbow before rolling

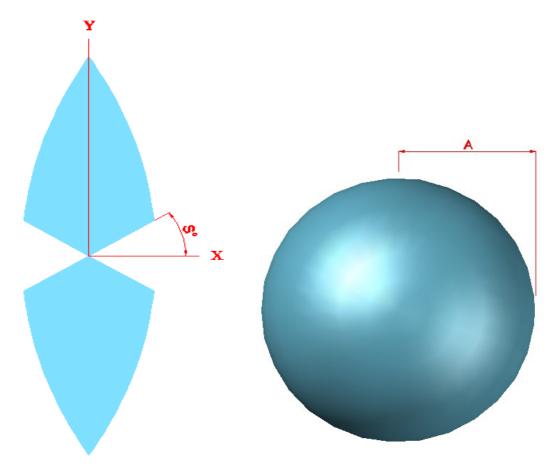


Note : E is the number of pieces required (for example the number of pieces in drawing above is 4.

$$J = \frac{H - m}{E - 1}$$

CHAPTER – 9 SPHARES

9-1 Sphare



Dimensions of one part

Sphare after rolling

Note : B is the number of pieces

$$r = B * A * \pi * (\frac{\frac{1}{B^2} + 0.25}{2})$$

133

$$k = r * \tan^{-1} \left(\frac{A * \pi}{\sqrt{(4 * r^2 - A^2 * \pi^2)}} \right)$$

$$c = \left\{\frac{180 * \left(k - A * \frac{\pi}{2}\right)}{r * \pi}\right\}$$

$$S = \tan^{-1} \{ \frac{\operatorname{Sin} c}{\cos(c) - 1 + \frac{A * \pi}{B * r}} \}$$

$$W = \frac{A * \pi}{2}$$

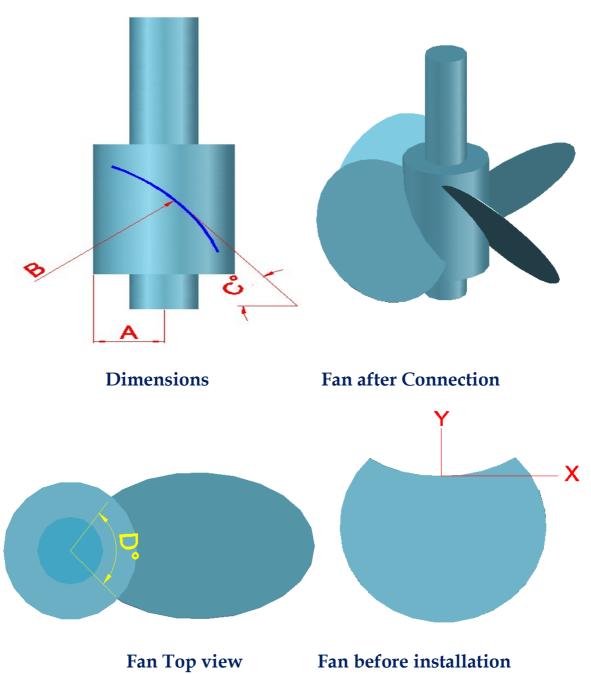
For $\mathbf{i} = 0$ To \mathbf{w}

$$X = \frac{A * \pi * \cos(\frac{180 * i}{A * \pi})}{B}$$

Y = i

CHAPTER – 10

FANS



10-1 Left curve (From -X to 0 axis)

If B = 0 Then

B = 1000000

$$z = \sqrt{B^2 - \frac{A^2 * (\sin D)^2}{(\cos C)^2}}$$

k = z * Sin C

For
$$u = (90 - \frac{D}{2})$$
 to 90

$$Y = A * (1 - Sin u)$$

m = tan⁻¹{
$$\frac{\sqrt{B^2 - z^2 * (\sin k)^2}}{z * \sin k}}$$

$$n = \tan^{-1} \{ \frac{\sqrt{B^2 - (A * \cos(u) + z * \sin k)^2}}{A * \cos(u) + z * \sin k} \}$$

$$X = \frac{\pi * B * (m - n)}{180}$$

Hazem Hameed Rashid Albadry

10-2 Right curve (From 0 to +X axis)

For **u** = 90 to $(90 + \frac{D}{2})$

m = tan⁻¹{
$$\frac{\sqrt{B^2 - z^2 * (\sin k)^2}}{z * \sin k}}$$

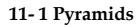
$$n = \tan^{-1} \{ \frac{\sqrt{B^2 - (A * \cos(u) + z * \sin k)^2}}{A * \cos(u) + z * \sin k} \}$$

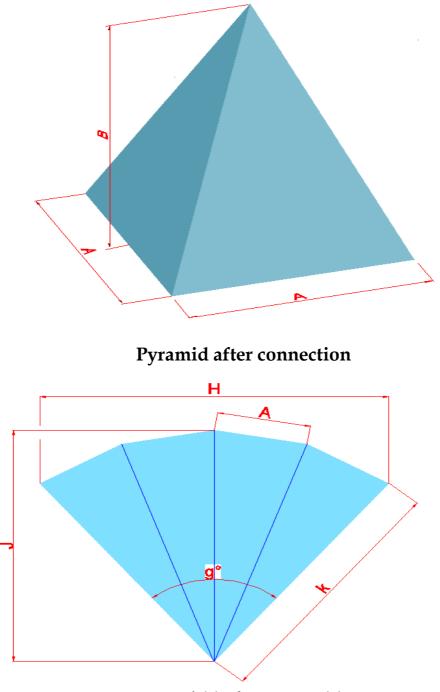
$$X = \frac{\pi * B * (n - m)}{180}$$

138

CHAPTER – 11

PYRAMIDS





Pyramid before assembly

Continue 11-1

Note: C is the number of sides required

$$k = \sqrt{B^2 + \{\frac{A}{2 * \sin(\frac{180}{C})}\}^2}$$
$$g = 2 * C * \tan^{-1}(\frac{A}{\sqrt{4 * k^2 - A^2}})$$

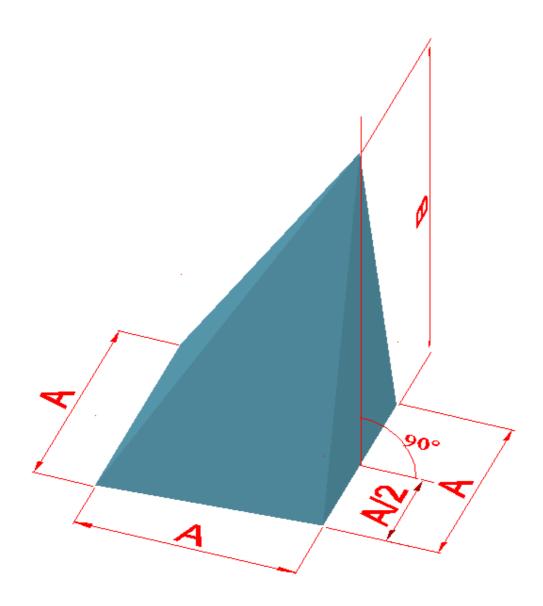
$$H = 2 * k * \cos(90 - \frac{g}{2})$$

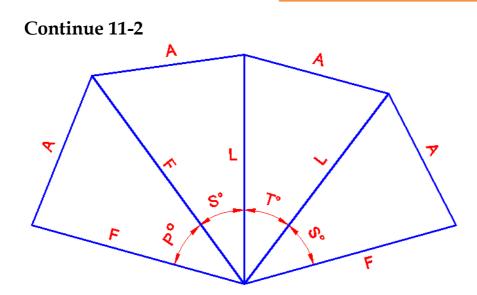
If C is even nember then

If C is odd number then

$$J = \sqrt{k^2 - (\frac{A}{2})^2}$$

11-2 Orthogonal Pyramid Four Sides





$$L = \sqrt{B^2 + \frac{A^2}{4}}$$
$$F = \sqrt{B^2 + \frac{5 * A^2}{4}}$$

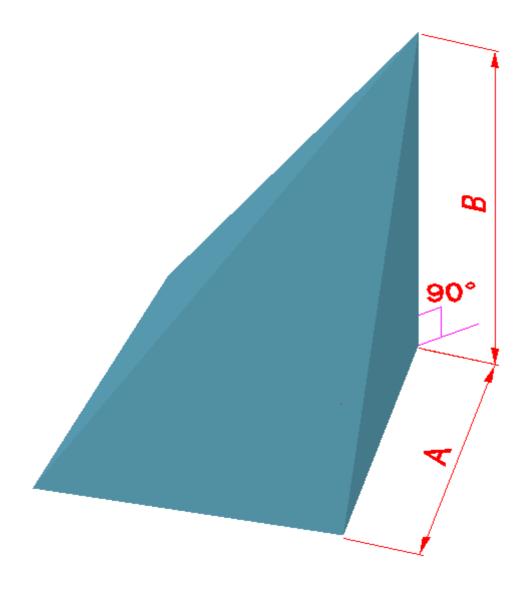
$$T^{\circ} = 2 * \tan^{-1}(\frac{A}{2 * B})$$

$$n = \frac{L^2 - A^2 + F^2}{2 * F}$$
$$S^\circ = \cos^{-1}(\frac{n}{L})$$

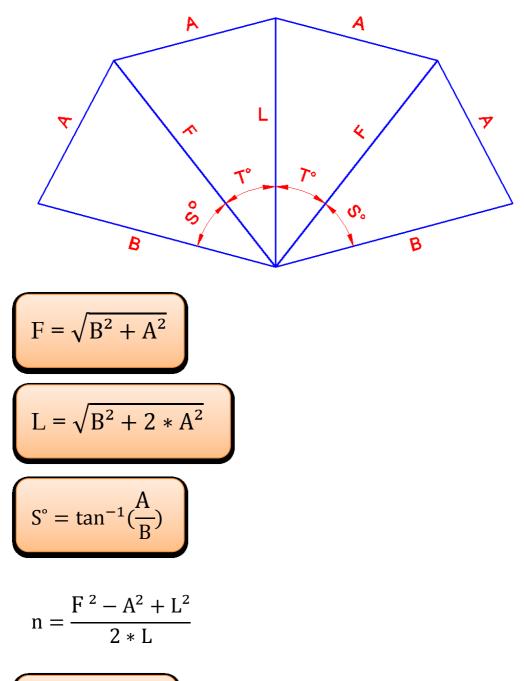
$$P^{\circ} = 2 * \sin^{-1}(\frac{A}{2 * F})$$

143

11-3 Orthogonal Pyramid Four Sides



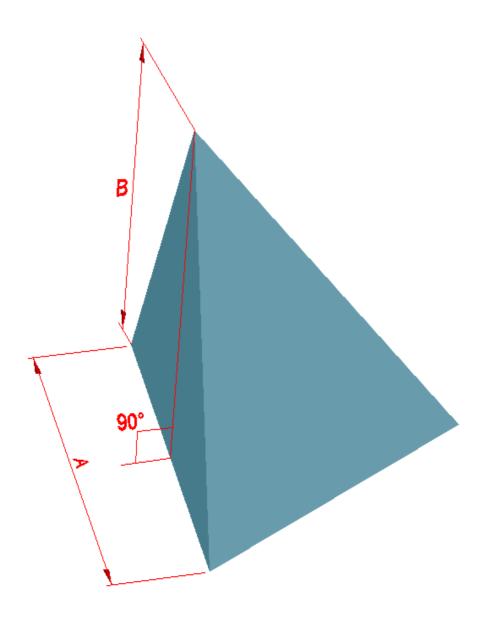
Continue 11-3



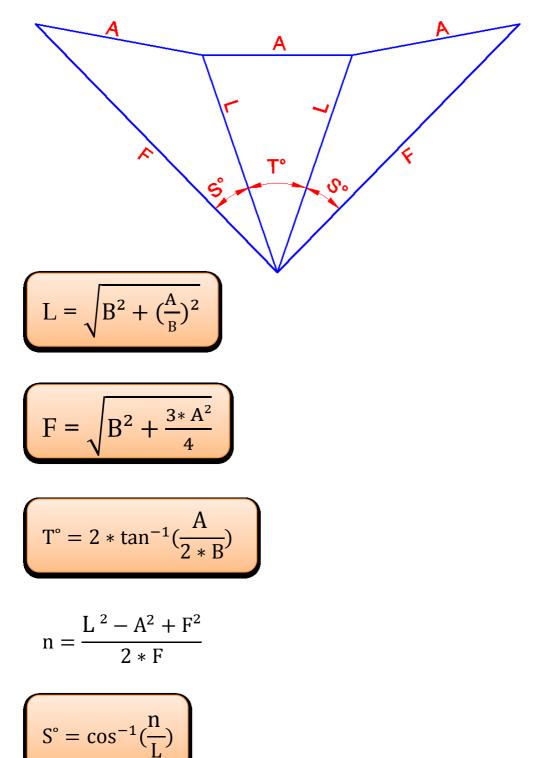
$$T^{\circ} = \cos^{-1}(\frac{n}{F})$$

145

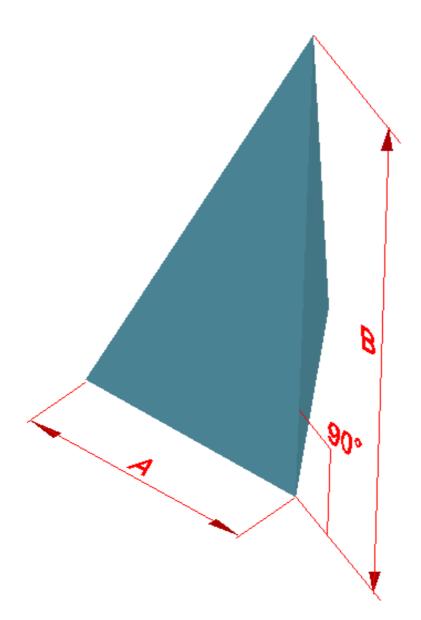
11-4 Orthogonal Pyramid Three Sides



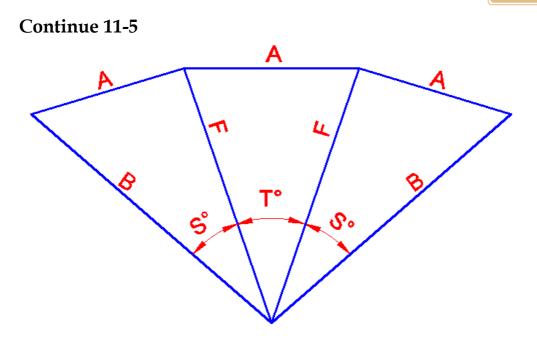
Continue 11-4



147



11-5 Orthogonal Pyramid Three Sides



$$F = \sqrt{B^2 + A^2}$$

$$S^{\circ} = \tan^{-1}(\frac{A}{B})$$

$$T^{\circ} = 2 * \sin^{-1}(\frac{A}{2 * F})$$

149

150 Hazem Hameed Rashid Albadry