
J. M. Hughes

Arduino
A Technical
 Reference
A HANDBOOK FOR TECHNICIANS,
ENGINEERS, AND MAKERS

J. M. Hughes

Arduino: A Technical Reference
A Handbook for Technicians, Engineers, and Makers

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92176-0

[LSI]

Arduino: A Technical Reference
by J. M. Hughes

Copyright © 2016 John Hughes. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Dawn Schanafelt
Production Editor: Colleen Lobner
Copyeditor: Rachel Head
Proofreader: Kim Cofer
Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: John M. Hughes
and Rebecca Demarest

May 2016: First Edition

Revision History for the First Edition
2016-05-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491921760 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Arduino: A Technical Reference, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491921760

Table of Contents

Preface. xiii

1. The Arduino Family. 1
A Brief History 1
Types of Arduino Devices 2
Arduino Galleries 4
Arduino-Compatible Devices 7

Hardware-Compatible Devices 7
Software-Compatible Devices 8

The Arduino Naming Convention 9
What Can You Do with an Arduino? 10
For More Information 12

2. The AVR Microcontroller. 13
Background 14
Internal Architecture 14
Internal Memory 17
Peripheral Functions 17

Control Registers 18
Digital I/O Ports 18
8-Bit Timer/Counters 19
16-Bit Timer/Counters 21
Timer/Counter Prescaler 21

Analog Comparator 21
Analog-to-Digital Converter 22
Serial I/O 24

USART 24
SPI 25

iii

TWI 25
Interrupts 26
Watchdog Timer 29
Electrical Characteristics 29
For More Information 29

3. Arduino-Specific AVR Microcontrollers. 31
ATmega168/328 32

Memory 32
Features 32
Packages 34
Ports 34
Pin Functions 34
Analog Comparator Inputs 34
Analog Inputs 34
Serial Interfaces 35
Timer/Clock I/O 36
External Interrupts 37
Arduino Pin Assignments 38
Basic Electrical Characteristics 38

ATmega1280/ATmega2560 39
Memory 39
Features 41
Packages 41
Ports 42
Pin Functions 42
Analog Comparator Inputs 42
Analog Inputs 43
Serial Interfaces 44
Timer/Clock I/O 45
External Interrupts 46
Arduino Pin Assignments 46
Electrical Characteristics 49

ATmega32U4 49
Memory 49
Features 51
Packages 51
Ports 51
Pin Functions 52
Analog Comparator Inputs 53
Analog Inputs 53
Serial Interfaces 54

iv | Table of Contents

Timer/Clock I/O 55
External Interrupts 56
USB 2.0 Interface 57
Electrical Characteristics 58
Arduino Pin Assignments 59

Fuse Bits 60
For More Information 62

4. Arduino Technical Details. 63
Arduino Features and Capabilities 63
Arduino USB Interfaces 64
Arduino Physical Dimensions 66

Full-Size Baseline Arduino PCB Types 67
Mega Form-Factor Arduino PCB Types 68
Small Form-Factor Arduino PCB Types 69
Special-Purpose PCB Types 73

Arduino Pinout Configurations 73
The Baseline Arduino Pin Layout 74
The Extended Baseline Pin Layout 76
The Mega Pin Layout 81
Nonstandard Layouts 83

For More Information 87

5. Programming the Arduino and AVR Microcontrollers. 89
Cross-Compiling for Microcontrollers 90
Bootloaders 92
The Arduino IDE Environment 94

Installing the Arduino IDE 95
Configuring the Arduino IDE 96

Cross-Compiling with the Arduino IDE 98
The Arduino Executable Image 101
The Arduino Software Build Process 101
Sketch Tabs 103
Arduino Software Architecture 104
Runtime Support: The main() Function 106
An Example Sketch 107
Constants 110
Global Variables 111

Libraries 112
Using Libraries in Sketches 112
Adding a Library to the Arduino IDE 116
Creating Custom Libraries 118

Table of Contents | v

Arduino Source Code 119

6. Life Without the Arduino IDE. 121
IDE Alternatives 121

PlatformIO 122
Ino 124

The AVR Toolchain 125
Installing the Toolchain 127
make 130
avr-gcc 131
binutils 132
avr-libc 135

Building C or C++ Programs from Scratch 137
Compiling with avr-gcc or avr-g++ 137
Multiple Source Files and make 138

AVR Assembly Language 140
The AVR Programming Model 141
Creating AVR Assembly Language Programs 143
AVR Assembly Language Resources 146

Uploading AVR Executable Code 146
In-System Programming 147
Programming with the Bootloader 148
Uploading Without the Bootloader 149
JTAG 151
AVRDUDE 152
Using an Arduino as an ISP 154
Bootloader Operation 154
Replacing the Bootloader 156

Summary 156

7. Arduino Libraries. 157
Library Components 158
Contributed Libraries 211

8. Shields. 215
Electrical Characteristics of Shields 216
Physical Characteristics of Shields 217
Stacking Shields 219
Common Arduino Shields 220

Input/Output 221
I/O Extension Shields 222
I/O Expansion Shields 226

vi | Table of Contents

Relay Shields 230
Signal Routing Shields 232
Memory 235
Communication 237
Serial I/O and MIDI 237
Ethernet 239
Bluetooth 241
USB 243
ZigBee 244
CAN 246
Prototyping 249
Creating a Custom Prototype Shield 253
Motion Control 253
DC and Stepper Motor Control 254
PWM and Servo Control 255
Displays 257
Instrumentation Shields 263
Adapter Shields 266
Miscellaneous Shields 268

Uncommon Arduino Shields 272
Sources 274

9. Modules and I/O Components. 275
Modules 276

Physical Form Factors 277
Interfaces 277
Module Sources 280
Module Descriptions 282

Grove Modules 309
Sensor and Module Descriptions 310
Sensors 312

Temperature, Humidity, and Pressure Sensors 312
Tilt Sensors 318
Audio Sensors 319
Light Sensors 320
Magnetic Sensors 324
Vibration and Shock Sensors 324
Motion Sensors 325
Contact and Position Sensors 327
Range Sensors 331

Communications 332
APC220 Wireless Modules 332

Table of Contents | vii

315/433 MHz RF Modules 332
ESP8266 Transceiver 333

Output Devices and Components 334
Light Sources 335
Relays, Motors, and Servos 339
Analog Signal Outputs 342

User Input 343
Keypads 343
Joysticks 344
Potentiometers and Rotary Encoders 345

User Output 345
Text Displays 345
Graphical Displays 347

Support Functions 347
Clocks 348
Timers 350

Connections 351
Working with Naked Jumper Wires 351
Module Connection Systems 351
Building Custom Connectors 352
Choosing a Connection Method 354

Sources 355
Summary 355

10. Creating Custom Components. 357
Getting Started 360
Custom Shields 365

Physical Considerations 366
Stacking Shields 367
Electrical Considerations 369

The GreenShield Custom Shield 369
Objectives 370
Definition and Planning 370
Design 371
Prototype 379
Final Software 385
Fabrication 393
Final Acceptance Testing 397
Operation 399
Next Steps 400

Custom Arduino-Compatible Designs 400
Programming a Custom Design 401

viii | Table of Contents

The Switchinator 401
Definition and Planning 402
Design 403
Prototype 416
Software 420
Fabrication 423
Acceptance Testing 427
Next Steps 428

Resources 428

11. Project: A Programmable Signal Generator. 431
Project Objectives 433
Definition and Planning 434
Design 435

Functionality 436
Enclosure 437
Schematic 438

Prototype 441
Control Inputs and Modes 441
Display Output 443
DDS Module 444

Software 446
Source Code Organization 447
Software Description 448
The DDS Library 456
Testing 457

Final Assembly 460
Pull-up Resistor Array 460
Input Protection 461
Chassis Components 462
DC Power 465

Final Testing and Closing 466
Reducing the Cost 466
Cost Breakdown 468
Resources 469

12. Project: Smart Thermostat. 471
Background 471

HVAC Overview 472
Temperature Control Basics 473
Smart Temperature Control 476

Project Objectives 477

Table of Contents | ix

Definition and Planning 477
Design 478

Functionality 478
Enclosure 480
Schematic 482
Software 482
User Input/Output 485
Control Output 488

Prototype 489
DHT22 Sensor 491
Rotary Encoder 491
Real-Time Clock Module 493
LCD Shield 493

Software 493
Source Code Organization 494
Software Description 494
Testing 497

Final Version 498
Assembly 498
Testing and Operation 501

Cost Breakdown 502
Next Steps 503
Resources 503

13. Model Rocket Launcher: A Design Study. 505
Overview 505
The Design Cycle 506
Objectives 508
Selecting and Defining Functional Requirements 510
Creating the Preliminary Design 514

Design Feasibility 517
Preliminary Parts List 520

Prototype 521
Final Design 522

Electrical 522
Physical 527
Software 529
Testing and Operation 532

Cost Analysis 533

A. Tools and Accessories. 535

x | Table of Contents

B. AVR ATmega Control Registers. 549

C. Arduino and Compatible Products Vendors. 575

D. Recommended Reading. 581

E. Arduino and AVR Software Development Tools. 585

Index. 589

Table of Contents | xi

Preface

Since its introduction in 2005 the Arduino has become one of the most successful
(some might argue the most successful) open source hardware projects in the world.
Boards based on the open designs released by the Arduino team have been fabricated
in countries around the world, including Italy, Brazil, China, the Netherlands, India,
and the United States. One can purchase a fully functional Arduino-compatible board
for around $15, and the Arduino development environment is readily available for
download and is completely free. Originally based on the 8-bit AVR family of micro‐
controllers (the AVR is itself an interesting device with an equally interesting history),
the Arduino has moved into the realm of 32-bit processing with the addition of the
Due model with an ARM processor, the Yún with an on-board module running the
OpenWrt version of Linux, and the upcoming Zero model. Arduinos have been used
for everything from interactive art to robotics, and from environmental sensors to the
smarts in small “CubeSat” satellites built by small teams and launched for a fraction
of what a full-size satellite would cost.

I bought my first Arduino (a Duemilanove) many years ago, more out of curiosity
than anything else. I had worked with microprocessor and microcontroller develop‐
ment systems since the early 1980s, starting with the 6502, 6800, and 8051, and then
moving on to the 8086, the Z80, the 80186, and the 68000 family. Early on I usually
programmed these devices in assembly language or PL/M, since these were really the
only rational choices at the time for embedded systems. Later it became feasible to
use C or Ada, as the capabilities of the microprocessors improved and the software
tools matured. In each case, however, I came to expect having loads of reference
material available: datasheets, hefty manuals, handbooks, and reference design docu‐
mentation that would arrive along with the development circuit board and its acces‐
sories. It usually showed up in a large, heavy box.

xiii

When my new Arduino arrived and I opened the very small box I found that there
was only a circuit board, a plug-in power pack, a few LEDs and resistors, some
jumper wires, and a solderless breadboard block. No manuals, no handbooks, and no
datasheets. Not even a CD with documents and software on it. Nothing more than a
few sheets of paper with a manifest of what was in the box and a URL to a web page
where I could read some “how to get started” material and find links to the software I
needed. I was, to say the least, surprised.

I was also ignorant. When I bought the Arduino I didn’t know its full backstory, nor
was I aware of its intended audience. It turns out that it was originally meant primar‐
ily for people with little or no hardcore technical background who just wanted to
experiment (in a playful sense) with something cool and make things go. In other
words, artists and tinkerers, not engineers who have a penchant for technical details
and an addiction to project plans, specifications, and, of course, manuals.

Once I understood this, it all made a lot more sense. Reading Massimo Banzi’s book
Getting Started with Arduino (O’Reilly) gave me a better understanding of the Ardu‐
ino philosophy, and it was a good starting place in my quest for additional details.
Also, unlike semiconductor manufacturers with their development kits, the folks on
the Arduino team aren’t in the business of selling chips—they’re working to inspire
creativity. The AVR microcontroller was chosen because it was inexpensive and it
could be easily integrated into their vision for a device that could be readily applied to
a creative endeavor. The AVR has enough computational “horsepower” and sufficient
built-in memory to do complex and interesting things, unlike earlier generations of
microcontrollers that usually needed expensive development tools and provided only
scant amounts of internal on-chip memory.

Simplicity and low cost aside, the real secret to the success of the Arduino is the firm‐
ware bootloader on the AVR chip, coupled with a simple and easy-to-use integrated
development environment (IDE) and the code libraries supplied with it—all provided
free under open source and Creative Commons licensing. The Arduino philosophy is
to make it as easy as possible to use an Arduino. By clearing away the bulk of the
technical details and simplifying the development process, the Arduino invites the
user to experiment, try new things, and yes, play. For the first time in a long time I
found myself actually having a lot of fun just connecting things in different combina‐
tions to see what I could make it do. I wish that the Arduino had been around when I
was teaching introductory embedded systems design—it would have helped reduce a
lot of frustration for the people in the class trying to wade through assembly language
listings, memory maps, and flowcharts.

Since my first Arduino arrived I’ve found many sources for useful and interesting
add-on components for the Arduino family, some of them quite amazing in terms of

xiv | Preface

http://shop.oreilly.com/product/9780596155520.do

1 Entering “Arduino” into the search field on eBay will return a multitude of things like ultrasonic range sen‐
sors, temperature and humidity sensors, various Arduino clones, Bluetooth and ZigBee shields, and much
more. But, unfortunately, some of the items come with little or no documentation, and even if there is some it
may not be particularly up-to-date or accurate. That doesn’t mean you shouldn’t consider these sellers (the
prices are usually excellent and the build quality is generally very good), but as always when buying things
online, caveat emptor.

both price and capabilities.1 In fact, I became something of an Arduino pack rat, buy‐
ing inexpensive shields and modules and building up a sizable collection of various
bits. But, sadly, I have to say that many times I’ve opened a package with a nifty new
gizmo in it, only to discover that there is no documentation of any kind. Not even a
simple wiring diagram.

As an engineer, it is particularly frustrating to me to purchase something interesting,
only to have it show up with no documentation. I then have to embark on a quest to
determine if any documentation actually does exist, and in a form that I can read (I
can’t read Chinese). Sometimes that search is fruitless, and I’m forced to resort to
component datasheets and reverse engineering the circuit board to figure out the wir‐
ing. Other times the information I’m seeking does exist, but it is scattered across mul‐
tiple websites in various bits and pieces. This situation is slowly improving, but it can
still be a real pain. After years of collecting stacks of notes, web page links, and data‐
sheets, I finally decided to get organized and assemble it in one place.

So, what does this book have that can’t be found somewhere on the Internet? Not that
much, to be perfectly honest, but hopefully what it will do is reduce a lot of the poten‐
tial frustration and wasted time—and of course there are all the bits that I’ve discov‐
ered on my own. The official technical data comes from manufacturers such as
Atmel, the Arduino team, and numerous other sources, both well known and
obscure. Some overseas vendors do have at least rudimentary websites, whereas oth‐
ers have very nice web pages with links to other sites for the documentation. This
book contains as much of the essential data as I could find or reverse engineer, all in
one convenient place, with as many of the holes plugged as I could manage. I wanted
to save others the frustration I’ve experienced trying to run down some mundane lit‐
tle technical detail about the USB interface, or figure out why a shield wasn’t working
correctly, or why that really neat sensor I bought from someone through eBay didn’t
seem to work at all.

The result of my frustrations is this book, the one I’ve been wanting for working with
the Arduino boards and shields. I really wanted something physical that I could keep
near at hand on my workbench. It isn’t always practical to have to refer to a web page
to look something up, and to make things even more interesting, sometimes access to
the Internet just isn’t available (like when you’re trying to debug a remote data log‐
ging device on a mountaintop with just a little netbook for company and no wireless
service for 60 miles in any direction). I wanted something that I could use to quickly

Preface | xv

2 The books Environmental Monitoring with Arduino and Atmospheric Monitoring with Arduino (O’Reilly), both
by Emily Gertz and Patrick Di Justo, offer some good ideas for doing just this with cheap and readily available
sensors and an Arduino.

look up the answer to a question when working with the Arduino and associated add-
on components, no matter where I was. As far as I know, such a thing didn’t exist
until now. I hope you find it as useful as I have as I assembled my notes for this book.

Intended Audience
This book is intended for those people who need or want to know the technical
details. Perhaps you’ve gone as far as you can with the introductory material and the
“99 amazing projects” type of books, and you now need to know how to do some‐
thing novel and unique. Or, you might be a working engineer or researcher who
would like to incorporate an Arduino into your experimental setup in the lab. You
might even be someone who wants to install an Arduino into an RC airplane, use one
as part of a DIY weather station,2 or maybe do something even more ambitious (a
CubeSat, perhaps?).

Ideally you should have a basic knowledge of C or C++, some idea of how electrons
move around in a circuit, and some experience building electronic devices. If I may
be so bold, I would suggest that you have a copy of my book Practical Electronics:
Components and Techniques (also from O’Reilly) on hand, along with some reference
texts on programming and electronics (see Appendix D for some suggestions).

What This Book Is
This book is a reference and a handbook. I have attempted to organize it such that
you can quickly and easily find what you are looking for. I have included the sources
of my information whenever possible, and those insights that are the result of my
own investigations are noted as such.

What This Book Is Not
This book is not a tutorial. That is not its primary purpose. I don’t cover basic elec‐
tronics, nor is there any discussion of the dialect of the C++ language that is used to
create the so-called “sketches” for programming an Arduino. There are some excel‐
lent tutorial texts available that cover general electronics theory and programming,
and I would refer the reader to those as a place to get started with those topics.

This book is also not an Arduino-sanctioned guide to the products produced by the
Arduino team. It is based on information gleaned from various sources, some more

xvi | Preface

http://shop.oreilly.com/product/0636920021582.do
http://shop.oreilly.com/product/0636920026686.do
http://shop.oreilly.com/product/0636920032113.do
http://shop.oreilly.com/product/0636920032113.do

obscure than others, along with my own notes and comments based on my experien‐
ces with the Arduino. As such, I am solely responsible for any errors or omissions.

About Terminology
The distinctions between processors, microprocessors, and microcontrollers arose
sometime in the early 1980s as manufacturers were trying to distinguish their prod‐
ucts based on size and amount of external circuitry required for the devices to do
something useful. Full-size mainframe processors and the smaller microprocessors
like those found in desktop PCs both typically require some external components
(sometimes a lot of them) in order to be useful. A microcontroller, on the other hand,
has everything it needs to do its job already built in. Also, a microprocessor will typi‐
cally support external memory, whereas a microcontroller may have only limited sup‐
port (if any at all) for adding additional memory to what is already on the chip itself.

Throughout this book I will use the terms “microcontroller” and “processor” inter‐
changeably. Although “microcontroller” might be considered to be technically more
correct, in my mind it is still a processor of data, just a smaller version of the huge
machines I once worked with in the distant past. They all do essentially the same
thing, just at different scales and processing speeds.

What’s in This Book
Chapter 1 presents a brief history of the Arduino in its various forms. It also introdu‐
ces the AVR microcontrollers used in the Arduino boards, and discusses the differ‐
ences between software-compatible and hardware-compatible products based on the
Arduino.

The Atmel AVR microcontroller is the subject of Chapter 2. This is intended as an
overview of what is actually a very sophisticated device, and so this chapter provides a
quick tour of the highlights. This includes the timer logic, the analog comparator, the
analog input, the SPI interface, and other primary subsystems on the chip.

Chapter 3 takes a closer look at the AVR microcontrollers used in Arduino boards,
namely the ATmega168/328, the ATmega1280/2560, and the ATmega32U4 devices. It
builds on the overview presented in Chapter 2, and provides additional low-level
details such as internal architecture, electrical characteristics, and chip pinouts.

Chapter 4 covers the physical characteristics and interface functions of various Ardu‐
ino boards. This includes the USB interface types, printed circuit board (PCB)
dimensions, and board pinout diagrams.

What really makes the Arduino unique is its programming environment, and that is
the subject of Chapter 5. This chapter defines the Arduino sketch concept and how it
utilizes the C and C++ languages to create sketches. It introduces the Arduino boot‐

Preface | xvii

loader and the Arduino main() function. This chapter also describes how you can
download the Arduino source code and see for yourself what it looks like under the
hood.

Chapter 6 describes the AVR-GCC toolchain and presents techniques for program‐
ming an Arduino board without using the Arduino IDE. It also covers makefiles and
includes a brief overview of assembly language programming. The chapter wraps up
with a look at the tools available to upload code into an AVR.

The focus of Chapter 7 is on the standard libraries supplied with the Arduino IDE.
The Arduino IDE is supplied with numerous libraries, and more are being added all
the time. If you want to know if a library module exists for a particular sensor or for a
specific operation, then this is a good starting point.

Chapter 8 presents the various types of shields available for the Arduino. It covers
many of the commonly available types, such as flash memory, prototyping, input/
output, Ethernet, Bluetooth, ZigBee, servo control, stepper motor control, LED dis‐
plays, and LCD displays. It also covers using multiple shields, and presents some hints
and tips for getting the most from a shield.

Chapter 9 describes some of the various add-on components available that can be
used with an Arduino. These include sensors, relay modules, keypads, and other
items that aren’t specific to the Arduino, but work with it quite nicely. Electrical pin‐
out information and schematics are provided for many of the items discussed.

Sometimes there just isn’t a readily available shield to do what needs to be done.
Chapter 10 describes the steps involved in creating a custom shield. It also describes
how to use an AVR microcontroller without an Arduino-type circuit board but still
take advantage of the Arduino IDE.

Chapters 11, 12, and 13 cover some projects that illustrate the capabilities of the AVR
microcontrollers and the Arduino boards. They are intended to demonstrate how an
Arduino can be applied in various situations, not as how-to guides for building a
board or device. You can, however, build any of the items described yourself, if you
feel so inclined, and they might serve as jumping-off points for your own projects.
Each example project description includes theory of operation, schematics, a detailed
parts list, PCB layouts (if required), and an overview of the software necessary to
make it go.

Because the main emphasis of this book is on the Arduino hardware and related
modules, sensors, and components, the software shown is intended only to highlight
key points; my aim was not to present complete, ready-to-run examples. The full
software listings for the examples and projects can be found on GitHub.

Chapter 11 describes a basic programmable signal generator, a handy thing to have
around when working with electronic circuits. With this project you can generate

xviii | Preface

https://www.github.com/ardnut

pulses at various duty cycles, output a sequence of pulses in response to a trigger
input, generate sine waves, and also create programmable patterns of pulses.

Chapter 12 covers the design and construction of a “smart” thermostat suitable for
use with a home HVAC (heating, ventilation, and air conditioning) system. Instead of
paying for something that is already built and sealed into a plastic case, you can build
it yourself and program it to behave exactly the way you want it to. I’ll show you how
to incorporate more than just a temperature sensor: features include multiple temper‐
ature and humidity sensors, and the use of your HVAC system’s fan to provide a
comfortable environment without the cost of running the compressor or lighting up
the heater.

In Chapter 13 we will look at how to build an automatic model rocket launcher with a
programmable sequencer and automatic system checks. Even if you don’t happen to
have a model rocket handy, this project describes techniques that can be applied to
many types of sequentially controlled processes, be it on a production line or a
robotic material handling device in a laboratory.

Appendix A is an overview of the basic tools and accessories you may need if you
want to go beyond prefabricated circuit boards and modules.

Appendix B is a compilation of the control registers for the ATmega168/328, the
ATmega1280/2560, and the ATmega32U4 microcontrollers.

Appendix C is a summary listing of the Arduino and compatible products distribu‐
tors and manufacturers listed in this book. It is by no means exhaustive, but hopefully
it will be enough to get you started on your quest to find what you need.

Appendix D lists some recommended books that cover not just the Arduino, but also
C and C++ programming and general electronics.

Finally, Appendix E is a summary of some of the readily available Arduino and AVR
software development tools that are currently out there.

Endorsements
Other than references to the Arduino team and the folks at Arduino.cc, there aren’t
any specific endorsements in this book—at least, not intentionally. I’ve made refer‐
ence to many different component manufacturers, suppliers, and other authors, but
I’ve tried to be evenhanded about it, and I don’t specifically prefer any one over
another. My only criteria in selecting those I do mention are that I own one or more
of their products and that I’ve successfully managed to use a shield, module, sensor,
or Arduino main PCB (or clone PCB in some cases) from the supplier in something,
even if just in a demonstration of some type. Any trademarks mentioned are the
property of their respective owners; they appear here solely for reference. As for the
photography, I tried to use my own components, tools, circuit boards, modules, and

Preface | xix

other items as much as possible, and although an image may show a particular brand
or model, that doesn’t mean it’s the only type available—it likely just happens to be
the one that I own and use in my own shop. In some cases I’ve used images with per‐
mission from the vendor or creator, works in the public domain, or images with a
liberal Creative Commons (CC) license, and these are noted and credited as appro‐
priate. I created all the diagrams, schematics, and other nonphotographic artwork,
and I am solely responsible for any errors or omissions in these figures.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xx | Preface

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/arduino-a-technical-reference.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xxi

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/arduino-a-technical-reference
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without the enduring patience and support
of my family. Writing appears to be habit-forming, but they’ve been very encouraging
and supportive, and will even bring me things to eat and occasionally check to make
sure I’m still alive and kicking in my office. It doesn’t get much better than that. I
would particularly like to thank my daughter Seren for her photographic assistance
and help in keeping my collection of various bits and pieces cataloged and organized.

I would also like to thank the editorial staff at O’Reilly for the opportunity to work
with them once again. As always, they have been helpful, patient, and willing to put
up with me. Special thanks goes to Brian Sawyer and Dawn Schanafelt for their excel‐
lent editorial support and guidance, and to Mike Westerfield for his insightful techni‐
cal review of the material.

xxii | Preface

CHAPTER 1

The Arduino Family

This chapter provides a brief history of the Arduino, along with a terse genealogy of
the various board types created since 2007. It doesn’t cover boards produced before
2007, nor does it attempt to be comprehensive in its coverage of the various clones
and derivatives that have been produced. The main focus here is on the differences
between the various primary types of Arduino boards, with a specific focus on the
types of processors used and the physical design of the boards. It also takes a quick
look at the range of possible applications for Arduino circuit boards.

Chapter 2 provides general information about the internal functions of the Atmel
AVR processors, and Chapter 3 covers the specific processors used in Arduino
boards. With the exception of the Yún, Chapter 4 describes the physical characteris‐
tics of different official Arduino boards introduced in this chapter.

A Brief History
In 2005, building upon the work of Hernando Barragán (creator of Wiring), Massimo
Banzi and David Cuartielles created Arduino, an easy-to-use programmable device
for interactive art design projects, at the Interaction Design Institute Ivrea in Ivrea,
Italy. David Mellis developed the Arduino software, which was based on Wiring.
Before long, Gianluca Martino and Tom Igoe joined the project, and the five are
known as the original founders of Arduino. They wanted a device that was simple,
easy to connect to various things (such as relays, motors, and sensors), and easy to
program. It also needed to be inexpensive, as students and artists aren’t known for
having lots of spare cash. They selected the AVR family of 8-bit microcontroller
(MCU or µC) devices from Atmel and designed a self-contained circuit board with
easy-to-use connections, wrote bootloader firmware for the microcontroller, and
packaged it all into a simple integrated development environment (IDE) that used
programs called “sketches.” The result was the Arduino.

1

Since then the Arduino has grown in several different directions, with some versions
getting smaller than the original, and some getting larger. Each has a specific
intended niche to fill. The common element among all of them is the Arduino run‐
time AVR-GCC library that is supplied with the Arduino development environment,
and the on-board bootloader firmware that comes preloaded on the microcontroller
of every Arduino board.

The Arduino family of boards use processors developed by the Atmel Corporation
of San Jose, California. Most of the Arduino designs utilize the 8-bit AVR series of
microcontrollers, with the Due being the primary exception with its ARM Cortex-M3
32-bit processor. We don’t cover the Due in this book, since it is radically different
from the AVR devices in many fundamental ways and really deserves a separate
discussion devoted to it and similar microcontrollers based on the ARM Cortex-M3
design.

Although an Arduino board is, as the Arduino team states, just a basic Atmel AVR
development board, it is the Arduino software environment that sets it apart. This is
the common experience for all Arduino users, and the cornerstone of the Arduino
concept. Chapter 5 covers the Arduino IDE, the libraries supplied with the IDE, and
the bootloader. Chapter 6 describes the process of creating software for an AVR MCU
without using the Arduino IDE.

Types of Arduino Devices
Over the years the designers at Arduino.cc have developed a number of board
designs. The first widely distributed Arduino board, the Diecimila, was released in
2007, and since its initial release the Arduino family has evolved to take advantage of
the various types of Atmel AVR MCU devices. The Due, released in 2012, is the first
Arduino to utilize a 32-bit ARM Cortex-M3 processor, and it breaks from the rest of
the family in terms of both processing power and board pinout configuration. Other
boards, like the LilyPad and the Nano, also do not have the same pinout as the other
members of the family, and are intended for a different range of applications—weara‐
bles in the case of the LilyPad; handheld devices for the Esplora; and compact size in
the case of the Mini, Micro, and Nano.

With each passing year new types of Arduino boards appear, so what is listed here
may be out of date by the time you’re reading it. The newer versions have more
advanced processors with more memory and enhanced input/output (I/O) features,
but for the most part they use the same pinout arrangements and will work with
existing add-on boards, called shields, and various add-on components such as sen‐
sors, relays, and actuators. Table 1-1 lists the Arduino types that have appeared since
2005. The newer versions of the Arduino will also run most of the sketches created
for older models, perhaps with a few minor tweaks and newer libraries, but sketches
written for the latest versions may or may not work with older models.

2 | Chapter 1: The Arduino Family

Table 1-1 is not a buyer’s guide. It is provided to give a sense of historical context to
the Arduino. As you can see, the years 2007 and 2008 saw the introduction of the
LilyPad; the small form-factor boards like the Nano, Mini, and Mini Pro; and the
introduction of the Duemilanove as a natural evolutionary step based on the Dieci‐
mila. While there are no significant physical differences between the Diecimila and
the Duemilanove, the Duemilanove incorporates some refinements in the power sup‐
ply, most notably in its automatic switchover between USB power and an external DC
(direct current) power supply. Later versions of the Duemilanove also utilize the
ATmega328 MCU, which provides more memory for programs.

Table 1-1 doesn’t include the Arduino Robot, which is a PCB with motors and wheels
attached. One of the newest boards in the Arduino lineup is the Yún, an interesting
beast that has both an ATmega32U4 microcontroller and a Linino module with an
Atheros AR9331 MIPS-based processor capable of running a version of the Linux-
based OpenWrt operating system. I won’t get into the OpenWrt end of the Yún, but
the Arduino side is basically just a standard Arduino (a Leonardo, to be specific). If
you want to learn more about the Yún, I would suggest checking it out on the Ardu‐
ino website.

Table 1-1. Timeline of Arduino products

Board name Year Microcontroller Board name Year Microcontroller
Diecimila 2007 ATmega168V Mega 2560 2010 ATmega2560

LilyPad 2007 ATmega168V/ATmega328V Uno 2010 ATmega328P

Nano 2008 ATmega328/ATmega168 Ethernet 2011 ATmega328

Mini 2008 ATmega168 Mega ADK 2011 ATmega2560

Mini Pro 2008 ATmega328 Leonardo 2012 ATmega32U4

Duemilanove 2008 ATmega168/ATmega328 Esplora 2012 ATmega32U4

Mega 2009 ATmega1280 Micro 2012 ATmega32U4

Fio 2010 ATmega328P Yún 2013 ATmega32U4 + Linino

When more than one microcontroller type is shown in Table 1-1, it indicates that a
particular version of an Arduino board was made initially with one microcontroller,
and later with the other (usually more capable) device. For example, an older version
of the Duemilanove will have an ATmega168, whereas newer models have the
ATmega328. Functionally the ATmega168 and the ATmega328 are identical, but the
ATmega328 has more internal memory.

The latest additions to the Arduino family, the Leonardo, Esplora, Micro, and Yún, all
use the ATmega32U4. While this part is similar to an ATmega328 it also incorporates
an integrated USB-to-serial interface component, which eliminates one of the integra‐
ted circuit (IC) parts found on boards like the Uno and Duemilanove.

Types of Arduino Devices | 3

https://www.arduino.cc/en/Main/ArduinoBoardYun
https://www.arduino.cc/en/Main/ArduinoBoardYun

The programming interface also behaves slightly differently with the boards that
use the ATmega32U4, but for most people this should be largely transparent. Chapter
2 describes the general functionality of AVR microcontrollers, Chapter 3 contains
descriptions of the specific AVR MCU types found in Arduino devices, and Chapter 4
provides descriptions of the primary Arduino circuit boards and their pinout defini‐
tions.

Arduino Galleries
Tables 1-1 through 1-5 show some of the various types of Arduino boards, both past
and present. It is not completely inclusive, since new types and updates to existing
types occur periodically. The following images show the wide diversity in physical
shapes and intended applications of the Arduino.

Physically, an Arduino is not a large circuit board. The baseline boards, which have
the physical pin arrangement commonly used for add-on boards (called shields,
described in Chapter 8), are about 2.1 by 2.7 inches (53.3 by 68.6 mm) in size.
Figure 1-1 shows a selection of Arduino boards with a ruler for scale, and Figure 1-2
shows a Nano mounted on a solderless breadboard.

Figure 1-1. Relative sizes of Arduino boards

Chapter 4 contains reference drawings with dimensions and pin definitions for most
of the common Arduino boards. Note that while it is small, a board like the Nano has
all of the same capabilities as a Duemilanove, except for the convenient pin sockets
and regular (type B) USB connector. It is ideal for applications where it will not be
disturbed once it is installed, and where small size is a requirement. Some applica‐
tions that come to mind are autonomous environmental data collection devices

4 | Chapter 1: The Arduino Family

(automated solar-powered weather data stations or ocean data collection buoys, for
example), timing and data collection for model rockets, security systems, and perhaps
even a “smart” coffee maker.

Figure 1-2. An Arduino Nano on a solderless breadboard

Table 1-2. Baseline layout of Arduino boards

Type Year introduced
Diecimila 2007

Duemilanove 2008

Uno (R3 version) 2010

Arduino Galleries | 5

Type Year introduced
Ethernet 2011

Leonardo 2012

Table 1-3. Mega layout of Arduino boards

Type Year introduced
Mega 2009

Mega 2560 2009

Mega ADK 2011

Table 1-4. Small form factor Arduino boards

Type Year introduced
Nano 2008

Mini 2008

Fio 2010

Micro 2012

6 | Chapter 1: The Arduino Family

Table 1-5. Special form factor Arduino boards

Type Year introduced
LilyPad 2007

Esplora 2012`

Arduino-Compatible Devices
In addition to the various board types designed or sanctioned by Arduino.cc, there
are many devices that are either hardware compatible or software compatible. What
makes these devices Arduino compatible is that they incorporate the Arduino boot‐
loader (or something that works like it), and they can be programmed with the Ardu‐
ino IDE by selecting the appropriate compatible Arduino board type from the IDE’s
drop-down list.

Hardware-Compatible Devices
An Arduino hardware–compatible device is one where the various I/O pins on the
board have been arranged to match one of the existing Arduino form factors. A
hardware-compatible board can (usually) accept any of the shields and plug-in mod‐
ules created for an official Arduino board. The reasons behind this are covered in
“The Arduino Naming Convention” on page 9.

In most cases hardware-compatible boards look like any other Arduino board, except
that the official Arduino logo and silkscreen graphics are missing. Other hardware-
compatible products might not look anything like a typical Arduino board, but do
provide the pin sockets in the correct arrangement for using a standard Arduino-type
shield board. Some hardware-compatible products include additional connections,
like the SainSmart version of the Uno with additional connectors for I/O functions.
Table 1-6 lists a few Arduino clones and compatible boards that are available. There
are many more than what is shown here, but this should give some idea of what
is available.

Arduino-Compatible Devices | 7

Table 1-6. Arduino hardware–compatible devices

Name Type Origin
SainSmart UNO Uno clone China

SainSmart Mega2560 Mega 2560 clone China

Brasuino Similar to the Uno,
with minor changes

Brazil

Diavolino An Arduino layout–compatible
clone kit

USA

Note that Diavolino is a kit and requires assembly.

Software-Compatible Devices
There are many Arduino software–compatible boards available. These utilize the
Arduino bootloader and development environment, but do not have a completely
Arduino-compatible physical form factor. Software-compatible devices can be pro‐
grammed with the Arduino development tools, but may use a different arrangement
of I/O pins, or perhaps use some other types of connectors in place of the pin sockets
found on stock Arduino boards. Custom circuits based on an AVR microcontroller
and built into some larger device or system would fall into the software-compatible
category if the Arduino bootloader is installed in the microcontroller.

The core of the Arduino is the processor and the preinstalled bootloader. Using that
definition, one could have just a bare ATmega AVR IC with the Arduino firmware
loaded into it. It could then be used with a solderless breadboard and the Arduino
development environment. AVR MCU ICs with preloaded bootloader code are avail‐
able for purchase from multiple sources, or you could do it yourself. Chapter 5
describes the steps necessary to load an AVR MCU with the Arduino bootloader
firmware.

8 | Chapter 1: The Arduino Family

It is interesting to note that some of the boards from Arduino, such as the Mini,
Micro, Nano, LilyPad, and Esplora, are not hardware compatible in terms of using the
“standard” I/O connector layout. They can’t be used directly with a conventional
shield, but they are still Arduino boards, and they are supported by the Arduino IDE.

The Boarduino from Adafruit Industries is one example of an Arduino software–
compatible device. This board is designed to mount on a standard solderless bread‐
board much like a full-size 40-pin IC. It is available in two styles: DC and USB. The
DC version does not have an on-board USB chip, so an external USB adapter is
needed to program it. Another example of a software-compatible board is the Drag‐
onfly from Circuit Monkey, which uses standard Molex-type connectors instead of
the pins and sockets used on a conventional Arduino. It is intended for high-
vibration environments, such as unmanned aerial vehicles (UAVs) and robotics.

The Raspduino is designed to mount onto a Raspberry Pi board, and it is functionally
equivalent to an Arduino Leonardo. This results in a combination that is roughly
equivalent to the Yún, but not exactly the same. Each setup has its own strengths and
weaknesses. Table 1-7 lists a few Arduino software–compatible boards.

Table 1-7. Arduino software–compatible devices

Name Description Origin
Boarduino DC Designed to fit on a solderless breadboard USA

Boarduino USB Designed to fit on a solderless breadboard USA

Dragonfly Uses Molex-type connectors for I/O USA

Raspduino Designed to fit on a Raspberry Pi board Netherlands

This is just a small selection of the various boards that are available. Because the AVR
microcontroller is easy to integrate into a design, it has found its way into numerous
applications. With the Arduino bootloader firmware, programming a device is greatly
simplified and the design possibilities are vast.

The Arduino Naming Convention
While the circuit design and software for the Arduino are open source, the Arduino
team has reserved the use of the term “Arduino” for its own designs, and the Arduino

The Arduino Naming Convention | 9

logo is trademarked. For this reason you will sometimes find things that behave and
look like official Arduino devices, but which are not branded Arduino and have not
been produced by the Arduino team. Some of them use “-duino” or “-ino” as part of
the product name, such as Freeduino, Funduino, Diavolino, Youduino, and so on.
Some, like the boards made by SainSmart, use just the model name (Uno and
Mega2560, for example).

At the time of this writing, there was an ongoing dispute between
the company created by the original founders (Arduino LLC) and a
different company started by one of the original founders (Arduino
SRL). As a result, Arduino LLC uses the trademark Arduino within
the United States and Genuino elsewhere.

Occasionally someone will produce a board that claims to be an Arduino, but is in
fact just a copy that uses the Arduino trademark without permission. The silkscreen
mask used to put the logo and other information on an official Arduino is also copy‐
righted, and the Arduino folks don’t release the silkscreen with the PCB layout files.
Massimo Banzi has a section of his blog devoted specifically to these unauthorized
boards, and his examination of blatant and shameless copies is interesting, to say the
least. Just search for the “hall of shame” tag.

The bottom line here is that you are welcome to copy the schematics, the bootloader
code, and the Arduino IDE, and use these to create your own version of an Arduino.
It is, after all, open source. Just don’t call it an Arduino or use the artwork from Ardu‐
ino.cc without permission.

What Can You Do with an Arduino?
In addition to the ease of programming made possible by the Arduino IDE, the other
big feature of the Arduino is the power and capability of the AVR microcontroller it is
based on. With a handful of readily available add-on shields (described in Chapter 8)
and a wide selection of low-cost sensor and actuator modules (these are described in
detail in Chapter 9), there really isn’t a whole lot you can’t do with an Arduino pro‐
vided that you keep a few basic constraints in mind.

The first constraint is memory. The AVR MCU just doesn’t have a whole lot of mem‐
ory available for program storage and variables, and many of the AVR parts don’t
have any way to add more. That being said, the ATmega32 and ATmega128 types can
use external memory, but then the I/O functions for those pins are no longer readily
available. Arduino boards were not designed to accommodate external memory, since
one of the basic design assumptions was that the AVR chip itself would have the nec‐
essary I/O and that the user would be running a relatively short program. The Ardu‐
ino was not intended to be a replacement for a full-on computer system with

10 | Chapter 1: The Arduino Family

http://www.massimobanzi.com

gigabytes of RAM and a hard disk drive (HDD). There are inexpensive Intel-based
single-board computers that fit that description, but they won’t fit into an old mint
tin, a section of PVC tubing strapped to a pole or a tree, a small robot, or the payload
section of a model rocket. An Arduino will.

The second constraint is speed. The Arduino CPU clock rate is typically between 8
and 20 MHz (see Chapter 4 for a detailed comparison of Arduino AVR device types).
While this may sound slow, you should bear in mind two key facts: first, the AVR is a
very efficient RISC (reduced instruction set computer) design, and second, things in
the real world generally don’t happen very quickly from a microcontroller’s perspec‐
tive. For example, how often does a so-called smart thermostat need to sample the
temperature in a home or office? Once a second is probably overkill, and once every 5
or even 10 seconds will work just fine. How often does a robot need to emit an ultra‐
sonic pulse to determine if there is an obstacle ahead? A pulse every 100 ms is proba‐
bly more than enough (unless the robot is moving very, very fast). So, for an Arduino
running at 16 MHz (like the Leonardo, for example), there will be on the order of
1,000,000 or more CPU clock ticks between sensor pulses, depending on whatever
else the CPU is doing with the pulses. Given that an AVR can execute many instruc‐
tions in one or two clock cycles, that’s a lot of available CPU activity in between each
pulse of the ultrasonic sensor.

The third main constraint is electrical power. Since the Arduino hardware is actually
nothing more than a PCB for an AVR IC to sit on, there is no buffering between the
microcontroller and the external world. You can perform a fast “charcoal conversion”
of an AVR (in other words, overheat the IC and destroy it) if some care isn’t taken to
make sure that you aren’t sourcing or sinking more current than the device can han‐
dle. Voltage is also something to consider, since some of the AVR types have 3.3V I/O,
whereas others are 5V tolerant. Connecting 5V transistor-transistor logic (TTL) to a
3.3V device usually results in unhappy hardware, and the potential for some smoke.

With the preceding constraints in mind, here are just a few possible applications for
an Arduino:

• Real-world monitoring
— Automated weather station
— Lightning detector
— Sun tracking for solar panels
— Background radiation monitor
— Automatic wildlife detector
— Home or business security system

• Small-scale control
— Small robots

What Can You Do with an Arduino? | 11

— Model rockets
— Model aircraft
— Quadrotor UAVs
— Simple CNC for small machine tools

• Small-scale automation
— Automated greenhouse
— Automated aquarium
— Laboratory sample shuttle robot
— Precision thermal chamber
— Automated electronic test system

• Performance art
— Dynamic lighting control
— Dynamic sound control
— Kinematic structures
— Audience-responsive artwork

In Chapters 11, 12, and 13 we will look at applications such as a smart thermostat, a
programmable signal generator, and an automated rocket launch control system to
help fulfill your suborbital yearnings. These are just the tip of the iceberg. The possi‐
bilities are vast, and are limited only by your imagination. So long as you don’t try to
make an Arduino do the job of a full-on computer system, you can integrate one into
all sorts of interesting applications—which is exactly what the folks at Arduino.cc
want you to do with it.

For More Information
The boards listed in this chapter are just a small selection of what is available, and
there is much more to the story of the Arduino. Entering “Arduino” into Google’s
search bar will produce thousands of references to explore.

The official Arduino website can be found at http://www.arduino.cc.

Massimo Banzi’s blog is located at http://www.massimobanzi.com.

Also, check the appendixes for more website links and book recommendations.

12 | Chapter 1: The Arduino Family

http://www.arduino.cc
http://www.massimobanzi.com

CHAPTER 2

The AVR Microcontroller

Because an AVR-based Arduino is really just a physical platform for an AVR micro‐
controller (i.e., a breakout board), the electrical characteristics of an Arduino are
essentially those of the AVR device on the PCB. Understanding the low-level details
of an Arduino is really a matter of understanding the AVR device that powers it.
To that end, this chapter presents broadly applicable material consisting of high-level
descriptions of the main functions utilized in the AVR family. This includes the AVR
CPU and the so-called peripheral functions such as timers, counters, serial interface
logic, analog-to-digital (A/D) converters, analog comparators, and discrete digital I/O
ports.

AVR microcontrollers are available in a wide variety of configurations and package
types, which makes writing a chapter like this something of a challenge. Fortunately,
the various types of 8-bit AVR devices use a common central processing unit (CPU)
and a modular internal architecture built around an internal data bus. This allows for
each variant to incorporate different combinations and quantities of functional mod‐
ules into the AVR’s internal circuitry to meet specific design requirements and sup‐
port different intended applications.

Due to practical limitations of space, the descriptions in this chapter are necessarily
terse and focused on the essential characteristics, and don’t provide may of the low-
level details that can be found in the reference documentation available from Atmel.
If you need or want to know the logic circuit and register-level details of what’s inside
a particular AVR microcontroller, datasheets, user’s guides, and application notes are
available from Atmel free of charge.

13

http://www.atmel.com

Background
The AVR microcontroller began life in the early 1990s as a student project at the Nor‐
wegian Institute of Technology. Two students, Alf-Egil Bogen and Vegard Wollan,
devised an 8-bit device with a RISC-type internal architecture while working at a
local semiconductor facility in Trondheim, Norway. The design was later sold to
Atmel, where Bogen and Wollan continued to work on it and refine it.

The AVR microcontrollers are highly configurable and very versatile, and they
embody several unique features that set them apart from other 8-bit microcontrollers
like the 8051 or 68HC05 components. The AVR is a modified Harvard architecture 8-
bit RISC microcontroller. In a Harvard architecture read-only program, code and
modifiable data (variables) are stored in separate memory spaces. By way of compari‐
son, a microprocessor like the 68040 uses the Von Neumann architecture, in which
programs and data share the same memory space.

The AVR family of devices was one of the first to incorporate on-board flash memory
for program storage, instead of the one-time programmable ROM (read-only mem‐
ory), EPROM (erasable programmable read-only memory), or EEPROM (electrically
erasable programmable read-only memory) found on other microcontrollers. This
makes reprogramming an AVR microcontroller simply a matter of loading new pro‐
gram code into the device’s internal flash memory. Most AVR parts do have a small
amount of EEPROM for storing things like operating parameters that must persist
between changes in the flash memory.

Internal Architecture
Internally, an AVR ATmega microcontroller consists of an AVR CPU and various
input/output, timing, analog-to-digital conversion, counter/timer, and serial interface
functions, along with other functions depending on the part number. These are
referred to by Atmel as peripheral functions. Besides the I/O functions, the main
differences between the AVR microcontroller types lie in the amount of on-board
flash memory and available I/O functions. The 8-bit parts all use essentially the same
AVR CPU core. The following list shows just some of the basic features of AVR
microcontrollers:

• RISC architecture
— 131 instructions
— 32 8-bit general-purpose registers
— Up to 20 MHz clock rate (20 MIPS operation)

• On-board memory
— Flash program memory (up to 256K)

14 | Chapter 2: The AVR Microcontroller

— On-board EEPROM (up to 4K)
— Internal SRAM (up to 32K)

• Operating voltage
— VCC = 1.8 to 5.5V DC

Figure 2-1 shows a simplified block diagram of the AVR CPU core found on 8-bit
AVR devices. Figure 2-2 shows a generic high-level block diagram of an AVR device.
This is not intended to represent any specific AVR device, just an AVR in general.

Figure 2-1. AVR CPU block diagram

Internal Architecture | 15

The peripheral functions are controlled by the CPU via an internal high-speed data
bus. Control registers (separate from the CPU registers) are used to configure the
operation of the peripherals. All peripheral functions share port pins with the discrete
digital I/O capabilities.

Figure 2-2. Generic AVR microcontroller block diagram

16 | Chapter 2: The AVR Microcontroller

Atmel makes many different types of AVR microcontrollers, which allows hardware
designers to pick the part that meets their specific needs and reduce the number of
unused pins and wasted space on a printed circuit board. Some, like the tinyAVR
parts, come in small surface-mount packages with as few as six pins. Each has one or
more discrete digital I/O ports, which can be programmed to perform multiple func‐
tions (see “Peripheral Functions” on page 17).

For example, the ATTINY13-20SQ comes in an eight-pin DIP (dual in-line pin) or
SOIC (small-outline IC) surface-mount package. Six of the device’s pins are connec‐
ted to an internal 8-bit I/O port (port B). The other two are VCC (power) and
ground. The six port B pins can be configured as analog inputs, oscillator outputs,
interrupt inputs, SPI signals, or discrete digital inputs or outputs. Internally, the
device—even one this small—is still an AVR microcontroller, and it has 1K of built-in
flash memory for programs, and 64 bytes of RAM for variables.

On the other end of the spectrum there are AVR parts like the ATmega649, with nine
8-bit ports (A through J, but no I, since I can be confused for the numeral 1), 64K of
flash memory, 4K of RAM, 2K of EEPROM, 54 general-purpose I/O pins, and an
integrated LCD interface. The AVR32 series of parts are 32-bit AVR processors with
up to 256K of flash memory, 32K of RAM, an integrated DSP (digital signal process‐
ing) unit, protected memory, and 36 general-purpose I/O pins.

No Arduino boards use an AVR part as small as a tinyAVR (it would be a real chal‐
lenge to squeeze the Arduino bootloader into something with only 1K of flash and
still have room left for a useful program), or anything like the ATmega649 or an
AVR32, but the point here is that the AVR family offers many choices, and the parts
that have been selected for use in Arduino devices aren’t the only AVR parts that
could be used.

Internal Memory
AVR devices all contain various amounts of three types of memory: flash, SRAM
(static random-access memory), and EEPROM. The flash memory is used to store
program code, the SRAM is used to hold transient data such as program variables
and the stack, and the EEPROM can hold data that needs to persist between software
changes and power cycles. The flash and EEPROM can be loaded externally, and both
will retain their contents when the AVR is powered off. The SRAM is volatile, and its
contents will be lost when the AVR loses power.

Peripheral Functions
The heart of an AVR microcontroller is the 8-bit CPU, but what makes it a truly use‐
ful microcontroller is the built-in peripheral functions integrated into the IC with the
CPU logic. The peripheral functions of an AVR device vary from one type to another.

Internal Memory | 17

Some have one timer, some have two or more (up to six for some types). Other parts
may have a 10-bit A/D converter (ADC), whereas others feature a 12-bit converter.
All AVR parts provide bidirectional I/O pins for discrete digital signals. Some ver‐
sions also support a touchscreen and other types of interactive interfaces.

This section contains general descriptions of the peripheral functions that are used
with the various types of AVR devices found in Arduino products, with the
ATmega168 serving as a baseline example. This section does not attempt to provide
an exhaustive reference for each type of AVR microcontroller, but instead covers the
general functionality of each type of peripheral function. Refer to Chapter 3 for spe‐
cific information regarding the processors used in the Arduino boards described in
this book, and also see the Atmel technical documentation for low-level details not
provided here.

Control Registers
In addition to 32 general-purpose registers in the CPU, AVR devices also have a num‐
ber of control registers that determine how the I/O ports, timers, communications
interfaces, and other features will behave. The control register set will vary from one
type of device to another, since different types may have more or less ports than
others, and different peripheral function configurations. The control registers for
the AVR parts used in the Arduino boards covered in this book can be found in
Appendix B. They are also described in detail in the documentation available directly
from Atmel.

Even a modest AVR part like the ATmega168 has far more internal functionality than
it has pins available to dedicate to each function. For this reason, most of the pins on
an AVR microcontroller can be configured to perform specific functions based on the
settings contained in the control registers. Because the pin functions are dynamically
configurable, it is possible to have a pin perform one type of function at one point
in time, and then perform a different function once the control register value has
been modified.

For example, pin 12 of an ATmega168 in a 28-pin DIP package is connected to PD6
(Port D, bit 6), but it can also be configured to act as an interrupt source (PCINT22),
as the positive input for the AVR’s internal analog comparator (AIN0), or as the out‐
put of a timer comparison logic circuit (the Timer/Counter0 output compare match
A), which can be used to generate a PWM (pulse width modulation) signal.

Digital I/O Ports
AVR microcontrollers use bidirectional I/O ports to communicate with the external
world. A port is an 8-bit register wherein some or all of the bits are connected to
physical pins on the AVR device package. Different types of AVR devices have differ‐

18 | Chapter 2: The AVR Microcontroller

ent numbers of ports, ranging from one for the ATTINY13-20SQ up to nine for the
ATmega649. Ports are labeled as A, B, C, and so on.

Each pin of a port is controlled by internal logic that manages the signal direction, the
state of an internal pull-up resistor, timing, and other functions. A simplified sche‐
matic is shown in Figure 2-3. The Px in Figure 2-3 refers to port bit/pin x (0 through
7). For a detailed description of the AVR port logic, see the AVR technical references.

Figure 2-3. AVR I/O port block diagram

Because of the sophisticated logic used to control functionality, an AVR port can per‐
form many different functions—some of them simultaneously. When a port is config‐
ured as an output it is still possible to read data from it, and an output can be used to
trigger an interrupt (discussed in “Interrupts” on page 26).

8-Bit Timer/Counters
There are two forms of 8-bit timer/counter available in AVR microcontrollers. In the
first type the clock input is derived from the primary system clock, and hence the
timer/counter is synchronous. The second form has the ability to operate in an asyn‐
chronous mode using an external clock source. Figure 2-4 shows a simplified sche‐

Peripheral Functions | 19

matic of an AVR timer. The control registers for the timer/counter are defined in
Appendix B and described in detail in the Atmel technical documentation.

Figure 2-4. AVR timer/counter block diagram

The Timer/Counter0 module in an AVR 8-bit timer/counter peripheral function is a
general-purpose timer and/or counter that features two independent output compari‐
son circuits with four modes of operation. The timer/counter modes of operation are
as follows:

Normal mode
This is the simplest mode of timer/counter operation. The count always incre‐
ments and no counter clear is performed when the counter reaches its maximum
8-bit value. When this occurs, the counter overflows and returns to zero. When
the counter wraps back to zero, the Timer/Counter Overflow Flag (TOV0) is set.
The TOV0 flag can be viewed as a ninth bit, but it is only set, not cleared, by a
timer overflow. The timer overflow interrupt will automatically clear the over‐
flow flag bit, and the interrupt can be used to increment a second software-based
counter in memory. A new counter value can be written to the TCNT0 register at
any time.

Clear Timer on Compare (CTC) mode
In the Clear Timer on Compare mode, the OCR0A register is used to manipulate
the counter resolution by defining the maximum value of the counter. This
results in greater control of the compare match output frequency and helps to
simplify external event counting.

20 | Chapter 2: The AVR Microcontroller

Fast PWM mode
The fast pulse width modulation mode supports high-frequency PWM waveform
generation.

Phase correct PWM mode
The phase correct PWM mode provides a high-resolution phase correct PWM
waveform generation option.

In addition, some AVR devices contain an 8-bit timer/counter with the ability to
operate asynchronously using external clock inputs (the TOSC1 and TOSC2 clock
input pins). It is functionally equivalent to the synchronous 8-bit timer/counter cir‐
cuit described previously.

16-Bit Timer/Counters
The 16-bit timer/counter is similar to the 8-bit version, but with an extended count
range. It is true 16-bit logic, which allows for 16-bit variable period PWM generation.
The module also features two independent output comparison circuits, double-
buffered output comparison registers, and an input capture circuit with noise cancel‐
ing. In addition to PWM generation the 16-bit timer/counter can be used for high-
resolution external event capture, frequency generation, and signal timing
measurement. It has the ability to generate four different interrupts (TOV1, OCF1A,
OCF1B, and ICF1).

Timer/Counter Prescaler
In an AVR device one or more counters may share the same prescaler logic, but with
different settings. The prescaler is essentially a divider circuit that generates a deriva‐
tive of the system I/O clock at f/8, f/64, f/256, or f/1024, which are referred to as taps.
One timer/counter might use the f/64 tap, whereas another might use the f/1024 tap.
The use of a prescaler allows the range of a timer/counter to be extended to more
closely match the rate at which an external event occurs, and also increases the time
in between timer/counter overflows and resets.

Analog Comparator
The analog comparator section of an AVR microcontroller is used to compare the
input voltages on the AIN0 and AIN1 pins. Although AIN0 is defined as the positive
input and AIN1 as the negative, this refers to the relationship between them, not the
actual polarity of the input voltages. Figure 2-5 shows a simplified schematic of the
analog comparator circuit of an AVR.

Analog Comparator | 21

Figure 2-5. AVR analog comparator block diagram

When AIN0 is greater than AIN1, the comparator logic sets the comparator flag
ACO. The output of the comparator can be configured to trigger the input capture
function of one of the timer/counter modules, and it can also generate an interrupt
specific to the comparator. The interrupt event can be configured to trigger on com‐
parator output rise, fall, or toggle.

The analog comparator circuit can do more than just compare the voltages on the
AIN0 and AIN1 inputs. The input of the analog comparator may also be configured
such that the AIN1 input can be compared to the internal bandgap reference voltage,
or AIN0 can be compared to the output of the ADC multiplexer (and this voltage is
still available to the input of the ADC). The unusual symbols with four arrows are
analog gates. How a gate will respond to a control input is indicated by the inversion
circle—when the inverting control input is used it will pass an analog signal when the
control is low, and otherwise it will pass a signal when it is high.

Analog-to-Digital Converter
Most AVR microcontrollers contain an 8-bit, 10-bit, or 12-bit analog-to-digital con‐
verter. The 8-bit converters are found in the ATtiny6 and ATtiny10 parts. Some of the
automotive versions of AVR microcontrollers have no ADC.

When an ADC is part of the AVR design, it will have anywhere from 4 to 28 inputs.
The actual number of available inputs depends largely on the physical package. Each
input is selected one at a time via an internal multiplexer—they are not all active

22 | Chapter 2: The AVR Microcontroller

simultaneously. In addition, some of the I/O pins used by the ADC input multiplexer
may also be assigned to other functions.

ATmega168 devices have either six or eight ADC input channels, depending on the
package type. The PDIP (plastic DIP) package has a 10-bit ADC with six input chan‐
nels. The TQFP and QFN/MFL surface-mount packages have a 10-bit ADC with
eight input channels. Figure 2-6 shows a block diagram of the AVR ADC peripheral
function.

Figure 2-6. AVR analog-to-digital converter block diagram

Analog-to-Digital Converter | 23

Notice in Figure 2-6 that the AVR employs what is called a “successive approxima‐
tion” converter. This type of converter isn’t particularly fast, but it is simple to imple‐
ment, requiring only a DAC (digital-to-analog converter) and a comparator. The
typical conversion time for a 10-bit AVR ADC in free-running mode, while still
maintaining full resolution, is around 65 microseconds (µs) per sample.

Serial I/O
The ATmega168 provides three primary forms of serial interface: synchronous/asyn‐
chronous serial, SPI master/slave synchronous, and a byte-oriented two-wire inter‐
face similar to the Philips I2C (Inter-Integrated Circuit) standard.

USART
A common component of many AVR parts is a built-in USART (universal synchro‐
nous/asynchronous receiver-transmitter), also referred to as a UART (universal asyn‐
chronous receiver-transmitter). This function can be used to implement an RS-232 or
RS-485 interface, or used without external interface logic for chip-to-chip communi‐
cations. The baud rate is determined by the frequency of the clock used with the
microcontroller, with 9,600 being a typical speed. Higher rates are possible with a fast
external crystal. The USART can also be used in SPI (serial peripheral interface)
mode, in addition to the dedicated SPI logic found in AVR devices. Figure 2-7 shows
the basic internal components of the AVR USART peripheral function.

Figure 2-7. AVR USART block diagram

24 | Chapter 2: The AVR Microcontroller

1 Master out, slave in; master in, slave out; and serial clock.

SPI
The SPI peripheral logic of the AVR supports all four standard SPI modes of opera‐
tion. I/O pins on the AVR device may be configured to act as the MOSI, MISO, and
SCK1 signals used by SPI. These pins are different from the RxD and TxD (recieve
data and transmit data) pins used by the USART. Figure 2-8 shows a high-level view
of the SPI logic.

Figure 2-8. AVR SPI block diagram

TWI
The third form of serial I/O supported by many AVR devices is the two-wire interface
(TWI). This interface is compatible with the Philips I2C protocol. It supports both
master and slave modes of operation, and a 7-bit device address. The TWI interface
can achieve transfer speeds of up to 400 kHz with multimaster bus arbitration and
has the ability to generate a wakeup condition when the AVR is in sleep mode. Inter‐

Serial I/O | 25

nally, the TWI peripheral is rather complex—much more so than either the USART
or SPI peripherals. Figure 2-9 shows an overview of the TWI interface.

Figure 2-9. AVR TWI (I2C) block diagram

Interrupts
Interrupts are an essential function of a modern processor. They allow the processor
to respond to events, either internal or external, by switching to a special block of
interrupt handler code to deal with the interrupt. Once the block of code has been
executed, control returns to the program that was interrupted at the place where the
interrupt occurred. In the AVR an interrupt response may be enabled or disabled via

26 | Chapter 2: The AVR Microcontroller

bits in the control registers. This section is specific to the ATmega168. For other
microcontroller types, refer to Appendix A or the official Atmel documentation.

The ATmega168 has two external interrupt inputs: INT0 and INT1. These inputs can
be configured to trigger on a falling edge, a rising edge, or a low level. The EICRA
control register (see Appendix B) is used to configure the behavior. INT0 and INT1
require the presence of an I/O clock. The low-level interrupt mode will generate
interrupts as long as the input is held low.

The ATmega168 I/O pins can also serve as interrupt sources. The port-change inter‐
rupts are defined as PCINT0 through PCINT23, each of which is associated with one
of the device’s I/O port pins. When enabled, an interrupt will be generated whenever
the state of a port pin changes, even if the pin is configured to act as an output. This
allows a pin to generate an interrupt under software control when a program toggles
the state of the pin while the port change interrupt detect is enabled.

When any pin in the range from PCINT0 to PCINT7 changes, it will trigger the PCI0
interrupt. Pins in the range PCINT8 to PCINT14 will trigger PCI1, and pins in the
range PCINT16 to PCTIN23 trigger the PCI2 interrupt. The registers PCMSK0,
PCMSK1, and PCMSK2 control which pins contribute to pin change interrupts.

When an enabled interrupt occurs, the CPU will jump to a location in a vector table
in memory that has been assigned to that particular interrupt. The address contains a
jump instruction (RJMP) that points to the actual block of code for that interrupt.
When the interrupt code is done, execution returns to the point in the original pro‐
gram where the interrupt occurred. Figure 2-10 shows how the interrupt vector table
is used to switch execution to the interrupt code block, and then return control to the
main program once the interrupt code is finished.

The ATmega168, for example, has a vector table with 26 entries, as shown in
Table 2-1. For other processor types, refer to the Atmel documentation for more
information on interrupts and how they are managed in the AVR devices.

Table 2-1. ATmega168 interrupt vectors

Vector Address Source Definition
1 0x0000 RESET External pin, power-on, brown-out, and watchd

2 0x0002 INT0 External interrupt request 0

3 0x0004 INT1 External interrupt request 1

4 0x0006 PCINT0 Pin change interrupt request 0

5 0x0008 PCINT1 Pin change interrupt request 1

6 0x000A PCINT2 Pin change interrupt request 2

7 0x000C WDT Watchdog time-out interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 compare match A

9 0x0010 TIMER2 COMPB Timer/Counter2 compare match B

Interrupts | 27

http://www.atmel.com/design-support/documentation/

Vector Address Source Definition
10 0x0012 TIMER2 OVF Timer/Counter2 overflow

11 0x0014 TIMER1 CAPT Timer/Counter1 capture event

12 0x0016 TIMER1 COMPA Timer/Counter1 compare match A

13 0x0018 TIMER1 COMPB Timer/Counter1 compare match B

14 0x001A TIMER1 OVF Timer/Counter1 overflow

15 0x001C TIMER0 COMPA Timer/Counter0 compare match A

16 0x001E TIMER0 COMPB Timer/Counter0 compare match B

17 0x0020 TIMER0 OVF Timer/Counter0 overflow

18 0x0022 SPI, STC SPI serial transfer complete

19 0x0024 USART, RX USART, Rx complete

20 0x0026 USART, UDRE USART, data register empty

21 0x0028 USART, TX USART, Tx complete

22 0x002A ADC ADC conversion complete

23 0x002C EE READY EEPROM ready

24 0x002E ANALOG COMP Analog comparator

25 0x0030 TWI Two-wire serial interface

26 0x0032 SPM READY Store program memory ready

Figure 2-10. AVR interrupt vectors (ATmega168/328)

28 | Chapter 2: The AVR Microcontroller

Watchdog Timer
The AVR provides a watchdog timer (WDT) with a configurable time-out period
ranging from 16 ms to 8. If the WDT is enabled it can be used to generate a reset
upon time-out, generate an interrupt on time-out, or a combination of both. It uses a
separate on-chip oscillator, and because the WDT is clocked from a separate oscilla‐
tor it will continue to count when the microcontroller is in sleep mode. It can there‐
fore be used to awaken the microcontroller after a specific period of time.

Another common use for the WDT is to force either a reset or an interrupt if the
timer expires without a reset action from the software. This is useful for forcing the
microcontroller out of deadlocks or detecting runaway code.

Electrical Characteristics
The ATmega168 and ATmega328 AVR microcontrollers can operate with a VCC of
1.8 to 5.5V DC. The ATmega32U4 can utilize a VCC of 2.7 to 5.5V DC.

The current consumption of an AVR device will vary depending on the device type,
the active or inactive (sleep) state of the microcontroller, and the clock speed. Values
across the ATmega and XMEGA product lines range from 0.55 milliamps (mA) to 30
mA. The total current consumption is also dependent on the amount of current
sourced through the I/O pins. Chapter 3 lists specific values for the ATmega168,
ATmega328, ATmega1280, ATmega2560, and ATmega32U4 microcontrollers.

For More Information
Chapter 3 describes the pinouts used for the three types of AVR MCUs encountered
on Arduino boards, and Chapter 4 shows how the AVR MCU pins are mapped to the
I/O pins on various Arduino boards.

Each of the various AVR MCUs may have different combinations of internal periph‐
eral functions, and in some cases the functionality may vary slightly between types.
The best source of definitive information for AVR MCUs is the Atmel website.

Watchdog Timer | 29

http://www.atmel.com

CHAPTER 3

Arduino-Specific AVR Microcontrollers

This chapter presents technical descriptions of the types of AVR parts used in Ardu‐
ino models that are based on 8-bit AVR devices. This is intended to build on the
functional descriptions presented in Chapter 2 for AVR microcontrollers in general,
but with a specific focus on the ATmega168/328, ATmega1280/2560, and
ATmega32U4 microcontrollers.

From the perspective of someone programming an Arduino with the IDE, the micro‐
controller is a simplified abstraction of the actual underlying AVR device. The code
necessary to perform operations such as configuring an output pin to generate a
PWM signal or internally route an analog voltage into the built-in ADC is straight‐
forward. The internal addresses of the control registers and their control bits are pre‐
defined, so the sketch author need not worry about the low-level details.

Because an Arduino board is really nothing more than a carrier for an AVR chip, the
electrical characteristics of the Arduino are largely those of the processor. The pins
from the chip are connected directly to the pin terminals or solder pads along the
edge of the Arduino board. There is no buffering or level-shifting between the chips
and the board’s connection points.

At the time this book was written Arduino used five basic types of ATmega micro‐
controllers and three variations, for a total of eight part numbers. These are listed in
Table 3-1. The main differences between the various AVR devices lie in the amount of
on-board flash memory available, the maximum clock speed, the number of I/O pins
on the chip, and of course the available internal peripheral functions. The
ATmega32U4 device also has a built-in USB interface, which eliminates the need for a
second part to handle the USB communications. The devices all use the same CPU
instruction set.

31

Table 3-1. AVR microcontrollers used in Arduino products

Microcontroller Flash I/O pins (max) Notes
ATmega168 16K 23 20 MHz clock

ATmega168V 16K 23 10 MHz clock

ATmega328 32K 23 20 MHz clock

ATmega328P 32K 23 20 MHz clock, picoPower

ATmega328V 32K 23 10 MHz clock

ATmega1280 128K 86 16 MHz clock

ATmega2560 256K 86 16 MHz clock

ATmega32U4 32K 26 16 MHz clock

This inherent level of compatibility means that programs written for an Arduino Die‐
cimila should compile and run with no changes on an Uno board. The primary dif‐
ference between a Diecimila and an Uno is that one uses an ATmega168 and the other
is based on an ATmega328P. As you can see from Table 3-1, the ATmega328P has
twice as much on-board flash memory as the ATmega168. So, programs written for
an Uno might not be backward compatible with a Diecimila if the code was designed
for use with the larger amount of program memory.

ATmega168/328
The ATmega168 and ATmega328 are basically the same chip with different amounts
of on-board memory. The block diagram of an ATmega168 or 328 device is shown in
Figure 3-1.

Memory
The ATmega328 has twice the amount of each type of memory as the ATmega168, as
shown in Table 3-2. Other than this, the two parts are identical.

Table 3-2. ATmega168/328 on-board memory

ATmega168 ATmega328
Flash program memory 16K bytes 32K bytes

EEPROM 512 bytes 1K bytes

RAM 1K bytes 2K bytes

Features
These two parts share the following features:

• In-system programming by on-chip boot program

32 | Chapter 3: Arduino-Specific AVR Microcontrollers

• Two 8-bit timer/counters with separate prescaler and compare mode
• One 16-bit timer/counter with separate prescaler, compare mode, and capture

mode
• Real-time counter with separate oscillator
• Six PWM channels
• Six- or eight-channel 10-bit ADC (depends on package type)
• USART
• Master/slave SPI serial interface
• Two-wire serial interface (Philips I2C compatible)
• Programmable watchdog timer
• Analog comparator
• 23 programmable I/O lines

Figure 3-1. ATmega168/328 microcontroller internal block diagram

ATmega168/328 | 33

Packages
The ATmega168 and ATmega384 are available in four different package types: 28-pin
DIP, 28-pin MLF surface-mount, 32-pin TQFP surface-mount, and 32-pin MLF
surface-mount. The 28-pin DIP is the most commonly used package on Arduino
boards, although the Uno SMD uses a 32-pin surface-mount package. This section
will focus on the PDIP version of the ATmega168.

Ports
The ATmega168/328 has three ports designated as B, C, and D. Ports B and D are 8-
bit ports. Port C has six pins available that can be used as ADC inputs. PC4 and PC5
are also connected to the TWI logic and provide SCL and SDA I2C-compatible sig‐
nals (clock and data). Also note that PC6 is typically used as the RESET input. There
is no PC7 on the ATmega168/328 parts. Also note that there is no Port A in the
ATmega168/328 part.

Each port provides bidirectional discrete digital I/O with programmable internal
pull-up resistors. The on/off states of the pull-up resistors are selected via control reg‐
ister bits for specific port pins.

The port output buffers have symmetrical drive characteristics with both sink and
source capability. As inputs, port pins that are externally pulled low will source cur‐
rent if the internal pull-up resistors are activated. Port pins are placed in a tri-state
(high impedance) mode when a reset condition becomes active, even if the clock is
not running.

Pin Functions
Figure 3-2 shows the pin functions for the 28-pin DIP package. Refer to the Atmel
documentation for pinout information for the surface-mount packages.

Analog Comparator Inputs
Figure 3-3 shows the locations of the AIN0 and AIN1 pins for an ATmega168 or
ATmega328 in a PDIP package. Note that AIN0 shares a pin with the OC0A timer/
counter output (PD6). So, if PD6 is being used as a PWM output, it cannot be used as
the AIN0 input unless it is reconfigured each time its function needs to change.

Analog Inputs
Except for the SCL and SDA pins used for TWI serial communications, the analog
input pins are available for use as either discrete digital I/O or analog inputs without
conflicts with other AVR peripheral functions. Figure 3-4 shows the pins of the PDIP
package for an ATmega168 that are used for analog inputs.

34 | Chapter 3: Arduino-Specific AVR Microcontrollers

http://bit.ly/atmel-docs
http://bit.ly/atmel-docs

Figure 3-2. ATmega168/328 microcontroller DIP package pin functions

Figure 3-3. ATmega168/328 microcontroller analog comparator input pins

Serial Interfaces
Figure 3-5 shows the I/O pins of an ATmega168 (PDIP package) used by the serial
interface functions. Because none of the serial functions share port pins, it is possible
to use all three forms without port conflicts.

ATmega168/328 | 35

Figure 3-4. ATmega168/328 microcontroller ADC input pins

Figure 3-5. ATmega168/328 microcontroller serial I/O pins

Timer/Clock I/O
The internal timer/counter logic of an ATmega168/328 AVR is complex, and this is
reflected in the chip’s pin assignments, shown in Figure 3-6. Note that the OCxn pins
(OC0A, OC0B, OC1A, OC1B, OC2A, and OC2B) are available as PWM outputs, and
this is how they are labeled on an Arduino board. Also note that T1 and OSC0B share
the same pin (PD5), but otherwise the PWM-capable outputs can be used without
conflicts with other timer/counter functions.

36 | Chapter 3: Arduino-Specific AVR Microcontrollers

Figure 3-6. ATmega168/328 microcontroller timer/counter pins

External Interrupts
The port D pins PD2 and PD3 are specifically intended for use as external interrupt
inputs. Any of the PCINT0 to PCINT23 pins may also be used as external interrupt
inputs without interfering with other assigned functions (see “Interrupts” on page 26
for an overview of how these interrupts can be used). Figure 3-7 shows the external
interrupt inputs available with the ATmega168/328 devices.

Figure 3-7. ATmega168/328 microcontroller interrupt input pins

ATmega168/328 | 37

Arduino Pin Assignments
The Diecimila, Duemilanove, Uno, and Ethernet boards use the same basic board lay‐
out pattern (described in Chapter 4), as shown in Figure 3-8. These Arduino boards
employ a nomenclature for the pin socket headers on the board based on the func‐
tions of the pins of the ATmega168 or ATmega328 installed on the PCB. The main
emphasis is on the functions most commonly used, which are discrete digital I/O,
analog inputs, and the PWM output capabilities of the AVR microcontroller.

Basic Electrical Characteristics
Table 3-3 shows some of the basic electrical characteristics of the ATmega168/328
microcontrollers, with an emphasis on power consumption.

With a VCC of between 1.8 and 2.4 volts a low input on an I/O pin is defined as a
voltage between –0.5 and two-tenths (0.2) of VCC. For a VCC between 2.4 and 5.5
volts a low input is defined as a voltage between –0.5 and three-tenths (0.3) of VCC.

With a VCC of between 1.8 and 2.4 volts a high input is defined as a voltage between
seven-tenths (0.7) VCC and VCC + 0.5 volts. For a VCC between 2.4 and 5.5 volts it
is defined as a voltage between six-tenths (0.6) VCC and VCC + 0.5 volts.

Table 3-3. ATmega168/328 power consumption characteristics

Device Parameter Condition VCC Typical Max
ATmega168 Power supply current Active 8 MHz 5V 4.2 mA 12 mA

Idle 8 MHz 5V 0.9 mA 5.5 mA

Power-save mode 32 MHz TOSC 1.8V 0.75 uA

32 MHz TOSC 5V 0.83 uA

Power-down mode WDT enabled 3V 4.1 uA 15 uA

WDT disabled 3V 0.1 uA 2 uA

ATmega328 Power supply current Active 8 MHz 5V 5.2 mA 12 mA

Idle 8 MHz 5V 1.2 mA 5.5 mA

Power-save mode 32 MHz TOSC 1.8V 0.8 uA

32 MHz TOSC 5V 0.9 uA

Power-down mode WDT enabled 3V 4.2 uA 15 uA

WDT disabled 3V 0.1 uA 2 uA

38 | Chapter 3: Arduino-Specific AVR Microcontrollers

Figure 3-8. Arduino labels for ATmega168/328 pins

ATmega1280/ATmega2560
As with the ATmega168/328, the primary difference between an ATmega1280 and an
ATmega2560 is in the amount of on-board memory. Otherwise, these devices are
identical. A simplified block diagram of an ATmega1280 or 2560 device is shown in
Figure 3-9.

For the sake of clarity there are some minor details missing from Figure 3-9, but the
essential parts are there. For a more detailed diagram, refer to the Atmel documenta‐
tion for the ATmega1280 and ATmega2560 parts. Also note that Figure 3-9 shows the
internal functions available with the 100-pin package. The 64-pin package supports a
subset of what is described here.

Memory
The ATmega2560 has twice the amount of each type of memory as the ATmega1280,
and eight times as much flash memory as the ATmega328 MCU. The available mem‐
ory is shown in Table 3-4. Other than this, the ATmega1280 and ATmega2560 in the
same package types are identical.

ATmega1280/ATmega2560 | 39

Figure 3-9. ATmega1280/2560 microcontroller internal block diagram

40 | Chapter 3: Arduino-Specific AVR Microcontrollers

Table 3-4. ATmega1280/2560 on-board memory

ATmega1280 ATmega2560
Flash program memory 128K bytes 256K bytes

EEPROM 4K bytes 4K bytes

RAM 8K bytes 8K bytes

Features
These two parts share the following features:

• In-system programming by on-chip boot program
• Two 8-bit timer/counters with separate prescaler and compare mode
• Four 16-bit timer/counters with separate prescaler, compare mode, and capture

mode
• Real-time counter with separate oscillator
• 12 PWM channels
• Output compare modulator
• Six-channel, 10-bit ADC
• Four USART functions
• Master/slave SPI serial interface
• Two-wire serial interface (Philips I2C compatible)
• Programmable watchdog timer
• Analog comparator
• 86 programmable I/O lines

Packages
The ATmega1280 and ATmega2560 devices are available in a 100-pin TQFP package,
a 100-pin BGA (ball grid array) package, and a 64-pin TQFP package. Figure 3-10
shows the relative sizes and pin spacing (pitch) of the three available package types.
Only the 100-pin packages provides all of the functionality shown in Figure 3-9.

The Arduino Mega and Mega2560 boards both use the 100-pin version of the TQFP
package.

ATmega1280/ATmega2560 | 41

Ports
The 100-pin versions of the ATmega1280 and ATmega2560 parts have 11 ports,
labeled A through L. Note that there is no I port, since the letter I can be mistaken for
the numeral 1.

Figure 3-10. ATmega1280/2560 packages

Ports A, B, C, D, and E are bidirectional 8-bit ports. Port B has better drive capabili‐
ties than the other ports. Ports F and K are used as inputs to the internal A/D con‐
verter, but can also serve as bidirectional ports. Port G is a 6-bit port, and ports H, J,
and L are 8-bit bidirectional interfaces. Each port provides bidirectional discrete digi‐
tal I/O with programmable internal pull-up resistors. The on/off states of the pull-up
resistors are selected via control register bits for specific port pins.

The port output buffers have symmetrical drive characteristics with both sink and
source capability. As inputs, port pins that are externally pulled low will source cur‐
rent if the internal pull-up resistors are activated. Port pins are placed in a tri-state
(high impedance) mode when a reset condition becomes active.

Pin Functions
The diagrams in this section refer to the 100-pin version of the ATmega1280/2560
devices. For details regarding the BGA and 64-pin parts, refer to the Atmel technical
documentation.

Analog Comparator Inputs
Like the smaller ATmega168/328 devices, the ATmega1280/2560 parts have two ana‐
log comparator inputs, as detailed in Table 3-5 and shown in Figure 3-11.

42 | Chapter 3: Arduino-Specific AVR Microcontrollers

Table 3-5. Analog comparator inputs

Pin Port Function
4 PE2 AIN0

5 PE3 AIN1

Figure 3-11. ATmega1280/2560 analog comparator input pins

Analog Inputs
The ATmega1280/2560 devices support up to 16 A/D converter inputs. These are
located on ports F and K, and are connected to pins 82 through 97 on the 100-pin
package (see Table 3-6). Port F also has alternate functions TCK, TMS, TDI, and
TDO, and port K pins are connected to port interrupts PCINT16 through PCINT23.
The physical pin locations are shown in Figure 3-12.

Table 3-6. Analog inputs

Pin Port Function Pin Port Function
82 PK7 ADC15 90 PF7 ADC7

83 PK6 ADC14 91 PF6 ADC6

84 PK5 ADC13 92 PF5 ADC5

85 PK4 ADC12 93 PF4 ADC4

86 PK3 ADC11 94 PF3 ADC3

87 PK2 ADC10 95 PF2 ADC2

88 PK1 ADC9 96 PF1 ADC1

89 PK0 ADC8 97 PF0 ADC0

ATmega1280/ATmega2560 | 43

Figure 3-12. ATmega1280/2560 ADC input pins

Serial Interfaces
The ATmega1280/2560 devices have four internal USART functions. These are
brought out as four pairs of pins, one serving as TXD and the other as RXD. The SPI
interface is available on port B on pins 19 through 22 of the 100-pin package. The
two-wire interface (I2C) is connected to port D via pins 43 and 44. The pin assign‐
ments are listed in Tables 3-7 through 3-12. Figure 3-13 shows the locations of the
serial I/O pins on the 100-pin package.

Figure 3-13. ATmega1280/2560 serial I/O pins

44 | Chapter 3: Arduino-Specific AVR Microcontrollers

Table 3-7. USART 0

Pin Port Function
2 PE0 RXD0

3 PE1 TXD0

Table 3-8. USART 1

Pin Port Function
45 PD2 RXD1

46 PD3 TXD1

Table 3-9. USART 2

Pin Port Function
12 PH0 RXD2

13 PH1 TXD2

Table 3-10. USART 4

Pin Port Function
63 PJ0 RXD3

64 PJ1 TXD3

Table 3-11. SPI

Pin Port Function
19 PB0 SS (active low)

20 PB1 SCK

21 PB2 MOSI

22 PB3 MISO

Table 3-12. TWI

Pin Port Function
43 PD0 SCL

44 PD1 SDA

Timer/Clock I/O
There are five timer/counter functions in an ATmega1280/2560 device, as shown in
Figure 3-14. Table 3-13 lists the pins. Note that there is no T2 pin.

ATmega1280/ATmega2560 | 45

Table 3-13. Atmega1280/2560 timer/counter pins

Pin Port Function Pin Port Function
1 PG5 OC0B 50 PD7 T0

5 PE3 OC3A 15 PH3 OC4A

6 PE4 OC3B 16 PH4 OC4B

7 PE5 OC3C 17 PH5 OC4C

8 PE6 T3 18 PH6 OC2B

9 PE7 ICP3 27 PH7 T4

23 PB4 OC2A 35 PL0 ICP4

24 PB5 OC1A 36 PL1 ICP5

25 PB6 OC1B 37 PL2 T5

26 PB7 OC0A/OC1C 38 PL3 OC5A

47 PD4 ICP1 39 PL4 OC5B

49 PD6 T1 40 PL5 OC5C

External Interrupts
The ATmega1280/2560 devices support eight external interrupt inputs in addition to
the port interrupt functions available on ports B, J, and K. The pins are listed in
Table 3-14.

Table 3-14. ATmega 1280/2560 interrupt pins

Pin Port Function Pin Port Function
6 PE4 INT4 43 PD0 INT0

7 PE5 INT5 44 PD1 INT1

8 PE6 INT6 45 PD2 INT2

9 PE7 INT7 46 PD3 INT3

Arduino Pin Assignments
The Mega and Mega2560 Arduino boards use the board layout pattern described in
Chapter 4. These Arduino boards employ a nomenclature for the pin socket headers
on the board based on the functions of the pins of the ATmega1280 or ATmega2650
installed on the PCB. The main emphasis is on the functions most commonly used,
which are discrete digital I/O, analog input, and the PWM output capabilities of the
AVR microcontroller.

Table 3-15 lists the pins on a Mega or Mega2560 PCB and the connections to the AVR
ATmega1280/2560 device on the board. Functions in parentheses are external mem‐
ory addressing pins, and a tilde (~) is used to indicate an active-low (true when low)

46 | Chapter 3: Arduino-Specific AVR Microcontrollers

signal. Unlike the smaller Arduino boards, the Mega boards are capable of using
external SRAM.

Figure 3-14. ATmega1280/2560 timer/counter pins

Figure 3-15. ATmega1280/2560 interrupt input pins

ATmega1280/ATmega2560 | 47

Table 3-15. Arduino Mega and Mega2560 pin assignments

Mega
board pin

Chip
pin #

Function Mega
board pin

Chip
pin #

Function

0 2 RXD0 35 55 I/O (A10)

1 3 TXD0 36 54 I/O (A9)

2 5 OC3B [PWM] 37 53 I/O (A8)

3 6 OC3C [PWM] 38 50 T0

4 1 OC0B [PWM] 39 70 I/O (ALE)

5 4 OC3A [PWM] 40 52 I/O (~RD)

6 15 OC4A [PWM] 41 51 I/O (~WR)

7 16 OC4B [PWM] 42 42 PL7

8 17 OC4C [PWM] 43 41 PL6

9 18 OC2B [PWM] 44 40 OC5C [PWM]

10 23 OC2A [PWM] 45 39 OC5B [PWM]

11 24 OC1A [PWM] 46 38 OC5A [PWM]

12 25 OC1B [PWM] 47 37 T5

13 26 OC0A [PWM] 48 36 ICP5

14 64 TXD3 49 35 ICP4

15 63 RXD3 50 22 MISO

16 13 TXD2 51 21 MOSI

17 12 RXD2 52 20 SCK

18 46 TXD1 53 19 ~SS

19 45 RXD1 54 97 A0 (analog in)

20 44 SDA 55 96 A1 (analog in)

21 43 SCL 56 95 A2 (analog in)

22 78 I/O (AD0) 57 94 A3 (analog in)

23 77 I/O (AD1) 58 93 A4 (analog in)

24 76 I/O (AD2) 59 92 A5 (analog in)

25 75 I/O (AD3) 60 91 A6 (analog in)

26 74 I/O (AD4) 61 90 A7 (analog in)

27 73 I/O (AD5) 62 89 A8 (analog in)

28 72 I/O (AD6) 63 88 A9 (analog in)

29 71 I/O (AD7) 64 87 A10 (analog in)

30 60 I/O (A15) 65 86 A11 (analog in)

31 59 I/O (A14) 66 85 A12 (analog in)

32 58 I/O (A13) 67 84 A13 (analog in)

33 57 I/O (A12) 68 83 A14 (analog in)

34 56 I/O (A11) 69 82 A15 (analog in)

48 | Chapter 3: Arduino-Specific AVR Microcontrollers

Note that pins 22 through 37 and pins 39, 40, and 41 may be used to access external
memory. Otherwise, they can be used as normal discrete digital I/O pins.

Electrical Characteristics
Table 3-16 shows some of the basic electrical characteristics of the ATmega1280/2560
microcontrollers, with an emphasis on power consumption.

Table 3-16. ATmega1280/2560 power consumption characteristics

Device Parameter Condition VCC Typical Max
ATmega1280 Power supply current Active 8 MHz 5V 10 mA 14 mA

ATmega2560 Power supply current Idle 8 MHz 5V 2.7 mA 4 mA

both Power-down mode WDT enabled 3V <5 uA 15 uA

WDT disabled 3V <1 uA 7.5 uA

With a VCC of between 1.8 and 2.4 volts a low input on an I/O pin is defined as a
voltage between –0.5 and two-tenths (0.2) of VCC. For a VCC between 2.4 and 5.5
volts a low input is defined as a voltage between –0.5 and three-tenths (0.3) of VCC.

With a VCC of between 1.8 and 2.4 volts a high input is defined as a voltage between
seven-tenths (0.7) VCC and VCC + 0.5 volts. For a VCC between 2.4 and 5.5 volts it
is defined as a voltage between six-tenths (0.6) VCC and VCC + 0.5 volts.

ATmega32U4
The ATmega32U4 is a member of Atmel’s XMEGA microcontroller line. It has 32 KB
of flash program memory, 2.5 KB of SRAM, and 1 KB of EEPROM. I/O functions are
accessed through ports B through F. There is no port A in this particular device.
Figure 3-16 shows a block diagram of the main internal components of an
ATmega32U4.

The ATmega32U4 features an integrated USB 2.0 full-speed interface. This eliminates
the need for a separate outboard interface chip. It also includes a 1149.1-compliant
JTAG interface for on-chip debugging. The ATmega32U4 can operate with supply
voltages ranging from 2.7 to 5.5 volts.

Memory
As shown in Table 3-17, the ATmega32U4 has the same amount of flash memory and
EEPROM as an ATmega328, but comes with 2.5 KB of RAM instead of 2 KB.

ATmega32U4 | 49

Table 3-17. ATmega32U4 on-board memory

ATmega32U4
Flash program memory 32K bytes

EEPROM 1K bytes

RAM 2.5K bytes

Figure 3-16. ATmega32U4 microcontroller internal block diagram

50 | Chapter 3: Arduino-Specific AVR Microcontrollers

Features
The ATmega32U4 has the following features:

• In-system programming by on-chip boot program
• One 8-bit timer/counter with separate prescaler and compare mode
• Two 16-bit timer/counters with separate prescaler, compare mode, and capture

mode
• One 10-bit high-speed timer/counter with phase-locked loop (PLL) and compare

mode
• Four 8-bit PWM channels
• Four PWM channels with 2- to 16-bit programmable resolution
• Six high-speed PWM channels with 2- to 11-bit programmable resolution
• Output compare modulator
• 12-channel, 10-bit ADC
• USART functions with CTS/RTS handshake
• Master/slave SPI serial interface
• Two-wire serial interface (Philips I2C compatible)
• Programmable watchdog timer
• Analog comparator
• On-chip temperature sensor
• 26 programmable I/O lines

Packages
The ATmega32U4 is available in either TQFP44 or QFN44 surface-mount packages.
The pin designations, shown in Figure 3-17, are the same for both package types.

Ports
The ATmega32U4 has five ports labeled B through F. In the 44-pin QFN/TQFP
surface-mount packages only ports B and D have all eight bits present on the package
pins. Ports C, E, and F are represented internally as 8-bit registers, but only bits PC6
and PC7 of port C are available externally. For port E only bits PE2 and PE6 are avail‐
able externally, and for port F bits PF2 and PF3 are not present on the package pins.

ATmega32U4 | 51

Figure 3-17. ATmega32U4 microcontroller 44-pin package

In addition to various peripheral functions ports B, C, D, E, and F are bidirectional
discrete digital I/O ports. Each port provides bidirectional discrete digital I/O with
programmable internal pull-up resistors. The on/off states of the pull-up resistors are
selected via control register bits for specific port pins.

The port output buffers have symmetrical drive characteristics with both sink and
source capability. As inputs, port pins that are externally pulled low will source cur‐
rent if the internal pull-up resistors are activated. Port pins are placed in a tri-state
(high impedance) mode when a reset condition becomes active.

Pin Functions
Table 3-18 lists the pin assignments of an ATmega32U4 in a 44-pin package. The
mapping of the chip pins to the pin headers on an Arduino Leonardo board can be
found in “Arduino Pin Assignments” on page 59.

52 | Chapter 3: Arduino-Specific AVR Microcontrollers

Table 3-18. ATmega32U4 TQFP/QFN-44 pin assignments

Pin Functions Port Pin Functions Port Pin Functions Port
1 INT6/AIN0 PE6 16 XTAL2 n/a 31 OC3A/OC4A PC6

2 USB UVCC n/a 17 XTAL1 n/a 32 ICP3/CLK0/OC4A PC7

3 USB D– n/a 18 OC0B/SCL/INT0 PD0 33 HWB PE2

4 USB D+ n/a 19 SDA/INT1 PD1 34 VCC n/a

5 USB UGnd n/a 20 RXD1/INT2 PD2 35 GND n/a

6 USB UCap n/a 21 TXD1/INT3 PD3 36 ADC7/TDI PF7

7 USB VBus n/a 22 XCK1/CTS PD5 37 ADC6/TD0 PF6

8 PCINT0/SS PB0 23 GND n/a 38 ADC5/TMS PF5

9 PCINT1/SCLK PB1 24 AVCC n/a 39 ADC4/TCK PF4

10 PDI/PCINT2/MOSI PB2 25 ICP1/ADC8 PD4 40 ADC1 PF1

11 PDO/PCINT3/MISO PB3 26 T1/OC4D/ADC9 PD6 41 ADC0 PF0

12 PCINT7/OC0A/OC1C/RTS PB7 27 T0/OC4D/ADC10 PD7 42 AREF n/a

13 RESET n/a 28 PCINT4/ADC11 PB4 43 GND n/a

14 VCC n/a 29 PCINT5/OC1A/OC4B/ADC12 PB5 44 AVCC n/a

Analog Comparator Inputs
There is only one external input to the analog comparator in an ATmega32U4. AIN0
is located on pin 1. The other input to the analog comparator comes from the input
multiplexer to the on-chip ADC. The internal circuitry is identical to that shown in
“Analog Comparator” on page 21 but without the AIN1 pin connection.

Analog Inputs
The ATmega32U4 provides 12 A/D converter inputs, as listed in Table 3-19 and
shown in Figure 3-18. These are located on ports B, D, and F. Note that there are no
external pins for ADC2 and ADC3.

Table 3-19. ATmega32U4 ADC inputs

Pin Port Function Pin Port Function Pin Port Function
41 PF0 ADC0 37 PF6 ADC6 27 PD7 ADC10

40 PF1 ADC1 36 PF7 ADC7 28 PB4 ADC11

39 PF4 ADC4 25 PD4 ADC8 29 PB5 ADC12

38 PF5 ADC5 26 PD6 ADC9 30 PB6 ADC13

ATmega32U4 | 53

Figure 3-18. ATmega132U4 ADC input pins

Serial Interfaces
The ATmega32U4 has one internal USART function with hardware handshake lines,
one SPI interface, and one two-wire interface (TWI) that is I2C compatible (see
Tables 3-20 through 3-22). The USB interface is covered later, in Figure 3-22. The pin
assignments are shown in Figure 3-19.

Table 3-20. USART

Pin Port Function Pin Port Function
20 PD2 RXD1 22 PD5 CTS

21 PD3 TXD1 12 PB7 RTS

Table 3-21. SPI

Pin Port Function Pin Port Function
8 PB0 SS 10 PB2 MOSI

9 PB1 SCLK 11 PB3 MISO

54 | Chapter 3: Arduino-Specific AVR Microcontrollers

Table 3-22. TWI

Pin Port Function
18 PD0 SCL

19 PD1 SDA

Figure 3-19. ATmega32U4 serial I/O pins

Timer/Clock I/O
The ATmega32U4 has four on-chip timer/counter functions. These consist of one on-
chip 8-bit timer/counter, two 16-bit timer/counters with separate prescalers and a
comparison modes, and a high-speed 10-bit timer/counter with phase-locked loop
(PLL) and a compare mode. Note that the 16-bit timer/counters also support a cap‐
ture mode.

The timers are numbered from 0 to 4, but there is no timer/counter 2.

The OC1A, OC1B, and T0 pins for timer/counter 0 are bought out on pins shared
with timer/counter 4 (the high-speed timer/counter). Likewise, the pins for timer/
counters 1 and 3 are also shared with pins available to timer/counter 4.

ATmega32U4 | 55

Table 3-23 lists the pin assignments for the timer/clock functions of the ATmega32U4
MCU. A tilde (~) indicates an active-low (low = true) pin. There are no T3 or T4 pins
on the ATmega32U4. Only timer/counters 0 and 1 have T0 and T1 pins available. The
pin assignments are illustrated in Figure 3-20.

Table 3-23. Timer/clock pins

Pin Port Function Pin Port Function
12 PB7 OC0A/OC1C 29 PB5 OC1A/~OC4B

18 PD0 OC0B 30 PB6 OC1B/OC4B

25 PD4 ICP1 31 PC6 OC3A/OC4A

26 PD6 T1/~OC4D 32 PC7 ICP3/~OC4A

Figure 3-20. ATmega32U4 timer/counter pins

External Interrupts
The interrupt pin assignments for the ATmega32U4 MCU are listed in Table 3-24 and
shown in Figure 3-21. The port D pins PD0 through PD3 and the port E pin PE6 are
specifically intended for use as external interrupt inputs. Any of the PCINT0 to
PCINT7 pins may also be used as external interrupt inputs without interfering with

56 | Chapter 3: Arduino-Specific AVR Microcontrollers

other assigned functions (see “Interrupts” on page 26 for an overview of how these
interrupts can be used).

Table 3-24. External interrupt pins

Pin Port Function Pin Port Function
8 PB0 PCINT0 12 PB7 PCINT7

9 PB1 PCINT1 18 PD0 INT0

10 PB2 PCINT2 19 PD1 INT1

11 PB3 PCINT3 20 PD2 INT2

28 PB4 PCINT4 21 PD3 INT3

29 PB5 PCINT5 1 PE6 INT6

Figure 3-21. ATmega32U4 external interrupt pins

USB 2.0 Interface
The ATmega32U4 incorporates a full-speed USB 2.0 interface, but it cannot be a USB
host, only a device. It provides multiple internal endpoints with configurable FIFO
buffers. An on-chip PLL generates a 48 MHz clock for the USB interface, and the PLL
input can be configured to use an external oscillator, an external clock source, or an

ATmega32U4 | 57

internal RC clock source. The 48 MHz output from the PLL is used to generate either
a 12 MHz full-speed or 1.5 MHz low-speed clock.

Note that the USB pins on the ATmega32U4 are not associated with a port, only with
the internal USB logic and voltage regulator circuitry. The USB I/O pin assignments
are listed in Table 3-25 and shown in Figure 3-22.

Figure 3-22. ATmega32U4 USB pins

Table 3-25. USB I/O

Pin Function Pin Function
2 USB UVCC 5 USB UGnd

3 USB D– 6 USB UCap

4 USB D+ 7 USB VBus

Electrical Characteristics
Table 3-26 shows the essential maximum electrical ratings for an ATmega32U4, and
Table 3-27 shows the basic current consumption parameters.

58 | Chapter 3: Arduino-Specific AVR Microcontrollers

Table 3-26. ATmega32U4 maximum ratings

Parameter Value(s) Units
I/O pin voltage –0.5 to VCC + 0.5 V

Reset pin voltage –0.5 to +13.0 V

VBUS pin voltage –0.5 to +6.0 V

Device VCC 6.0 V

I/O pin DC current 40.0 mA

VCC current 200.0 mA

Table 3-27. ATmega32U4 power consumption characteristics

Parameter Condition VCC Typical Max
Power supply current Active 8 MHz 5V 10 mA 15 mA

Idle 8 MHz 5V 6 mA

Power-down mode WDT enabled 3V <10 uA 12 uA

WDT disabled 3V 1 uA 5 uA

Arduino Pin Assignments
The Leonardo Arduino board uses the extended version of the baseline layout, which
includes additional pins. The USB interface pins are connected directly to the USB
connector on the PCB, and the USB signals do not appear on the pin socket headers
on the sides of the PCB. The Leonardo board layout is described in Chapter 4.

The chip-to-Leonardo pin mapping is given in Table 3-28. Note that not all of the
ATmega32U4 pins are brought out, and some of the ADC input pins are pressed into
service as discrete digital I/O pins.

Table 3-28. Leonardo ATmega32U4 pin mapping

Leonardo pin Chip pin Functions Leonardo pin Chip pin Functions
0 20 RXD1/INT2 11 12 PCINT7/OC0A/OC1C/RTS

1 21 TXD1/INT3 12 26 T1/OC4D/ADC9

2 19 SDA/INT1 13 32 ICP3/CLK0/OC4A

3 18 OC0B/SCL/INT0 A0 36 ADC7/TDI

4 25 ICP1/ADC8 A1 37 ADC6/TD0

5 31 OC3A/OC4A A2 38 ADC5/TMS

6 27 T0/OC4D/ADC10 A3 39 ADC4/TCK

7 1 INT6/AIN0 A4 40 ADC1

8 28 PCINT4/ADC11 A5 41 ADC0

9 29 PCINT5/OC1A/OC4B/ADC12 AREF 42 AREF

ATmega32U4 | 59

Fuse Bits
The AVR MCUs use a set of so-called fuses to set various parameters such as clock
source, timing divisors, memory access locks, and so on. You can think of it as a big
panel of switches. In this section we’ll take a look at the fuse bits for the
ATmega168/328. This is the MCU used in the Duemilanove, Mini, Nano, and Uno
boards, and the DIP (dual in-line pin) version is commonly used in AVR projects.
The general concepts apply to the ATmega1280/2560 and the ATmega32U4 as well.

There are three bytes in the ATmega168/328 for fuse bits: low, high, and extended. A
fuse bit is set to zero when it is programmed (i.e., they are active-low logic). Tables
3-29, 3-30, and 3-31 lists the AVR fuse bits and their functions.

Table 3-29. Low fuse byte

Bit name Bit no. Description Def. value Bit name Bit no. Description Def. value
CKDIV8 7 Clock div by 8 0 CKSEL3 3 Clock source 0

CKOUT 6 Clock output 1 CKSEL2 2 Clock source 0

SUT1 5 Start-up time 1 CKSEL1 1 Clock source 1

SUT0 4 Start-up time 0 CKSEL0 0 Clock source 0

Table 3-30. High fuse byte

Bit name Bit no. Description Def.
value

Bit name Bit no. Description Def.
value

RSTDISBL 7 External reset disable 1 EESAVE 3 EEPROM preserved 1

DWEN 6 debugWIRE enable 1 BODLEVEL2 2 BOD trigger level 1

SPIEN 5 Enable SPI download 0 BODLEVEL1 1 BOD trigger level 1

WDTON 4 Watchdog timer on 1 BODLEVEL0 0 BOD trigger level 1

Table 3-31. Extended fuse byte

Bit name Bit no. Description Def. value Bit name Bit no. Description Def. value
- 7 - 1 - 3 - 1

- 6 - 1 BOOTSZ1 2 Boot size 0

- 5 - 1 BOOTSZ0 1 Boot size 0

- 4 - 1 BOOTRST 0 Reset vector 1

The AVR employs logic for clock input and output routing called the “AVR Clock
Control Unit,” as shown in Figure 3-23.

The timing route “clk” names refer to the timing function of each path. See the Atmel
datasheet for the ATmega328 for details. The clock source multiplexer can be config‐

60 | Chapter 3: Arduino-Specific AVR Microcontrollers

http://bit.ly/mc-atmega328
http://bit.ly/mc-atmega328

ured with the fuse bits CKSEL(3:0), or the least significant 4-bit nibble. Table 3-32
lists the possible clock source options and bit values for the CKSEL bits.

Figure 3-23. The AVR control and distribution subsystem

Table 3-32. Clock source selection using CKSEL fuse bits

Clock source CKSEL(3:0) Clock source CKSEL(3:0)
Low power crystal 1111 - 1000 Calibrated internal 0010

Full swing crystal 0111 - 0110 External clock 0000

Low frequency crystal 0101 - 0100 Not used (reserved) 0001

Note that the crystal clock sources have multiple suboptions, depending on which
bits are set. In Chapter 10 these fuse bit are used to configure a brand-new AVR on a
custom PCB.

Fuse Bits | 61

In an Arduino-based device or system the CKSEL bits probably shouldn’t be altered,
but other fuse bits can be set to provide useful functions. In the high fuse byte, the
WDTON and BODLEVEL fuse bits could be used to enable the AVR’s watchdog
timer and set the BOD (brown-out detection) response level. Both the watchdog
timer and the brown-out detection circuit will cause an MCU reset.

The watchdog is actually quite useful, particularly in situations where a fault of some
sort might cause bigger problems. So long as the watchdog control register is reset
before time-out, usually in the main loop, it will not trigger an interrupt. If some part
of the code becomes nonresponsive the main loop will halt, and the watchdog timer
will run out. avr-libc provides the functions wdt_enable(), wdt_disable(), and
wdt_reset() for watchdog control.

The brown-out detection generates an interrupt if the VCC DC supply voltage drops
to within a specific range. This may provide enough time to save critical data to
attached flash storage or change some discrete digital outputs.

Fuse bits can be set using programming tools like those described in “In-System Pro‐
gramming” on page 147 in Chapter 6. The sidebar “Setting the AVR MCU Fuse Bits
for a 16 MHz Crystal” on page 418 describes how to set the fuse bits for a new AVR
MCU IC to run with a 16 MHz clock.

This is just a high-level look at fuse bits. As always, refer to the Atmel documentation
for detailed descriptions of the watchdog timer and brown-out detection levels.

For More Information
Chapter 2 contains overviews of the internal peripheral functions found in AVR
microcontrollers. Chapter 4 contains Arduino board pinouts for the AVR MCU func‐
tions.

For detailed information about the internal peripheral functions of AVR microcon‐
trollers, refer to the following Atmel documents (available from Atmel’s website,
under Support→Datasheets):

• Datasheet: ATmega48PA/ATmega88PA/ATmega168PA/ATmega328P
8-bit Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash

• Datasheet: Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V
8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash

• Datasheet: ATmega16U4/ATmega32U4
8-bit Microcontroller with 16/32K Bytes of ISP Flash and USB Controller

62 | Chapter 3: Arduino-Specific AVR Microcontrollers

CHAPTER 4

Arduino Technical Details

This chapter describes the general physical and electrical characteristics of specific
Arduino boards, from the Diecimila through recent types like the Leonardo, Esplora,
and Micro. Topics covered include pinout descriptions and the physical dimensions
of most current Arduino models, from the so-called baseline types like the Uno, to
the large form-factor Mega boards and the unique Esplora, to the small-outline
boards such as the Mini, Micro, and Nano models.

Arduino Features and Capabilities
Table 4-1 is a comparison of the most common Arduino board types. If you compare
this table with the tables in Chapter 1 it is obvious that the basic capabilities of an
Arduino board are the capabilities supplied by its microcontroller. However, because
the Arduino designs allocate certain pins on the AVR processors to specific functions,
or don’t bring out all of the processor’s pins, not all of the capabilities of the micro‐
controllers are available at the terminals of an Arduino.

The term “pin” is used in this and other sections when referring to
the pin sockets on an Arduino. This is mainly to maintain consis‐
tency with the terminology encountered elsewhere, but it’s not
completely technically correct. The connection points on an Ardu‐
ino board are sockets, and the jumpers and shields that plug into
these sockets are the actual pins. You can think of a “pin” as a con‐
nection point of some sort, be it a lead on an IC package, a position
on a 0.1 inch (2.54 mm) socket header, or the pins extending from
the bottom of a shield PCB.

63

Table 4-1. Arduino hardware features

Board name Processor VCC (V) Clock (MHz) AIN pinsa DIO pinsb PWM pins USBc

ArduinoBT ATmega328 5 16 6 14 6 None

Duemilanove ATmega168 5 16 6 14 6 Regular

Duemilanove ATmega328 5 16 6 14 6 Regular

Diecimila ATmega168 5 16 6 14 6 Regular

Esplora ATmega32U4 5 16 - - - Micro

Ethernet ATmega328 5 16 6 14 4 Regular

Fio ATmega328P 3.3 8 8 14 6 Mini

Leonardo ATmega32U4 5 16 12 20 7 Micro

LilyPad ATmega168V 2.7–5.5 8 6 14 6 None

LilyPad ATmega328V 2.7–5.5 8 6 14 6 None

Mega ATmega1280 5 16 16 54 15 Regular

Mega ADK ATmega2560 5 16 16 54 15 Regular

Mega 2560 ATmega2560 5 16 16 54 15 Regular

Micro ATmega32U4 5 16 12 20 7 Micro

Mini ATmega328 5 16 8 14 6 None

Mini Pro ATmega168 3.3 8 6 14 6 None

Mini Pro ATmega168 5 16 6 14 6 None

Nano ATmega168 5 16 8 14 6 Mini-B

Nano ATmega328 5 16 8 14 6 Mini-B

Pro (168) ATmega168 3.3 8 6 14 6 None

Pro (328) ATmega328 5 16 6 14 6 None

Uno ATmega328 5 16 6 14 6 Regular

Yún ATmega32U4 5 16 12 20 7 Host (A)

a Analog inputs.
b Digital I/O.
c Pulse-width modulation outputs (alternate DIO pin functions).

Arduino USB Interfaces
Starting with the Leonardo board (2012), the ATmega32U4 XMEGA microcontroller
has been used as the primary processor. This part has a built-in USB interface, which
eliminates the need for the additional chip seen on earlier Arduino models with a
USB interface. The Leonardo (2012), Esplora (2012), Micro (2012), and Yún (2013)
all use the ATmega32U4 processor.

The older Arduino models with USB used an FTDI interface chip (the FT232RL), an
ATmega8 (Uno), or an ATmega16U2 (Mega2560 and Uno R3). The FT232RL con‐
verts between standard serial (such as RS-232) and USB. In the Uno, Uno R3, and

64 | Chapter 4: Arduino Technical Details

Mega2560 the additional small ATmega processors are preprogrammed to serve as a
USB interface. The operation of these parts is transparent when using the Arduino
IDE to create and load program sketches.

Those boards that do not have a USB interface must be programmed using an exter‐
nal adapter.

Arduino types that use the FTDI FT232RL serial-to-USB interface chip are essentially
identical internally, and consist of a DC voltage regulation circuit and two ICs.
Figure 4-1 shows a block diagram of the Diecimila and Duemilanove models with an
FTDI interface chip.

Figure 4-1. FTDI USB interface

Since around 2010, the Uno R2 and Uno SMD boards have employed the
ATmega16U2 part instead of the FTDI FT232RL for the USB interface. The Uno R3
also has the ATmega16U2 serving as the USB interface. The ATmega16U2 incorpo‐
rates a built-in USB 2.0 interface and is basically the same as the ATmega32U4, just
with less memory. Figure 4-2 shows a block diagram of the Uno R2 with an
ATmega16U2 providing the USB interface. The Uno, with an ATmega8, has the same
internal functional arrangement as the Uno R2, just with a different MCU serving as
the USB interface.

Arduino USB Interfaces | 65

Arduino Physical Dimensions
Arduino boards come in a variety of shapes and sizes, but generally they can be
organized into four groups: full-size or baseline boards, mega-size boards, small
form-factor boards, and special-purpose boards.

Figure 4-2. ATmega16U2 USB interface

The board dimensions given in this section, while generally close,
are approximate, as there may be some slight variations between
boards from different sources. Refer to the PCB layout from Ardu‐
ino.cc, which is available for each board, if you need accurate
dimensions. Or better yet, just take the measurements from an
actual board.

To give some idea of scale, Figure 4-3 shows a lineup of several common Arduino
boards. Shown here in clockwise order from the lower left are a Duemilanove, a Leo‐
nardo, a clone Mega2560 with an extended I/O pin layout from SainSmart, and an
official Arduino Mega2560, with an Arduino Nano sitting in the center.

66 | Chapter 4: Arduino Technical Details

Figure 4-3. Comparison of Arduino and clone boards

Full-Size Baseline Arduino PCB Types
Figure 4-4 shows the physical layouts for six different baseline Arduino boards, from
the Diecimila to the Leonardo. In between there are the Duemilanove and Uno var‐
iants. Baseline, in this context, refers to the “classic” Arduino PCB layout that deter‐
mines the physical design of most shields and other add-on components. The
functions of the I/O and other pins on each PCB are described in “Arduino Pinout
Configurations” on page 73.

With the Diecimila, the Duemilanove, the Uno R2 (revision 2), and the Uno SMD the
arrangement of the I/O socket headers along the edges of the PCBs is unchanged.
This book refers to this as the baseline Arduino form factor. Also, starting with the
Uno R2 a new block of six pins appeared on the PCB, in addition to the block that
already existed on earlier boards. This is the ICSP (In-Circuit Serial Programming)
interface for the ATmega16U2 processor that is used for the USB interface. The Uno
SMD also has this new ICSP interface.

The Uno R3 introduced the new extended I/O pin configuration. This is a backward-
compatible extension, meaning that a shield intended for an older model like a Due‐
milanove will still work with the newer boards. The extension only adds new signal
pin sockets, but no new signals, and it doesn’t alter any of the pin functions found in
the baseline layout. The Leonardo PCB uses the ATmega32U4 processor, which has
built-in USB support, so there is only one microcontroller IC on a Leonardo PCB and
only one ICSP port. It has the same I/O pin layout as earlier boards, although the
actual microcontroller ports used are different.

Arduino Physical Dimensions | 67

Figure 4-4. Full-size baseline Arduino PCB types

All full-size baseline Arduino boards have the same physical dimensions, as shown in
Figure 4-5. The locations of the mounting holes for the PCB vary slightly between
models depending on the version of the board, but the overall exterior dimensions
are consistent.

Mega Form-Factor Arduino PCB Types
The Mega form-factor boards incorporate the baseline pinout along with additional
pins to accommodate the extended capabilities of the ATmega1280 and ATmega2560
microcontrollers (these devices are described in “ATmega1280/ATmega2560” on page
39 in Chapter 3).

Mega and Mega2560
The Mega and Mega2560 are essentially the same layout, with the primary difference
being the type of AVR device on the boards. The Mega2560 replaces the Mega, which
is no longer produced by Arduino.cc, although some second-source clone boards are
still available. Considering the enhanced memory of the Mega2560, there really isn’t
any reason to purchase a Mega.

68 | Chapter 4: Arduino Technical Details

Figure 4-5. Baseline and extended board dimensions

Figure 4-6 shows the overall dimensions of a Mega or Mega2560 board. Note that a
baseline (Uno, Leonardo, etc.) shield will work with a Mega board. The I/O pins on
the Mega are arranged such that the basic digital I/O and the A/D inputs 0 through 5
are compatible with the baseline pin layout.

Mega ADK
The Mega ADK is based on the Mega2560, but features a USB host interface that
allows it to connect to Android phones and similar devices. Other than an additional
USB connector located between the B type USB connector and the DC power jack, it
is identical to the Mega2560 in terms of dimensions. Like with the Mega2560, a stan‐
dard baseline-type shield can be used with the Mega ADK.

Small Form-Factor Arduino PCB Types
The full-size Arduino boards were the first to make an appearance around 2005, and
by 2007 the layout had settled into the baseline and extended forms seen today. But
the Arduino team and their partners realized that the full-size board just wouldn’t
work for some applications, so they came up with the miniature formats.

Arduino Physical Dimensions | 69

Figure 4-6. Mega and Mega2560 dimensions

The miniature boards include the Mini, Micro, Nano, and Fio layouts. These PCBs
are smaller in both width and length, but still have the same AVR processors as the
full-size types.

Mini
The Mini is intended for use on breadboards or in other applications where space is
limited. It does not have a USB connector, and an external programmer interface
must be used to transfer executable code to the microcontroller. Its dimensions are
shown in Figure 4-7.

Pro Mini
The Pro Mini is similar to the Mini with regard to pin layout and form factor, but
unlike the Mini it is intended for permanent or semipermanent installation. The Pro
Mini was designed and manufactured by SparkFun Electronics. Its dimensions are
shown in Figure 4-8.

70 | Chapter 4: Arduino Technical Details

Figure 4-7. Arduino Mini dimensions

Figure 4-8. Arduino Pro Mini dimensions

Nano
Similar to the Mini, the Nano is a small form-factor board suitable for use with sol‐
derless breadboards and as a plug-in module for a larger PCB. It was designed and
produced by Gravitech. Its dimensions are given in Figure 4-9.

Fio
The Fio is intended for wireless applications, primarily XBee, and as such it lacks
some of the direct connection programmability of other Arduino types. A Fio can be
programmed using a serial-to-USB adapter or wirelessly using a USB-to-XBee
adapter. It was designed and manufactured by SparkFun Electronics; its dimensions
are shown in Figure 4-10.

Arduino Physical Dimensions | 71

Figure 4-9. Arduino Nano dimensions

Figure 4-10. Arduino Fio dimensions

Micro
The Micro employs a DIP (dual in-line pin) form factor and uses an ATmega32U4
processor, which is identical to the Leonardo board. Like the Nano, the Micro is suit‐
able for use with a solderless breadboard and as a plug-in module using a conven‐
tional IC socket. It was developed in conjunction with Adafruit. The Micro’s
dimensions are shown in Figure 4-11.

Figure 4-11. Arduino Micro dimensions

72 | Chapter 4: Arduino Technical Details

Special-Purpose PCB Types
Arduino boards aren’t limited to simple shapes like rectangles. The LilyPad is a small
disk with connection points arranged around the edge. It can be integrated into cloth‐
ing to build wearable creations. The Esplora is physically configured like a conven‐
tional game controller, although as it is an Arduino it can be programmed to do
much more than just play games.

LilyPad
The LilyPad and its variations are intended for wearable applications. The board itself
measures about 2 inches (50 mm) in diameter, as shown in Figure 4-12.

Figure 4-12. Arduino LilyPad dimensions

Esplora
The Esplora is supplied with four pushbuttons, a switch-type joystick, and a micro
USB connector. Four mounting holes are available to affix the board to a chassis or
panel. The Esplora PCB dimensions are shown in Figure 4-13.

Arduino Pinout Configurations
When creating a shield board for the Arduino, the convention is to follow the com‐
mon baseline pin layout pattern described here. This configuration is found on the

Arduino Pinout Configurations | 73

“standard” baseline Arduino boards built between 2007 and 2012. Boards using the
newer “extended” pin layout (the Uno R3 and Leonardo), as well as the “Mega”
boards, also support the baseline connections, but add new capabilities by extending
the rows of terminals along the sides of the PCBs.

Figure 4-13. Arduino Esplora dimensions

The Baseline Arduino Pin Layout
The baseline Arduino pin layout as it exists today appeared with the Diecimila model.
Over the years it has become a de facto standard upon which numerous shield boards
have been based. The Arduino boards that utilize the baseline pin layout are listed in
Table 4-2.

Table 4-2. Baseline layout Arduino boards

Board name Year Microcontroller
Diecimila 2007 ATmega168

Duemilanove 2008 ATmega168/ATmega328

Uno (R2 and SMD) 2010 ATmega328P

Figure 4-14 shows the pinout of a full-size baseline Arduino board. This includes the
Diecimila, Duemilanove, Uno R2, and Uno SMD models. The gray boxes in
Figure 4-14 give the chip pin number and port designations for the ATmega168/328
parts.

The common baseline I/O and power pin layout for the Arduino consists of 14 dis‐
crete digital I/O pins, an analog reference, 3 ground pins, 6 analog input pins, pins
for 3.3V and 5V, and a reset line. As shown in Figure 4-14, these pins are arranged
as two eight-position connectors and two six-position connectors along the sides of
the PCB.

74 | Chapter 4: Arduino Technical Details

Figure 4-14. Pin functions of standard baseline Arduino boards

From a programming perspective, each interface pin on a Diecimila, Duemilanove,
Uno R2, or Uno SMD PCB has a predefined name used to identify it in software.
These names are reflected by the labels screened onto the Arduino PCB. Table 4-3
lists the pin assignments for a baseline or R2 Arduino with an ATmega168 or
ATmega328 MCU. See the pin assignments for the Arduino Ethernet (Table 4-3) for
the Uno SMD board.

Table 4-3. Arduino ATmega168/328 pin assignments

Digital
pin (Dn)

Analog
pin (An)

AVR pin AVR port AVR function(s) AVR PWM

0 2 PD0 RxD

1 3 PD1 TxD

2 4 PD2 INT0

3 5 PD3 INT1, OC2B Yes

4 6 PD4 T0, XCK

5 11 PD5 T1 Yes

6 12 PD6 AIN0 Yes

7 13 PD7 AIN1

8 14 PB0 CLK0, ICP1

9 15 PB1 OC1A Yes

Arduino Pinout Configurations | 75

Digital
pin (Dn)

Analog
pin (An)

AVR pin AVR port AVR function(s) AVR PWM

10 16 PB2 OC1B, SS Yes

11 17 PB3 OC2A, MOSI Yes

12 18 PB4 MISO

13 19 PB5 SCK

14 0 23 PC0

15 1 24 PC1

16 2 25 PC2

17 3 26 PC3

18 4 27 PC4 SDA

19 5 28 PC5 SCL

The Extended Baseline Pin Layout
Starting with the R3 version of the Uno, four additional pins appeared on the Ardu‐
ino PCB. Two of these are near the relocated reset button and provide additional con‐
nections for I2C (the SCL and SDA lines). The other two appeared next to the reset
connection on the opposite side of the board. One is designated as IOREF (the nomi‐
nal I/O voltage, may be either 3.3V or 5V depending on board type) and the other is
not presently connected. Table 4-4 lists the extended baseline layout boards.

Table 4-4. Extended layout Arduino boards

Board name Year Microcontroller
Uno R3 2010 ATmega328

Ethernet 2011 ATmega328

Leonardo 2012 ATmega32U4

Uno R3
Like the Uno R2 and Uno SMD, the Uno R3 utilizes a second microcontroller to han‐
dle USB communications. The Arduino Ethernet does not have built-in USB.
Figure 4-15 shows the block diagram for the Uno R3 and Uno SMD boards.

The pin functions for the Uno R3 are shown in Figure 4-16.

The extended baseline (R3) Arduino boards with the ATmega328 MCU have the
same pin assignments as given in Table 4-3, but with the additional pins for ADC4
and ADC5 (A4 and A5). The Leonardo pin functions are defined in “Leonardo” on
page 79.

76 | Chapter 4: Arduino Technical Details

Figure 4-15. ATmega16U2 USB interface

Figure 4-16. Uno R3 pin functions

Arduino Pinout Configurations | 77

Ethernet
The Ethernet deviates from the Arduino conventions seen up through the Uno R3
with its inclusion of a 100Mb Ethernet interface and an RJ45 jack. It has no USB
interface. The MCU is a surface-mount version of the ATmega328, with different pin
functions and numbering from the ATmega328. A WIZnet W5100 chip is used for
the Ethernet interface. Figure 4-17 shows a block diagram of the Ethernet board.

Figure 4-17. Arduino Ethernet block diagram

An FTDI-type interface is used to program the Ethernet with an adapter, like the
SparkFun or Adafruit FTDI-type devices. This interface is brought out on a right-
angle six-pin header along one edge of the PCB next to the microSD carrier.
Figure 4-18 shows the pinouts of the Ethernet board.

This product has been retired by Arduino.cc, but it is still available from multiple
sources. Ethernet connectivity can be obtained by using an Ethernet shield (see Chap‐
ter 8 for more details on shields).

Table 4-5 lists the pin assignments for the Arduino Ethernet. Note that pins 10, 11,
12, and 13 are reserved for the Ethernet interface and are not available for general-
purpose use.

78 | Chapter 4: Arduino Technical Details

Table 4-5. Arduino Ethernet pin assignments

Digital
pin (Dn)

Analog
pin (An)

AVR pin AVR port AVR function(s) AVR PWM

0 30 PD0 RxD

1 31 PD1 TxD

2 32 PD2 INT0

3 1 PD3 INT1, OC2B Yes

4 2 PD4 T0, XCK

5 9 PD5 T1, OC0B Yes

6 10 PD6 AIN0, OC0A Yes

7 11 PD7 AIN1

8 12 PB0 CLK0, ICP1

9 13 PB1 OC1A Yes

10 14 PB2 OC1B, SS Yes

11 15 PB3 OC2A, MOSI Yes

12 16 PB4 MISO

13 17 PB5 SCK

14 0 23 PC0

15 1 24 PC1

16 2 25 PC2

17 3 26 PC3

18 4 27 PC4 SDA

19 5 28 PC5 SCL

Leonardo
The Leonardo introduced the ATmega32U4 processor, which contains a built-in USB
interface and enhanced functionality. This simplified the PCB layout, as can be seen
in Figure 4-19. Also, note that the Leonardo uses a mini-USB connector instead of
the full-size type B connector found on older Arduino boards. This was a much-
needed change, and it allows the Leonardo to work with shields that would have
interfered with the B type USB connector on the older models.

The Uno R3 and the Leonardo both use the same PCB pin layout, but some of the
microcontroller functions are different. In the Arduino IDE this is handled by using a
set of definitions specific to each board type to map functions to specific pins.

Arduino Pinout Configurations | 79

Figure 4-18. Pin functions of Arduino Ethernet board

Figure 4-19. Pin functions of Arduino Leonardo board

80 | Chapter 4: Arduino Technical Details

Table 4-6 lists the pin assignments for an extended or R3 Arduino with an
ATmega32U4 MCU.

Table 4-6. Arduino ATmega32U4 pin assignments

Digital
pin (Dn)

Analog
pin (An)

AVR pin AVR port AVR function(s) AVR PWM

0 20 PD2 INT3, RxD1

1 21 PD3 INT2, TxD1

2 19 PD1 INT1, SDA

3 18 PD0 INT0, OC0B, SCL Yes

4 25 PD4 ICP1, ADC8

5 31 PC6 OC3A, OC4A Yes

6 27 PD7 OC4D, ADC10, T0 Yes

7 1 PE6 INT6, AIN0

8 28 PB4 ADC11

9 29 PB5 OC1A, ADC12, *OC4B Yes

10 30 PB6 OC1B, ADC13, OC4B Yes

11 12 PB7 OC0A Yes

12 26 PD6 *OC4D, ADC9, T1 Yes

13 32 PC7 OC4A, ICP3 Yes

14 0 36 PF7 TDI

15 1 37 PF6 TDO

16 2 38 PF5 TMS

17 3 39 PF4 TCK

18 4 40 PF1

19 5 41 PF0

The Mega Pin Layout
The Mega series (which use the ATmega1280 and ATmega2560 processors) also
incorporate the standard pinout pattern, but include additional pins to accommodate
the extended I/O capabilities of the larger processors. The Mega pin layout is shown
in Figure 4-20. The boards that utilize this layout are listed in Table 4-7. Most com‐
mon shields will work with the Mega boards.

Arduino Pinout Configurations | 81

Figure 4-20. Pin functions of the Arduino Mega series boards

82 | Chapter 4: Arduino Technical Details

In Figure 4-20, the PCINT pin functions are not shown for the sake
of clarity. Also note that the R3 version of the Mega2560 contains
pins not found on earlier versions, but these do not interfere with
baseline layout–style shields.

Table 4-7. Mega pin layout boards

Board name Year Microcontroller
Mega 2009 ATmega1280

Mega2560 2010 ATmega2560

Mega ADK 2011 ATmega2560

Nonstandard Layouts
In terms of nonstandard pinout configurations (nonstandard in the sense of being
physically incompatible with conventional Arduino shields), the most radical is the
LilyPad, with its circular form factor and use of solder pads for connections. The
small form-factor Nano, Mini, Mini Pro, and Micro have pins soldered to the under‐
side of the board, and are suitable for use with a solderless breadboard block or as a
component on a large PCB. The Fio uses solder pads with spacing compatible with
standard header pin strips, and the Esplora has a game controller–type form factor.
None of the nonstandard layout boards can be used directly with a standard shield.
The boards that fall into this category are listed in Table 4-8, and the pin functions for
these boards are shown in Figures 4-21 through 4-27 in the following sections.

Table 4-8. Nonstandard pin layout boards

Board name Year Microcontroller
LilyPad 2007 ATmega168V/ATmega328V

Nano 2008 ATmega328/ATmega168

Mini 2008 ATmega168

Pro Mini 2008 ATmega328

Fio 2010 ATmega328P

Esplora 2012 ATmega32U4

Micro 2012 ATmega32U4

Arduino Pinout Configurations | 83

LilyPad

Figure 4-21. Pin functions of the Arduino LilyPad

Nano

Figure 4-22. Nano pin functions

84 | Chapter 4: Arduino Technical Details

Mini

Figure 4-23. Mini pin functions

Pro Mini

Figure 4-24. Pro Mini pin functions

Arduino Pinout Configurations | 85

Fio

Figure 4-25. Fio pin functions

Esplora

Figure 4-26. Esplora pin functions

86 | Chapter 4: Arduino Technical Details

Micro

Figure 4-27. Micro pin functions

For More Information
The Atmel website offers a selection of datasheets, example software, and other
resources for working with the AVR microcontrollers. Note that these are only for the
AVR, not the Arduino.

Additional information about the various Arduino boards can be found on the Ardu‐
ino website.

For More Information | 87

http://www.atmel.com/avr
http://www.arduino.cc
http://www.arduino.cc

CHAPTER 5

Programming the Arduino
and AVR Microcontrollers

This chapter is an ambitious high-level tour of the tools, concepts, and techniques
that you can use to create, compile, assemble, and load software onto an Arduino.
There are many deep subjects covered here in broad strokes, and it would be impossi‐
ble to do any of them real justice in the space of a single chapter. The goal is to pro‐
vide you with enough information to get previous experience with microcontrollers,
you may find out some things about the Arduino environment that you were not
aware of before.

This chapter does not describe the C or C++ languages. Those top‐
ics are covered elsewhere in great detail (refer to Appendix D for
some suggested books). The intent here is to impart an under‐
standing of how the contents of a program or a sketch are con‐
verted into binary codes that the AVR MCU, on an Arduino board
or wherever it might be, can execute, and what is involved in mak‐
ing that happen.

This chapter starts with a short overview of cross-compiling, the technique of using a
compiler and other tools on one computer system to create executable programs that
can be transferred to another computer, perhaps with a completely different architec‐
ture. This is exactly what the Arduino integrated development environment is
designed to do. Chapter 6 provides a more detailed look at the low-level development
tools and techniques that the Arduino IDE utilizes, but here the focus is on what the
Arduino IDE can do and how you can use it effectively.

Bootloaders are introduced next, with emphasis on AVR microcontrollers. The boot‐
loader is an essential feature of the AVR family of parts used on Arduino boards, and

89

understanding how it works can help to reduce frustration and lay the foundation for
installing your own bootloader should the need arise. In Chapter 6 we will look at
methods for installing a new bootloader, perhaps of your own design.

The Arduino IDE is introduced next, along with guidance on how to install the IDE
on various host computers and how to configure it for your own preferences. We will
also take a quick look at what is going on under the hood of the IDE, and how it
evolved from earlier tools. A walk-through of a simple program illustrates the key
points in the creation of an Arduino program, known as a sketch.

The chapter wraps up with an overview of the Arduino source code, and where you
can get your own copy to examine. Having the source code available, both for the
supplied libraries and for the IDE and its components, can help to answer questions
about why something happened the way it did, and help you determine if you really
want to try an alternate approach to programming an Arduino.

Remember that since the main emphasis of this book is on the
Arduino hardware and related modules, sensors, and components,
the software shown is intended only to highlight key points, not to
present complete ready-to-run examples. The full software listings
for the examples and projects can be found on GitHub.

Cross-Compiling for Microcontrollers
Like for most single-board microcontroller systems, programs for an Arduino and
its AVR MCU are developed on another system of some type (Windows, Linux, or
Mac) and then transferred, or uploaded, to the AVR microcontroller on the Arduino
board. The development system is referred to as the development host, and the Ardu‐
ino or other MCU-based device is called the target. This type of development process
has been around for quite a long time, and has been used whenever it was necessary
to create software for a target machine that didn’t have the capability to compile code
for itself.

The technique of creating software for one type of processor on a different type of
system is referred to as cross-compiling, and it is really the only way to create compiled
software for microcontroller targets. Small microcontrollers like the AVR (or any
small 8-bit device, for that matter) simply don’t have the resources to compile and
link something like a C or C++ program. A more capable machine with resources
such as a fast CPU, large-capacity disk drives, and lots of memory is used to do the
compiling and linking, and then the finished program is transferred to the target for
execution.

In some cases the host system might even have an emulator available for the target
that allows the developer to load and test programs in a simulated environment. An

90 | Chapter 5: Programming the Arduino and AVR Microcontrollers

https://www.github.com/ardnut

emulator might not provide a 100% perfect simulation of the target MCU and its
actual environment, but it can still be a useful tool for checking the basic functional‐
ity of the software before it is actually uploaded to the real MCU. There are several
AVR emulators available for the Linux operating system, including simavr and the
GNU AVR Simulator (see Appendix E for a list of Arduino and AVR software tools,
with links).

Objects, Images, and Source Code
You may notice that the terms “object,” “image,” “executable,” and “source code” get
tossed around quite a bit when talking about compiling, linking, and loading soft‐
ware. These are all very old terms, going back to the days of punched cards, memory
drums and magnetic tape, and computers that filled whole rooms.

Source code, as you might expect, refers to the input fed into a compiler or an assem‐
bler. Source code is human-readable and created using some type of text editor. For
the Arduino this usually means C or C++, created using the Arduino IDE or some
other editor or IDE.

The output of the compiler or assembler is referred to as object code, and it is really
just machine code for a particular CPU. In other words, it consists of the binary val‐
ues of the CPU’s operation codes and any associated data in the form of so-called lit‐
eral values, also in binary form. This is typically referred to as machine language. With
modern compilers and assemblers this is what is inside the *.o and *.obj files found
after the assembly or compilation is complete.

Object code may not be immediately executable. If a program is comprised of two or
more modules, or requires object code from an external library, then the output from
the compiler or assembler will contain placeholders that refer to external software.

In some cases the external code may be in source code form (such as with most of the
Arduino-supplied code) and will be compiled at the same time as your sketch, or it
might already be compiled into an object library containing one or more separate
code modules. Precompiled object libraries typically have an extension of *.a.

A tool called a linker is used to fill in the blanks and connect the various parts into an
executable image. In the case of Arduino programs this usually involves the inclusion
of runtime support in the form of the main() function and the basic AVR runtime
library functions for input/output and other low-level operations.

The end result is an executable image with everything the program needs to run, all
in one bundle. After conversion into an ASCII file comprised of strings of hexadeci‐
mal characters, it is uploaded into the AVR MCU, converted back into binary, and
stored in the on-board flash memory for execution.

Cross-Compiling for Microcontrollers | 91

Bootloaders
Getting a program into a modern microcontroller might entail any one of several dif‐
ferent methods, but the easiest is to let the MCU itself assist with the process. This is
accomplished with a small preloaded bit of firmware called a bootloader (see the side‐
bar “Origins of Firmware” on page 92 for a quick discussion of firmware).

The AVR family of microcontrollers provides reserved space in the on-board flash
memory space for a bootloader. Once the MCU has been configured to use the boot‐
loader, the address of this special memory space is the first place the AVR MCU will
look for instructions when it is powered up (or rebooted). So long as the bootloader
is not overwritten with an uploaded program, it will persist in memory between on-
off power cycles.

Reserving the bootloader location typically involves enabling an internal switch, or
fuse, with a special programming device that communicates with the MCU through
an ICSP or JTAG interface. The MCU examines the fuse configuration (nonvolatile
configuration bits) at startup to determine how the flash memory is organized and if
space has been reserved for some type of bootloader or other startup code. (For more
details on the fuse bits used in the AVR, refer to “Fuse Bits” on page 60).

A key feature of the AVR devices is their ability to load program code into their inter‐
nal flash memory via a bootloader and a serial interface. In the case of the
ATmega32U4 (described in Chapters 2 and 3), the USB interface can be used to
upload the program code into the MCU; no special programming device or auxiliary
MCU is necessary.

Arduino boards—both the official products and the software-compatible boards—
come with an Arduino-type bootloader already loaded into the MCU. The Arduino
bootloader implements a specific protocol that allows it to recognize the Arduino
IDE and perform a program data transfer from the development host to the target
board. The Arduino bootloader is described in detail in “Bootloader Operation” on
page 154, and some techniques for replacing the bootloader with one of your own
choosing are discussed in “Replacing the Bootloader” on page 156.

Origins of Firmware
The term firmware is a holdover from the days when embedded computers came pre‐
loaded with programs that could not be modified in the field. In some cases a micro‐
controller or microprocessor might be fabricated with software already incorporated
into the silicon of the chip. The developer supplied the chip manufacturer with the
binary machine code, which was then incorporated into the process of creating the
actual silicon chip. This was called mask programming, and while it did result in low-
cost parts (if purchased in large enough quantities), it wasn’t the most practical way to
develop software. It usually required a fair amount of development support equip‐

92 | Chapter 5: Programming the Arduino and AVR Microcontrollers

ment, along with special versions of the target microcontroller. In some cases that
meant using an in-circuit emulator (ICE), which was basically the functional equiva‐
lent of the target processor implemented using discrete logic ICs contained in a metal
box with a ribbon cable to plug into the socket where the processor would eventually
be placed on the circuit board. Once the code was working correctly and thoroughly
tested, it could be implemented on the chip with some degree of confidence—that is,
assuming that the ICE was an accurate simulation of the actual microprocessor or
microcontroller. With some early versions of the tools, that wasn’t always the case.

In other cases the firmware might be loaded onto a chip using a special one-shot pro‐
gramming device similar to what was used to program a read-only memory (ROM)
memory chip. In fact, these programming devices could usually handle both ROM
and MCU devices. The program was stored in the chip in the form of memory bits
that could be set just once to represent values of one or zero. These were known as
OTP, or one-time programmable, parts. A one-time programmable part was just that;
once it was programmed that was how it was going to stay.

If the estimated production quantities of chips could not justify the development
and setup costs of the mask approach, then OTP was a reasonable alternative. In
small production environments it was not uncommon to use devices called gang pro‐
grammers with rows of special sockets to program multiple OTP processors at the
same time.

However, OTP still required a lot of up-front development and testing effort using
special tools. While loading buggy firmware into OTP parts wasn’t as financially dis‐
astrous as ordering a production run of 10,000 defective mask-programmed parts, it
was still a bad day when OTP parts ended up in the trash because of a subtle error in
the code.

As technology progressed, newer devices incorporated UV-erasable programmable
read-only memory (UV-EPROM, usually found in parts in a DIP, or dual in-line pin,
package with a clear glass window for UV light to shine on the chip and reset the
memory bits) and electrically erasable programmable read-only memory (EEPROM).
Both of these types of parts required special tools to erase the contents of the read-
only memory and load new data, but loading bad code only meant going through the
erase-load-test-grumble cycle again instead of tossing the device into the trash.

Most of the latest generations of microcontrollers now use flash memory, but there
are still OTP parts available. One of the major advantages of flash memory is that it is
read/write: it can be written to, as well as read from, while the processor is running.
Another major advantage is that it is nonvolatile, meaning that the contents will
persist between power cycles. The concept of firmware based on nonvolatile read-
only memory that required special tools to modify is becoming a thing of the past,
but anything loaded into the flash memory of a microcontroller is still referred to as
firmware.

Bootloaders | 93

The Arduino IDE Environment
As of the date of this writing, the most recent version of the Arduino IDE is 1.6.4. It
looks pretty much the same on each platform. Figure 5-1 shows the initial screen that
appears when the IDE is launched.

Figure 5-1. The Arduino IDE main screen

The latest version of the IDE incorporates some fixes and updates to some of the
menus, adds a command-line interface for managing boards and libraries, and
resolves some code highlighting issues. Support for the new Gemma board has been
added. It also supports non-Arduino (that is, unofficial) boards by allowing you to
enter a URL that will allow the IDE to retrieve information about a board from the
supplier’s website and integrate it into the IDE’s board manager.

If you have an older Arduino board (something like a Diecimila, Duemilanove, or
Uno), then not having the latest version of the IDE really isn’t that big of an issue.
Most people using an older version of the IDE with an older type of Arduino board
probably won’t even notice that they don’t have the latest changes. If this applies to

94 | Chapter 5: Programming the Arduino and AVR Microcontrollers

you, unless you plan to work with one of the newer Arduino boards (such as the Yún,
Zero, or Gemma), you can probably put off getting the latest version of the IDE, at
least for now.

Installing the Arduino IDE
The procedure for installing the Arduino IDE and libraries varies from extremely
easy to very involved, depending on your platform and how much effort you want to
put into it. For most people using Linux the easiest approach is to download an
installation package via a package manager and it let it deal with also installing the
necessary support packages.

The downside to this is that what is available from a package repository may not be
the latest available version. The Arduino main website will always have the latest ver‐
sion, but gathering all the necessary bits and then getting them up and running on
Linux can involve multiple manual steps. Windows and Mac OS X are easier to deal
with in this regard, as discussed in the following sections.

After installation is complete, it’s a good idea to take a few minutes and look through
what has been installed on your system. In the Arduino installation directory you will
find the source code for numerous examples, sources and examples for the stock
libraries, hex (binary loadable image) files for various versions of the bootloader, and
documentation in the form of a suite of HTML pages that can be viewed with a web
browser or opened using the Help menu item in the IDE.

Downloads for supported host systems are available from Arduino.cc. Just select the
one that it is appropriate for you.

Windows
Installing the Arduino IDE on a Windows system is straightforward. The installation
package, arduino-1.6.4-windows.exe, takes care of all the details. If you happen to
have an older version of the IDE already installed it will remove it for you before
installing a newer version (but it won’t remove your existing sketches). The Arduino
executables and libraries are placed in Program Files\Arduino. You can also find the
examples here. A directory called Arduino is created in your home directory. This is
where all user-created sketches and user-supplied libraries will be located.

Linux
Most Linux distributions provide the Arduino IDE in prepackaged form, be it a deb,
rpm, ymp, or other package type. This is the preferred way to get the IDE and libra‐
ries quickly and correctly installed on a Linux system. As mentioned earlier, the
downside to this approach is that the package maintainers for the various Linux dis‐
tributions might not have the latest version from Arduino.cc available in distribution

The Arduino IDE Environment | 95

http://arduino.cc
http://www.arduino.cc/en/Main/Software

package format. For example, the latest version of Arduino available for Kubuntu is
1.0.4.

While a distribution package is the easiest way to get the Arduino IDE installed on a
Linux system, the various components can also be downloaded directly from Ardu‐
ino.cc and installed manually. For some distributions this might be the only option.
You can read about the supported Linux distributions on the Arduino website.

Package installation on an Ubuntu-type system (Ubuntu, Kubuntu, or some other
Ubuntu-derived distribution) is done using apt-get or a similar tool. OpenSuse sys‐
tems use the yast tool to install the IDE package, and other systems might use rpm or
some other package manager. After installation, the various examples, hardware,
library files, and tools are located in /usr/share/arduino. On my Kubuntu and
Xubuntu systems my sketches and custom libraries are placed in a default location in
my home directory, in a subdirectory called sketchbook.

Mac OS X
The Mac OS X version of the Arduino IDE and libraries is supplied in a ZIP file with
the name arduino-1.6.4-macosx.zip. According to the Arduino website it is intended
for version 10.7 (Lion) or newer. After unzipping the archive, copy Arduino.app to
the appropriate location on your system (the Applications folder is one possibility).

For additional information on installing the Arduino IDE on a Mac OS X system,
refer to the Arduino.cc website.

Configuring the Arduino IDE
You can tailor the IDE to suit your needs by using the Preferences dialog, found
under File→Preferences on the main menu (under “Arduino” on a Mac). This dialog
allows you to specify the sketch directory, specify an external editor (if you don’t like
the one that comes with the IDE), and modify various behaviors of the IDE.
Figure 5-2 shows the Preferences dialog for an older version of the IDE on a Linux
system.

The preferences file, which the dialog refers to as /home/jmh/.arduino/preferences.txt
in Figure 5-2, contains many more settings that are not shown in the dialog. But, as it
states, don’t edit this file while the IDE is active.

Figure 5-3 shows the Preferences dialog for version 1.6.4 of the IDE. It has many
more options than the older version, but it is still just a graphical version of the pref‐
erences file.

96 | Chapter 5: Programming the Arduino and AVR Microcontrollers

http://bit.ly/apg-linux
http://www.arduino.cc/en/Guide/MacOSX

Figure 5-2. Old-style IDE preferences dialog

Figure 5-3. New-style IDE Preferences dialog

The Arduino IDE Environment | 97

The preferences file is an ASCII KVP (key/value pair) data file that contains settings
for the editor, application initial display geometry (the size of the Arduino IDE win‐
dow), serial interface parameters (baud rate, data size, etc.), and the browser to use
for viewing the supplied HTML help files, among other things.

The preferences file also contains information about the last sketch that was edited,
and the last size of the IDE window. Because it is dynamically modified by the IDE
while it is running, it should only be manually edited when the IDE is not active.

For the older version of the IDE, this may be the only way to modify parameters such
as the indent size (the default is 2 spaces, but I prefer 4), the size and type of font used
in the editor (the default is Monospaced with a size of 12, but I usually set it to 11 so I
see more in the editor window), and tab expansion. The newer versions of the IDE
offer more options in the Preferences dialog, but there may still be a few things you
might want to tweak in the preferences.txt file itself.

Cross-Compiling with the Arduino IDE
What makes an Arduino special, instead of just being yet another PCB with an AVR
soldered onto it, is the Arduino IDE, the Arduino firmware, the runtime code, the
software libraries developed by Ardunio.cc, and of course the programs supplied by
you, the developer. The Arduino IDE is a quick and easy way to build and load soft‐
ware for an AVR chip. It accomplishes this by effectively hiding much of what goes on
when code is compiled, linked, and transferred to an AVR target.

The programming language used by the Arduino IDE is typically
C++, although it can also use C, as the AVR-GCC toolchain will
accept either. For this reason you will see C/C++ when this text
refers to both languages, and C or C++ when discussing a particu‐
lar language.

Individual source code files are displayed in the IDE in what are referred to as “tabs.”
You can switch from one file to another by simply selecting the appropriate tab at the
top of the editor window. When the source code is compiled the IDE will step
through each tab, creating an object file for each one.

The Arduino IDE uses the avr-gcc compiler and related tools (referred to as the tool‐
chain) to build the binary executable code for an AVR device. The libraries supplied
by Arduino.cc have functions available for things like time delays, serial data output,
and other capabilities (see Chapter 7).

Sometimes the term “Arduinoese” has been used to imply that the Arduino uses its
own unique dialect of C/C++. This is incorrect. The language used is real C or C++,
with some limitations on what can be done with C++ source code. Recall that the

98 | Chapter 5: Programming the Arduino and AVR Microcontrollers

Arduino IDE is really nothing more than a “wrapper” around the AVR-GCC tool‐
chain (covered in “The AVR Toolchain” on page 125).

Specifically, in avr-libc there is no support for the C++ new and delete operators,
but they are provided by the Arduino team. You can find the Arduino definitions
in /usr/share/arduino/hardware/arduino/cores/arduino/new.h on a Linux system, in
C:\Program Files\Arduino\hardware\arduino\avr\cores\arduino on a Windows sys‐
tem, and in /Applications/Arduino.app/Contents/Java/hardware/arduino/avr/cores/
arduino on the Mac.

Instantiating Class Objects with new
Dynamic memory allocation in an embedded system is generally considered to be a
bad idea. Dynamically allocated memory is typically taken from the SRAM, and most
MCUs, the AVR included, don’t have a lot of SRAM to start with. avr-libc supports
malloc(), but not new—but the Arduino folks thought it would be a good idea to
include it, so they did.

Note that when a class object is instantiated in AVR C++ code it is not created in the
SRAM space. The 8-bit AVR MCUs are Harvard architecture processors, and they
will not execute code from SRAM, only from flash memory space. The magic here is
that the object is being created at compile time in flash memory and the new operator
returns a pointer to the object.

As shown in Example 5-1, you can use new with version 1.0.5 or later of the IDE in a
source file containing global variables.

Example 5-1. Instantiating a global object with new

// global_objs.cpp
#include "Arduino.h"
#include <LiquidCrystal.h>
#include <DDS.h>

LiquidCrystal *lcd = new LiquidCrystal(LCD_RS, LCD_E, LCD_D4, LCD_D5,
 LCD_D6, LCD_D7);
DDS *ddsdev = new DDS(DDS_OSC, DDS_DATA, DDS_FQ_UP, DDS_W_CLK, DDS_RESET);

If lcd and ddsdev are declared as exports in a corresponding include file, as shown in
Example 5-2, they can be accessed from any other source module that includes the
global include file.

Example 5-2. Declaring global objects as extern

// global_objs.h
#include <LiquidCrystal.h>
#include <DDS.h>

Cross-Compiling with the Arduino IDE | 99

extern LiquidCrystal *lcd;
extern DDS *ddsdev;

Alternatively, you can instantiate the objects in the global variables source file and
then specifically assign the pointers (the same include file could be used here as well).
This is shown in Example 5-3.

Example 5-3. Assigning objects to global pointers

// global_objs.cpp
#include "Arduino.h"
#include <LiquidCrystal.h>
#include <DDS.h>

LiquidCrystal lcdobj(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7);
DDS ddsobj(DDS_OSC, DDS_DATA, DDS_FQ_UP, DDS_W_CLK, DDS_RESET);

LiquidCrystal *lcd = &lcdobj;
DDS *ddsdev = &ddsobj;

An interesting observation is that the executable objects these statements are part of
have different compiled build sizes, depending on which method is used. The new
approach results in an executable object that is 662 bytes larger than the pointer
assignment method. It’s not much, to be sure, but when you only have 32K of flash to
work with, every little bit counts.

These code snippets were taken from the source code for the signal generator presented in
Chapter 11.

In addition, C++ templates are not available, and exceptions are not supported.
Classes, including constructors and destructors, are supported, however. Pure C code
has few limitations. Even malloc() and free() can be used, with some cautions (see
the avr-libc user manual for details and guidance). But bear in mind that using
dynamic memory allocation with an embedded MCU is technically questionable and
can lead to some difficult problems and clumsy code. Like the old saying goes: just
because you can, doesn’t mean you should. There needs to be a very compelling rea‐
son to use dynamic memory with a memory-constrained microcontroller.

The source of confusion over the language used with the Arduino IDE may be the
predefined macro definitions and functions that the Arduino environment uses to
simplify access to the various I/O functions of the AVR MCU. An Arduino sketch
may have an odd name and an unusual file extension (.ino), and it might look like a
stripped-down version of C, but that is intentional. It makes perfect sense when you
consider the original intended audience for the Arduino—namely, people who might
not have any significant programming experience (or even none at all). But all the
messy complexity of C and much of C++ is still there, if you want to use it. Chapter 6
describes the process of creating executable code for an Arduino (or any AVR MCU,

100 | Chapter 5: Programming the Arduino and AVR Microcontrollers

http://bit.ly/avr-libc-malloc

for that matter) using the underlying AVR-GCC toolchain components, a text editor,
and makefiles.

Microcontrollers Are Not Microprocessors
It is important to bear in mind that a microcontroller is not a general-purpose CPU.
A typical microcontroller is a self-contained device with only a limited amount of
program memory and very little RAM, but it does have lots of I/O functions already
built in. Microcontrollers are typically used for a limited set of specific tasks, such as
sensing keypress actions in a keyboard, controlling some motors, monitoring temper‐
atures, or providing the “smarts” for a dynamic art project—or all of that at the same
time. With the possible exception of the ATmega2560, with its ability to access exter‐
nal memory, an AVR microcontroller isn’t really a suitable platform for a word pro‐
cessor or a complex video game. That being said, clever folks have used tight and
efficient code to make an AVR microcontroller do some very interesting and complex
things.

The Arduino Executable Image
Executable Arduino software (the executable image described earlier) typically con‐
sists of three primary components: the sketch created by a developer (you, perhaps),
the libraries used to access the various functions of an AVR, and the runtime code
that contains a main() function and a loop for the application software to execute
within. If you look back at Figure 5-1, you can see that the IDE has helpfully supplied
a minimal template for you to fill in with your own code.

The tools and software components involved in creating executable code for an AVR
microcontroller can be divided into two primary categories: host development tools
and runtime compilation sources, and the target-side executable binary code for the
AVR microcontroller. Figure 5-4 shows a block diagram of the primary Arduino soft‐
ware components, and includes the user-supplied program (sketch) to show how
things fit into a complete executable binary image.

The Arduino Software Build Process
There are five main steps in the Arduino build process when using the IDE:

Source preparation
The sketch is modified slightly by the IDE, which adds the #include statement
"WProgram.h" for version 1.0 or greater of the IDE, or "Arduino.h" for older ver‐
sions of the IDE. Tabs (source files) that do not have an extension are concaten‐
ated with the main sketch, creating a large single source code file (tabs with .c
or .cpp extensions are compiled separately).

Cross-Compiling with the Arduino IDE | 101

The IDE also attempts to create function prototypes for any functions other than
setup() and loop() found in the sketch. These are placed at the top of the sketch
file, immediately after any comments or preprocessor statements (#include and
#define) but before any other types of statements. In a conventional C or C++
source file these would be placed in a .h header file to be included when the code
is compiled, but the Arduino IDE takes care of this for you by dynamically creat‐
ing and inserting them into the sketch source file. The last part of the source
preparation entails appending the contents of the standard main.cxx file to the
sketch (this is where main() is defined).

Figure 5-4. Arduino software organization

Compilation
Arduino uses the AVR-GCC compiler suite to translate the source code into
binary files called object files. These are not immediately executable, but must be
processed by the tool called the linker before the Arduino hardware can deal with
them (refer to the next step). The AVR-GCC compiler is a form of the base GCC
compiler built specifically for use with Atmel’s line of AVR devices. Due to the

102 | Chapter 5: Programming the Arduino and AVR Microcontrollers

limitations imposed by the target hardware (memory, mainly) not all C++ capa‐
bilities are supported, but C support is complete.

The compiler accepts a large number of command-line arguments, also called
switches. The Arduino IDE takes care of providing the correct switches to the
compiler. These include specifying where standard include files are located, opti‐
mization options, target-specific options, and warning message levels, among
other things.

Linking
Linking is the process of connecting object files and library modules. The basic
idea is to fill in the “holes” in the object files where the original source code
referred to a data object or function in an external library or object, but the com‐
piler couldn’t resolve the address at the time the code was compiled. The linker’s
job is to locate the missing references and write them into a final executable
binary file, along with the binary code for the referenced data or functions.

Conversion
The binary file created by the linker must be converted to what is called Intel hex
format, which is what the bootloader firmware on the AVR device expects. The
utility avr-objcopy can be used to do this, and it is described in Chapter 6.

Uploading
The final step involves transferring the completed executable binary file to the
Arduino hardware. This is accomplished using a USB link (usually) and the
bootloader firmware in the microcontroller, along with a utility called AVR‐
DUDE (it’s actually an acronym). It is also possible to load executable code into
an AVR device directly via the ICSP interface (such as when there is no boot‐
loader), and the Arduino IDE supports this.

Sketch Tabs
It is possible, and actually quite convenient, to divide a large sketch into smaller
source code modules (i.e., files), each with its own include file. When the IDE loads a
sketch it looks in the sketch’s directory for any additional files. Auxiliary files may
have no extension, or a .c, .cpp, or .h extension. Files with a .c or .cpp extension appear
in a tab but are compiled into object files to be linked with the main sketch code. Files
without an extension are included into the sketch. In order to use a tab file with a .h
extension, it must be referenced via an #include statement using double quotes (not
angle brackets).

If your auxiliary files have their own include files they must all be included in the
main sketch, even if it doesn’t reference any of the code itself. The same applies to
external library modules. If an auxiliary file uses a class in a library but the main

Cross-Compiling with the Arduino IDE | 103

sketch does not, both it and the main sketch still need to reference the library’s
include file.

A technique I like to use involves putting all the global variables (including class
objects, as mentioned earlier) into a separate source file. This allows any other mod‐
ules that need to access the variables to do so. It also makes the main sketch a lot eas‐
ier to read, as it could end up with just the setup() and loop() functions. You can
read more about multifile sketches at arduino.cc, and Chapter 11 describes a working
example created for the DDS signal generator (the full source code is available on Git‐
hub at https://github.com/ardnut).

Arduino Software Architecture
Regardless of how big or small it might be, a sketch always consists of at least two
required functions: setup() and loop(). The setup() function is called once when
the sketch starts. The loop() function executes continuously until the power is dis‐
connected or the Arduino board is reset. loop() is called repeatedly by the main()
function that is automatically supplied by the Arduino IDE. A sketch may also have
additional functions. For example, the sketch for the thermostat shown in Chapter 12
has multiple functions in addition to the mandatory setup() and loop(). The main
function runtime code is described in “Runtime Support: The main() Function” on
page 106.

A sketch will also have statements at the start of the file that define other files to
include, constants for I/O pins and other values, and global variables. You can see
how a typical sketch is organized in “An Example Sketch” on page 107. The sections
“Constants” and “Global Variables” on page 111 discuss constants and global vari‐
ables, respectively.

A never-ending main() loop, sometimes called an event loop, is a common way to
program microcontrollers. A small device like an AVR doesn’t load program files
from disk, and any program executing on it is designed to perform a specific function
(or range of functions) continuously. So, using the concept of a run-forever primary
loop makes perfect sense. Because the program code is stored in flash memory, it will
be ready to run again after the Arduino is powered up or reset.

To help put things into perspective, Figure 5-5 shows how the main() function sup‐
plied by the Arduino IDE calls the setup() and loop() functions in the sketch.

In Figure 5-5, an external library class object is instantiated (i.e., initialized) outside
of both setup() and loop() so it will be available to all the functions in the sketch. In
addition to setup(), loop(), and any other functions in the main sketch, there can
also be functions in other files, and additional files of source code included in the
sketch will be handled by the Arduino IDE as tabs.

104 | Chapter 5: Programming the Arduino and AVR Microcontrollers

http://bit.ly/arduino-build-process
https://github.com/ardnut

Figure 5-5. Arduino program structure

Note that a tab is not a true library; it’s just more sketch source code kept in a sepa‐
rate file. The code used in a tab could be reused in other sketches, but unlike with a
real library, you need to manually specify the tab when a sketch is created—just pro‐
viding an include directive in the main sketch source file is not sufficient. To add
code to a sketch in the form of a tab, use Sketch→Add File from the IDE menu bar.
The source file for the tab does not need to reside in the same directory as the main
sketch file.

External libraries are integrated with the final executable image after the sketch code,
along with any tab files, is compiled. The Arduino IDE will generate the correct linker
options based on the include statements placed at the start of the sketch. See “Using
Libraries in Sketches” on page 112 for more on incorporating libraries into a sketch.

Cross-Compiling with the Arduino IDE | 105

Runtime Support: The main() Function
Compilers used with Linux, Windows, and Mac OS X systems provide a platform-
specific library of functions called the runtime library. On a GCC-based system this is
typically called libgcc.a or libgcc_s.so.1, and on Windows the runtime libraries usually
go by the names MSVCRT.DLL for C and MSVCPP.DLL for C++. The AVR version is
avr-libc, which is discussed in Chapter 6. The runtime library will contain commonly
used functions specific to a particular platform. These can be common math opera‐
tions, low-level I/O functions, system timers, support for printf(), and so on.

The Arduino also has its own additional runtime support module, but with a twist.
By itself, a program sketch won’t do much. It has no main() function to get it started
and no way to continuously execute once it does start. The Arduino runtime support
includes the necessary main() function, along with other startup configuration func‐
tions. As can be seen from Example 5-4, it’s actually very simple, and is a typical
design for small microcontrollers.

Example 5-4. Arduino main() function

int main(void)
{
 init();
 initVariant();

 #ifdefined(USBCON)
 USBDevice.attach();
 #endif

 setup();
 for (;;) {
 loop();
 if (serialEventRun) serialEventRun();
 }
 return 0;
}

The calls to init(), initVariant(), and (if applicable) USBDevice.attach() are
determined at compile time based on the type of Arduino target hardware selected in
the IDE. These comprise the primary components of the runtime support code spe‐
cific to each type of Arduino board. In a larger realtime operating system (RTOS)
these might be part of the board support package (BSP) supplied by the RTOS vendor
or created by a developer. The functions are described here:

init()

Located in Arduino/hardware/arduino/avr/cores/arduino/wiring.c, this function
initializes various AVR peripheral components such as timers, timer/counter pre‐

106 | Chapter 5: Programming the Arduino and AVR Microcontrollers

scaling, A/D converter prescaling, and PWM output modes according to the
AVR part used with a particular Arduino board.

initVariant()

This provides a “hook” in the form of a so-called weak function declaration. Typ‐
ically used to provide additional runtime initialization for hardware not covered
by the definitions and code supplied with a standard Arduino development envi‐
ronment.

USBDevice.attach()

This refers to the attach() method of the USBDevice class found in Arduino/
hardware/arduino/avr/cores/arduino/USBCore.cpp. This class provides the func‐
tionality necessary to communicate with a USB interface.

For many people, what these initialization functions actually do is irrelevant. How‐
ever, if you want to really understand what the Arduino IDE does and how it does it,
then reviewing the source code for these support functions is a worthwhile endeavor.
Obtaining the source code is described in “Arduino Source Code” on page 119.

As described previously, the setup() and loop() functions are provided by you in
the program sketch. The setup() function is typically used to define specific I/O
ports and starting states, initialize some parts of the AVR peripheral functions, or
perform other one-time operations. It is largely optional and can even be an empty
function, but it must exist in the sketch or the linker will generate an error message.

The loop() function is where the main activity occurs in a program sketch. As can be
seen from Arduino main it is called repeatedly until power to the Arduino board is
removed. Interrupts can and do occur while loop() is executing, and some applica‐
tions may incorporate a timer interrupt or a delay to give loop() some degree of defi‐
nite periodicity (as opposed to simply free-running).

An Example Sketch
As we’ve already seen, a basic Arduino program sketch consists of two parts: the
setup() function and the loop() function. Since the main() function is provided by
the IDE, we don’t need to worry about it when working with simple sketches.

The simple sketch in Example 5-5 will monitor several inputs and produce an output
if any of the inputs change from low to high. It could be the basis for a simple burglar
alarm.

Example 5-5. Simple intrusion alarm

// CONSTANTS
// Define the digital I/O pins to use
#define LOOP1 2 // sense loop 1

Cross-Compiling with the Arduino IDE | 107

#define LOOP2 3 // sense loop 2
#define ARM 6 // Arm the alarm
#define RESET 7 // Reset alarm state
#define ALERT 12 // Annunciator output
#define LED 13 // Same LED on board

#define SLEEPTM 250 // loop dwell time

#define SLOWFLASH 10 // unarmed flash divisor
#define FASTFLASH 2 // armed flash divisor

// GLOBAL VARIABLES
// State flags
bool arm_state; // T = armed, F = unarmed
bool alarmed; // T = in alarm state, F = all quiet
bool led_state; // control on-board LED
bool loop1state; // status of sense loop 1
bool loop2state; // status of sense loop 2
bool in_alarm; // T = alarm active, F = quiet

int led_cnt; // flash cycle counter
int flash_rate; // count divisor

// We will use Arduino's built-in pinMode() function to set the input or
// output behavior of the discrete digital I/O pins

void setup()
{
 // Initialize pins 2, 3, 6, and 7 as digital inputs
 pinMode(LOOP1, INPUT);
 pinMode(LOOP2, INPUT);
 pinMode(ARM, INPUT);
 pinMode(RESET, INPUT);

 // Initialize pins 12 and 13 as digital outputs
 pinMode(ALERT, OUTPUT);
 pinMode(LED, OUTPUT);

 // Initialize state flags
 arm_state = false;
 alarmed = false;
 led_state = false;
 loop1state = true;
 loop2state = true;
 in_alarm = false;

 // Set LED start condition
 led_cnt = 0;
 flash_rate = SLOWFLASH;
 digitalWrite(LED, LOW);
}

108 | Chapter 5: Programming the Arduino and AVR Microcontrollers

void loop()
{
 // Get arm switch value
 arm_state = digitalRead(ARM);

 // If reset is low (true), cancel alarm state
 if (!digitalRead(RESET)) {
 in_alarm = false;
 }

 // If not armed, just loop with a short pause
 if (!arm_state) {
 flash_rate = SLOWFLASH;
 in_alarm = false;
 }
 else {
 flash_rate = FASTFLASH;
 }

 // Check the sense loops
 loop1state = digitalRead(LOOP1);
 loop2state = digitalRead(LOOP2);

 // only go into alarm state if armed
 if (arm_state) {
 if ((loop1state) || (loop2state)) {
 in_alarm = true;
 }
 }

 if (in_alarm) {
 digitalWrite(ALERT, HIGH);
 }
 else {
 digitalWrite(ALERT, LOW);
 }

 led_cnt++;
 if (!(led_cnt % flash_rate)) {
 led_cnt = 0; // reset flash count
 led_state = !led_state; // invert LED state
 digitalWrite(LED, led_state);
 }

 delay(SLEEPTM);
}

Figure 5-6 shows how an Arduino might be connected to external switches for doors
and windows. The reasoning behind connecting switches in series and connecting

Cross-Compiling with the Arduino IDE | 109

one end of the chain to ground is simple: if any of the wiring connecting the sensor
switches is cut, it will trigger the alarm.

Figure 5-6. Simple Arduino intrusion alarm

In an application like this the sensor switches could be window frame plungers, mag‐
netically actuated reed relays, leaf switches on sliding doors, or even a sensor module
such as a sound detector. The annunciator can be anything from a 50-cent piezo buz‐
zer to a relay to control a siren or even a phone autodialer. For more on Arduino-
compatible sensors, see Chapter 9. This basic design could be extended in any
number of interesting directions, all the way to creating a commercial-quality alarm
system. You can find downloadable software from this book on GitHub.

Constants
There are two ways to define constants for I/O pin numbers, time delays, and other
values. The first is to use #define statements. The second is to use integers that are

110 | Chapter 5: Programming the Arduino and AVR Microcontrollers

https://www.github.com/ardnut

initialized to some value and then never modified. For example, a #define statement
to associate pin 2 with a name might look like this:

#define LOOP1 2 // sense loop 1

The alternative approach is to create an integer to hold the value:

int LOOP1 = 2; // sense loop 1

If you look through example Arduino code you will see both approaches used, and
both will work equally well. Although some folks may eschew the #define statement,
for whatever reasons, there is a memory use trade-off to consider.

The advantage of using #define statements, as is done in Example 5-5, is that they
result in a smaller compiled program size. With the #define statements the final size
of the intrusion alarm program is 1,452 bytes. With the #defines replaced with int
declarations, it is 1,540 bytes. That difference of 88 bytes may not seem like much, but
in a large sketch with lots of I/O definitions and constants it can add up. If, for exam‐
ple, everything has to fit into 30,720 bytes for an ATmega328, it might make the dif‐
ference between loading and failing.

Global Variables
One thing you may notice about all sketches is the use of global variables. This is
common in Arduino sketches for one very good reason: the loop() function is called
repeatedly by main() when the sketch code is running, and if the variables were
defined in loop() they would be erased and reloaded each time that loop() was
called. If loop() needs a variable with a persistent value (a counter, perhaps), then it
needs to be outside of loop() so that it won’t be cleared and recreated repeatedly.
Global variables also make it convenient for setup() to set initial values before
loop() is first called, and any other functions in the sketch will also have access to the
variables.

Global variables have gotten a bad reputation in some circles because of the problems
that can arise with unintentional “coupling” between different parts of a program. In
large applications that load from disk, execute, and are then terminated by a user,
such as word processors, games, and web browsers, this makes sense. It’s not a good
thing when one part of an application modifies a global variable and another part of
the application causes a crash when it also modifies the same global variable. In sys‐
tems with lots of available memory, dynamic memory allocation, semaphores and
mutex locks, and the ability to pass around pointers to things like complex structures,
the use of global variables might not be justifiable.

However, in the realm of embedded systems global variables are commonly used as
an efficient form of shared memory that is visible to every function in the program.
You can think of global variables as a panel full of switches, indicators, knobs, and

Cross-Compiling with the Arduino IDE | 111

dials, like in the cockpit of an airplane. Just so long as you follow the “modified by
one function, read by many functions” rule things should be fine.

Since an Arduino sketch is not running in parallel with other threads or processes,
the chances of an access collision are zero. Interrupts might be a challenge, depending
on how they are implemented, but a little forethought can negate potential problems
there, as well.

Libraries
The libraries supplied with the Arduino IDE cover a lot of things, but not everything,
as can be seen in Chapter 7. Unless someone has put in the time and effort to create a
library for a specific sensor or interface, then you will need to supply the code your‐
self. This is particularly often the case when working with custom or uncommon sen‐
sors or shields that require special functions.

With the Arduino IDE the term “library” is used in a way that might seem out of line
with what you are used to if you’ve worked with GCC or Visual Studio on large
projects. When building software for a full-size computer like a desktop PC, a library
typically refers to a binary object archive. On Linux and Unix systems this is accom‐
plished using the ln, ar, and ranlib tools. The resulting binary file is an indexed collec‐
tion of object files (see “Objects, Images, and Source Code” on page 91) that the linker
can use to fill in the gaps and generate a complete program. If it’s a dynamic library,
then it will be loaded when the application is started (or even during program execu‐
tion) and the linking will occur at that time.

In the Arduino IDE environment libraries usually exist as source code until they are
needed in a sketch. So what is actually happening when a sketch is compiled is that
the sketch (and any tab files), any necessary libraries, and the runtime code are all
compiled at the same time and linked into a single binary executable image.

Using Libraries in Sketches
As mentioned earlier, when the Arduino IDE encounters an include statement that
refers to a library already registered with the IDE it will generate the necessary build
steps and linker options to incorporate the library automatically. However, in order
for this to work the IDE must know about the library in advance.

Registering a library with the IDE is described in “Adding a Library to the Arduino
IDE” on page 116. The Arduino IDE comes with a selection of libraries for common
operations and I/O devices already preloaded. Figure 5-7 shows the available library
listing for an older version of the IDE, and Figure 5-8 shows the library listing and
library management options available in the latest version (1.6.4) of the IDE.

112 | Chapter 5: Programming the Arduino and AVR Microcontrollers

Figure 5-7. Registered library listing from older Arduino IDE

Example 5-6 shows how a library—in this case, the SoftwareSerial library—is incor‐
porated into a sketch. The first thing to notice is the include statement at the top of
the sketch file:

#include <SoftwareSerial.h>

From this the IDE will determine that it needs to locate a library with the name “Soft‐
wareSerial,” and it will expect that library to be in its list of known library modules.

Example 5-6. Library example 1

 #include <SoftwareSerial.h>

 SoftwareSerial softSerial(2, 3);

 int analogPin = A0; // select the input pin for the potentiometer
 int analogVal = 0; // variable to store the value coming from the sensor

 void setup()
 {
 // set the data rate for the SoftwareSerial port
 softSerial.begin(9600);
 }

Libraries | 113

 void loop() // run over and over
 {
 // read some data from an analog input
 analogVal = analogRead(analogPin);

 // write the data to the softSerial port
 if (softSerial.available())
 softSerial.write(analogVal);

 // pause the program for 1 second (1000 milliseconds)
 delay(1000);
 }

The SoftwareSerial object is instantiated by the line:

SoftwareSerial softSerial(2, 3);

This also defines the pins to use for the serial I/O function, namely 2 and 3 (digital
I/O pins).

Figure 5-8. Registered library listing from latest version of Arduino IDE

114 | Chapter 5: Programming the Arduino and AVR Microcontrollers

In the setup() function, the serial baud rate is set.

The loop() function reads a value from the A0 analog input pin, and then sends the
binary value out via the softSerial object. The loop() function pauses for 1 second
after each binary value is sent.

This technique can be used to send and receive binary data between two Arduino
boards, but it won’t work very well if you want human-readable output. For that you
will need to use the print() and println() methods in the library, as shown in
Example 5-7.

Example 5-7. Library example 2

#include <SoftwareSerial.h>

SoftwareSerial softSerial(2, 3);

int analogPin = A0; // select the input pin for the potentiometer
int analogVal = 0; // variable to store the value coming from the sensor

void setup()
{
 // set the data rate for the SoftwareSerial port
 softSerial.begin(9600);
}

void loop()
{
 // read some data from an analog input
 analogVal = analogRead(analogPin);

 // write the data to the softSerial port
 softSerial.print(analogVal);
 softSerial.println(); // print a linefeed character

 // pause the program for 1 second (1000 milliseconds)
 delay(1000);
}

It is also possible to use the standard library printf() function to send data out over
the serial port, but printf() doesn’t come preenabled with the Arduino core func‐
tions. If you want to learn how to enable printf(), and get an understanding of how
it might impact your sketches, refer to the Arduino web page on enabling printf()
in Arduino sketches.

You can learn more about the SoftwareSerial library module from the integrated help
in the IDE in the “Libraries” section, and the source code can be found in the Ardu‐
ino installation directories. SoftwareSerial is also described in Chapter 7.

Libraries | 115

http://playground.arduino.cc/Main/Printf
http://playground.arduino.cc/Main/Printf

Adding a Library to the Arduino IDE
User-supplied add-on libraries are the key to using external devices like humidity and
temperature sensors, radio frequency (RF) modules, and infrared (IR) remote control
components. You can write your own library of functions, or you can elect to install
code created by someone else.

Add-on libraries are typically placed in a directory called libraries in the sketchbook
directory. The set of files that comprise the add-on library reside in a subdirectory
with an appropriate name. It is the name of this subdirectory that appears in the
library list in the IDE. There are two ways to accomplish this:

Method 1, automatic
Recent versions of the Arduino IDE (1.0.5 and later) can automatically install
library source code into your sketchbook directory for you (the actual location
will depend on your operating system). From the IDE’s main menu, click
Sketch→Import Library→Add Library and then select the directory or ZIP file
that contains the library source code. The latest version of the IDE (1.6.4) uses a
slightly different series of steps, and the library management functions are grou‐
ped under “Include Library.”

One nice thing about this method (other than its simplicity) is that the IDE will
immediately recognize the new library—there is no need to restart the IDE. Also,
with newer versions of the IDE you can download and install libraries from
external sources.

Method 2, manual
Manually installing an add-on library for the Arduino IDE involves the following
steps:

• First, close the IDE if it is running.
• Unzip the new library files into a temporary directory (most add-on libraries

come in the form of ZIP files).
• You should see at least two source code files, a .c or .cpp file (the program)

and a .h file (an include or header file).
• Create a subdirectory under <home>/sketchbook/libraries with the same

name as the two source files.
• Copy the entire contents of the temporary directory to the new library direc‐

tory you created in the previous step.
When the IDE is restarted you should see the library listed in the
Sketch→Include Library drop-down list.

116 | Chapter 5: Programming the Arduino and AVR Microcontrollers

The convention for organizing the contents of an add-on library is as follows:

 IRTracker/IRTracker.cpp
 /IRTracker.h
 /keywords.txt
 /README
 /utility/IRCal.cpp
 /IRCal.h
 /IREncode.cpp
 /IREncode.h
 /IRDecode.cpp
 /IRDecode.h
 /Examples/ScanIR/ScanIR.ino
 /SendStop/SendStop.ino

Note that this is an example only. So far as I know, there is no IR tracker library avail‐
able for the Arduino (yet).

The library subdirectory must have the same name as the source files, and this
convention is used throughout the Arduino IDE’s directories. For example, in the
Arduino examples directory (/usr/share/arduino/examples in a Linux system) the sub‐
directories have the same names as the .ino files.

As you can see in the example directory structure, there can be additional subdirecto‐
ries for utility functions, and even more source files than the two files that share the
same name as the subdirectory. They won’t appear in the libraries list, but the library
code will be able to access them when it is compiled.

You might notice a file called keywords.txt at the base level of the library directory
structure. This is an important file, as it gives the IDE some definitions regarding
what things do in the library source code. The keywords.txt file for the hypothetical
IR tracker library used for our directory structure example might look like this:

 # IR Tracker
 ##################################
 MAXPWR LITERAL1
 MAXTIME LITERAL1

 LastCal KEYWORD1
 TotHours KEYWORD1

 IRState KEYWORD2
 IRSense KEYWORD2

The format is very simple. The # (pound or hash) indicates that everything to the end
of the line is a comment and should be ignored. Special keywords, listed in Table 5-1,
are used to indicate the type of literal constants, classes, structures, variables, or func‐
tions to the IDE.

Libraries | 117

Table 5-1. Keyword definitions for keywords.txt

Type Definition
LITERAL1 Literal constants (i.e., macros)

LITERAL2 Literal constants (i.e., macros)

KEYWORD1 Classes, data types, and C++ keywords

KEYWORD2 Methods and functions

KEYWORD3 Structures

You can also find more information in the keywords.txt file located in the directory
where the Arduino runtime components are installed on your system. On my Linux
machine this is /usr/share/arduino/lib, and on Windows it can be found at C:\Program
Files\Arduino\lib. You can also look at what others have done by examining the key‐
words.txt files in the library subdirectories supplied with the IDE.

While it is possible to place add-on libraries in the Arduino IDE’s predefined set of
directories, this is not the recommended approach. The predefined libraries supplied
with the IDE are subject to change when the IDE is upgraded to a newer version. The
user-contributed libraries and sketches are never altered by an upgrade.

In any case, a library component consists of two basic parts: the source module
(name.c or name.cpp) and the include file (name.h). The code in the source module is
a set of functions that comprise a simple C++ class. The class itself is defined in the
header file. To use the library one need only copy it into the appropriate directory,
start the Arduino IDE, and then select the new library from the Sketch→Import
Library list. The IDE will examine the header file and place the statement #include
<name.h> into the sketch.

Creating Custom Libraries
Creating a custom library for use with the Arduino IDE is straightforward. That
doesn’t necessarily mean it’s simple, as libraries can be very complex, but simple or
complicated, they all follow the same basic template. The source code is written in the
AVR’s restricted version of C++ as a class, perhaps with one or more associated
classes to help out. Look at the source code for some of the libraries listed in Chapter
7 to get an idea of how library source code is organized.

As earlier noted, a minimal library is a set of at least two files: a .cpp source file and
a .h include file. The source file contains the implementation of the library class, and
the include file contains the class definition, type definitions, and macro definitions.

Recall from our earlier sample directory structure that the directory containing the
source and include files for the library will have the same name as the primary source
(.cpp) file. It should also contain the keywords.txt and README files, and an examples

118 | Chapter 5: Programming the Arduino and AVR Microcontrollers

directory is always a nice touch (particularly if you intend to release your library for
others to use).

Arduino Source Code
The full Arduino source code set contains source files for both AVR-based boards
and the ARM-based Due board, which isn’t covered in this book. The source code is
available from GitHub using the URL and the git clone command. You can also
download a ZIP file with an image of all the repository files from GitHub.

If you plan to delve deeper into Arduino than just the IDE, then it is helpful to have
the source code on hand. Looking at the source files can help to make things much
clearer. A tool such as Doxygen can be used to create a linked set of web pages with
dependency graphs, call graphs, and an index of classes, source files, and functions.
Although the Arduino source doesn’t have much in the way of Doxygen-specific tags,
it is still possible to generate useful documentation.

At the top level, the Arduino source directory structure contains directories for appli‐
cation source code (app), build modules (build), hardware-specific files (hardware),
and the library modules included with a standard Arduino distribution (libraries).
From a low-level perspective, the hardware and libraries directories are the most
interesting.

In the hardware subdirectory you can find the source code for various bootloaders,
the runtime support code (which is called “core” in this source file set) that includes
main.cpp, and a small collection of modules for EEPROM, serial I/O, SPI, and two-
wire interfaces (in the hardware/avr/arduino/libraries directory, which is different
from the libraries directory mentioned earlier). The support libraries that come with
the Arduino IDE are located in the libraries directory. The subdirectories here include
source code for audio, Ethernet, liquid crystal displays, SD memory cards, servo
motors, stepper motors, TFT displays, and WiFi modules. There are libraries for the
Arduino Robot, Esplora, and Yún products as well. Many of the library subdirectories
also contain example program sketches, and some have documentation in the form of
a text file.

One thing to bear in mind when reading through the Arduino source code is that it
makes heavy use of #if, #ifdef, #ifndef, and #define statements to determine what
will be included and compiled for a specific type of Arduino board. This can be con‐
fusing at first, and it might take a little effort to work through what is going on. It is
also worth noting that in some cases a function or set of functions is used, while in
other cases a class is defined for a specific purpose.

Arduino Source Code | 119

https://github.com/arduino/Arduino.git
https://github.com/arduino/Arduino/archive/master.zip
http://bit.ly/doxygen-main

CHAPTER 6

Life Without the Arduino IDE

The Arduino hardware actually isn’t all that special; it is just a very basic development
board based on the Atmel AVR devices. It is the Arduino IDE and bootloader firm‐
ware that make it easier for nonprogrammers to work with it and get things running.
It is, however, possible to completely forgo the Arduino IDE. It is a convenient appli‐
cation that takes care of a lot of the messy details of the software build process for the
programmer, but those who want to work from the command line with just a text
editor can do so without ever using an IDE.

In this chapter we will look at some examples of alternative ways to build programs
for an Arduino, and how to use the AVR-GCC toolchain from the command line,
without any assistance other than a makefile. We will also see how assembly language
can be used “down on the metal” to wring the last bit of performance from an AVR
MCU.

Just as there is more than one way to create executable code for an Arduino, there is
more than one way to upload software into an AVR. In this chapter we will look at
some of the ways to get the job done that don’t involve the Arduino IDE.

IDE Alternatives
The Arduino IDE isn’t the only way to develop and load programs for an AVR MCU
on an Arduino board. One Arduino programming alternative is the PlatformIO tool,
which runs under Linux, Mac OS X, and Windows. It is a Python-based code builder
and library manager that is executed from the command line. Another Python tool
for building Arduino programs is the Ino tool; it works with Linux and Mac OS, but
does not currently run in a Windows environment.

121

PlatformIO
PlatformIO is a Python-based command-line tool that supports over 100 different
target microcontrollers. It is largely platform independent, requiring only Python 2.6
or 2.7 to run on Windows, Mac OS X, or Linux (I recommend installing Python 2.7).
For more information, visit the PlatformIO website.

Based on the type of microcontroller specified, PlatformIO will determine what tool‐
chain components are necessary and then call them in the correct order to complete
the compilation, linking, and target upload operations. The boards that PlatformIO
supports include the Trinket series from Adafruit, all of the Arduino AVR boards, the
BitWizard Raspduino (mentioned in Chapter 1), the Digispark boards from Digi‐
stump, the Engduino, the LowPowerLab Mote boards, the Microduino, the Sanguino
AVR boards, and the AVR boards from SparkFun. It also supports various ARM-
based products such as boards using the Atmel SAM MCU, the STM32 MCU, the
LPC from NXP, the Nordic nRF51, as well as the TI MSP430 series and more.

Installing PlatformIO on a Linux or Mac system is straightforward. You can use the
command line, download an installation script, or use a Python pip tool. You may
need to install the cURL data transfer tool first, but this is a common utility and on a
Linux system it can be obtained directly from a package repository.

Figure 6-1 shows the console output after successfully downloading and installing the
PlatformIO packages.

Once it’s installed, you can find out what it can do. If you type in platformio boards
you will be presented with a long list of currently supported boards.

PlatformIO uses the notion of projects to keep things neat and tidy. Each project
starts out with a configuration file and two subdirectories, src and lib. The configura‐
tion file must be edited before it can be used. It is a conventional ASCII KVP (key/
value pair) INI-type file. You can find detailed documentation on the “Project Con‐
figuration File” reference page.

I recommend creating a subdirectory for your PlatformIO projects separate from the
sketchbook directory used by the Arduino IDE. In my case, I called it platformio (not
very creative, but it works for me). To create a new project, enter platformio init.
Figure 6-2 shows the console output when a project is created.

PlatformIO has many capabilities, including predefined frameworks for various
board types, a library manager, and the ability to integrate with an IDE or IDE-like
editor such as the Arduino (along with Eclipse, Energia, Qt Creator, Sublime Text,
Vim, and Visual Studio).

122 | Chapter 6: Life Without the Arduino IDE

http://platformio.org
http://bit.ly/platformio-pcf
http://bit.ly/platformio-pcf

Figure 6-1. PlatformIO successful installation console output

Figure 6-2. Initializing a new PlatformIO project

IDE Alternatives | 123

Ino
Ino is a simple command-line build tool that takes a makefile-based approach to
compilation for Arduino targets. Like PlatformIO it is built using Python, but unlike
PlatformIO it is specifically intended for use with Arduino boards. Ino supports *.ino
and *.pde sketch files as well as *.c and *.cpp sources, and it claims to support all the
boards supported by the Arduino IDE. Note that the current version of Ino only
works with Linux and Mac OS X host platforms. Ino will work with Python 2.6 or 2.7.

You can download and install Ino either by downloading a compressed TAR file,
cloning it from GitHub, or using the Python pip or easy_install tools. I used pip to
install Ino and its various components. After installation, running the command
ino -h displayed the output shown in Figure 6-3 on the console window.

Figure 6-3. The help output from the Ino tool

Ino creates and uses makefiles, but these are transparent to the user. Like PlatformIO,
it uses a directory-based project scheme, and when a project is initialized Ino will
create two subdirectories: src and lib. It also creates a minimal template sketch
(sketch.ino) in the src directory, just as the latest version of the Arduino IDE does. It is
up to you to fill in the blanks and provide the rest of the necessary files.

124 | Chapter 6: Life Without the Arduino IDE

http://inotool.org/#installation

More information about Ino is available at the official website; the tool can be down‐
loaded from the Python Package Index.

The AVR Toolchain
The primary means of converting a source file with C or C++ source code into a
binary object that can then be incorporated into a finished executable AVR program
is the AVR-GCC compiler and its suite of utilities. These are collectively referred to as
the “toolchain.” As previously mentioned, the primary role of the Arduino IDE is to
wrap a user-friendly shell around these tools and hide the messy details as much as
possible. PlatformIO and Ino also hide the toolchain behind Python scripts. But it’s
still there, regardless, and the compiler, linker, assembler, and other tools are available
if you want to build your AVR code using a makefile from the command line, or if
you just want to perform each step manually.

The Arduino IDE installation package (in whatever form works for
your OS) will take care of installing the AVR-GCC toolchain for
you. On a Linux system the Arduino IDE requires the AVR-GCC
toolchain and its associated components, so the package manager
will install it at the time the Arduino IDE is installed. The main
reason for installing the toolchain in addition to what the Arduino
IDE provides is to be able to use the latest versions of the tools. On
a Windows system the Arduino IDE, tools, and libraries will be
placed in a separate directory apart from where something like the
WinAVR suite will usually place its toolchain components, so you
could have both available if you wanted to do so.

Table 6-1 lists the AVR tools found on a Linux system after installing the Arduino
distribution package. The same basic set of programs will be found on a Windows or
Apple system after installing the Arduino IDE. Methods for obtaining and installing
the GNU AVR tools on various host systems are covered in “Installing the Toolchain”
on page 127.

Not all of the tools listed in Table 6-1 are necessary to build executable programs for
an AVR chip on an Arduino board. With the exception of AVRDUDE, they are AVR
versions of existing GNU tools, with similar or identical functionality.

The important tools in the toolchain, from the perspective of getting something com‐
piled for an Arduino (or any AVR MCU), are avr-gcc, avr-g++, avr-ar, avr-as, avr-ld,
avr-objcopy, avr-ranlib, and AVRDUDE.

The AVR Toolchain | 125

http://inotool.org/
http://bit.ly/ino-ppi

Table 6-1. AVR cross-compilation tools

Tool Description
avr-addr2line Converts addresses into filenames and line numbers

avr-ar Creates object code archives, and modifies or extracts code

avr-as The portable GNU assembler for the AVR

avr-c++filt Demangles C++ symbols

avr-gcc The GCC compiler backend to produce AVR object code

avr-g++ The G++ compiler backend to produce AVR object code

avr-ld The GNU linker for AVR object code

avr-nm Lists symbols embedded in object files

avr-objcopy Copies and translates object files

avr-objdump Displays information from object files

avr-ranlib Generates an index for a library archive

avr-readelf Displays information about ELF files

avr-size Lists object file section sizes and total size

avr-strings Prints strings of printable characters in binary files

avr-strip Discards symbols from AVR object files

AVRDUDE The driver program for various AVR MCU programmers

The heart of the toolchain is the compiler, which is called avr-gcc, or avr-g++ for C++
sources. These are versions of the GNU compiler that have been tailored specifically
for use with C or C++ source code and Atmel’s line of AVR microcontrollers. They’re
similar to the full version of gcc, with some of the compiler’s options preset to make
them more convenient to use for AVR MCU cross-compiling.

If you happen to look in the directory where the toolchain components have been
installed, you might see the following:

avr-c++
avr-cpp
avr-g++
avr-gcc
avr-gcc-4.5.3

These are all just variants of the GNU compiler. The avr-c++ and avr-g++ files are
identical. The avr-cpp, avr-gcc, and avr-gcc-4.5.3 files are also identical. If you’re curi‐
ous, you can get the version information by typing avr-gcc -v and avr-g++ -v.

After the source code is compiled, the linker (avr-ld) combines all the binary modules
into a single executable. The source modules must have already been compiled into
object files before they can be processed by the linker.

Compiling and linking isn’t the end of the process, however, because the binary exe‐
cutable image file created by the linker must be converted into a so-called Intel Hex

126 | Chapter 6: Life Without the Arduino IDE

file, which contains an ASCII representation of the binary code in the form of ASCII
hex characters. Then it can be uploaded to the target board, where the bootloader will
translate the ASCII hex back into binary values and write them into the flash memory
on the microcontroller.

Other members of the GNU toolchain, such as ar, ranlib, nm, ld, and strip, also have
AVR versions. Figure 6-4 shows a diagram of how the compiler, linker, converter, and
uploader all work in sequence to get a program into a compiled form, link in neces‐
sary functions from library modules, and then transfer the finished program to an
AVR target.

The object files shown in Figure 6-4 might be the compiled code from other modules
in your project, or they may be from code supplied with a sensor or other accessory,
or they could be runtime AVR-GCC support code such as the main() function that
the Arduino IDE supplies. The library objects shown could be actual binary libraries
such as avr-libc or other libraries created with avr-ar and avr-ranlib, or they might be
object files created when an Arduino-style library is compiled prior to linking.

One component not mentioned yet is the runtime AVR-GCC sup‐
port library, avr-libc, which provides many of the same functions
found in a standard C runtime AVR-GCC library. It also includes
support functions specific to AVR microcontrollers. avr-libc is
described in detail in “avr-libc” on page 135.

Installing the Toolchain
Although the toolchain components are typically installed for you when you install
the Arduino IDE using a package manager, the Windows installer, or the Mac OS X
ZIP file, you can install these components individually if you don’t plan on using the
Arduino IDE.

At a minimum, you will need the following packages (these are Linux package
names):

• avr-lib
• avrdude
• avrdude-doc
• binutils-avr
• gcc-avr
• gdb-avr

The AVR Toolchain | 127

Figure 6-4. The AVR-GCC toolchain

If you are using Windows, then you may also want to consider installing other Unix/
Linux-compatible tools such as grep, fgrep, ls, and diff. These are already present on
Linux and Mac OS X platforms. Although not specifically described here, it is possi‐
ble to install the AVR GNU toolchain on systems running Solaris or BSD Unix
(FreeBSD, for example), or something even more off the beaten path. You just need a
really good reason, a lot of patience, and possibly a significant amount of skill in
working with source code packages. In general, it is much easier to stick with systems
that already have ready-made installation packages available.

Windows installation
As previously mentioned, the Arduino package comes with the necessary compiler
and binutils programs. Just install the Arduino IDE, and it will install the toolchain
components it needs in the same directory where the main executable code for the
IDE is located.

128 | Chapter 6: Life Without the Arduino IDE

The Atmel Corporation provides precompiled binary installation packages, basic
documentation, and the source code for AVR gcc and binutils. You can access the
installation packages and other resources from the Atmel website. Source code pack‐
ages are also available on the website.

Another easy way to install the AVR-GCC toolchain on a Windows system is with the
package WinAVR. The install script creates a directory (it’s C:\WinAVR-20100110 on
my machine), and the binary executables, libraries, and include files are placed there.
There is also a good collection of documentation in both PDF and HTML formats in
C:\WinAVR-20100110\doc. Be forewarned that WinAVR has not been updated since
about 2010, so some of the toolchain components are a bit stale, but they’re still usa‐
ble for most projects. The Atmel version appears to be more recent.

A collection of GNU utilities precompiled for Windows can be found at GnuWin32.
This is a large collection of system tools and utilities, but it doesn’t include the gcc/
g++ compilers or the binutils packages. You can obtain those from the Atmel or
WinAVR download locations.

You can find more packages and tutorials on Google by searching for “Windows avr
binutils.” Those who like to use the Eclipse editor/IDE environment and want to try it
for AVR software development might want to check out the “AVR Eclipse Environ‐
ment on Windows” tutorial on Protostack.com.

Linux installation
On most Linux systems the installation of the GNU gcc, binutils, and other AVR-
related packages is just a matter of selecting packages using a software package man‐
ager. You can have both the “normal” GCC toolchain components and the AVR
toolchain components installed at the same time because the AVR versions of the
compiler and binutils tools will have a prefix of “avr-”. I wouldn’t recommend
attempting to build avr-gcc or any of the other members of the toolchain from source
unless you have a very compelling reason to do so, and you happen to be very com‐
fortable working with large, complex source code packages.

Mac OS X installation
Because Mac OS X is based on a BSD Unix foundation, a lot of what can be said about
Linux can also apply to Mac OS X. The good folks at Adafruit have created a helpful
guide to installing the AVR GNU toolchain in a Mac OS X environment. That page’s
link to the Mac package is obsolete, but see the next paragraph for the current link.

The AVR Toolchain | 129

http://bit.ly/atmel-avr-win
http://bit.ly/atmel-source
http://winavr.sourceforge.net
http://gnuwin32.sourceforge.net
http://bit.ly/protostack-eclipse
http://bit.ly/protostack-eclipse
http://bit.ly/avr-osx
http://bit.ly/avr-osx

The CrossPack development environment from Object Development contains all of
the toolchain components needed to develop AVR software in a Mac OS X environ‐
ment, and it doesn’t require Xcode to compile. You can download it from the Object
Development website. Note that this is just the toolchain; it doesn’t provide a GUI
IDE or an editor, so you’ll need to install those yourself.

A version of the Eclipse IDE is available for Mac OS X with the AVR toolchain, and of
course there is a version of the Arduino IDE available for the Mac OS X platform.

make
For small programs using the toolchain programs from the command line may be
fine, but when things start to expand it is handy to have some way to automate the
process. The tool of choice for this in a command-line environment is make.

make is a type of interpreter, and it processes what are called makefiles. The language
used by make is not a general-purpose programming language, but rather a set of
actions, rules, and relationship definitions. You can think of it as a form of a script,
and it is often referred to as a macro language because the statements use replacement
and substitution to build commands for other tools. make does more than this, how‐
ever, since it can also detect source file changes and track dependencies between
source files (for example, if A depends on B and C, and B changes, then B will be
recompiled and A will also need to be recompiled to incorporate those changes).
make was initially created by Richard Stallman, Roland McGrath, and Paul D. Smith.

Many IDEs for large-scale code development utilize make as the “backend” for com‐
pilation. The PlatformIO and Ino tools also use make, but they do it in a way that
hides what is going on, and then clean up afterward. There are also tools available
that automate the process of creating input for the make tool, and if you have ever
used the configure tool to build a software package, then you’ve seen this type of util‐
ity in action.

The basic idea behind make is managing large sets of program source files. It can
determine which source files have changed, and what other source files may need to
be recompiled if they depend on the files that have changed. The make utility can
invoke compilers, linkers, automatic documentation generators, and even other
makefiles (for situations where the source code may be distributed over multiple sub‐
directories). make can also detect when a tool such as avr-gcc or avr-ld has encoun‐
tered an error.

A good place to start in order to get an idea of how make is used is looking at the
makefiles found in existing projects. Describing all of the capabilities of make is far
beyond the scope of this book (the official GNU manual is over 200 pages long), and
there are many books available that cover make and its applications in detail (see

130 | Chapter 6: Life Without the Arduino IDE

http://bit.ly/crosspack-avr
http://bit.ly/crosspack-avr

Appendix D). You can download the official user’s manual for make in PDF format
from the GNU website.

avr-gcc
GCC is an acronym for GNU Compiler Collection. The GCC is based on the concept
of utilizing different frontend symbolic processors for specific languages, and then
passing the resulting intermediate code to a backend for a specific target platform.
The avr-gcc cross-compiler is built from the GCC source and preconfigured to gener‐
ate object code specifically for the AVR family of microcontrollers. The GCC can gen‐
erate object code for many different types of processors. These include the Intel CPUs
found in PCs, SPARC RISC CPUs, the 68000 family of large-scale microprocessors,
the MSP430 MCUs from Texas Instruments, various ARM-based MCUs, and many
others.

avr-gcc and avr-g++ accept a number of command-line arguments, also called
switches. These define things like optimization, compilation mode, pass-through
arguments for the linker, paths for include files, and the target processor. Although
there are literally hundreds of command-line switches, only a few are necessary to
successfully compile code for a specific target processor.

Compilation may involve up to four steps: preprocessing, compilation, assembly, and
linking. These always occur in this order. The preprocessor expands all include state‐
ments (#include) by loading the text in the named file into the current source. Nor‐
mally #include statements should only be used to include so-called header files, like
stdio.h or stdlib.h, and not source files. (Although that’s generally considered to be a
bad idea, I’ve seen it done.) The preprocessor also strips out any comments and inter‐
prets any conditional preprocessor statements, such as #ifdef, #else, and #endif.
The output of the preprocessor is a squeaky-clean source file containing pure source
code and nothing else. You can use the -E switch to stop the process after the prepro‐
cessor is finished and examine the stripped source code.

The GCC is basically a translator for a particular C-like language such as traditional
or ANSI C, C++, Objective-C, or Objective-C++. The output from the compiler is an
intermediate assembly language file. Usually this would be the input into the assem‐
bler (avr-as), which in turn will generate an object file. The intermediate assembly
language file is deleted after the assembler executes. It is possible to stop the process
just before the assembler is run and examine the assembly language output using the
-S switch.

The -c switch is used to create an object file without invoking the linker. This is used
in makefiles where all the source files are compiled first and then linked in a single
step. The compiler also has switches for optimization, warnings (it can generate a lot

The AVR Toolchain | 131

http://www.gnu.org/software/make/manual/make.pdf

of warnings), and path specification so that include files can be located. The -o switch
specifies the name of a compiled executable image; the default is usually a.out.

For more information refer to the GCC manual pages, or you can download a user
manual in PDF, PostScript, or HTML format from the GCC online documentation.
GCC is not a simple utility, and the number of available options borders on over‐
whelming. Fortunately, you don’t need to use all of them to create working executable
code.

binutils
The GNU binutils are a collection of programs that handle the various tasks involved
with converting the output of the compiler into something that a processor can exe‐
cute. Table 6-2 lists the contents of the binutils-avr package for a Linux system. This
suite of tools contains everything needed to assemble, link, convert, and process
binary executable files into a form suitable for a target AVR microcontroller. Manuals
for the binutils tools, and for most all other GNU software as well, can be found on
the official web page at GNU Manuals Online.

Table 6-2. AVR binutils collection

Tool Description
avr-addr2line Converts addresses into filenames and line numbers

avr-ar Creates object code archives, and modifies or extracts code

avr-as The portable GNU assembler for the AVR

avr-c++filt Demangles C++ symbols

avr-ld The GNU linker for AVR object code

avr-nm Lists symbols embedded in object files

avr-objcopy Copies and translates object files

avr-objdump Displays information from object files

avr-ranlib Generates index for a library archive

avr-readelf Displays information about ELF files

avr-size Lists object file section sizes and total size

avr-strings Prints strings of printable characters in binary files

avr-strip Discards symbols from AVR object files

The essential support utilities needed to build programs for an AVR MCU are avr-ar,
avr-as, avr-ld, avr-objcopy, and avr-ranlib, but the other components in the binutils
suite may or may not be of use to you in your software development efforts. The main
applications are:

132 | Chapter 6: Life Without the Arduino IDE

https://gcc.gnu.org/onlinedocs
http://bit.ly/gnu-manuals

avr-ar
avr-ar is used to create binary object code archives, or static libraries. It can also
be used to modify an existing library or extract code from a library. A binary
library file (usually with a .a extension) is a collection of binary code modules
(i.e., object modules) with a master index (created using avr-ranlib, described
momentarily). An object code library is referred to as a “static” library because
any component that is used in another program is incorporated into and
becomes a permanent, or static, part of the final executable object. If you’re curi‐
ous, a dynamic shared library is a different sort of thing, and since these aren’t
typically used with AVR devices (or any small microcontroller, for that matter)
they are not covered in this book.

avr-as
avr-as is the portable GNU assembler for the AVR family of MCUs. Although it
is often used in conjunction with the GCC, it can also be used as a standalone
assembler (as discussed in “AVR Assembly Language” on page 140). There are
other assemblers available for AVR microcontrollers, and these are discussed in
“AVR Assembly Language” as well, but only avr-as is intended to be used with the
gcc/g++ compilers.

avr-ld
avr-ld is typically the last step in the process of creating an executable binary
object. The primary function of the linker is to combine two or more object files,
resolve any address references between them, and relocate data as necessary.

When an executable is built from multiple object files, each of the object files
may contain a reference to a function or data that does not exist within a particu‐
lar object, but does exist in another object. The AVR version of libc, discussed
next, is an example of this type of situation. For instance, a program may refer to
something like atoi() (ASCII-to-integer), but not include the source for atoi()
within itself. When the program is compiled into an object file (a .o file) the com‐
piler will leave a hole, so to speak, in the binary code that refers to atoi(). The
linker detects this empty location, finds the address of the atoi() function in a
library (i.e., avr-libc.a), writes the external address into the code, and then
includes the object code for the atoi() function in the final binary executable
image.

avr-objcopy
The avr-objcopy utility copies the contents of an object file to another format,
typically a so-called Intel-format ASCII hex file suitable for uploading to an AVR
MCU using the Arduino bootloader. avr-objcopy can also generate a type of
ASCII hex file called an S-record, which is commonly used with Motorola (Free‐
scale) MCUs.

The AVR Toolchain | 133

The Intel hex format file might look something like the following, which shows
the beginning and end lines of the Arduino bootloader for an ATmega168 or
ATmega328 MCU:

:107800000C94343C0C94513C0C94513C0C94513CE1
:107810000C94513C0C94513C0C94513C0C94513CB4
:107820000C94513C0C94513C0C94513C0C94513CA4
:107830000C94513C0C94513C0C94513C0C94513C94
:107840000C94513C0C94513C0C94513C0C94513C84
:107850000C94513C0C94513C0C94513C0C94513C74
:107860000C94513C0C94513C11241FBECFEFD8E036
...more data here...
:107F700009F0C7CF103011F00296E5CF112480919F
:107F8000C00085FFB9CEBCCE8EE10E94C73CA2CD19
:0C7F900085E90E94C73C9ECDF894FFCF0D
:027F9C00800063
:040000030000780081
:00000001FF

Many lines have been omitted from the middle part of the listing for the sake of
brevity, but you can find the original file, and others, in the directory /usr/share/
arduino/hardware/arduino/bootloaders on a Linux system, or in C:\Program Files
\Arduino\hardware\arduino\avr\bootloaders on a Windows system.

In this listing, each line contains a start code (the : character), a byte count
(which for all but the last four lines in our example is hex 10, or 16), the location
where the code is to be written in the MCU’s flash memory (the bootloader can
alter this if need be), a record type code, the actual code written as up to 32
ASCII hex characters (2 characters per byte, for 16 bytes), and an end-of-line
checksum. You can learn more about the Intel hex file format at Wikipedia,
although it is seldom necessary to examine a hex file directly.

To convert a binary executable to a hex file you could use objcopy like so:

avr-objcopy -O ihex execpgm execpgm.hex

objcopy, like almost all GNU tools, is capable of much more and has a plethora of
command-line options, most of which you will probably never find a use for. The
online manual for objcopy can be found at Sourceware.org.

avr-ranlib
avr-ranlib generates an index for inclusion into a binary object archive file. This
helps to speed up the linking process, because this is what the linker will use to
locate the address of an object needed to fill in a link “hole” in another object file.
If the index is not available, then the linker will have to scan through the library
file, object by object, looking for a suitable match.

134 | Chapter 6: Life Without the Arduino IDE

https://en.wikipedia.org/wiki/Intel_HEX
http://bit.ly/sw-objcopy

avr-libc
avr-libc is an AVR version of the C/C++ runtime library. Together with avr-gcc and
avr-binutils it forms the core of the GNU toolchain for AVR microcontrollers.

External libraries supplied with the AVR toolchain, such as arv-libc, should be in a
standard location, which on a Linux system would be something like /usr/lib/avr/lib/
or /usr/local/avr/lib, depending on how avr-gcc was built and how your system is con‐
figured. External libraries can be in any directory, actually, just so long as the linker
can find them.

avr-libc is the one critical component not provided with avr-gcc and binutils. It is a
standard C/C++ library that contains AVR equivalents of the same functions found
in a regular (i.e., GNU libc) standard C library, with some limitations related to the
capabilities of AVR MCUs (limited available memory, for example).

Table 6-3 lists the include files available with avr-libc. If you are experienced with C or
C++ programming on a full-size system, then most of these will look familiar to you.

Table 6-3. Common include files provided by avr-libc

Filename Description
alloca.h Allocates space in the stack frame of the caller

assert.h Tests an expression for false result

ctype.h Character conversion macros and ctype macros

errno.h Defines system error codes

inttypes.h Integer type conversions

math.h Basic math functions

setjmp.h Defines nonlocal goto methods setjmp() and longjmp()

stdint.h Defines standard integer types

stdio.h Standard I/O facilities

stdlib.h General utilities

string.h String operations and utilities

Some of the include files supplied with avr-libc are unique to the AVR target; these
are listed in Table 6-4. These include files are located in the /usr/lib/avr/include/avr
directory (on a Linux system). Some define functions and constants for things like
boot management, time delays, EEPROM access, fuse settings, and port pin func‐
tions. Others define the interrupts and I/O mappings for specific processor types.

The AVR Toolchain | 135

Table 6-4. AVR-specific include files provided by avr-libc
boot.h io90pwm316.h iom169pa.h iom32u2.h iomx8.h iotn45.h iox128a3.h

builtins.h io90pwm3b.h iom169p.h iom32u4.h iomxx0_1.h iotn461a.h iox128d3.h

common.h io90pwm81.h iom16a.h iom32u6.h iomxx4.h iotn461.h iox16a4.h

cpufunc.h io90pwmx.h iom16.h iom406.h iomxxhva.h iotn48.h iox16d4.h

crc16.h io90scr100.h iom16hva2.h iom48.h iotn10.h iotn4.h iox192a3.h

delay.h ioa6289.h iom16hva.h iom48p.h iotn11.h iotn5.h iox192d3.h

eeprom.h ioat94k.h iom16hvb.h iom640.h iotn12.h iotn84a.h iox256a3b.h

fuse.h iocan128.h iom16hvbrevb.h iom644.h iotn13a.h iotn84.h iox256a3.h

interrupt.h iocan32.h iom16m1.h iom644pa.h iotn13.h iotn85.h iox256d3.h

io1200.h iocan64.h iom16u2.h iom644p.h iotn15.h iotn861a.h iox32a4.h

io2313.h iocanxx.h iom16u4.h iom6450.h iotn167.h iotn861.h iox32d4.h

io2323.h io.h iom2560.h iom645.h iotn20.h iotn87.h iox64a1.h

io2333.h iom103.h iom2561.h iom6490.h iotn22.h iotn88.h iox64a1u.h

io2343.h iom1280.h iom3000.h iom649.h iotn2313a.h iotn9.h iox64a3.h

io43u32x.h iom1281.h iom323.h iom649p.h iotn2313.h iotnx4.h iox64d3.h

io43u35x.h iom1284p.h iom324.h iom64c1.h iotn24a.h iotnx5.h lock.h

io4414.h iom128.h iom324pa.h iom64.h iotn24.h iotnx61.h parity.h

io4433.h iom128rfa1.h iom3250.h iom64hve.h iotn25.h iousb1286.h pgmspace.h

io4434.h iom161.h iom325.h iom64m1.h iotn261a.h iousb1287.h portpins.h

io76c711.h iom162.h iom328p.h iom8515.h iotn261.h iousb162.h power.h

io8515.h iom163.h iom3290.h iom8535.h iotn26.h iousb646.h sfr_defs.h

io8534.h iom164.h iom329.h iom88.h iotn28.h iousb647.h signal.h

io8535.h iom165.h iom32c1.h iom88pa.h iotn40.h iousb82.h signature.h

io86r401.h iom165p.h iom32.h iom88p.h iotn4313.h iousbxx2.h sleep.h

io90pwm1.h iom168.h iom32hvb.h iom8.h iotn43u.h iousbxx6_7.h version.h

io90pwm216.h iom168p.h iom32hvbrevb.h iom8hva.h iotn44a.h iox128a1.h wdt.h

avr-libc also includes a number of utility and compatibility include files, as shown in
Table 6-5. The files delay.h, crc16.h, and parity.h in the avr/ directory actually point to
include files in the util/ directory, so if you include, say, <avr/parity.h> in your code it
will actually use <util/parity.h>.

Table 6-5. Utility and compatibility include files provided by avr-libc

Filenames Description
util/atomic.h Atomically and nonatomically executed code blocks

util/crc16.h CRC computations

util/delay.h Convenience functions for busy-wait delay loops

136 | Chapter 6: Life Without the Arduino IDE

Filenames Description
util/delay_basic.h Basic busy-wait delay loops

util/parity.h Parity bit generation

util/setbaud.h Helper macros for baud rate calculations

util/twi.h TWI bit mask definitions

compat/deprecated.h Deprecated items

compat/ina90.h Compatibility with IAR EWB 3.x

For information on using avr-libc refer to the user manual, and don’t forget to check
the include files themselves for notes regarding applications and limitations. Bear in
mind that things like malloc() and printf(), while they can be used with an AVR
MCU, have limitations in the memory-constrained environment of the AVR. Math is
another issue, since the AVR MCUs do not have floating-point math functions. They
support integer and fixed-point math, but floating-point math must be done using a
floating-point processor simulation. This is slow, so avoid it if at all possible.

The avr-libc home page can be found at http://www.nongnu.org/avr-libc/.

A bzip2 compressed version of the PDF user documentation is
located at http://bit.ly/avr-libc-manual. The documentation for avr-
libc also covers the AVR toolchain.

Building C or C++ Programs from Scratch
If you want to build your own software without using the Arduino IDE and its stan‐
dard runtime AVR-GCC and libraries, you can definitely do that. It is, however, often
easier to get something up and running using the Arduino tools, and then move on to
rewriting the parts that need optimization or customization.

Compiling with avr-gcc or avr-g++
What avr-gcc or avr-g++ does with the source code internally is not something you
would normally be concerned about, but you can, of course, read more about the
internals of the GCC tools at GNU.org.

The commands gcc and g++ actually do more than just compile source code. If you
use a command like this:

avr-gcc -mmcu avr5 -o test test_src.c -L../avrlibs -lruntime

gcc will compile test_src.c for the ATmega32U4, call avr-ld to link it to file called
libruntime.a located in ../avrlibs, and then put the final result into a binary executable
image called test.

Building C or C++ Programs from Scratch | 137

http://www.nongnu.org/avr-libc/
http://bit.ly/avr-libc-manual
https://gcc.gnu.org/onlinedocs/gccint

If you just want the compiler to compile something into an object file for linking at a
later step, you can use the -c (compile only) switch. This is common in makefiles
where multiple source files are compiled first, and then linked into an executable
file (possibly with external libraries as well) as a final step. The command for this is
simple:

avr-gcc -mmcu avr5 -c test_src.c

avr-gcc also supports a suite of switches for things like optimization, warnings, and
alternate paths for include (header) files.

Multiple Source Files and make
When working with multiple source files, the make utility is essential. You can write
your own makefile (which is what I typically do), or use a tool like arduino-mk. This
is a predefined makefile that incorporates the necessary logic to build Arduino
sketches using the components of the AVR-GCC toolchain.

You can download arduino-mk from GitHub. For some Linux platforms it is available
as an installable package. If you do install it from a package manager, note that it will
most likely put the main file, arduino-mk, in the same directory where the Arduino
IDE installed its components. The main website is at Hardware Fun, and you can
download a ZIP archive from GitHub. Once arduino-mk is installed, you will proba‐
bly need to install some additional support functions and define some shell environ‐
ment global variables. Refer to the documentation on the Hardware Fun website for
details.

If you are not familiar with the language of makefiles, then using them might involve
a steep learning curve, but I think it’s well worth the effort if you want to move
beyond an IDE and into the realm of hardcore embedded systems development. Not
every MCU has an IDE available for it, and not every IDE can do all of the things that
can be accomplished when you have direct control over the build process.

We can reuse the concepts from Example 5-5 to create a simple makefile such as the
one shown next. In this case we are supplying our own main() function in the source
file main.cpp, the equivalent of the setup() and loop() functions in alarmloop.c,
global variables in globals.c, and the #define statements in the file defs.h. Our make‐
file looks like this:

CC = avr-gcc
LD = avr-ld
OC = avr-objcopy

SRCS = main.c alarmloop.c globals.c
HDRS = main.h globals.h defs.h
OBJS = main.o alarmloop.o globals.o
EXEC = alarm
TARGET = alarm.hex

138 | Chapter 6: Life Without the Arduino IDE

http://bit.ly/hf-makefile
http://bit.ly/gh-makefile

$(TARGET): $(OBJS)
 $(LD) -o $(EXEC) $(OBJS)
 $(OC) -O ihex $(EXEC) $(TARGET)

main.o: main.c $(HDRS)
 $(CC) -mmcu avr5 -Wall -c main.c

alarmloop.o: alarmloop.c $(HDRS)
 $(CC) -mmcu avr5 -Wall -c alarmloop.c

globals.o: globals.c
 $(CC) -mmcu avr5 -Wall -c globals.c

The directory for this simple project would contain, at a minimum:

Makefile
main.c
main.h
alarmloop.c
alarmloop.h
globals.c
globals.h

Just typing make will start the process. make looks in the current directory for a file
named Makefile (note the capital M, that’s required) and will load and process it if
found. You can use another name for the makefile if you wish by telling make what to
look for, like so:

make -f mymake

Our sample makefile has several features that are worth covering briefly. First is the
declaration of alias names, such as CC, LD, and SRCS. These are expanded when
encountered further on in the file, and save on repetitive typing as well as perform
substitutions with conditional statements.

Another thing to note is the rules. In this case I’ve used explicit rules in the form of:

target: dependencies
 action

The action is indented using a tab character. make requires this as part of its syntax,
so be careful not to use spaces here. Also note that there can be as many actions
under a rule as you like, so long as each is on its own line and has a leading tab.

When make evaluates a rule it looks at the dependencies to determine what is neces‐
sary to build the target. In the case of main.o, the rule specifies main.c and the other
include (header) files, which are defined by the macro $(HDRS). If the target does not
yet exist then it will always be built, but if it does exist then make will check to see if
any of the dependencies have changed by examining the time and date stamps of the

Building C or C++ Programs from Scratch | 139

files. Only if there has been a change will the target be recompiled. In the case of $
(TARGET) the rule states that the two subsequent actions (linking and object conver‐
sion) must occur if any of the source objects have changed.

So, for example, if you edit alarmloop.c to change something and then run make, the
first thing it will do is recompile alarmloop.c to create a new alarmloop.o. It will then
rebuild $(TARGET) since the alarmloop.o object has now changed. If the include file
alarmloop.h has changed, then it will recompile both main.c and alarmloop.c before
rebuilding $(TARGET).

Creating a makefile can be a bit of a chore, but once it’s done you generally don’t need
to modify it very often, except perhaps to add a new source module or change a com‐
piler or linker switch setting.

AVR Assembly Language
For those who really want to wring out every last bit of performance from an AVR
device, there is assembly language programming. This is definitely not for the faint of
heart, but it allows you to take full control of what the MCU does and when it does it.
In some situations this level of control may be necessary to get the best possible per‐
formance with the least amount of program memory. For some of the AVR MCUs,
such as the ATtiny series, assembly language is really the only way to go, as a C or
C++ program may easily compile down into something that will be too large to fit
comfortably in the limited amount of memory.

This section provides a very, very high-level overview of AVR assembly language pro‐
gramming. As stated in the preface, this book is not a programming tutorial; it is a
hardware reference and guide to sources of more detailed information. The intent of
this section is to give you a sense of what is involved with assembly language pro‐
gramming so that you can decide if it is something you want to pursue. To do the
subject justice would require another, much larger, book. Fortunately there are
already such books available, and you can also download a lot of useful information
from various websites, such as those listed in “AVR Assembly Language Resources”
on page 146.

Because assembly language is closer to the hardware than any other language, it is
sometimes referred to as machine language. Actually, machine language is comprised
of the binary codes for various instructions; assembly language is a human-readable
form of the machine language. The assembler’s job is to translate from human reada‐
ble to machine readable, and also add some handy features like macros, symbolic
names, conditional assembly, and the ability to refer to functions in external libraries.

In assembly language we can write something like MOV R6, R7, which copies the con‐
tents of register R7 into register R6, and it will be translated by the assembler into a
binary form (machine language) that the MCU can execute. The names used for the

140 | Chapter 6: Life Without the Arduino IDE

various operations carried out by the MCU’s process are called mnemonics, and the
parameters that follow a mnemonic (if any) are called operands.

Programming in assembly language is the art of providing the detailed step-by-step
instructions necessary for a CPU to do something useful. A language like C takes care
of the details so the programmer doesn’t have to decide which registers to use and
what status bits to check. With assembly language there is nothing between the pro‐
grammer and the fundamental logic of the processor, and even the simplest operation
must be explicitly described.

The AVR Programming Model
Internally, an AVR MCU consists of an AVR core, flash and EEPROM memory, and a
suite of peripheral functions. The core contains an instruction register and decoder, a
program counter, a small amount of RAM, various status bits, 32 general-purpose
registers, and an Arithmetic Logic Unit (ALU). Figure 6-5 shows how the various
components are organized inside an AVR MCU. Refer to Chapter 2 and Chapter 3 for
additional details on the internal functions of AVR MCUs.

Figure 6-5. AVR CPU block diagram

AVR Assembly Language | 141

Instructions operate on registers and memory, in that data can be copied from one
register to another; two registers can be compared, swapped, added, subtracted, mul‐
tiplied, and divided (to name a few of the operations); and data can be read from flash
memory, EEPROM, or RAM. Peripheral functions are controlled and accessed via
registers as well, but these are not part of the core set of 32 general-purpose registers.
The three primary characteristics of an MCU, memory, instructions, and registers,
are described here:

Memory organization
As mentioned in Chapter 2, the Atmel AVR MCU uses what is called a Harvard
architecture. In a Harvard architecture the program code is stored in read-only
(flash) memory and modifiable data (variables) are stored in a separate memory
space (the RAM in the AVR core). Other microprocessors may use an alternate
scheme called the Von Neumann architecture, in which programs and data share
the same memory space.

In an AVR MCU the general-purpose registers and the I/O registers used by the
peripheral functions are technically part of the read/write memory space.
Figure 6-6 shows how memory is laid out in the AVR MCU.

Figure 6-6 is intentionally generic. The assembler directives CSEG, DSEG, and
ESEG (used by the Atmel assembler) refer to the code, data, and EEPROM mem‐
ory spaces, respectively. The highest addresses for the CSEG, DSEG, and ESEG
memory spaces will vary from one AVR type to another. Note that space for an
optional bootloader is reserved at the end of the CSEG space.

Instruction processing
An AVR MCU utilizes what is called a single-level pipeline to fetch, decode, and
execute instructions from flash memory. While one instruction is being executed
the next instruction is being prefetched from memory, and it will be ready to be
decoded and executed as soon as the current instruction completes. This feature,
and the RISC nature of the AVR core, is what allows an AVR MCU to execute
most instructions in a single clock cycle.

Registers
Many of the AVR instructions set or clear bits in an 8-bit status register (SREG).
Each bit has a specific purpose, as shown in Table 6-6, and the true or false (1 or
0) state of certain bits is checked by instructions such as BREQ (Branch if Equal)
or BRNE (Branch if Not Equal) following a CP (Compare) instruction, which can
alter the Z, C, N, V, H, and S status bits.

The 32 general-purpose registers are organized as 8-bit registers, with the final
three pairs (26-27, 28-29, and 30-31) available as 16-bit index (indirect address)
registers referred to as the X, Y, and Z pointers, respectively.

142 | Chapter 6: Life Without the Arduino IDE

A limited number of instructions can operate on two 8-bit registers as a 16-bit
register pair. The lower-numbered register of the pair holds the least significant
bits. The least significant register must also be even numbered, so the pair of
r0:r1 is valid, but r1:r2 is not.

Table 6-6. AVR SREG status bits
Bit Symbol Function
0 C Carry flag

1 Z Zero flag

2 N Negative flag

3 V Two’s complement overflow indicator

4 S For signed tests

5 H Half carry flag

6 T Transfer bit used by BLD and BST instructions

7 I Global interrupt enable/disable flag

In addition to the status register, the general-purpose registers, and the I/O regis‐
ters, the AVR has a program counter (PC) register and a stack pointer (SP) regis‐
ter. These are modified by certain instructions (a jump will modify the PC, for
example) or a subroutine call, which utilizes both the PC and SP registers. For
example, when a CALL instruction is encountered the current value of the PC is
adjusted to point to the instruction following the CALL, then it’s pushed onto
the stack. The PC is then loaded with the start address of the subroutine. When
the subroutine returns via a RET instruction, the saved PC is “popped” from the
stack and the program resumes at the location immediately following the CALL
instruction.

There are, of course, many other details about the inner workings of AVR MCUs and
AVR assembly language that have not been covered here. If you want to explore
assembly language programming with an AVR, then reading a good book or two is
highly recommended. Appendix D contains some suggestions, and the links already
mentioned are also very useful.

Creating AVR Assembly Language Programs
Depending on the assembler, single-line comments may begin with a semicolon (;), a
hash or pound (#) symbol, or some other character. The GNU assembler (avr-as)
supports multiline comments with an opening and closing /* and */, like those found
in C code. Refer to your assembler’s documentation for specifics.

AVR Assembly Language | 143

Figure 6-6. AVR memory layout

Comments in assembly language are very important. Say, for example, you have some
assembly language that looks like this:

LOOP:
LDI R16, 0X00
OUT PORTB, R16
LDI R16, 0XFF
OUT PORTB, R16
RJMP LOOP

What is it doing? In this case it’s fairly easy to see that all it does is load register 16
(R16) with either the value of 0 or 255 (0xFF) and then write that value to PORTB.
The pins for PORTB will toggle on and off as fast as the MCU can execute the loop.

We can improve on this and add in the rest of the missing bits for things like program
origin and port initialization. The result looks like this:

; set power-up/reset vector
.ORG 0X0000
RJMP MAIN

; code entry point
.ORG 0X0100
MAIN:
LDI R16, 0XFF ; load R16 with 0b11111111
OUT DDRB, R16 ; set port B data direction register

; endless loop - toggles port B pins on and off

144 | Chapter 6: Life Without the Arduino IDE

LOOP:
LDI R16, 0X00 ; load R16 with zero
OUT PORTB, R16 ; write to port B
LDI R16, 0XFF ; now load it with 0xFF
OUT PORTB, R16 ; and write it to port B
RJMP LOOP ; jump back and do it again

I’ve gone bit overboard with the comments, but in assembly language it is not
uncommon to see a comment on almost every line. Bear in mind that even some‐
thing as simple as the common “hello world” program requires many more assembly
language statements than it does C or C++ statements to achieve the same result, and
some of those assembler statements may not be intuitively obvious.

Most assemblers provide a set of predefined keywords called directives. The previous
example has one, the .ORG directive. Table 6-7 lists a few more useful directives. These
keywords are called directives because they direct the assembler to make specific
associations or perform certain actions.

Table 6-7. AVR assembler directives

Directive Operation

BYTE Reserve one or more bytes as a variable

CSEG Use the code segment

CSEGSIZE Configure code segment memory size

DB Define a constant byte or bytes

DEF Define a symbolic name for a register

DEVICE Define which device to assemble for (the target)

DSEG Use the data segment

DW Define a constant word or words (16-bit values)

ENDM, ENDMACRO End of a macro definition

EQU Assign a symbol to an expression

ESEG Use EEPROM segment

EXIT Exit from file

INCLUDE Read and include source from another file

LIST Enable list file generation

LISTMAC Enable macro expansion in list file

MACRO Start of a macro definition

NOLIST Disable list file generation

ORG Set program origin

SET Assign a symbol to an expression

AVR Assembly Language | 145

The following code fragments show how some of the directives can be used.

; Disable listing generation when including the external files.
; This helps keep the listing output neat and uncluttered.

.NOLIST

.INCLUDE "macrodefs.inc"

.INCLUDE "mcutype.inc"

.LIST

; Define a macro to do something useful

.MACRO SUBI16 ; Define macro
 SUBI @1,low(@0) ; Subtract low byte
 SBCI @2,high(@0) ; Subtract high byte
.ENDMACRO ; End macro definition

SUBI16 0x2200,R16,R17 ; Subtract 0x2200 from R17:R16

AVR Assembly Language Resources
There are many good sources of information and useful tutorials available online if
you want to delve deeper into AVR assembly:

• The AVR Assembler Site has a wealth of information, all neatly organized into
various categories.

• AVRbeginners.net is a very slick website with lots of details on the inner work‐
ings of AVR MCUs and some assembly language examples.

• Atmel has the online reference AVR Assembler, and a description of Atmel’s
assembler can be found in the AVR Assembler User Guide. It’s not the same as
the avr-as assembler, but the general principles are similar.

• The avr-as assembler is described in the documentation found at GNU Manuals
Online, and the avr-libc documentation also has a brief overview.

• Gerhard Schmidt has created a website with a lot of useful information, and it’s
available in both English and German. The material is also available as a PDF file.

• You can download an assembly language summary from the Johns Hopkins Uni‐
versity website.

This is just the tip of the iceberg, so to speak. For some book suggestions, refer to
Appendix D.

Uploading AVR Executable Code
Compiling or assembling code into an executable file is only half the process. The
other half involves uploading the executable code into an AVR MCU for execution.

146 | Chapter 6: Life Without the Arduino IDE

http://avr-asm.tripod.com
http://www.avrbeginners.net
http://bit.ly/avr-assembler
http://bit.ly/avr-assembler-guide
http://bit.ly/gnu-manuals
http://bit.ly/gnu-manuals
http://bit.ly/avr-overview
http://bit.ly/avr-overview-pdf
http://bit.ly/jhu-assembler
http://bit.ly/jhu-assembler

There are several ways to do this, including via the Arduino bootloader, the ICSP
interface found on many Arduino boards (at least, the relevant pins are usually avail‐
able), and a JTAG interface.

In-System Programming
Atmel application note AVR910 describes the In-System Programming interface used
on AVR MCUs. This is what is called the ICSP interface on Arduino boards. It is basi‐
cally an extension to the SPI interface of the AVR MCU. This function (serial I/O)
was shown as a separate functional block in Figure 6-5 because it has the ability to
communicate directly with the flash and EEPROM memory in the MCU.

Flash Memory Lifetime
All flash memory has a finite limit to the number of write operations it can endure. In
modern components this is usually a large number (it can vary from one part to
another), with 10,000 or more write cycles not uncommon. This might not sound like
a lot when compared to the amount of work that the typical disk drive in a desktop
computer performs, but bear in mind that even though it can be viewed as a type of
slow disk drive (like a USB memory stick), the flash in a microcontroller is not a disk
drive. It is used to load a program for execution, not to store runtime AVR-GCC data
during operation (microcontrollers usually have some RAM available for that pur‐
pose, and something like a microSD wafer, with a life expectancy of around 100,000
write cycles, can be used to record large amounts of runtime AVR-GCC data). So,
even if you were to reload the contents of the flash memory with program code once
a day, it would still take 4 or 5 years to wear it out.

Figure 6-7 shows the pinout for the primary ICSP connector on an Arduino Uno
(R2). There is a second ICSP connector on the board, which is used for the AVR
MCU that handles the USB interface. It is wired the same, but there really isn’t a rea‐
son to use it unless you need to reprogram that MCU as well (and perhaps lose USB
functionality). Note that there is also a 10-pin connector format defined by Atmel,
but it is not used with most Arduino-type boards. The 10-pin connector has the same
signals as the 6-pin connector, and more ground connections to take up the addi‐
tional 4 pins.

Uploading AVR Executable Code | 147

http://bit.ly/avr-insystem

Figure 6-7. The ICSP connector on an Arduino Uno R2

In “binutils” on page 132 the avr-objcopy tool was described, with a focus on convert‐
ing an executable binary image to an ASCII hex file. The reason for converting the
binary image to a hex file is the ability of the Intel hex format to define record seg‐
ments, addresses, and the end of the file, and then send the data over a communica‐
tion link that might have issues with pure binary. The AVR MCU uses binary data to
program the flash memory, but if you look at the AVR910 application note you can
see that whatever is doing the programming has a lot of control over the process. The
hex file is used by a programming device, not by the AVR MCU.

Programming with the Bootloader
In the case of an Arduino board, the programming device is the bootloader in flash.
This allows the MCU to program itself, at the cost of losing some of the flash memory
space to hold the bootloader. Without the bootloader it falls on the programming
device to deal with final data placement (target addresses), MCU configuration bits
(fuses), and other low-level details. (For more details on the fuse bits used in the AVR
MCUs, refer to “Fuse Bits” on page 60).

It is important to note that the Arduino bootloader firmware uses the AVR’s serial
interface pins (RxD and TxD on pins D0 and D1, respectively), so if you want to
attach something like an RS-232 converter you can use that to program the AVR, or
you can use a USB-to-serial adapter like the SparkFun module shown in Figure 6-8.
On Arduino boards that use an FTDI FT232L, an ATmega8, or an ATmega16U2 for
the USB interface, a quick look at the schematic will show that the interface chip or
MCU is using the D0 and D1 serial pins through 1K resistors, and the DTR signal is
used to generate a reset of the primary AVR MCU.

148 | Chapter 6: Life Without the Arduino IDE

Figure 6-8. SparkFun USB-to-serial adapter

You can still use the D0 and D1 pins, provided that they are isolated correctly. The
partial schematic in Figure 6-9 shows how an FTDI FT232L is typically connected to
an AVR MCU in an Arduino. Note that this does not apply to the Leonardo and other
boards with the ATmega32U4, which has a built-in USB interface.

Uploading Without the Bootloader
If you really need to use the maximum available space in the AVR flash for a pro‐
gram, or you don’t want to use the D0 and D1 pins in the standard Arduino way to
upload a program, then you can load a compiled program directly using the ICSP
interface. This approach works with a “fresh” ATmega MCU directly from Atmel, as
well as with an Arduino board.

To upload without the Arduino IDE requires direct interaction with the AVRDUDE
utility (described in “AVRDUDE” on page 152). Typically this would also involve the
use of makefiles or some other technique to produce compiled code.

If you want the convenience of letting the Arduino IDE handle the compilation
chores for you, then you can go that route as well. The Arduino IDE supports direct
AVR device programming by allowing you to select a programming device via a
menu item under Tools on the main menu. An upload can then be started using the
“Upload Using Programmer” function in the File drop-down menu. If you have over‐
written the bootloader firmware and then decide to go back to using the bootloader
in the conventional manner, then it will need to be reloaded as described in “Replac‐
ing the Bootloader” on page 156.

Uploading AVR Executable Code | 149

Figure 6-9. Arduino USB interface using an FTDI converter IC

Of course, if memory space is not an issue and the Arduino bootloader has already
been installed, then there is no need to remove the bootloader. The ICSP interface
works fine with or without the bootloader. If you elect to use the ICSP interface, you
can simply ignore the bootloader.

Life without the bootloader requires a special programming device. Atmel tools such
as the AVRISP MKII and the new Atmel-ICE are the gold standards because of their
capabilities and compatibility. Sadly, Atmel has discontinued the AVRISP MKII in
favor of the Atmel-ICE, but there are many compatible devices currently available.
The AVRISP MKII did not support JTAG.

However, since the ISP interface is essentially an SPI serial port you can use a variety
of devices to get the job done, including another Arduino board (more on this
shortly). Some readily available programming devices include the USBtinyISP from
Adafruit (Figure 6-10) and the Pocket AVR Programmer from SparkFun
(Figure 6-11).

The USBtinyISP programmer is a kit, but it is relatively easy to assemble. You can
read more about it on the Adafruit website. The Pocket AVR Programmer comes pre‐
assembled, and you can find more information about it at SparkFun.

150 | Chapter 6: Life Without the Arduino IDE

http://bit.ly/usbtinyisp-avr
http://bit.ly/sf-pocketavr

Figure 6-10. The USBtinyISP from Adafruit (assembled)

Figure 6-11. The Pocket AVR Programmer from SparkFun

In addition to loading software onto an AVR, a programmer can also be used to read
registers, examine memory, and set fuse bits. The ability to set fuse bits is a compel‐
ling reason to have some type of ISP device available. For more information about
fuse bits, see “Fuse Bits” on page 60.

JTAG
JTAG, an acronym for Joint Test Action Group, is a low-level interface designed to
provide access to debugging facilities incorporated into an MCU or other logic
device. The formal definition is found in the IEEE document Standard Test Access
Port and Boundary-Scan Architecture, IEEE Standard 1149.1-1990. The latest version
of this and other standards can be obtained from the IEEE.

Uploading AVR Executable Code | 151

https://standards.ieee.org

Not all AVR MCUs have JTAG support. As far as I can tell from the Atmel selection
guides and datasheets, the XMEGA series devices have it, but the 8-bit Mega series
parts (like those used in Arduino boards) do not. But since there are many types of
AVR MCUs available, it is entirely possible that there are some XMEGA parts without
JTAG, and some Mega parts that have it.

In most cases, though, you don’t really need the advanced features of JTAG. It’s nice
when you want to step through the code with a debugger, or examine register con‐
tents on the fly, but it is often the case that just looking at the pins with an oscillo‐
scope or logic analyzer will provide plenty of information.

As for accessing the internal functions in an AVR, you can use something like USBti‐
nyISP to set the internal AVR fuse bits or load the EEPROM. So unless you have a
real need for a JTAG tool, you can probably skip the expense.

AVRDUDE
An AVR programmer is good to have, but it needs something that can provide it with
the data to be uploaded into the AVR MCU. That something is called AVRDUDE.

AVRDUDE, or the AVR Download UploaDEr, is a utility program for uploading and
downloading code and data from the memory spaces of an AVR MCU. Figure 6-12
shows the output AVRDUDE will generate when executed without any arguments.

AVRDUDE can also program the on-board EEPROM memory, and the fuse and lock
bits as well. The tool runs in either command-line or interactive mode. The
command-line mode is useful when incorporating AVRDUDE into a script or a
makefile, while the interactive mode can be used to poke around in the MCU’s
memory, modify individual bytes in the EEPROM, or fiddle around with the fuse or
lock bits.

AVRDUDE supports a variety of programming devices, including the Atmel STK500,
the AVRISP and AVRISP MKII, serial bit-bangers, and a parallel port interface. A
manual is available in PDF format.

The Arduino IDE uses AVRDUDE to handle the upload process, and you can see
what the command line looks like by enabling the upload output from the Preferen‐
ces dialog. Here is what it looks like when uploading the simple intrusion alarm
sketch from Chapter 5 (note I have wrapped the line in order to fit it on the page):

/usr/share/arduino/hardware/tools/avrdude
 -C/usr/share/arduino/hardware/tools/avrdude.conf
 -v -v -v -v -patmega328p -carduino -P/dev/ttyUSB0 -b57600 -D
 -Uflash:w:/tmp/build2510643905912671503.tmp/simple_alarm.cpp.hex:i

152 | Chapter 6: Life Without the Arduino IDE

http://bit.ly/avrdude-pdf

Figure 6-12. AVRDUDE help output

The -p, -c, -P, -D, and -U switches are the key things to note here. These and some of
the other available switches are described in Table 6-8. The multiple -v switches just
tell AVRDUDE to be as verbose as possible.

Table 6-8. AVRDUDE command-line switches

Switch Function Description

-p Processor ID Identifies the part connected to the programmer. In our
case, the Arduino board being programmed does indeed
have an ATmega328p—it’s a Duemilanove.

-c Programmer ID Specifies the programmer to use. In this case, the Arduino
bootloader is the programmer.

-C Configuration Specifies a configuration file to use.

-P Port name Identifies the port to which the programmer is attached.
Since this is a Linux system, the pseudo serial port at /dev/
ttyUSB is used.

-b Port baud rate Overrides the default baud rate.

-D Auto-erase Disables the flash auto-erase.

-U Upload Upload specification.

Uploading AVR Executable Code | 153

Note that the -U switch in the command line is comprised of multiple parts. It defines
the memory target (flash), the mode (write), and a source file containing the hex
form of the executable image. The final i at the end of the argument string specifies
that the hex source is in Intel format.

Using an Arduino as an ISP
By loading a utility program onto an Arduino, you can make it become an ISP for
another Arduino. You can upload a new bootloader using this technique. The Ardu‐
ino website provides simple directions.

Essentially all that is necessary is a sketch supplied with the Arduino IDE, and two
Arduino boards. Figure 6-13 shows how the boards are connected. In this case a Due‐
milanove is acting as the ISP device for an Uno R3. It can also work with boards that
don’t have the same pinouts for the SPI signals, like the Leonardo, but you will need
to make adjustments for that. Refer to the Arduino documentation for details.

Bootloader Operation
The purpose of the bootloader is to accept a program for the AVR from the host
development system. The microcontrollers installed on Arduino boards come with
the bootloader preinstalled, and for most applications there is seldom any need to
remove or reload the bootloader software. Unless there is a compelling reason to try
to reclaim the few kilobytes of memory (depending on the processor type and the
vintage) that the bootloader consumes, the easiest approach is just to leave it alone
and take advantage of it.

The operation of the Arduino bootloader is similar to that of any other flash mem‐
ory–equipped microcontroller. The primary objective is to get the user-supplied pro‐
gram into on-board memory and then transfer control to the new program for
execution. When an Arduino is powered on, it begins to execute the bootloader. The
bootloader then checks for new incoming program data on the USB interface, and if
nothing is detected after some small amount of time, the program loaded into the
main section of flash memory is executed.

On newer versions of the Arduino this check for incoming data also occurs even
while the AVR processor is running a previously stored program, so that when a new
program upload is detected the existing program code is interrupted and the boot‐
loader is given full control of the processor. On older Arduino boards the reset button
must be pressed as soon as the IDE starts to upload the compiled program in order to
detect the upload. You may need to do this a few times to get the timing just right.
Note that some Arduino-compatible boards also behave this way.

154 | Chapter 6: Life Without the Arduino IDE

http://bit.ly/arduino-isp
http://bit.ly/arduino-isp

Figure 6-13. Using an Arduino as a programmer for another Arduino

Once the bootloader has determined that the incoming data is a valid program
upload, it then unlocks the on-board flash memory and begins reading in the new
program and writing it to the flash memory (but not in the location where the boot‐
loader itself resides). Once the upload is complete the memory is once again locked
so that it cannot be accidentally modified, and an interrupt is generated that will
cause the processor to be directed (or vectored, as it is sometimes called) to the start‐
ing address of the new program.

Current versions of the Arduino bootloader can read data at 19,200 baud (19.2
Kbaud), or about 1,900 bytes per second. Older versions of the bootloader listened for
incoming data at 9,600 baud, and you can alter the behavior of the Arduino IDE to
accommodate this if necessary. At 19.2K it can still take many seconds to transfer a
large program sketch to the target processor.

Uploading AVR Executable Code | 155

The bootloader source code is available from Arduino.cc, and it’s worth reading if
you are really curious about how it works. If you do peruse it you will notice that the
section that manipulates the flash memory is written in AVR assembly language. At
this point the code is “down on the metal” and interacting with the microcontroller’s
internal control registers, and assembly is the appropriate language for this task. The
bootloader source code also gives some insight into what goes on at the lowest levels
in a microcontroller. There is a lot happening behind the scenes when a program is
loaded and executed.

Replacing the Bootloader
Should you have the need (or the desire) to install a new bootloader on the AVR pro‐
cessor in an Arduino, you will need a device to program the microcontroller’s flash
memory directly via the ICSP port like the ones shown in Figures 6-10 and 6-11, or
you can use the Arduino-to-Arduino trick described in “Using an Arduino as an ISP”
on page 154.

The bootloader resides in a particular region of the flash memory in an AVR available
for just this purpose, and the available size ranges from 256 bytes to 4 KB, depending
on the AVR type. The Arduino IDE supports bootloader uploading via a program‐
ming device like those shown earlier. Under Tools on the main IDE menu you must
select the type of programmer you have, compile the bootloader, and then upload it
to the AVR microcontroller. Refer to the Arduino’s built-in help and to the main
Arduino website for details.

Summary
This chapter has been a whirlwind tour through multiple topics, from the compo‐
nents of the AVR toolchain to the make utility, assembly language programming, and
finally the nitty-gritty of AVR bootloaders. Even if you never use any of the tools or
techniques covered here, it is still useful to know something about what is going on
under the hood of the Arduino IDE. It also serves as a glimpse into what working
with embedded systems was like before the Arduino IDE came along.

If you want to explore any of the topics presented here in more detail be sure to avail
yourself of the references given, and don’t forget to look at Appendix D for even more
sources of information. Embedded microcontroller devices are key components of
modern civilization, and for every computer you can see there are many, many more
that you cannot, hidden in TV remote controls, microwave ovens, your stereo system
and DVD player, traffic light controls, your automobile, and even the keyboard for
the computer sitting on your desk. At one time all these little devices were program‐
med using the techniques covered briefly in this chapter, and many of them are still
programmed with these same methods today.

156 | Chapter 6: Life Without the Arduino IDE

CHAPTER 7

Arduino Libraries

The Arduino IDE comes with a collection of libraries that can be used with program
sketches. These contain functions to access peripheral devices like an Ethernet inter‐
face, a liquid crystal display, a conventional serial interface, and many others.

Note that although the term “library” is used to describe auxiliary code, the modules
themselves aren’t always what one might think of as a library in the sense of a pre‐
compiled module, such as the .a (archive) or .so (shared object) libraries in Unix or
Linux. In many cases they’re just standard C or C++ source files (with AVR-GCC lim‐
itations, of course), but the end result is largely the same. Library code is compiled as
necessary along with the sketch code into object files and linked with the sketch (see
Chapters 5 and 6). In other cases a library really is a binary object, such as the com‐
ponents supplied with the avr-libc library suite. If you want to know where a library
or external code module is coming from, check both the avr-libc documentation and
the Arduino documentation.

After a program sketch and any library modules are compiled, the linker utility
resolves the address references between the library components and the user-supplied
functions, and then binds all the components into one executable binary image. The
AVRDUDE utility employed by the IDE (discussed in Chapter 6) handles the process
of interacting with the on-board bootloader (covered in Chapter 5) to transfer the
compiled binary code onto an AVR device and save it in the processor’s on-board
memory.

For an overview of the software development process using the Arduino IDE, see
Chapter 5. Chapter 6 covers code development using just the AVR-GCC toolchain.

157

Library Components
The Arduino development environment comes with a selection of support libraries
for things such as serial I/O over the USB connection, EEPROM read/write, Ethernet
I/O, an LCD interface, and support for servo and stepper motor actuators, among
other things. These are described in the following sections.

These descriptions are, by necessity, terse. For more details and
usage examples refer to the Arduino libraries page or see the refer‐
ence documentation supplied in the form of HTML files with the
Arduino IDE (the built-in help pages). Bear in mind that the Ardu‐
ino website will have the latest documentation for the most recent
versions of the libraries, but what comes with the Arduino IDE will
describe the libraries included with that release.

You can examine a list of available libraries by selecting Sketch→Import Library from
the IDE toolbar. This will also show any libraries that you have added to the environ‐
ment (adding libraries is described in Chapter 5).

The following descriptions cover the libraries supplied with a basic Arduino IDE
installation (additional libraries are available from Arduino and from other sources
like shield suppliers):

EEPROM
Supports reading and writing to “permanent” storage using an AVR’s built-in
EEPROM

Ethernet
Used with the Arduino Ethernet shield for Ethernet connectivity

Firmata
Provides communications with applications on the computer using a standard
serial protocol

GSM
Used with the GSM shield to connect to a GSM/GPRS network

LiquidCrystal
Contains functions for controlling liquid crystal displays (LCDs)

SD
Provides support for reading and writing SD flash memory cards

Servo
A collection of functions for controlling servo motors

158 | Chapter 7: Arduino Libraries

http://bit.ly/arduino-libraries

SPI
Supports the use of the Serial Peripheral Interface (SPI) bus

SoftwareSerial
Implements serial communication on any of the digital pins

Stepper
A collection of functions for controlling stepper motors

TFT
Provides functions for drawing text, images, and shapes on the Arduino TFT
screen

WiFi
Supports the Arduino WiFi shield for wireless networking

Wire
Supports the two-wire interface (TWI/I2C) for sending and receiving data over a
network of devices or sensors

Esplora
Provides functions to access the various actuators and sensors mounted on the
Esplora board (used with Esplora only)

USB
Used with the Leonardo, Micro, Due, and Esplora boards for serial I/O over the
USB connection

Keyboard
Sends keystrokes to an attached computer

Mouse
Controls cursor movement on a connected computer

EEPROMEEPROM

The EEPROM library supports reading and writing to “permanent” storage using an
AVR’s built-in EEPROM. The EEPROM is persistent, and it will retain whatever was
written into it when power is removed from the board. Although the microcontrol‐
ler’s primary flash memory is also nonvolatile, the EEPROM is not disturbed when
new executable code is uploaded to the board. It must be specifically accessed via
software. The different types of AVR microcontrollers used on Arduino boards have
different amounts of EEPROM storage available, ranging from 512 bytes for the
ATmega168 to 4 KB for the ATmega1280 and ATmega2560. Refer to Chapter 3 for
microcontroller-specific details.

Library Components | 159

The EEPROM class defines the functions used to read, write, and update the contents of
the AVR on-board EEPROM. It must be instantiated before any of the EEPROM
functions can be used.

The library include file, EEPROM.h, declares EEPROM as a static instance of the EEPROM
class. If you want to use the class by instantiating an EEPROM object yourself you can
do the following:

EEPROMClass eeprom;

Older versions of the EEPROM library have only two functions for accessing the
built-in EEPROM of an AVR MCU:

read()

Reads a byte value from a specific address in the EEPROM. Uninitialized loca‐
tions will contain a value of 255. This function returns the byte value read from
the given address. Addresses start at zero (0).

uint8_t eeprom.read(int address);

write()

Writes a byte value to the microcontroller’s EEPROM storage at a specific
address. Addresses start at zero (0). About 3.3 ms is required to perform an
EEPROM write operation, and the AVR EEPROM has a rated endurance of
100,000 write/erase cycles, so it should last a while. The function returns nothing.

void eeprom.write(int address, uint8_t value);

The latest version of the EEPROM library has four additional functions: update(),
get(), put(), and EEPROM[]. The source code for the EEPROM library class is worth
reading to see how the code deals with arbitrary data types.

update()

The update() function writes a byte of data to the EEPROM at a specific address,
but only if the value currently at the address is different from the value supplied
as an argument to the function. This function returns nothing.

void eeprom.update(int address, uint8_t value);

put()

The put() function writes any data type to the EEPROM, starting at the specified
address. The data can be a primitive type (e.g., int or float), or it can be a struc‐
ture. The function returns a reference to the data object passed in via the data
argument. Note that this function uses update() to preform the write operation,
so a write will not occur if the data at the specified address is the same as the data
passed into the put() call.

data_ref eeprom.put(int address, data);

160 | Chapter 7: Arduino Libraries

get()

The get() function reads and returns any data type or object from the EEPROM.
The data read from the EEPROM is written to the address of the data argument
in byte-wise fashion, with as many bytes as the size of the object pointed to by
data. The function returns a reference to the data object passed in via the data
argument.

data_ref eeprom.get(int address, data);

EEPROM[]

The EEPROM[] operator allows the EEPROM to be accessed like an array object.
The actual EEPROM address is simply EEPROM_base_address + int index. The
operator returns a reference to the EEPROM cell.

data_ref EEPROM[int index]

The following simple example is based loosely on what is provided by Arduino.cc in
the EEPROM library documentation, but with a few twists. It writes to as well as
reads from the EEPROM memory space, and it uses the remainder operator to deter‐
mine if a value is odd or even:

#include <EEPROM.h>
// Instantiate our own copy of an EEPROMClass object rather than
// using the static declaration in EEPROM.h
EEPROMClass eeprom;
int a = 0;
int value;
void setup()
{
 Serial.begin(9600);
 // preload EEPROM with data pattern
 for (int i = 0; i < 512; i++) {
 if (i % 2) // see if even or odd
 eeprom.write(i, 0); // value is odd
 else
 eeprom.write(i, 1); // value is even
 }
}
// An ATmega168 has 512 bytes of EEPROM, and an ATmega328 has 1024.
// Only 512 are used here, so it should be safe with any AVR that
// you might find in an Arduino.
void loop()
{
 value = eeprom.read(a);
 Serial.print(a);
 Serial.print("\t");
 Serial.print(value);
 Serial.println();
 // The variable a is declared outside of loop(), so it will
 // persist between calls from main().

Library Components | 161

 a++;
 if (a == 512)
 a = 0;
 delay(500);
}

EthernetEthernet

The Ethernet library provides the functionality necessary to interact with an Arduino
Ethernet shield. As Arduino libraries go, it is rather complex, and provides both
server and client functionality. It also supports four concurrent input or output con‐
nections, or a mix of either. The Ethernet shield uses the SPI interface to communi‐
cate with the host Arduino board.

The Ethernet library is comprised of a collection of five C++ classes. Most of the
classes inherit from parent classes, but you don’t need to bother with the details for
most applications. However, if you do need to see the low-level class definitions, they
can be found in the directory hardware/arduino/avr/cores/arduino in the Arduino
source code. The following list shows the five classes of the Ethernet library and the
public member functions of each class. We’ll look at each of these in turn in the fol‐
lowing sections:

• Ethernet class
— begin()

— localIP()

— maintain()

• IPAddress class
• Server class

— EthernetServer()

— begin()

— available()

— write()

— print()

— println()

• Client class
— EthernetClient()

— connected()

— connect()

162 | Chapter 7: Arduino Libraries

— write()

— print()

— println()

— available()

— read()

— flush()

— stop()

• EthernetUDP class
— begin()

— read()

— write()

— beginPacket()

— endPacket()

— parsePacket()

— available()

— stop()

— remotePort()

Ethernet class: EthernetClass

The Ethernet class initializes the Ethernet library and network settings. The actual
class name is EthernetClass, and an object named Ethernet is instantiated in the
library file Ethernet.cpp and exported in Ethernet.h. You can create your own instance
of EthernetClass if you wish, or just use what the library provides.

begin()

Used to initialize the Ethernet library and establish networking parameters. The
begin() method (or, function, if you prefer) is overloaded so that there are five
ways to invoke it.

All of the arguments are arrays of uint8_t bytes. The DHCP-only form of this
method (Ethernet.begin(mac)) returns 1 if a DHCP lease was successfully
obtained, or 0 if it failed. All other forms return nothing. The IPAddress class
type is described in the next section.

int Ethernet.begin(uint8_t *mac);
void Ethernet.begin(uint8_t *mac, IPAddress ip);
void Ethernet.begin(uint8_t *mac, IPAddress ip, IPAddress dns);
void Ethernet.begin(uint8_t *mac, IPAddress ip, IPAddress dns,

Library Components | 163

 IPAddress gateway);
void Ethernet.begin(uint8_t *mac, IPAddress ip, IPAddress dns,
 IPAddress gateway, IPAddress subnet);

localIP()

Obtains the IP address of the local host (i.e., the Ethernet shield). This is useful
for determining the local IP address when DHCP is used. If the local Ethernet
has been initialized successfully, Ethernet.localIP() will return an IPAddress
object containing the assigned or specified IP address.

IPAddress Ethernet.localIP();

maintain()

This method does not appear in older versions of the library. When a device is
assigned an IP address by a DHCP server it is called a lease, and a DHCP lease is
given for a specific period of time (it depends on how the DHCP server has been
configured). The Ethernet.maintain() method is used to renew a DHCP lease.

Ethernet.maintain() will return 0 if nothing occurred, 1 if the lease renewal
failed, 2 if the lease was successfully renewed, 3 if the DHCP rebind failed, and 4
if the rebind succeeded.

int Ethernet.maintain();

IPAddress class

The IPAddress class defines a data object that is used to contain data for local and
remote IP addressing. The class has four types of overloaded constructors. Each
accepts a different form of IP address, as shown here:

IPAddress()
IPAddress(uint8_t first_octet,
 uint8_t second_octet,
 uint8_t third_octet,
 uint8_t fourth_octet)
IPAddress(uint32_t address)
IPAddress(const uint8_t *address)

An IPAddress object can hold a set of four IP address octets (the 192.168.1.100 for‐
mat, for example, sans the periods), a 32-bit integer version of an IP address, or an
array of unsigned bytes. The IPAddress class is used to create instances of address
data types. For example:

IPAddress ip(192, 168, 0, 2);
IPAddress dnServer(192, 168, 0, 1);
IPAddress gateway(192, 168, 0, 1);
IPAddress subnet(255, 255, 255, 0);

164 | Chapter 7: Arduino Libraries

ip, dnServer, gateway, and subnet are objects of type IPAddress. The Ethernet
library knows to look for these names when initializing an Ethernet interface. Notice
that they all use the multiple-octet form of initialization.

You can find the source files for IPAddress in the directory Arduino/hardware/ardu‐
ino/avr/cores/arduino of the Arduino source.

Server class: EthernetServer

In Ethernet parlance, a server is a system (or host) that will accept a request for a con‐
nection from another system and establish a communications channel. The system
requesting the connection is called a client. A server waits passively for clients to con‐
tact it; it doesn’t initiate a connection. For a real-world example, consider a web
server. The web server waits for browser clients to connect and request web pages. It
returns the requested data to the client and then waits for the next request. Each time
a link is selected, a button clicked, or text entered into a text field of a browser display,
a request is created and sent to the web server.

The Server class is the base class for the EthernetServer class in the Ethernet library.
It is not called directly. The other classes utilize it. As with IPAddress, the source for
the Server class is located in the directory Arduino/hardware/arduino/avr/cores/ardu‐
ino of the Arduino source.

EthernetServer()

Establishes the port to use when listening for a connection request from a client.
The port is typically specified when an object of type EthernetServer is instanti‐
ated. It returns nothing (void).

EthernetServer server(int port);

Example:

EthernetServer newserv = EthernetServer(port);

The value of the port argument may be any number between 0 and 65535, but
values between 0 and 1024 are typically reserved for system services such as FTP,
SSH, and possibly a web server. Use high port values (greater than 9000, for
instance) to avoid conflicts.

begin()

Commands the server to begin listening for connections from clients on the port
set when the server object was created.

void newserv.begin();

available()

Returns a connection to a client that is connected and ready to communicate.

EthernetClient newclient = newserv.available();

Library Components | 165

write()

Writes data to a client connected to a server. The data is written to all connected
clients. Accepts either a single char (or byte) value, or a pointer to an array of
char values, and returns the number of bytes written.

int newserv.write(char data);
int newserv.write(char *data, int size);

print()

Prints data to all clients connected to a server as a sequence of ASCII characters.

println()

Similar to print(), but adds a newline character at the end of the output.
Accepts data as char, byte (uint8_t), int, long, or string types. Returns the number
of bytes written. With no arguments, the function simply sends a newline charac‐
ter.

int newserv.println();
int newserv.println(char *data);
int newserv.println(char *data, int BASE);

Client class: EthernetClient

The Client class creates client objects, which can connect to a server to send and
receive data. A transaction, or exchange, of data between a server and a client is typi‐
cally initiated by the client. A server listens and waits for a client to connect, and once
connected the client can request data from the server, send data to the server, or
request that the server perform some action on the client’s behalf.

The Client class is the base class for the EthernetClient class in the Ethernet library.
It is not called directly; the EthernetClient class inherits from it. As with Server, the
source for the Client base class is located in the directory Arduino/hardware/ardu‐
ino/avr/cores/arduino of the Arduino source.

EthernetClient()

Creates a client object that can connect to a server at a specific IP address using a
specific port. The connect() method is used to define the server and the port to
use. For example:

byte servaddr[] = {172, 120, 40, 10};
EthernetClient newclient;
newclient.connect(servaddr, 80);

connected()

Determines whether a client is connected or not. Returns true or false.

bool newclient.connected();

166 | Chapter 7: Arduino Libraries

if (newclient.connected()) {
 // do something
}

connect()

Connects to a server at a specific IP address (an array of four bytes) and port.
Instead of an IP address, a URL (web address) may be used.

int newclient.connect();
int newclient.connect(byte *servIP, int port);
int newclient.connect(char *URL, int port);

Returns an integer representing the connection status:

• SUCCESS = 1
• TIMED_OUT = -1
• INVALID_SERVER = -2
• TRUNCATED = -3
• INVALID_RESPONSE = -4

write()

Sends either a value or the contents of a buffer to the connected server. The data
is sent as a series of bytes. The write() method returns the number of bytes writ‐
ten. This return value can be safely ignored.

int newclient.write(uint8_t value);
int newclient.write(uint8_t *buffer, int len);

print()

Prints data to the connected server as a sequence of ASCII characters. Accepts
data as char, byte (uint8_t), int, long, or string types. Can also take a base speci‐
fied. The valid base types are BIN (binary), DEC (base 10), OCT (base 8), and HEX
(base 16). Returns the number of bytes written.

int newclient.print(data);
int newclient.print(data, base);

println()

Identical to the print() method except that a newline character is appended to
the end of the output of ASCII characters. A println() with no parameters will
send a single newline character to the connected server.

int newclient.println();
int newclient.println(data);
int newclient.println(data, base);

Library Components | 167

available()

Returns the number of characters available for reading from the connected
server. Can be used to check for presence of incoming data.

int newclient.available();

read()

Reads the next available byte from the server. Use a loop to read multiple charac‐
ters, or read and evaluate each character one at a time.

char newclient.read();

flush()

Discards any unread characters from the server that are in the receive buffer.

void newclient.flush();

stop()

Disconnects from the currently connected server. Once disconnected, the client
may connect to another server (or to the same server again, of course).

void newclient.stop();

EthernetUDP class

Unlike TCP/IP, which is a stream protocol (i.e., it has no definite start and stop
boundaries), UDP is a datagram protocol. Each item of data is a single packet, called a
datagram, and the data must fit within the boundaries of the datagram packet. UDP
does not have error detection, nor does it guarantee delivery of the data, but for short
packets of noncritical data, or where the upper-level software can handle things like
error detection and retries, it offers a fast and relatively simple way to move data
around between hosts.

begin()

Initializes the UDP class to start listening for incoming data on a specific port.

byte UDP.begin(int port);

read()

Reads incoming data from the specified buffer. If no parameters are given, it will
return one character from the current buffer. If the buffer and size are specified,
it will return up to maxsize bytes from the buffer.

char UDP.read();
char *UDP.read(char *pkt_buffer, int maxsize)

Note that this function is intended to be used immediately after a call to UDP.par
sePacket().

168 | Chapter 7: Arduino Libraries

write()

Sends data to a remote connection. The write() function must be placed
between beginPacket() and endPacket() calls. beginPacket() initializes the
data packet, and the endPacket() call actually sends the data to the remote host.

byte UDP.write(char *message);
byte UDP.write(char *buffer, int size)

beginPacket()

Opens a UDP connection to a remote host at a specific IP address and port.
Returns 1 (true) if the connection succeeded or 0 on failure.

int UDP.beginPacket(byte *ip, int port);

endPacket()

Sends a UDP packet created by the write() function to the remote host specified
by the beginPacket() function.

int UDP.endPacket();

parsePacket()

Checks an open UDP connection for the presence of a datagram packet and
returns the size of the waiting data. parsePacket() must be called before the
read() or available() function is used to retrieve the data (if any).

int UDP.parsePacket();

available()

Returns the number of bytes of received data currently in the receive buffer. Note
that this should only be called after a call to parsePacket().

int UDP.available();

stop()

Disconnects from the remote UDP host and releases any resources used during
the UDP session.

void USP.stop();

remoteIP()

Returns the IP address of the remote UDP connection as an array of 4 bytes. This
function should only be called after a call to parsePacket().

byte *UDP.remoteIP();

remotePort()

Returns the UDP port of the remote UDP connection as an integer. This function
should only be called after a call to parsePacket().

int UDP.remotePort();

Library Components | 169

FirmataFirmata

Firmata is an interesting library with a lot of potential applications. Firmata provides
the means to use serial communications between an Arduino and an application on a
host computer using a protocol similar to MIDI. It was developed with the intention
of allowing as much of the functionality of an Arduino to be controlled from a host
computer as possible—in other words, to use the Arduino as if it was an extension of
the host’s own I/O capabilities.

Before embarking on a Firmata project for the first time, you might want to try out
the demonstration software. A suitable client can be downloaded from the old Fir‐
mata wiki, and the Arduino portion of the code is already included in the libraries
distributed with the Arduino IDE.

This section provides only a summary of the functions available in the Firmata
library. The following list shows the organization of the library components. Unfortu‐
nately, these components don’t seem to be extensively documented, so some of what
you might want to know in order to use them will need to be gleaned from the source
code. For more details and usage examples, refer to the Firmata wiki (now idle and no
longer maintained) or check out the Firmata GitHub repository. You should pay par‐
ticular attention to the protocol definition, as this is what the host application uses to
communicate with a Firmata application running on an Arduino.

The Firmata library code included with the Arduino IDE may not
be the latest version. Check the GitHub repository. The documen‐
tation presented here may refer to functions that your version does
not have.

The Firmata library is organized as follows:

• Base methods
— begin()

— printVersion()

— blinkVersion()

— printFirmwareVersion()

— setFirmwareVersion()

• Sending messages
— sendAnalog()

— sendDigitalPorts()

— sendDigitalPortPair()

170 | Chapter 7: Arduino Libraries

http://firmata.org/wiki/Main_Page
http://firmata.org/wiki/Main_Page
http://firmata.org
https://github.com/firmata
https://github.com/firmata/protocol
https://github.com/firmata/arduino

— sendSysex()

— sendString()

— sendString()

• Receiving messages
— available()

— processInput()

• Callback functions
— attach()

— detach()

• Message types

Base methods

We’ll look at each of these categories in turn in the following sections.

begin()

The basic form of begin() initializes the Firmata library and sets the serial data
rate to a default of 57,600 baud. The second form accepts an argument of type
long, which contains the desired baud rate for the communication between Fir‐
mata and a host system. The third form starts the library using a stream other
than Serial. It is intended to work with any data stream that implements the
Stream interface (Ethernet, WiFi, etc.). Refer to the issue discussions on Firmata’s
GitHub page for more information on the current status of this method.

void Firmata.begin();
void Firmata.begin(long);
void Firmata.begin(Stream &s);

printVersion()

Sends the library protocol version to the host computer.

void Firmata.printVersion();

blinkVersion()

Blinks the protocol version on pin 13 (the on-board LED on an Arduino).

void Firmata.blinkVersion();

printFirmwareVersion()

Sends the firmware name and version to the host computer.

void Firmata.printFirmwareVersion();

Library Components | 171

https://github.com/firmata/arduino/issues
https://github.com/firmata/arduino/issues

setFirmwareVersion()

Sets the firmware name and version using the sketch’s filename, minus the exten‐
sion.

void Firmata.setFirmwareVersion(const char *name,
 byte vers_major, byte vers_minor);

Sending messages

sendAnalog()

Sends an analog data message.

void Firmata.sendAnalog(byte pin, int value);

sendDigitalPort()

Sends the state of digital ports as individual bytes.

void Firmata.sendDigitalPort(byte pin, int portData);

sendString()

Sends a string to the host computer.

void Firmata.sendString(const char* string);

sendString()

Sends a string to the host computer using a custom command type.

void Firmata.sendString(byte command, const char* string);

sendSysex()

Sends a command containing an arbitrary array of bytes.

void Firmata.sendSysex(byte command, byte bytec, byte* bytev);

Receiving messages

available()

Checks to see if there are any incoming messages in the input buffer.

int Firmata.available();

processInput()

Retreives and processes incoming messages from the input buffer and sends the
data to registered callback functions.

void Firmata.processInput();

Callback functions

In order to attach a function to a specific message type, the function must match a
callback function. There are three basic types of callback functions in Firmata. We’ll

172 | Chapter 7: Arduino Libraries

look at each of these in turn in the following sections: generic, string, and sysex, and a
fourth type to handle a system reset. The callback functions are:

attach()

Attaches a function to a specific incoming message type.

void attach(byte command, callbackFunction newFunction);
void attach(byte command, systemResetCallbackFunction newFunction);
void attach(byte command, stringCallbackFunction newFunction);
void attach(byte command, sysexCallbackFunction newFunction);

detach()

Detaches a function from a specific incoming message type.

void Firmata.detach(byte command);

Message types

A function may be attached to a specific message type. Firmata provides the following
message types:

ANALOG_MESSAGE

The analog value for a single pin

DIGITAL_MESSAGE

Eight bits of digital pin data (one port)

REPORT_ANALOG

Enables/disables the reporting of an analog pin

REPORT_DIGITAL

Enables/disables the reporting of a digital port

SET_PIN_MODE

Changes the pin mode between INPUT/OUTPUT/PWM/etc.

FIRMATA_STRING

For C-style strings; uses stringCallbackFunction for the function type

SYSEX_START

For generic, arbitrary-length messages (via MIDI SysEx protocol); uses sysex
CallbackFunction for the function type

SYSTEM_RESET

Resets firmware to its default state; uses systemResetCallbackFunction for the
function type

Library Components | 173

GSMGSM

The GSM library is used with the GSM shield to connect to a GSM/GPRS network. It
is included with the 1.0.4 and later versions of the Arduino IDE. The GSM library
supports most of the functions one would expect from a GSM phone, such as the
ability to place and receive calls, send and receive SMS messages, and connect to the
Internet via a GPRS network. GSM stands for global system for mobile communica‐
tions, and GPRS is the acronym for General Packet Radio Service.

The GSM shield incorporates a modem to transfer data from a serial port to the GSM
network. The modem utilizes AT-type commands to perform various functions. In
normal usage each AT command is part of a longer series that performs a specific
function. The GSM library relies on the SoftwareSerial library to support communi‐
cation between the Arduino and the GSM modem.

The GSM library is a recent addition. If you have an older version
of the IDE, then you may not have this library. Check the list of
available libraries in the IDE to see if you do or do not have the
GSM library available.

The suite of GSM library classes is complex, and a full description of all of the capa‐
bilities would be beyond the scope of this book. This section presents a summary of
the functionality. For more detailed information, refer to the Arduino GSM library
reference or check the built-in help in the Arduino IDE. Some vendors, such as Ada‐
fruit, also produce Arduino-compatible GSM shields, and they provide their own
libraries for their products.

Ethernet library compatibility

The GSM library is largely compatible with the current Arduino Ethernet library,
such that porting a program that uses the Arduino Ethernet or WiFi libraries to the
GSM for use with the GSM shield should be relatively straightforward. Some minor
library-specific modifications will be necessary, such as including the GSM- and
GPRS-specific libraries and obtaining network settings from your cellular network
provider.

Library structure

The GSM library is rather complex, and is comprised of 10 primary classes. The fol‐
lowing list shows the functions in each of the GSM classes:

• GSM class
— begin()

— shutdown()

174 | Chapter 7: Arduino Libraries

https://www.arduino.cc/en/Reference/GSM

• GSMVoiceCall class
— getVoiceCallStatus()

— ready()

— voiceCall()

— answerCall()

— hangCall()

— retrieveCallingNumber()

• GSM_SMS class
— beginSMS()

— ready()

— endSMS()

— available()

— remoteNumber()

— read()

— write()

— print()

— peek()

— flush()

• GPRS class
— attachGPRS()

• GSMClient class
— ready()

— connect()

— beginWrite()

— write()

— endWrite()

— connected()

— read()

— available()

— peek()

Library Components | 175

— flush()

— stop()

• GSMServer class
— ready()

— beginWrite()

— write()

— endWrite()

— read()

— available()

— stop()

• GSMModem class
— begin()

— getIMEI()

• GSMScanner class
— begin()

— getCurrentCarrier()

— getSignalStrength()

— readNetworks()

• GSMPIN class
— begin()

— isPIN()

— checkPIN()

— checkPUK()

— changePIN()

— switchPIN()

— checkReg()

— getPINUsed()

— setPINUsed()

• GSMBand class
— begin()

— getBand()

176 | Chapter 7: Arduino Libraries

— setBand()

GSM class

This class prepares the functions that will communicate with the modem. It manages
the connectivity of the shield and performs the necessary system registration with the
GSM infrastructure. All Arduino GSM/GPRS programs need to include an object of
this class to handle the low-level communications functions.

This is the base class for all GSM-based functions. It should be instantiated as shown:

GSM gsmbase;

begin()

Starts the GSM/GPRS modem and attaches to a GSM network. The full proto‐
type for the begin() method looks like this:

begin(char* pin=0, bool restart=true, bool synchronous=true);

The begin() method can be called four different ways because each argument
has been assigned a default value. The first form takes no arguments, and it is
assumed that the SIM has no configured pin.

gsmbase.begin();
gsmbase.begin(char *pin);
gsmbase.begin(char *pin, bool restart);
gsmbase.begin(char *pin, bool restart, bool sync);

shutdown()

Shuts down the modem (power-off).

gsmbase.shutdown();

GSMVoiceCall class

The GSMVoiceCall class enables voice communication through the modem, provided
that a microphone, a speaker, and a small amount of circuitry are connected to the
GSM shield.

This is the base class for all GSM functions used to receive and make voice calls and
should be instantiated as follows:

GSMVoiceCall gsmvc;

getVoiceCallStatus()

Returns the status of a voice call as one of IDLE_CALL, CALLING, RECEIVINGCALL,
or TALKING.

GSM3_voiceCall_st getVoiceCallStatus();

gsmvc.getVoiceCallStatus();

Library Components | 177

ready()

Returns the status of the last command: 1 if the last command was successful, 0 if
the last command is still executing, and >1 if an error occurred.

int ready();

gsmvc.ready();

voiceCall()

Places a voice call in either asynchronous or synchronous mode. If asynchro‐
nous, voiceCall() returns while the number is ringing. In synchronous mode
voiceCall() will not return until the call is either established or cancelled.

The first argument is a string containing the number to call. A country extension
can be used or not. The buffer should not be released or used until voiceCall()
is complete (the command is finished). The timeout argument is given in milli‐
seconds, and is used only in synchronous mode. If set to 0, then voiceCall()
will wait indefinitely for the other end to pick up.

int voiceCall(const char* to, unsigned long timeout=30000);

gsmvc.voiceCall(to); // use default timeout
gsmvc.voiceCall(to, timeout); // specify a timeout period

answerCall()

Accepts an incoming voice call. In asynchronous mode answerCall() returns 0
if the last command is still executing, 1 on success, and >1 if an error has occur‐
red. In synchronous mode answerCall() returns 1 if the call is answered, and 0
if not.

gsmvc.answerCall();

hangCall()

Hangs up an established call or an incoming ring. In asynchronous mode hang
Call() returns 0 if the last command is still executing, 1 on success, and >1 if an
error has occurred. In synchronous mode hangCall() returns 1 if the call is
answered, and 0 if not.

gsmvc.hangCall();

retrieveCallingNumber()

Retrieves the calling number and puts it into a buffer. The argument buffer is a
pointer to a char buffer, and bufsize is the size of the buffer, in bytes. The buffer
should be large enough to hold at least 10 characters.

In asynchronous mode retrieveCallingNumber() returns 0 if the last command
is still executing, 1 on success, and >1 if an error has occurred. In synchronous

178 | Chapter 7: Arduino Libraries

mode retrieveCallingNumber() returns 1 if the number is correctly acquired
and 0 if not.

int retrieveCallingNumber(char* buffer, int bufsize);

gsmvc.retrieveCallingNumber(buffer, bufsize);

GSM_SMS class

This class provides the capability to send and receive SMS (Short Message Service)
messages.

beginSMS()

Defines the telephone number to receive an SMS message. The phone number is
a char array. In asynchronous mode the function will return 0 if the last com‐
mand is still active, 1 if it was successful, and a value >1 if an error occurred. In
synchronous mode the function will return 1 if the previous command was suc‐
cessful and 0 if it failed.

int SMS.beginSMS(char *phone_number)

ready()

Returns the status of the last GSM SMS command. In asynchronous mode
ready() will return 0 if the last command is still active, 1 if it was successful, and
a value >1 if an error occurred. In synchronous mode the function will return 1 if
the previous command was successful and 0 if it failed.

int SMS.ready()

endSMS()

Used to inform the modem that the message is complete and ready to send. In
asynchronous mode the function returns 0 if it is still executing, 1 if successful,
and >1 if an error has occurred. In synchronous mode it returns 1 if successful,
and 0 otherwise.

int SMS.endSMS()

available()

If an SMS message is available to read, this function returns the number of char‐
acters in the message. If no message is available, it returns 0.

int SMS.available()

remoteNumber()

Extracts the remote phone number from an incoming SMS message and returns
it in a char array. The size argument defines the maximum size of the array
passed to remoteNumber(). In asynchronous mode the function returns 0 if still
executing, 1 if successful, and >1 if an error has occurred. In synchronous mode
the function returns 1 if successful, 0 otherwise.

Library Components | 179

int SMS.remoteNumber(char *remote_phone, int number_size)

read()

Reads a byte (a character) from an SMS message. Returns the byte as an integer,
or -1 if no data is available.

int SMS.read()

write()

Writes a byte-sized character to an SMS message.

int write(int character)

print()

Writes a character array to an SMS message. Returns the number of bytes suc‐
cessfully written.

int SMS.print(char *message)

peek()

Returns the next available byte (a character) from an SMS message, without
removing the character, or -1 if no data is available.

int SMS.peek()

flush()

Clears the modem of any sent messages after all outbound characters have been
sent.

void SMS.flush()

GPRS class

GPRS is the base class for all GPRS functions. This includes Internet client and server
functions. This class is also responsible for including the files that are involved with
TCP communication.

attachGPRS()

Connects with a given access point name (APN) to initiate GPRS communica‐
tions. Cellular providers have APNs the act as bridges between the cellular net‐
work and the Internet. Returns one of the following strings: ERROR, IDLE,
CONNECTING, GSM_READY, GPRS_READY, TRANSPARENT_CONNECTED.

char *GPRS.attachGPRS(char *apn, char *user, char *password)

GSMClient class

This class creates clients that can connect to servers and send and receive data.

180 | Chapter 7: Arduino Libraries

ready()

Returns the status of the last command. In asynchronous mode the function
returns 0 if still executing, 1 if successful, and >1 if an error has occurred. In syn‐
chronous mode the function returns 1 if successful, and 0 otherwise.

int GSMClient.ready()

connect(char *IP, int port)

Connects to a specific port of a specified IP address. Returns true if the connec‐
tion was successful, or false if not.

bool GSMClient.connect(char *hostip, int port)

beginWrite()

Starts a write operation to the connected server.

void GSMClient.beginWrite()

write()

Writes data to a connected server. Returns the number of bytes written.

int GSMClient.write(char data)
int GSMClient.write(char *data)
int GSMClient.write(char *data, int size)

endWrite()

Stops writing data to a connected server.

void GSMClient.endWrite()

connected()

Returns the connection status of a client. Note that a client is considered to be
connected if the connection has been closed but there is still unread data in the
buffer. Returns true if the client is connected, or false if not.

bool GSMClient.connected()

read()

Reads the next available byte of data from the server the client is connected with.
Returns the next byte, or -1 if no data is available.

int GSMClient.read()

available()

Returns the number of bytes from the connected server that are waiting to be
read.

int GSMClient.available()

Library Components | 181

peek()

Returns the next available byte of an incoming message without removing it
from the incoming buffer. Successive calls to peek() will simply return the same
byte.

int GSMClient.peek()

flush()

Discards any data currently waiting in the incoming buffer and resets the avail‐
able data count to zero.

void GSMClient.flush()

stop()

Forces a disconnect from a server.

void GSMClient.stop()

GSMServer class

The GSMServer class creates servers that can send data to and receive data from con‐
nected clients. It implements network server functionality, similar to the Ethernet and
WiFi libraries. Note that some network operators do not permit incoming network
connections from outside their own network.

ready()

Returns the status of the last command. In asynchronous mode this function
returns 0 if still executing, 1 if successful, and >1 if an error has occurred. In syn‐
chronous mode the function returns 1 if successful, and 0 otherwise.

int GSMServer.ready()

beginWrite()

Starts a write operation to all connected clients.

void GSMServer.beginWrite()

write()

Writes data to connected clients. Returns the number of bytes written.

int GSMServer.write(char data)
int GSMServer.write(char *data)
int GSMServer.write(char *data, int size)

endWrite()

Stops writing data to connected clients.

void GSMServer.endWrite()

182 | Chapter 7: Arduino Libraries

read()

Reads the next available byte from a connected client. Returns the byte read, or
-1 if no data is available.

int GSMServer.read()

available()

Listens for connection requests from clients. Returns the number of connected
clients.

int GSMServer.available()

stop()

Stops the server from listening for client connection requests.

void GSMServer.stop()

GSMModem class

The GSMModem class provides diagnostic support functions for the internal GSM
modem.

begin()

Checks the status of the modem and restarts it. This function must be called
before a call to getIMEI(). Returns 1 if the modem is working correctly, or an
error if it is not.

int GSMModen.begin()

getIMEI()

Queries the modem to retrieve its IMEI (International Mobile Equipment Identi‐
fier) number. The IMEI number is returned as a string. This function should only
be called after a call to begin().

char *GSMModen.getIMEI()

GSMScanner class

The GSMScanner class provides functions to obtain diagnostic information about the
network and carrier.

begin()

Resets the modem. Returns 1 if the modem is operating correctly, or an error
code if it is not.

int GSMSScanner.begin()

getCurrentCarrier()

Returns the name of the current network server provider (the carrier) as a string.

char *GSMSScanner.getCurrentCarrier()

Library Components | 183

getSignalStrength()

Returns the relative signal strength of the network connection as a string with
ASCII digits from 0 to 31 (31 indicates that the power is > 51 dBm), or 99 if no
signal is detected.

char *GSMSScanner.getSignalStrength()

readNetworks()

Searches for available network carriers. Returns a string containing a list of the
carriers detected.

char *GSMSScanner.readNetworks()

GSMPIN class

The GSMPIN class contains utility functions for communicating with the SIM card.

begin()

Resets the modem. Returns 1 if the modem is operating correctly, or an error
code if it is not.

int GSMPIN.begin()

isPIN()

Examines the SIM card to determine if it is locked with a PIN or not. Returns 0 if
the PIN lock is off, 1 if the lock is on, -1 if the PUK lock is on, and -2 if an error
was encountered.

int GSMPIN.isPIN()

checkPIN()

Queries the SIM card with a PIN to determine whether it is valid or not. Returns
0 if the PIN is valid, and -1 if it is not.

int GSMPIN.checkPIN(char *PIN)

checkPUK()

Queries the SIM to determine if the PUK code is valid and establishes a new PIN
code. Returns 0 if successful, and -1 if not.

int GSMPIN.checkPUK(char *PUK, char *PIN)

changePIN()

Changes the PIN code of a SIM card after verifying that the old PIN is valid.

void GSMPIN.changePIN(char *oldPIN, char *newPIN)

switchPIN()

Changes the PIN lock status.

void GSMPIN.switchPIN(char *PIN)

184 | Chapter 7: Arduino Libraries

checkReg()

Checks to determine if the modem is registered in a GSM/GPRS network.
Returns 0 if the modem is registered, 1 if the modem is roaming, and -1 if an
error was encountered.

int GSMPIN.checkReg()

getPINUsed()

Checks to determine if the PIN lock is used. Returns true if locked, and false if
not.

bool GSMPIN.getPINUsed()

setPINUsed()

Sets the PIN lock status. If the argument is true, then the PIN is locked; if false,
it is unlocked.

void GSMPIN.setPINUsed(bool used)

GSMBand class

The GSMBand class provides information about the frequency band the modem con‐
nects to. There are also methods for setting the band.

begin()

Resets the modem. Returns 1 if the modem is operating correctly, or an error
code if it is not.

int GSMBand.begin()

getBand()

Returns the frequency band the modem is currently using for a connection.

char *GSMBand.getBand()

setBand()

Sets the frequency band for the modem to use.

bool GSMBand.setBand(char *band)

LiquidCrystalLiquidCrystal

This class allows an Arduino board to control a liquid crystal display (LCD) module.
It is specifically intended for LCDs that are based on the Hitachi HD44780 (or com‐
patible) chipset, which is found on most text-based LCDs. The library supports either
4- or 8-bit interface mode, and also uses three of the Arduino pins for the RS (register
select), clock enable, and R/W (read/write) control lines.

Library Components | 185

LiquidCrystal()

Creates an instance of a LiquidCrystal class object. The different forms of the
class allow it to accommodate different LCD interface methods.

LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1,
 uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5,
 uint8_t d6, uint8_t d7);

LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0,
 uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4,
 uint8_t d5, uint8_t d6, uint8_t d7);

LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0,
 uint8_t d1, uint8_t d2, uint8_t d3);

LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1,
 uint8_t d2, uint8_t d3);

Where:

rs The Arduino pin connected to the LCD’s RS pin

rw The Arduino pin connected to the LCD’s RW pin

enable The Arduino pin connected to the LCD’s enable pin

d0 .. d7 The Arduino pins connected to the LCD’s data pins

The use of the d4, d5, d6, and d7 signals is optional. If only four digital lines are
used, these can be omitted.

Example:

LiquidCrystal lcd(12, 11, 10, 5, 4, 3, 2);

begin()

Initializes the interface to the LCD controller on the LCD module. The argu‐
ments specify the width and height of the LCD. The default character size is 5 × 8
pixels. This function must be called before any other LCD library functions can
be used.

void lcd.begin(uint8_t cols, uint8_t rows,
 uint8_t charsize = LCD_5x8DOTS)

clear()

Clears the LCD screens and resets the cursor to the upper-left corner.

void lcd.clear()

home()

Positions the cursor at the upper-left position on the LCD. Does not clear the
LCD; use the clear() function for that.

186 | Chapter 7: Arduino Libraries

void home()

setCursor()

Positions the cursor at the location specified by the column and row arguments.

void setCursor(uint8_t column, uint8_t row)

write()

Writes a byte (char) of data to the LCD. Returns the number of bytes written.

size_t write(uint8_t)

print()

This function is actually a part of the standard Arduino runtime AVR-GCC code,
and it is overloaded to accept data of different types. The file Print.h, found at
hardware/arduino/avr/cores/arduino/Print.h, defines the following forms of the
print() function:

size_t print(const __FlashStringHelper *);
size_t print(const String &);
size_t print(const char[]);
size_t print(char);
size_t print(unsigned char, int = DEC);
size_t print(int, int = DEC);
size_t print(unsigned int, int = DEC);
size_t print(long, int = DEC);
size_t print(unsigned long, int = DEC);
size_t print(double, int = 2);
size_t print(const Printable&);

cursor()

Enables the cursor, an underscored character, at the position where the next
character will be written on the LCD screen.

void cursor()

noCursor()

Disables the cursor, effectively hiding it. Does not affect the position where the
next character will be displayed.

void noCursor()

blink()

Displays a blinking cursor.

void blink()

noBlink()

Turns off a blinking cursor.

void noBlink()

Library Components | 187

display()

Enables the LCD, if it was initially disabled with the noDisplay() function.
Restores the cursor and any text that was previously visible or which may have
been added, deleted, or modified since the display was disabled.

void display()

noDisplay()

Disables the LCD display without altering any existing text on the screen.

void noDisplay()

scrollDisplayLeft()

Scrolls the text on the display one space to the left.

void scrollDisplayLeft()

scrollDisplayRight()

Scrolls the text on the display one space to the right.

void scrollDisplayRight()

autoscroll()

Enables automatic scrolling. As text is added to the display it moves the existing
characters one space to either the left or the right, depending on the current text
direction.

void autoscroll()

noAutoscroll()

Disables the autoscroll function of the LCD.

void noAutoscroll()

leftToRight()

Sets the direction the text will shift in when autoscroll is enabled, in this case
from left to right.

void leftToRight()

rightToLeft()

Sets the direction the text will shift in when autoscroll is enabled, in this case
from right to left.

void rightToLeft()

createChar()

Creates a custom 5 × 8-pixel character. The character is defined by an array of
bytes, one per row. Only the five least significant bits of each byte are used.

void createChar(uint8_t, uint8_t[])

188 | Chapter 7: Arduino Libraries

SDSD

The SD library provides support for reading and writing SD flash memory cards,
both full-size and micro SD types (they’re identical in terms of interface and func‐
tions, just different sizes). The library is based on sdfatlib by William Greiman.

This library treats an SD card as a small disk with either a FAT16 or a FAT32 filesys‐
tem. It uses short filenames (8.3 format). Filenames passed to the SD library functions
may include a path, with directory names separated by forward slashes (like on
Linux, not the backslashes used by MS-DOS or Windows).

The SPI interface is used to communicate with the SD card. This uses the digital pins
11, 12, and 13 on a standard Arduino board. One additional pin, usually pin 10, is
used as the select pin, or another pin can be assigned to this role. Note that even if
another pin is used for the select, the SS pin (pin 10) must remain as an output for the
library to work.

SD class

The SD class provides functions for accessing the SD card and manipulating files and
directories.

begin()

Initializes the SD library and the interface with the SD card. The optional argu‐
ment csPin defines the pin to use as the select. The default is to use pin 10
(SD_CHIP_SELECT_PIN). This function must be called before any other of the SD
functions are used. Returns true if successful, or false if not.

bool SD.begin(uint8_t csPin = SD_CHIP_SELECT_PIN);

exists()

Tests for the presence of a file or directory on the SD card. The string filepath
may be a fully qualified path name (FQPN). Returns true if the file or directory
exists, or false if not.

bool SD.exists(char *filepath);

mkdir()

Creates a directory on the SD card. It will also create any necessary intermediate
directories. Returns true if the directory was created successfully, or false if not.

bool SD.mkdir(char *filepath);

open()

Opens a file on an SD card for reading or writing. If the mode argument is not
provided, the default is to open the file for reading. Returns a File object that

Library Components | 189

can be tested as a Boolean value. If the file could not be opened, then File will
evaluate to false. The available modes are FILE_READ and FILE_WRITE.

File SD.open(const char *filename, uint8_t mode = FILE_READ);

remove()

Deletes (removes) a file from the SD card. filepath is an FQPN. Returns true if
the removal succeeded, or false if not.

bool SD.remove(char *filepath);

rmdir()

Removes an empty directory from an SD card. Returns true if the directory was
successfully deleted, or false if an error occurred (such as the directory not
empty).

bool SD.rmdir(char *filepath);

File class

The File class provides functions for reading and writing individual files on an SD
card. Objects of type File are created by the SD.open() function:

fname = SD.open("data.txt", FILE_WRITE);

There are a number of methods in a File object to manipulate the contents of a file:

available()

Returns the number of available bytes to read from a file.

int fname.available()

close()

Closes a file, ensuring that any remaining data is written to the file beforehand.

void fname.close()

flush()

Writes any remaining data in the file buffer to the file. Does not close the file.

void fname.flush()

peek()

Reads a byte from a file without advancing the internal data pointer. Successive
calls to peek() will return the same byte.

int fname.peek()

position()

Returns the current position in the file that the next byte will be read from or
written to.

190 | Chapter 7: Arduino Libraries

uint32_t fname.position()

print()

Writes data to a file that has been opened for writing. Accepts data as char, byte
(uint8_t), int, long, or string types. Can also take a base specified. The valid base
types are BIN (binary), DEC (base 10), OCT (base 8), and HEX (base 16). Returns the
number of bytes written.

int fname.print(data)
int fname.print(char *data, int BASE)

Note: string data is shown in this example.

println()

Writes data to a file that has been opened for writing followed by a carriage
return and newline character pair. Accepts data as char, byte (uint8_t), int, long,
or string types. Can also take a base specified. The valid base types are BIN
(binary), DEC (base 10), OCT (base 8), and HEX (base 16). Returns the number of
bytes written.

int fname.println()
int fname.println(data)
int fname.println(data, int BASE)

seek()

Moves the internal pointer to a new position in the file. The position must be
between 0 and the size of the file, inclusive. Returns true if successful, or false if
an error occurs (seeking beyond the end of the file, for example).

bool fname.seek(uint32_t pos)

size()

Returns the size of the file, in bytes.

uint32_t fname.size()

read()

Reads the next byte from the file, or returns a value of -1 if no data is available.

int fname.read(void *buf, uint16_t nbyte)

write()

Writes data to a file. Accepts either a single byte, or a data object that may be a
byte, character, or string. The size argument defines the amount of data to write
to the SD card. Returns the number of bytes written.

size_t fname.write(uint8_t)
size_t fname.write(const uint8_t *buf, size_t size)

Library Components | 191

isDirectory()

Returns true if the fname object refers to a directory, or false otherwise.

bool fname.isDirectory()

openNextFile()

Opens the next file folder in a directory and returns a new instance of a File
object.

File openNextFile(uint8_t mode = O_RDONLY)

rewindDirectory()

Used with openNextFile(), this function returns to the first file or subdirectory
in a directory.

void fname.rewindDirectory()

ServoServo

The Servo library is a collection of functions for controlling servo motors, such as
the ones used with RC aircraft. Once an instance of the Servo class has been created,
the attach() function is used to pass in the pin number to use with the servo. The
pulses that control a servo are generated in the background. The class is instantiated
as follows:

Servo servo;

attach()

Attaches a servo motor to an I/O pin. The second form allows the caller to spec‐
ify the minimum and maximum write time values in microseconds. Returns the
channel number, or 0 if the function fails.

uint8_t servo.attach(int pin)
uint8_t servo.attach(int pin, int min, int max)

write()

Sets the servo angle in degrees. If the value is > 200 it is treated as a pulse width
in microseconds.

void servo.write(int value)

read()

Returns the last written servo pulse width as an angle between 0 and 180 degrees.

int servo.read()

writeMicroseconds()

Sets the servo pulse width in microseconds.

void servo.writeMicroseconds(int value)

192 | Chapter 7: Arduino Libraries

readMicroseconds()

Returns the current pulse width in microseconds for this servo.

int servo.readMicroseconds()

attached()

Returns true if the servo object has been attached to a physical servo.

bool servo.attached()

detach()

Stops an attached servo object from generating pulses on its assigned I/O pin.

void servo.detach()

SPISPI

The SPI library supports the use of the Serial Peripheral Interface (SPI) bus for com‐
munication with SPI-compatible peripherals, typically chips with a built-in SPI inter‐
face. It can also be used for communications between two microcontrollers.

The SPISettings class is used to configure the SPI port. The arguments are com‐
bined into a single SPISettings object, which is passed to SPI.beginTransaction().

SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)

Example:

SPISettings spiset(uint32_t clock,
 uint8_t bitOrder,
 uint8_t dataMode)

beginTransaction()

Initializes the SPI interface using the settings defined in an SPISettings object.

void SPI.beginTransaction(SPISettings)

endTransaction()

Stops communication with the SPI interface. Typically called after the select pin
is de-asserted to allow other libraries to use the SPI interface.

void SPI.endTransaction()

usingInterrupt()

Used when SPI communications will occur within the context of an interrupt.

void SPI.usingInterrupt(uint8_t interruptNumber)

begin()

Starts the SPI library and initializes the SPI interface. Sets the SCK, MOSI, and SS
pins to output mode, and pulls SCK and MOSI low while setting SS high.

Library Components | 193

void SPI.begin()

end()

Disables the SPI interface but leaves the pin modes (in or out) unchanged.

void SPI.end()

transfer()

Transfers one byte over an SPI interface, either sending or receiving.

uint8_t SPI.transfer(uint8_t data)

setBitOrder()

Sets the order of the bit shifted out to the SPI interface. The two choices are
LSBFIRST (least significant bit first) and MSBFIRST (most significant bit first). This
function should not be used with new projects. Use the beginTransaction()
function to configure the SPI interface.

void SPI.setBitOrder(uint8_t bitOrder)

setClockDivider()

Sets the SPI clock divider relative to the system clock. For AVR-based Arduino
boards the valid divisors are 2, 4, 8, 16, 32, 64, or 128. This function should not
be used with new projects. Use the beginTransaction() function to configure
the SPI interface.

void SPI.setClockDivider(uint8_t clockDiv)

setDataMode()

Sets the clock polarity and phase of the SPI interface. This function should not be
used with new projects. Use the beginTransaction() function to configure the
SPI interface.

void SPI.setDataMode(uint8_t dataMode)

SoftwareSerialSoftwareSerial

The SoftwareSerial library implements software-based serial communication on the
digital I/O pins of an Arduino. In other words, it is a “bit-banger” that emulates a
conventional serial interface. It is useful when more than one serial interface is
required, but the built-in USART in the AVR microcontroller is assigned to some
other function (such as a USB interface).

The SoftwareSerial library supports multiple serial interfaces, each with a speed of up
to 115,200 bits per second. When using multiple instances of SoftwareSerial only one
can receive data at a time. The I/O pins used must support pin change interrupts.
SoftwareSerial provides a 64-byte receive buffer for each instance of a serial interface.

194 | Chapter 7: Arduino Libraries

An object of type SoftwareSerial is created to use with other serial I/O operations.
The class constructor is passed the digital pins to use for input (rx) and output (tx).

SoftwareSerial(uint8_t rxPin, uint8_t txPin, bool inv_logic = false)

Example:

SoftwareSerial serial = SoftwareSerial(rxPin, txPin)

available()

Returns the number of bytes in the serial buffer that are available for reading.

int serial.available()

begin()

Sets the baud rate (speed) of the serial interface. Valid baud rates are 300, 600,
1200, 2400, 4800, 9600, 14400, 19200, 28800, 31250, 57600, and 115200.

void serial.begin(long speed)

isListening()

Tests the serial interface to see if it is listening for input. Returns true if the inter‐
face is actively waiting for input, false otherwise.

bool serial.isListening()

overflow()

If the input exceeds the 64-byte size of the receive buffer in the SoftwareSerial
object, a flag is set. Calling the overflow() function will return the flag. A return
value of true indicates that an overflow has occurred. Calling the overflow()
function clears the flag.

bool serial.overflow()

peek()

Returns the oldest character from the serial input buffer, but does not remove the
character. Subsequent calls will return the same character. If there are no bytes in
the buffer, then peek() will return -1.

int serial.peek()

read()

Returns a character from the receive buffer and removes the character. The
read() function is typically used in a loop. Returns -1 if no data is available. Note
that only one instance of SoftwareSerial can receive incoming data at any given
time. The listen() function is used to select the active interface.

int serial.read()

Library Components | 195

print()

The print() function behaves the same as the Serial.print() function. Accepts
any data type that the Serial.print() will accept, which includes char, byte
(uint8_t), int, long, or string types, and returns the number of bytes written.

int serial.print(data)

println()

Identical to the serial.print() function, except that a carriage return/line feed
(CR/LF) pair is appended to the output. Returns the number of bytes written. If
no data is provided, it will simply emit a CR/LF.

int serial.println(data)

listen()

Enables listening (data receive) for an instance of SoftwareSerial. Only one
instance of a SoftwareSerial object can receive data at any given time, and the
object whose listen() function is called becomes the active listener. Data that
arrives on other interface instances will be discarded.

bool serial.listen()

write()

Transmits data from the serial interface as raw bytes. Behaves the same as the
Serial.write() function. Returns the number of bytes written.

size_t serial.write(uint8_t byte)

StepperStepper

The Stepper library can be used to control both unipolar and bipolar stepper motors
with the appropriate hardware to handle the required current.

The Stepper library has two forms of constructors, one for unipolar motors and one
for bipolar motor types. Each creates a new instance of the Stepper class. It is called
at the start of a sketch, before the setup() and loop() functions. The steps argu‐
ment defines the number of steps in a full revolution of the motor’s output shaft. The
pin1, pin2, pin3, and pin4 arguments specify the digital pins to use.

Stepper(int steps, int pin1, int pin2);
Stepper(int steps, int pin1, int pin2, int pin3, int pin4);

Example:

Stepper stepdrv = Stepper(100, 3, 4);

setSpeed()

Sets the speed (step rate) in terms of RPM. Does not cause the motor to turn; it
just sets the speed to use when the step() function is called.

196 | Chapter 7: Arduino Libraries

void stepdrv.setSpeed(long speed);

step()

Commands the motor to move a specific number of steps. A positive count turns
the motor one direction, and a negative count causes it to turn in the opposite
direction.

void stepdrv.step(int stepcount);

TFTTFT

The TFT (thin-film transistor) display library provides functions for drawing text,
images, and shapes on a TFT display. It is included with versions 1.0.5 and later of the
Arduino IDE. This library simplifies the process for displaying graphics on a display.
It is based on the Adafruit ST7735H library, which can be found on GitHub. The
ST7735H library is based on the Adafruit GFX library, also available on GitHub.

The TFT library is designed to work with interfaces that use the SPI communications
capabilities of an AVR microcontroller. If the TFT shield includes an SD card slot,
then the SD library can be used to read and write data by using a separate select signal
from an Arduino. The TFT library relies on the SPI library for communication with
the screen and SD card, and it also needs to be included in all sketches that use the
TFT library.

TFT class

The TFT class constructor is available in two forms. One is used when the standard
Arduino SPI pins are used (the hardware SPI), and the second form allows you to
specify which pins to use:

TFT(uint8_t cs, uint8_t dc, uint8_t rst)
TFT(uint8_t cs, uint8_t dc, uint8_t mosi, uint8_t sclk, uint8_t rst)

Where:

cs Chip select pin

dc Data or command mode select

rst Reset pin

mosi Pin used for MOSI if not using hardware SPI

sclk Pin used for clock if not using hardware SPI

Example:

 #define cs 10
 #define dc 9
 #define rst 8
 TFT disp = TFT(cs, ds, rst);

Library Components | 197

http://bit.ly/ada-st7735
http://bit.ly/ada-gfx

The Esplora version of the TFT library uses predefined pins. All that is necessary is to
instantiate the TFT object:

EsploraTFT disp = EsploraTFT;

begin()

Called to initialize the TFT library components. Must be called before any other
functions are used. Typically called in the setup() function of a sketch.

void disp.begin()

background()

Overwrites the entire display screen with a solid color. May be used to clear the
display. Note that the screen cannot actually display 256 unique levels per color,
but instead uses 5 bits for the blue and red colors, and 6 bits for green.

void disp.background(uint8_t red, uint8_t green, uint8_t blue)

stroke()

Called before drawing on the screen, and sets the color of lines and borders. Like
the background() function, stroke() uses 5 bits for the blue and red colors, and
6 bits for green.

void disp.stroke(uint8_t red, uint8_t green, uint8_t blue)

noStroke()

Removes all outline stroke color.

void disp.noStroke()

fill()

Sets the fill color of objects and text on the screen. Like the stroke() function,
fill() uses 5 bits for the blue and red colors, and 6 bits for green.

void disp.fill(uint8_t red, uint8_t green, uint8_t blue)

noFill()

Disables color fills for objects and text.

void disp.noFill()

setTextSize()

Sets the size of the text written by a call to the text() function. The default text
size is 1, or 10 pixels. Each increase in the text size increases the height of the text
on the screen by 10 pixels.

void disp.setTextSize(uint8_t size)

text()

Writes text to the display at the specified coordinates. The text color is set by call‐
ing the fill() function before calling text().

198 | Chapter 7: Arduino Libraries

void disp.text(const char * text, int16_t x, int16_t y),

point()

Draws a point at a specific location on the screen. The point color will be what
was specified by a preceding fill() function call.

void disp.point(int16_t x, int16_t y)

line()

Draws a line between start and end coordinates using the color set by the
stroke() function.

void disp.line(int16_t x1, int16_t y1, int16_t x2, int16_t y2)

rect()

Draws a rectangle starting at an upper-left point (x, y) with a specified width and
height.

void disp.rect(int16_t x, int16_t y, int16_t width, int16_t height)

width()

Reports the width of the TFT screen in pixels.

int disp.width()

height()

Reports the height of the TFT screen in pixels.

int disp.height()

circle()

Draws a circle on the display with a center point of (x, y), and radius of r.

int disp.circle(int16_t x, int16_t y, int16_t r)

image()

Draws an image loaded from an SD card onto the screen at a specified position.

void image(PImage image, int xpos, int yPos)

loadImage()

Creates an instance of a PImage object using the image file name provided. The
image file must be a 24-bit BMP type, and it must reside on the root directory of
the SD card. Uses the PImage function loadImage().

PImage disp.loadImage(char *imgname)

PImage

The PImage class contains functions to encapsulate and draw a bitmap image on a
TFT display.

Library Components | 199

PImage.height()

Once an image has been encapsulated in a PImage object it may be queried to
obtain its height. This function returns the height as an int value.

PImage.width()

Returns the width of an encapsulated image object as an int value.

PImage.isValid()

Returns a Boolean true if the image object contains a valid bitmap file, or false
if it does not.

WiFiWiFi

The WiFi library gives an Arduino the ability to connect to a wireless network. The
descriptions here don’t define all the available functions in detail, since many of them
are similar or identical to those found in the Ethernet library. The built-in help in
early versions of the Arduino IDE (which, unfortunately, seems to be all that some
Linux distributions have available at the time of writing) do not have the WiFi library
reference pages, but later versions do. The library source code does seem to be
installed with the older versions of the IDE, or at least it is on my Kubuntu develop‐
ment system.

The WiFi library is used with the SPI library to communicate with the WiFi module
and an optional SD memory card. A baseline-type Arduino (see Chapter 4) commu‐
nicates with the WiFi shield using the SPI pins 10, 11, 12, and 13. The Mega-type
boards use pins 10, 50, 51, and 52. Also, on the Arduino WiFi shield pin 7 is used as a
handshake signal between the Arduino and the WiFi shield, so it should not be used
for anything else. Other WiFi shields may have similar restrictions.

The Arduino WiFi shield can act either as a server for accepting incoming connec‐
tions, or as a client to make a connection with an existing server. The library provides
WEP and WPA2 Personal encryption modes, but it does not support WPA2 Enter‐
prise encryption. Also, if a server node does not broadcast its SSID (Service Set Iden‐
tifier), the WiFi shield will not be able to make a connection.

Like the Ethernet library, the WiFi library is comprised of a collection of five C++
classes. Most of the classes inherit from parent classes, but you don’t need to bother
with the details for most applications. However, if you need to see the low-level class
definitions for Client, Server, UDP, and others, they can be found in the directory
libraries/WiFi in the Arduino source code. The following list shows the five classes of
the WiFi library and the public member functions of each class:

• WiFi class
— begin()

200 | Chapter 7: Arduino Libraries

— disconnect()

— config()

— setDNS()

— SSID()

— BSSID()

— RSSI()

— encryptionType()

— scanNetworks()

— getSocket()

— macAddress()

• IPAddress class
— localIP()

— subnetMask()

— gatewayIP()

• Server class
— WiFiServer()

— begin()

— available()

— write()

— print()

— println()

• Client class
— WiFiClient()

— connected()

— connect()

— write()

— print()

— println()

— available()

— read()

— flush()

Library Components | 201

— stop()

• UDP class
— begin()

— available()

— beginPacket()

— endPacket()

— write()

— parsePacket()

— peek()

— read()

— flush()

— stop()

— remoteIP()

— remotePort()

The Arduino WiFi shield is based on the HDG204 802.11b/g chip.
Be aware that other WiFi shields, such as Adafruit’s WiFi shield
based on the TI CC3000 WiFi chip, may use a different library
specifically for a particular WiFi chip. Much of the functionality
should be similar to what is listed here, but there will still be some
differences to take into consideration. The Adafruit library is avail‐
able on GitHub. Refer to the Adafruit website for details.

WiFi classWiFi class

The following is a quick summary of the WiFi classes. For function descriptions, refer
to the Ethernet library.

The WiFi class contains functions to initialize the library and the network settings.
The class definition cna be found in the include file WiFi.h.

WiFiClass()

int begin(char* ssid)
int begin(char* ssid, uint8_t key_idx, const char* key)
int begin(char* ssid, const char *passphrase)

int disconnect()

202 | Chapter 7: Arduino Libraries

http://bit.ly/ada-cc3000
http://bit.ly/ada-cc3000-wifi

void config(IPAddress local_ip)
void config(IPAddress local_ip, IPAddress dns_server)
void config(IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
void config(IPAddress local_ip, IPAddress dns_server,
 IPAddress gateway, IPAddress subnet)

void setDNS(IPAddress dns_server1)
void setDNS(IPAddress dns_server1, IPAddress dns_server2)

char* SSID()
char* SSID(uint8_t networkItem)
uint8_t* BSSID(uint8_t* bssid)
int32_t RSSI()
int32_t RSSI(uint8_t networkItem)

uint8_t encryptionType()
uint8_t encryptionType(uint8_t networkItem)
int8_t scanNetworks()

static uint8_t getSocket()
uint8_t* macAddress(uint8_t* mac)
static char* firmwareVersion()
uint8_t status()
int hostByName(const char* aHostname, IPAddress& aResult)

IPAddress classIPAddress class

Like the IPAddress in the Ethernet library, the IPAddress class in the WiFi library
provides a container for information about the network configuration.

IPAddress localIP()
IPAddress subnetMask()
IPAddress gatewayIP()

Server classServer class

The Server class creates servers that can accept connections from clients to exchange
data. A client may be another Arduino with a WiFi shield, a desktop PC, notebook
computer, or just about any device with compatible WiFi capability. Refer to “Server
class: EthernetServer” on page 165 for descriptions of print() and println().

WiFiServer(uint16_t)
WiFiClient available(uint8_t* status = NULL)

void begin()

int print(data)
int print(data, base)

int println()
int println(data)
int println(data, base)

Library Components | 203

size_t write(uint8_t)
size_t write(const uint8_t *buf, size_t size)

uint8_t status()

Client classClient class

The Client class creates WiFi clients that can connect to servers in order to send and
receive data. A server may be another Arduino with a WiFi shield, a desktop PC, and
notebook computer, or just about any device with compatible WiFi server capability.
Refer to “Server class: EthernetServer” on page 165 for descriptions of print() and
println().

WiFiClient()
WiFiClient(uint8_t sock)

uint8_t connected()

int connect(IPAddress ip, uint16_t port)
int connect(const char *host, uint16_t port)

size_t write(uint8_t)
size_t write(const uint8_t *buf, size_t size)

int print(data)
int print(data, base)

int println()
int println(data)
int println(data, base)

int available()
int read()
int read(uint8_t *buf, size_t size)
int peek()

void flush()
void stop()

UDP classUDP class

The UDP class enables short messages to be sent and received using the UDP protocol.
Unlike TCP/IP, which is a stream protocol (i.e., it has no definite start and stop
boundaries), UDP is a datagram protocol. In this case, each item of data is a single
packet, called a datagram, and the data must fit within the boundaries of the data‐
gram packet. UDP does not have error detection, nor does it guarantee delivery of the
data, but for short packets of noncritical data, or where the upper-level software can
handle things like error detection and retries, it offers a fast and relatively simple way
to move data around between hosts.

WiFiUDP()

204 | Chapter 7: Arduino Libraries

uint8_t begin(uint16_t)
void stop()

int beginPacket(IPAddress ip, uint16_t port)
int beginPacket(const char *host, uint16_t port)
int endPacket()

size_t write(uint8_t)
size_t write(const uint8_t *buffer, size_t size)

int parsePacket()
int available()
int read()
int read(unsigned char* buffer, size_t len)
int peek()
void flush()

IPAddress remoteIP()
uint16_t remotePort()

WireWire

The Wire library is used to communicate with TWI- or I2C-type devices. Refer to
Chapters 2 and 3 for more information about the TWI capabilities of the AVR micro‐
controllers. Chapter 8 describes some shields that use I2C for communications with
the Arduino.

The following table defines where the TWI pins are located on different types of
Arduino boards. Refer to Chapter 4 for board pinout diagrams.

Board SDA SCL
Uno, Ethernet A4 A5

Mega2560 20 21

Leonardo 2 3

The core of the Wire library is the TwoWire class.

Example:

TwoWire twi = TwoWire()

begin()

Initializes the TWI library and activates the I2C interface in either master or
servant mode. If the address is not specified, the I2C interface defaults to master
mode.

void twi.begin()
void twi.begin(uint8_t addr)
void twi.begin(int addr)

Library Components | 205

requestFrom()

Used by the interface master to request data from a servant device. The data bytes
are retrieved with the available() and read() functions. Returns the number of
bytes of data read from the addressed device.

uint8_t twi.requestFrom(uint8_t addr, uint8_t quantity)
uint8_t twi.requestFrom(uint8_t addr, uint8_t quantity, uint8_t stop)
uint8_t twi.requestFrom(int addr, int quantity)
uint8_t twi.requestFrom(int addr, int quantity, int stop)

beginTransmission()

Begins a data transmission to an I2C servant device at the spefifiend address.
Data is queued for transmission using the write() function and then actually
transmitted using the endTransmission() function.

void twi.beginTransmission(uint8_t addr)
void twi.beginTransmission(int addr)

endTransmission()

Transmits the bytes that were queued by write() to a servant device and then
ends a transmission that was initiated by beginTransmission().

uint8_t twi.endTransmission()
uint8_t twi.endTransmission(uint8_t stop)

write()

Writes the supplied data to a queue for transmission from a master to a servant
device, or from a servant device to a master in response to a data request. Returns
the number of bytes written into the queue.

size_t twi.write(uint8_t data)
size_t twi.write(const uint8_t *data)
size_t twi.write(const uint8_t *data, size_t len)

available()

Returns the number of bytes available to the read() function. Called by a master
device after a call to requestFrom(), and on a servant device after a data receive
event.

int twi.available()

read()

Reads a byte that was transferred from master to servant, or vice versa.

int twi.read()

onReceive()

Registers the function to call (a handler function) when a servant device receives
data from a master.

206 | Chapter 7: Arduino Libraries

void twi.onReceive(void (*)(int))

onRequest()

Registers the function to call when a master requests data from a servant device.

void twi.onRequest(void (*)(void))

EsploraEsplora

The Arduino Esplora library provides a set of functions for easily interfacing with the
sensors and actuators on the Esplora board via the Esplora class. For pinout infor‐
mation refer to Chapter 4.

The sensors available on the board are:

• Two-axis analog joystick
• Center pushbutton of the joystick
• Four pushbuttons
• Microphone
• Light sensor
• Temperature sensor
• Three-axis accelerometer
• Two TinkerKit input connectors

The actuators available on the board are:

• Bright RGB (Red-Green-Blue) LED
• Piezo buzzer
• 2 TinkerKit output connectors

Esplora()

Creates an instance of an Esplora object.

Esplora esp = Esplora()

readSlider()

Returns an integer value corresponding to the current position of the slider con‐
trol. The value can range from 0 to 1023.

unsigned int esp.readSlider()

readLightSensor()

Returns an integer value corresponding to the amount of light impinging on the
light sensor on an Esplora board.

Library Components | 207

unsigned int esp.readLightSensor()

readTemperature()

Returns a signed integer with the current ambient temperature in either Fahren‐
heit or Celsius. The scale argument takes either DEGREES_C or DEGREES_F. The
temperature ranges are –40C to 150C, and –40F to 302F.

int esp.readTemperature(const byte scale);

readMicrophone()

Returns an integer value corresponding to the amount of ambient noise detected
by the microphone. The returned value can range from 0 to 1023.

unsigned int esp.readMicrophone()

readJoystickSwitch()

Reads the joystick button and returns either 0 or 1023. An alternative is the read
JoystickButton() function.

unsigned int esp.readJoystickSwitch()

readJoystickButton()

Reads the joystick’s button and returns either LOW or HIGH (pressed or not
pressed). This function performs the same function as readJoystickSwitch(),
but it returns a value that is consistent with the readButton() function.

bool readJoystickButton()

readJoystickX()

Returns the x-axis position of the joystick as a value between –512 and 512.

int esp.readJoystickX()

readJoystickY()

Returns the y-axis position of the joystick as a value between –512 and 512.

int esp.readJoystickY()

readAccelerometer()

Returns the current value for a selected axis, with the possible values for the axis
argument being X_AXIS, Y_AXIS, and Z_AXIS. A return value of 0 indicates that
the accelerometer is perpendicular to the direction of gravity, and positive or
negative values indicate the direction and rate of acceleration.

int esp.readAccelerometer(const byte axis)

readButton()

Reads the current state of a particular button on an Esplora. Returns a low (false)
value if the button is pressed, or a high (true) value if not.

bool esp.readButton(byte channel)

208 | Chapter 7: Arduino Libraries

writeRGB()

Writes a set of values defining the brightness levels of the red, green, and blue
elements in the Esplora’s RGB LED.

void esp.writeRGB(byte red, byte green, byte blue)

writeRed()

Accepts an argument that defines the brightness of the red LED with a range of 0
to 255.

void esp.writeRed(byte red)

writeGreen()

Accepts an argument that defines the brightness of the green LED with a range of
0 to 255.

void esp.writeGreen(byte green)

writeBlue()

Accepts an argument that defines the brightness of the blue LED with a range of
0 to 255.

void esp.writeBlue(byte blue)

readRed()

Returns the value last used to set the brightness of the red LED.

byte esp.readRed()

readGreen()

Returns the value last used to set the brightness of the green LED.

byte esp.readGreen()

readBlue()

Returns the value last used to set the brightness of the blue LED.

byte esp.readBlue()

tone()

Emits a tone from the Esplora’s on-board annunciator at a given frequency. If no
duration argument is supplied the tone will continue until the noTone() func‐
tion is called. Only one frequency at a time can be used. Note that using the
tone() function will interfere with controlling the level of the red LED.

void esp.tone(unsigned int freq)
void esp.tone(unsigned int freq, unsigned long duration)

noTone()

Terminates the output of the square wave signal to the annunciator.

void esp.noTone()

Library Components | 209

USB libraries

The core USB libraries allow an Arduino Leonardo or Micro to appear as a mouse
and/or keyboard device to a host computer.

If the Mouse or Keyboard library is constantly running, it will be
difficult to program the Arduino. Functions such as Mouse.move()
and Keyboard.print() should only be called when the host is
ready to handle them. One way to deal with this is to use a control
system or a physical switch to control when the Arduino will emit
mouse or keyboard messages.

Mouse

The mouse functions allow a Leonardo or Micro to control cursor movement on a
host computer. The reported cursor position is always relative to the cursor’s previous
location; it is not absolute.

Mouse.begin()
Mouse.click()
Mouse.end()
Mouse.move()
Mouse.press()
Mouse.release()
Mouse.isPressed()

Keyboard

The keyboard functions allow a Leonardo or Micro to send keystrokes to an attached
host computer. While not every possible ASCII character, particularly the nonprint‐
ing ones, can be sent with the Keyboard library, the library does support the use of
modifier keys.

Keyboard.begin()
Keyboard.end()
Keyboard.press()
Keyboard.print()
Keyboard.println()
Keyboard.release()
Keyboard.releaseAll()
Keyboard.write()

Modifier keys change the behavior of another key when pressed simultaneously.
Table 7-1 lists the modifier keys supported by the Leonardo.

Table 7-1. USB keyboard modifier keys

Key Hex value Decimal value Key Hex value Decimal value

KEY_LEFT_CTRL 0x80 128 KEY_PAGE_UP 0xD3 211

210 | Chapter 7: Arduino Libraries

Key Hex value Decimal value Key Hex value Decimal value

KEY_LEFT_SHIFT 0x81 129 KEY_PAGE_DOWN 0xD6 214

KEY_LEFT_ALT 0x82 130 KEY_HOME 0xD2 210

KEY_LEFT_GUI 0x83 131 KEY_END 0xD5 213

KEY_RIGHT_CTRL 0x84 132 KEY_CAPS_LOCK 0xC1 193

KEY_RIGHT_SHIFT 0x85 133 KEY_F1 0xC2 194

KEY_RIGHT_ALT 0x86 134 KEY_F2 0xC3 195

KEY_RIGHT_GUI 0x87 135 KEY_F3 0xC4 196

KEY_UP_ARROW 0xDA 218 KEY_F4 0xC5 197

KEY_DOWN_ARROW 0xD9 217 KEY_F5 0xC6 198

KEY_LEFT_ARROW 0xD8 216 KEY_F6 0xC7 199

KEY_RIGHT_ARROW 0xD7 215 KEY_F7 0xC8 200

KEY_BACKSPACE 0xB2 178 KEY_F8 0xC9 201

KEY_TAB 0xB3 179 KEY_F9 0xCA 202

KEY_RETURN 0xB0 176 KEY_F10 0xCB 203

KEY_ESC 0xB1 177 KEY_F11 0xCC 204

KEY_INSERT 0xD1 209 KEY_F12 0xCD 205

Contributed Libraries
There are many contributed libraries available for the Arduino boards. Some have
been created by individuals, others by firms that sell and support Arduino hardware
and accessories. In addition, some vendors also provide libraries or support software
for their products, and a search of the appropriate website or examination of an eBay
listing will often uncover this code.

Tables 7-2 through 7-8 list a selection of these libraries, broken down by category.
The descriptions are necessarily brief; there is just no way they could all be described
sufficiently to do them justice and still have this be a compact-format book. For links
for further details, see http://www.arduino.cc/en/Reference/Libraries.

Table 7-2. Communication (networking and protocols)

Library Description
Messenger For processing text-based messages from the computer

NewSoftSerial An improved version of the SoftwareSerial library

OneWire For controlling devices (from Dallas Semiconductor) that use the One Wire protocol

PS2Keyboard For reading characters from a PS2 keyboard

Simple Message
System

For sending messages between the Arduino and the computer

Contributed Libraries | 211

http://www.arduino.cc/en/Reference/Libraries

Library Description
SSerial2Mobile For sending text messages or emails using a cell phone (via AT commands over

SoftwareSerial)

Webduino An extensible web server library (for use with the Arduino Ethernet shield)

X10 For sending X10 signals over AC power lines

XBee For communicating with XBees in API mode

SerialControl For remote control of other Arduinos over a serial connection

Table 7-3. Sensing

Library Description
Capacitive Sensing For turning two or more pins into capacitive sensors

Debounce For reading noisy digital inputs (e.g., from buttons)

Table 7-4. Displays and LEDs

Library Description
GFX Base class with standard graphics routines (by Adafruit Industries)

GLCD Graphics routines for LCDs based on the KS0108 or equivalent chipset

LedControl For controlling LED matrixes or 7-segment displays with a MAX7221 or MAX7219

LedControl An alternative to the Matrix library for driving multiple LEDs with Maxim chips

LedDisplay For controlling an HCMS-29xx scrolling LED display

Matrix Basic LED matrix display manipulation library

PCD8544 For the LCD controller on Nokia 55100-like displays (by Adafruit Industries)

Sprite Basic image sprite manipulation library for use in animations with an LED matrix

ST7735 For the LCD controller on a 1.8”, 128 × 160-pixel TFT screen (by Adafruit Industries)

Table 7-5. Audio and waveforms

Library Description
FFT For frequency analysis of audio or other analog signals

Tone For generating audio frequency square waves in the background on any microcontroller pin

Table 7-6. Motors and PWM

Library Description
TLC5940 For controlling the TLC5940 IC, a 16-channel, 12-bit PWM unit

Table 7-7. Timing

Library Description
DateTime A library for keeping track of the current date and time in software

Metro Helps you time actions at regular intervals

212 | Chapter 7: Arduino Libraries

Library Description
MsTimer2 Uses the timer 2 interrupt to trigger an action every N milliseconds

Table 7-8. Utilities

Library Description
PString A lightweight class for printing to buffers

Streaming A library that simplifies print statements

Contributed Libraries | 213

CHAPTER 8

Shields

An Arduino shield is an add-on circuit board designed to work with the connectors
on a standard Arduino board like an Uno, Duemilanove, Leonardo, or Mega. A shield
has pins that interface with the Arduino so that things like DC power, digital I/O,
analog I/O, and so on are available to the shield. This chapter covers some of the
Arduino-compatible shields that are available, and Chapter 10 describes the process
of creating a custom shield.

Shields are available for a variety of applications, ranging from minimal boards for
prototyping to motor controllers, Ethernet interfaces, SD flash memory, and displays.
Many shields have the ability to be stacked, allowing a base Arduino board to inter‐
face with two or more shields at once.

This chapter references many different vendors and manufacturers,
but it is not intended to be a specific endorsement of any of them.
The shields shown here are representative of what is available, and
for any given shield type you can likely find different vendors sell‐
ing the same, or an equivalent, product. Shop around.

This chapter is by no means a complete list of all the various types of shields that are
available. There is a quiet cottage industry that specializes in creating new variations
on existing shields and new shields that have never been seen before. The selection of
shields described here is broadly representative of what is available, and links are pro‐
vided if you want to learn more, or perhaps buy a shield or two. In some cases I’ve
included more detailed information to supplement what the vendor provides (or
doesn’t, in some cases), but that doesn’t mean I’m especially fond of any particular
shield. I’m just fond of documentation, so I can get the information I need to move
on to what I want to do. You may also find yourself in a position of having a really
useful-looking shield for which there’s little or no documentation, or where what

215

there is happens to be in Chinese (or some other language you might not know).
Hopefully this chapter will help to fill some of the gaps, or at least give you some ideas
on where to look.

Some of the shields shown here are no longer available from the
original vendor, but can be purchased from other sources. Most
vendors provide active links to documentation, so if you find a
look-alike shield (the hardware is open source, after all) you can
often still get the technical information you need.

One thing to remember when looking for a shield is that some people seem to be
unclear on what a shield is. It is not a module with a row of pins down one side (these
are discussed in Chapter 9). A shield is a board that meets the physical characteristics
described in “Physical Characteristics of Shields” on page 217. Anything else can be
considered to be a module, and modules may or may not plug into an Arduino
directly (they usually don’t simply plug in, but need wiring of some sort to route
power and signals to the appropriate pins on an Arduino board).

Electrical Characteristics of Shields
If you compare the pinout diagrams of the various shields in this chapter, you may
notice a pattern emerging: shields that employ a two-wire interface (the TWI or I2C
interface) always use pins A4 and A5 of the Arduino. On a baseline-type board
(Diecimila, Duemilanove, and Uno R2 or SMD) these will be found on the analog I/O
connector, and on the newer extended layout boards (Uno R3, Ethernet, Leonardo)
the signals also appear on the extended pin header (in the upper corner by the USB or
RJ45 connector). A shield that uses I2C can utilize either set of pins, and you can
assume that A4 and A5 will not be available for other uses without some clever pro‐
gramming.

By the same token, shields that use the SPI interface will typically use the D10, D11,
D12, and D13 pins (SS, MOSI, MISO, and SCK, respectively). The use of D10 as
the select is optional, and some shields use a different digital pin for that purpose.
Remember that with SPI each “slave” device must be explicitly selected with a select
signal before it will accept incoming data from the master device. Shields with more
than one attached SPI device may also use more than one digital I/O pin as a select
signal.

Shields that use the UART (or USART, as Atmel calls it) will typically use pins D0 and
D1 (Rx and Tx, respectively, or RxD0 and TxD0 on a Mega-type Arduino). Some
Bluetooth shields use the UART interface to communicate with a Bluetooth module,
as do RS-232 and RS-485 interface shields.

216 | Chapter 8: Shields

Then there are shields that use almost every single Arduino pin. The DIY Multi-
function shield described in “Miscellaneous Shields” on page 268 is like this, but it
does have pins to connect to the signals that are not specifically used on the board
(three digital and one analog, in this case). In general, you can safely assume that I/O
extension shields will use most or all of the available Arduino pins, and shields that
support something like a display will generally not have any connection points for
accessing unused signals. For this reason these types of shields are usually nonstack‐
ing, and should be placed at the top of a stack of shields on an Arduino.

Most shields do not have extremely complicated circuits but are relatively simple
things based on existing ICs or components of some type. Like the Arduino boards,
they are essentially carriers for various types of ICs, relays, and so on. The electrical
characteristics of a shield are those of the chip or components it is designed around.
This simplicity is what helps to keep the cost of a shield low, and the capabilities of
the ICs or components it uses are what make a shield useful.

Lastly, some shields may buffer the signals to and from an Arduino, using active cir‐
cuits or devices such as optical isolators or relays, but most of them simply serve as
places to mount connectors or components, such as the extension shields shown in
“I/O Extension Shields” on page 222 that utilize multipin connectors. The connec‐
tions, be they sockets or pin headers, are just extensions of the Arduino’s own pins,
and there is nothing to protect against connecting 12 volts to a 5V (or even 3.3V) dig‐
ital input and converting the AVR microcontroller on an Arduino into charcoal.
Always observe the voltage and current limitations of the AVR microcontroller.

Physical Characteristics of Shields
Physically a typical shield is as wide as a baseline Arduino board (see Chapter 4 for
dimensions), and it can be the same length as an Arduino, or it might be longer or
shorter. It is possible to make a shield that is wider than a baseline Arduino board, as
the only real constraint is that the pins on the shield line up with the pin sockets on
the underlying Arduino board (see Chapter 4 for locations and dimensions). Instal‐
ling a shield is just a matter of connecting the shield as shown in Figure 8-1.

Newer Arduino boards that use the R3 pin layout will have two pin sockets at the end
of each row that are not used by the shield. This is unimportant, as these extra sockets
are either duplicates of existing pins or not connected. In the case of the Mega boards
the shield will mount as shown in Figure 4-20 in Chapter 4, with most of the pins on
the Mega board not connected to the shield, and some others made inaccessible by
the overlying shield PCB. All of the baseline pins and signals are available to the
shield.

Physical Characteristics of Shields | 217

Figure 8-1. Shield mounting on host Arduino board

Always check the clearance between components on the base
Arduino board and the shield PCB. In some cases a USB connector
or an RJ45 jack can interfere with the shield and potentially cause a
short circuit.

Sometimes you might have a problem with parts on the Arduino board colliding with
the circuit traces or pads on the underside of a shield board. A small piece of electri‐
cal tape or even some heavy card stock paper can be used as an insulating shim, but
the better way to deal with this is to use spacers or standoffs to physically separate the
two boards. These can be short metal or nylon tubes (7/16 to 1/2 inch, or about 11 to
12 mm in length) with a center hole sufficient for a machine screw (which would typ‐
ically be a 2-56 SAE type, or a suitable metric size). The difference between a standoff
and a spacer is simple: standoffs have internal threads, spacers do not. A spacer or
standoff serves to raise the upper board enough to prevent shorts, as shown in
Figure 9-3 in Chapter 9. It also results in firm mechanical coupling between two or
more boards.

218 | Chapter 8: Shields

When stacking two or more shields on an Arduino you can elect to use long machine
screws with spacers, or you might want to consider a type of standoff that has a threa‐
ded screw-like projection at one end and a threaded hole at the other end. Also
known as “jack screws,” these are common in PCs, and if you’ve ever assembled your
own computer from scratch you’ve already encountered them. Figure 8-2 shows some
examples of the types of spacers and standoffs that are available. These parts can be
made from nylon, aluminum, stainless steel, brass, and plastic.

Figure 8-2. Spacers and standoff types

Spacers can also be made from strips cut from a prototyping PCB and slipped over
the pins of the upper board. This technique won’t do much for physically coupling
the boards, but it will add enough space to prevent collisions.

You can purchase spacers and standoffs from various sources, including Amazon,
McMaster-Carr, Mouser, and Digi-Key. If you happen to have a fabrication hardware
supplier in your city, you can also purchase these and other useful things (like 1-72 or
2-56 machine screws and nuts) locally.

Stacking Shields
Sometimes it doesn’t make sense to use extended-lead pin sockets to make a shield fit
into a stack. If, for example, a shield has a large number of connectors that require
vertical access, then there simply may not be enough room for another shield to
mount on top of it. But you will sometimes encounter a shield that could stack but
doesn’t have the correct connector types.

Stacking Shields | 219

http://amazon.com
http://www.mcmaster.com
http://www.mouser.com
http://www.digikey.com

One of two techniques is used to allow a shield to be stacked on another shield:
extended socket pins or offset pins and sockets. The extended pin approach allows
the stacked shield to stay in vertical alignment. The offset pin and socket design
results in stacked shields that are shifted over by the amount of offset between rows of
pins and sockets. If the shields all shift the same way, the result can look like stairs,
and the holes in the boards for mounting screws will not line up correctly.

The use of extended pins requires pin sockets with long pins for mounting on a PCB.
The protruding pins on the back, or solder, side of the shield board will plug into the
pin sockets on an Arduino, and another shield can be mounted on the top of the
stackable shield. The offset technique uses separate pin strips to connect the shield to
the Arduino and separate socket strips to accept another shield. These are mounted
side-by-side, usually as closely as possible to minimize the offset between shields.

Common Arduino Shields
This section reviews some of the readily available shields. This is by no means a com‐
prehensive list, as new shields appear continually, and older shields are discontinued
or may otherwise no longer be available. In this age of rapid prototyping, fast-
turnaround production, and low-cost manufacturing, a shield may appear and then
vanish a few months later. To stay abreast of what is available, you might want to
check out the many Chinese vendors on eBay, and the listings on Amazon.com, Ada‐
fruit, SparkFun, SainSmart, and other websites. See Appendix C for known sources of
Arduino shields. Table 8-2 at the end of this chapter lists the vendors and manufac‐
turers covered here.

The following list provides a quick reference of the shields discussed here, broken
down by category:

• Input/output
— I/O extension shields
— I/O expansion shields
— Relay shields
— Signal routing shields

• Memory
— SD and microSD card flash memory

• Communication
— Serial I/O
— MIDI
— Ethernet

220 | Chapter 8: Shields

— Bluetooth
— USB
— ZigBee
— CAN

• Prototyping
• Motion control

— DC and stepper motor control
— PWM and servo control

• Displays
— LED arrays
— 7-Segment LED displays
— LCD displays
— Color TFT displays

• Instrumentation shields
— Data logging
— Logic analyzer
— 24-bit ADC
— 12-bit DAC

• Adapter shields
— Nano adapters
— Terminal block adapters

• Miscellaneous Shields
— Terminal block/prototyping
— Multifunction shield

In this section we will also take a quick look at some uncommon shields designed for
specific applications: a CNC engraver control interface, a RepRap control interface,
and an FPGA game controller.

Input/Output
Input/output (I/O) shields are available that bring out the various I/O pins of the
Arduino to connectors that are more robust than the pins on the Arduino circuit
board (or, in the case of the Arduino Nano, the pins below the board are connected to
terminal block–type connectors on a carrier for the Nano PCB).

Common Arduino Shields | 221

I/O shields can be broadly classified as either extension shields or expansion shields,
although the term “expansion shield” is often applied to both types. An extension
shield brings out the I/O pins from an Arduino without altering the signals—it just
uses different types of connectors. A true expansion shield, on the other hand,
employs active electronics to increase the number of discrete digital I/O channels.
These types of shields use either SPI or I2C to communicate with the host Arduino
board.

I/O Extension Shields
This category of shield is used to route the input/output signals from the AVR chip to
connectors that are more robust than the pin sockets used on an Arduino board.
Some I/O extension shields may offer active buffering of some type, but most simply
bring out the signals from the Arduino board. These are sometimes referred to as
expansion shields, but that is not really correct. They simply transfer the existing sig‐
nals from one connector on the Arduino to another on the shield.

SainSmart Sensor Shield
This is a stackable shield (note the offset pin and socket strips in Figure 8-3). The
AVR I/O is brought out as latching multipin sockets, pin header blocks, and posi‐
tions for two 10-pin headers suitable for use with ribbon cable IDC-type connec‐
tors. A reset switch is also provided. This shield can be used with any Arduino
board with the baseline pin configuration, including the Mega boards.

Figure 8-3. SainSmart I/O expansion (sensor interface) shield

Figure 8-4 explains the large modular connectors along the edges of the shield
PCB. These are multipin connectors, sometimes referred to as “buckled” connec‐
tors, that mate with corresponding three- and four-pin plugs. The multiconduc‐
tor cables are common and can be obtained from multiple vendors. One source
(other than SainSmart) is TrossenRobotics.

222 | Chapter 8: Shields

http://bit.ly/sainsmart-sensor-shield
http://bit.ly/trossen-robotgeek

Figure 8-4. SainSmart I/O expansion shield pin and connector layout

TinkerKit Sensor Shield
This stackable shield (Figure 8-5) uses long-lead pin sockets, 12 three-pin con‐
nectors, and 2 four-pin connectors. A reset switch is located between the four-pin
connectors.

Figure 8-5. TinkerKit I/O expansion shield

Common Arduino Shields | 223

http://bit.ly/tinkerkit-sensor

The TinkerKit sensor shield was originally designed to work with the various
sensor and motor modules produced by TinkerKit, but it can be used like any
other I/O extension shield. Figure 8-6 shows the layout of the connectors on the
PCB. These employ a three-wire scheme like that used with the SainSmart board
shown previously. For more about the TinkerKit modules designed for use with
this shield, refer to Chapter 9.

Figure 8-6. TinkerKit I/O expansion shield connectors

Although the status of TinkerKit is currently in limbo, the products are still avail‐
able from Mouser and other sources. The software libraries are available on Git‐
Hub.

TinkerKit Mega Sensor Shield
The TinkerKit Mega Sensor Shield (Figure 8-7) is designed to bring out the addi‐
tional I/O pins of an Arduino Mega, Mega2650, or Mega ADK board. It utilizes
long-lead pin sockets for stackability, and a reset switch is provided on the PCB.
It is essentially a larger version of the TinkerKit shield described previously.

Grove Base Shield
A module and shield system gaining popularity among Arduino users are the
Grove components sold by Seeed Studio. These are a large number of modules to
select from, and a base board is available that features an integrated Arduino-
compatible ATMEGA328p MCU. The board, designed by Linaro.com
(96Boards.org) is shown in Figure 8-8.

224 | Chapter 8: Shields

http://www.mouser.com
https://github.com/TinkerKit
https://github.com/TinkerKit
http://bit.ly/tinkerkitmega-sensor

Figure 8-7. TinkerKit I/O expansion shield for Mega-type Arduino boards

Figure 8-8. Grove Base Shield

Seeed Studio also sold a passive (that is, no onboard MCU) expansion shield for
the Grove module system, but while you may still be able to find some, they have
been discontinued. The Passive Seeed Studio Grove Base Shield is shown in
Figure 8-9.

Figure 8-9. Seeed Studio Passive Grove Base Shield

Common Arduino Shields | 225

For more information about the Grove series of modules and compatible inter‐
face shields, visit the Seeed Studio wiki.

CuteDigi Sensor Expansion Shield
Technically an I/O extension shield rather than a true expansion shield, this
shield from CuteDigi (Figure 8-10) uses pin headers instead of connectors to
bring out the signals from an Arduino Mega-type board. It is not stackable, but
given the vertical arrangement of the pins on the PCB it wouldn’t make sense to
stack something on top of this board. The labels on the PCB are clear and the
functions obvious.

Figure 8-10. CuteDigi Mega extension shield with SD flash and bluetooth connec‐
tions

This shield is interesting in that it also includes a header with right-angle pins for
connecting to an SD-type flash card carrier, and there is a pin header for use with
a Bluetooth module as well. The connectors employ the same S-V-G (signal, V+,
ground) scheme seen on other I/O extension shields.

I/O Expansion Shields
Unlike the I/O extension shields listed in the previous section, an I/O expansion
shield provides additional I/O capabilities, usually in the form of discrete digital I/O
(although some shields do have analog capabilities). Because these shields have active
circuitry in addition to various connectors, they are more expensive than extender
shields. Their big advantage lies in providing multiple I/O channels using only an I2C
or SPI connection to the underlying Arduino board. This leaves the remaining pins
on the Arduino available for other applications.

Macetech Centipede Shield
The Macetech Centipede Shield (Figure 8-11) uses the Arduino I2C interface to
provide 64 general-purpose discrete digital I/O pins. The pins are arranged as 4
groups of 16 pins, with each group controlled by an I2C I/O expander chip.

226 | Chapter 8: Shields

http://bit.ly/seeed-grove
http://bit.ly/cutedigi
http://bit.ly/macetech-centipede

Figure 8-11. Macetech Centipede I/O expansion shield

Figure 8-12 shows the layout of the I/O pins used on the Macetech shield. Each
of the MUX (multiplexer) ICs controls 16 pins, or one block of I/O pins. Notice
how the pin numbering is arranged on each block, with the numbering “wrap‐
ping” around the block.

LinkSprite I/O Expander Shield
This is a stackable shield that uses an MCP23017 I2C I/O expander chip to pro‐
vide an additional 16 discrete digital I/O pins (Figure 8-13). Note that this shield
is designed for use with R3-style Arduino boards and uses the last two pins (9
and 10, SDA and SCL) on the extended connector found on Uno R3 and Leo‐
nardo boards.

Figure 8-12. Macetech Centipede I/O pin layout

Common Arduino Shields | 227

http://bit.ly/linksprite

The expanded I/O pins are arranged as two sets of eight discrete channels, desig‐
nated GPIOA and GPIOB. As shown in Figure 8-14, these are positioned next to
the digital I/O pin socket strips. This might make it awkward to use these pins if
another shield is stacked on top of this one, so be aware of little “gotchas” like
that. But if it’s the only shield, or the top shield in a stack, then it shouldn’t be a
problem.

Numato Digital and Analog IO Expander Shield
The digital and analog expander shield from Numato (Figure 8-15) provides 28
additional discrete digital I/O channels and 16 analog inputs using two
MCP23017 I2C digital I/O chips and an NXP 74HC4067 analog multiplexer IC
for analog signals.

Figure 8-13. CuteDigi 16-channel I/O expander shield

Figure 8-14. CuteDigi 16-channel I/O expander shield pin layout

228 | Chapter 8: Shields

http://bit.ly/numato-digital-analog

As shown in Figure 8-16, the primary interface to an Arduino is via the I2C
interface on pins A4 and A5. The interrupt pins on the MCP23017 chips are also
brought out on the digital I/O pin blocks. The six pin headers in the middle of
the board are used with jumper blocks to select the I2C addresses of the two
MCP23017 chips.

Figure 8-15. Numato digital and analog I/O expansion shield

Figure 8-16. Numato I/O expansion shield pin layout

Common Arduino Shields | 229

Relay Shields
Relay shields are available with one or more relays. The relays used in these shields
may be 5- or 10-ampere types like the ones shown on the shields listed here, as well as
reed relays in DIP packages.

When evaluating relay boards take care to note what the vendor
gives as maximum ratings for the shield. The modular relays used
on a shield may have contacts rated for 10A at 120V AC, but the
connectors and traces on the shield PCB may not be rated for that
level of current. Also note that not all vendors will derate the cur‐
rent capacity to account for PCB or connector constraints. It is pru‐
dent to take a moment and look up the relay specification from the
part number shown in the vendor’s photos or schematics. You
might want to think twice about a shield where the part numbers
have been removed or otherwise obliterated (and that goes for any
shield, not just relay shields).

DFRobot Relay Shield
This shield shows how the form factor of a shield can be “tweaked” to accommo‐
date larger parts. In the case of the DFRobot relay shield (Figure 8-17), the four
relays are mounted in an expanded part of the shield PCB. The relay contacts are
rated at 3A nominal at 24V DC or 120V AC, with 5A maximum current capacity.
This is a stackable shield, although the vertical I/O pins may be difficult to use
with a shield on top of this board.

Figure 8-17. DFRobot relay shield

The board uses a set of jumpers to route the digital signals for the relay drivers
and an XBee module’s pins, shown in Figure 8-18. All of the Arduino’s digital and
analog pins are brought out in blocks of pin headers.

230 | Chapter 8: Shields

http://bit.ly/dfrobot-relay

Figure 8-18. DFRobot relay shield board layout

Numato Relay Shield
This shield (Figure 8-19) uses two low-power modular relays with contacts rated
for 1A at 120V AC and 2A at 24V DC. The Numato shield uses the Arduino’s
digital pins 2 and 3. Miniature terminal blocks bring out the relay terminals. This
is a stackable shield.

Figure 8-19. Numato relay shield

Common Arduino Shields | 231

http://bit.ly/numato-relay

Seeed Studio Relay Shield
The Seeed Studio relay shield (Figure 8-20) uses four relays with contacts rated at
10A at 120V AC. It uses the Arduino’s digital output pins 4 through 7, one per
relay. Each relay has an LED to indicate activity. This is a stackable shield.

Figure 8-20. Seeed Studio relay shield

Signal Routing Shields
There aren’t a lot of signal routing shields available. What shields are available typi‐
cally come in one of two styles: passive routing or active MUX (multiplexer) routing.

Adafruit Patch Shield
The passive patch shield available from Adafruit, shown in Figure 8-21, allows
you to route signals between four RJ45-type connectors (also known as 8P8C
connectors) and the underlying Arduino board using short patch wires inserted
into blocks of pin sockets.

This is a kit, not an assembled shield. The photo shows what
the assembled shield should look like.

Figure 8-21. Adafruit patch shield

232 | Chapter 8: Shields

http://bit.ly/seeedstudio-relay
http://www.adafruit.com/products/256

The main idea behind the patch shield is to route specific signals to and from an
Arduino through conventional Ethernet cables to remote connection points, as
shown in Figure 8-22. The kit includes four satellite PCBs with 8P8C (RJ45) jacks
and pins to connect to a solderless breadboard, a sensor module, or another
Arduino. There are no active components on this shield or the satellite boards; it
just routes signals.

Figure 8-22. Adafruit patch shield layout and usage

Mayhew Labs Go-Between Shield
The Go-Between shield (Figure 8-23) employs a matrix of solder jumper loca‐
tions to route signals from the base Arduino or a lower shield to an upper shield.
It could be handy if you want to stack two shields that use the same pins for I/O
functions. If the pins of the upper shield could be moved to different pins on the
lower shield without any shield hacking, that would solve the problem. A minor
change to the software would make it all work.

Figure 8-23. Mayhew Labs Go-Between shield

Common Arduino Shields | 233

http://bit.ly/mayhew-gobtw

Mayhew Labs Mux Shield II
The Mux Shield II (Figure 8-24) is an active shield that supports up to 48 inputs
or outputs using three Texas Instruments CD74HC4067 multiplexer chips and
three output shift register circuits. The board uses four of the Arduino digital
pins to control the MUX chips and shift registers. The default digital pins are 2,
4, 6, and 7. Pins A0, A1, and A2 of the Arduino are used as inputs from the MUX
chips.

The 3 × 16 array of pads (Figure 8-25) can be used with pin headers or pin sock‐
ets. Each channel is bidirectional, routing signals to a common output or from a
common input. Each MUX chip is similar to an array of switches, each with a
slight resistance while closed, and a very high impedance when open.

Figure 8-24. Mayhew Labs active signal multiplexer shield (Mux II)

Figure 8-25. Mayhew Labs signal multiplexer shield pins

234 | Chapter 8: Shields

http://bit.ly/mayhew-mux

Mayhew Labs Mux Shield
Similar to the shield described previously, this active multiplexer shield provides
48 programmable I/O lines using three TI CD75HC4067 MUX chips (see
Figure 8-26). It also provides two large blocks of pin socket headers to access the
signals. The Arduino’s digital pins 2 through 5 are used to address the MUX
chips, and pins A0, A1, and A2 are the analog inputs from the MUX chips. This
is a stackable shield.

Memory
Without a doubt, the SD and microSD flash memory formats are the most popular
way to add some file-like memory to an Arduino. External flash memory is accessed
through the SPI interface, and an SD or microSD socket is often found as an added
feature on shields that are using the SPI for the primary function (Ethernet, WiFi,
USB host, etc.). Removable flash memory is a convenient way to log data from a
standalone Arduino, and then later load the data into your PC and do whatever it is
you want to do with it.

These descriptions don’t have accompanying diagrams, mainly because the SD or
microSD interface to an Arduino is just an SPI interface. One shield has the select
signal on an unusual pin. That might create a conflict with existing software.

Figure 8-26. Mayhew Labs active signal multiplexer shield (Mux)

Common Arduino Shields | 235

http://mayhewlabs.com/arduino-mux-shield

Seeed Studio SD Card Shield
Designed for full-size SD flash memory cards, this shield (shown in Figure 8-27)
can easily be used with microSD cards with an adapter. Arduino digital pins D4,
D11, D12, and D13 are used for the SPI interface. The shield also brings out the
ICSP, I2C, and UART pins to connectors on the PCB. This is a stackable shield.

Figure 8-27. Seeed Studio SD memory card shield

SHD-SD SD Card Shield
This SD shield, pictured in Figure 8-28, features a small prototyping area for
adding your own circuitry. It can accept microSD cards with an adapter. The
shield uses the D10, D11, D12, and D13 pins on an Arduino for the SPI interface
to the SD memory. It also uses the 3.3V DC from the Arduino. The shield is
shorter than a conventional shield, with a baseline Arduino pin arrangement. It is
a stackable shield.

Figure 8-28. Short SD card shield

236 | Chapter 8: Shields

http://bit.ly/seeedstudio-sd-card
http://bit.ly/shd-sd-sdcard

SparkFun microSD Shield
The SparkFun microSD shield (Figure 8-29) accepts only microSD cards. It
includes a large 12 by 13 prototyping area. It does not come with pin sockets or
headers, but these can be ordered separately. It uses the D10, D11, D12, and D14
pins on an Arduino.

Figure 8-29. SparkFun microSD shield

Communication
Although an Arduino might have a USB interface (most do) with the ability to act as
a serial port from the host system’s perspective, or an Ethernet jack as found with the
Arduino Ethernet, a basic Arduino like an Uno or Leonardo doesn’t really have much
in the way of plug-and-play data communications interfaces. It is possible to attach
level-shifting chips and use the built-in UART or write a so-called “bit-banger” to
send serial data, but it is sometimes more convenient to use something with an SPI
interface to the Arduino and let it do the serial sending and receiving. For other
forms of data communication the necessary external hardware can get rather
involved, so it’s definitely easier to use a ready-made shield.

Serial I/O and MIDI
Although even Ethernet can be considered a form of serial data communication,
serial I/O here refers to the old standards of RS-232 and RS-485. While these are old,
they are ubiquitous. Older PCs have RS-232 connectors (and quite a few newer mod‐
els also have at least one), and RS-485 is common in instrumentation, testing, and
distributed measurement systems.

CuteDigi RS232 Shield
This RS-232 shield (Figure 8-30) employs a MAX232 IC to perform the signal-
level shifting necessary to send and receive RS-232–compatible signals. A bank of

Common Arduino Shields | 237

http://bit.ly/sparkfun-microsd
http://bit.ly/cutedigi-rs232

jumpers is used to configure the serial interface, and any two digital pins from D0
to D7 on an Arduino may be used for the serial interface. With the supplied pin
sockets installed it becomes a stackable shield.

Figure 8-30. CuteDigi RS232 shield

CuteDigi RS-485 Shield
CuteDigi’s RS485 shield (Figure 8-31) uses a MAX481CSA chip to provide the
RS485 electrical interface using the Arduino’s Rx and Tx ports (D2 and D3,
respectively). A mounting position is provided in the shield PCB for an optional
DB-9 connector. This is a stackable shield.

Figure 8-31. CuteDigi RS485 shield

SparkFun MIDI Shield
MIDI is a venerable serial protocol that has been around for over 30 years. It is
used to control musical synthesizers, sequencers, drum machines, and mixers,

238 | Chapter 8: Shields

http://bit.ly/cutedigi-rs485
http://bit.ly/sparkfun-midi

among other things. The SparkFun MIDI shield (Figure 8-32) uses the Arduino’s
USART pins to send and receive MIDI event messages.

Figure 8-32. SparkFun MIDI shield

The MIDI shield uses the D0 and D1 pins (Rx and Tx, respectively) for MIDI
serial I/O. It also has pushbuttons on D2, D3, and D4; LEDs connected to D6 and
D7; and potentiometers connected to A0 and A1.

Ethernet
Ethernet shields are popular, and the Arduino IDE comes with a fairly comprehen‐
sive Ethernet library suite (see Chapter 7 for details). Be aware that the communica‐
tion between the AVR MCU on the Arduino board and the Ethernet controller on the
shield uses the SPI interface. The AVR does not have DMA (direct memory access)
capability, and it has no external memory to directly access in any case.

With Ethernet shields that use SPI as the interface with an Arduino there is an inher‐
ent limit on how fast data can move between the AVR MCU and the Ethernet I/O
chip, and consequently on how fast data can move over the Ethernet connection. It is
simply not possible to get 100 Mb/s (100Base-T) data rates with a processor running
at 20 MHz using an SPI interface, and 10 Mb/s (10BASE-T) is an unlikely stretch. 5
Mb/s is a more realistic expectation. The data is still sent out over the physical layer
(the actual Ethernet) at 10 Mb/s, just in byte-sized dribbles rather than as a continu‐
ous stream. It all depends on how quickly the software running on the AVR can
assemble outbound data and send it to the Ethernet chip. So, while it is possible to
create a web server that can fit into a tiny enclosure like an old mint tin, it isn’t going
to be very fast, and it won’t handle a lot of connections at the same time.

Where the Ethernet interface really shines is when it is used as the end node of a
remote sensing or control system. You can attach it to the Internet, implement some
password protection, and use it to retrieve data from some remote location. It can be

Common Arduino Shields | 239

used to report data back to a central controller in an industrial setting such as a fac‐
tory, or it can be used to sense temperature, humidity, and other parameters for a dis‐
tributed HVAC (heating, ventilation, and air conditioning) system controller like the
one described in Chapter 12.

Vetco Ethernet Shield with microSD Card Reader
This Ethernet shield from Vetco (Figure 8-33) also includes a microSD card car‐
rier and a reset button. The Arduino’s digital pins D10, D11, D12, and D13 are
used for the SPI interface used by the WIZnet W5100 Ethernet chip and the
microSD card socket. It is a stackable shield.

Figure 8-33. Vetco Ethernet shield

Arduino Ethernet Shield R3 with microSD Connector
The official Ethernet shield from Arduino comes with a microSD card reader, a
reset button, and all the necessary electronics to implement the Ethernet inter‐
face (see Figure 8-34). It uses digital pins D10, D11, D12, and D13 for the SPI
interface. This is a stackable shield.

Figure 8-34. Arduino Ethernet shield

240 | Chapter 8: Shields

http://bit.ly/vetco-ethernet
http://bit.ly/ethernet-r3

Bluetooth
Bluetooth is a low-power, short-range wireless communication technology originally
intended to replace the cables strung between a computer and external devices such
as printers, keyboards, mice, and so on. While it is still used for these applications, it
has found use in many other types of communications applications. There are a num‐
ber of Bluetooth shields available.

Bluetooth Shield
This shield comes assembled with a Bluetooth module already mounted on the
PCB. Note that it is a stackable shield that is shorter than a typical shield. The
antenna is the gold pattern emerging from the end of the Bluetooth module (see
Figure 8-35). It uses the Rx and Tx pins (D2 and D3, respectively).

Figure 8-35. DealeXtreme Bluetooth shield

Seeed Studio Bluetooth Shield
This compact, stackable Bluetooth shield (Figure 8-36) uses an Arduino’s Rx and
Tx pins. It also brings out the pins for analog and digital signals to interface with
sensor modules.

ITEAD Bluetooth Wireless BT Module Shield Kit
This shield (Figure 8-37) uses a standard Bluetooth module, and comes with a
prototyping area on the PCB. It is a “short” shield, in that it doesn’t cover the
whole length of an Arduino board. It is stackable.

DFRobot Gravity:IO Expansion Shield
This multifunction board from DFRobot (Figure 8-38) combines I/O extension
capabilities with a set of pin sockets for a Bluetooth or ZigBee wireless module. It
is not a stackable board.

Common Arduino Shields | 241

http://bit.ly/dx-bluetooth
http://bit.ly/seeed-bluetooth
http://bit.ly/itead-bluetooth
http://bit.ly/dfrobot-gravityio

Figure 8-36. Compact Bluetooth shield from Seeed Studio

Figure 8-37. ITEAD Bluetooth shield with prototyping area

Figure 8-38. DFRobot multifunction shield with Bluetooth

242 | Chapter 8: Shields

USB
One thing an 8-bit Arduino can’t do is act as a USB host to other USB devices. A USB
host shield allows you connect USB devices such as keyboards, printers, some test
instruments, and various toys to an Arduino.

ITEAD USB Host Shield
This is a stackable shield with USB host functionality. It also provides pins for the
Arduino digital and analog signals, and two 10-pin positions on the PCB for
either connectors or pin headers (see Figure 8-39). It is based on a MAX3421E
chip with an SPI interface to an Arduino.

Figure 8-39. USB host shield with I/O connections

Circuits@Home USB Host Shield
This shield (Figure 8-40) supports USB 2.0 full-speed operation and uses an SPI
interface to an Arduino. The digital and analog signals from the Arduino are
available on the shield’s PCB, and with the right pin sockets it could be stackable.
It employs a MAX3421E chip with an SPI interface to an Arduino using pins
D10, D11, D12, and D13. It does not come with pin sockets or headers.

Arduino USB Host Shield
Like other USB host shields, this board uses the MAX3421E chip with an SPI
interface to the Arduino using pins D10, D11, D12, and D13. Three- and four-
pin connectors bring out input and output ports that will work directly with Tin‐
kerKit modules (the TinkerKit modules are described in Chapter 9). This is a
stackable shield (see Figure 8-41).

Common Arduino Shields | 243

http://bit.ly/itead-usb
http://bit.ly/circuitsathome-usb
http://bit.ly/arduino-usb

Figure 8-40. Circuits@Home USB host shield

Figure 8-41. Arduino USB host shield with I/O connectors

ZigBee
ZigBee is a popular low-power wireless protocol. Many of the available ZigBee Ardu‐
ino shields use readily available XBee modules, but most shields will accommodate
any RF module with the correct pinout. Some are available with an XBee module, and
some are available without. A 1 mW XBee module costs around $25.

Arduino Wireless SD Shield
On this ZigBee shield (Figure 8-42), two inline pin sockets are provided for a
Digi XBee module, or any module with a compatible pin arrangement. This
shield uses an Arduino’s pin D4 as the select, and pins D11, D12, and D13 for SPI
communication. A microSD carrier on the shield also uses the SPI interface.

244 | Chapter 8: Shields

http://bit.ly/arduino-wireless

Figure 8-42. Arduino ZigBee shield

SainSmart XBee Shield
This shield comes without an XBee module, but the pin layout will accept a stan‐
dard XBee module, or any module with a compatible pin arrangement. Note that
there is no microSD carrier. This is an offset stacking shield (note the locations of
pin headers and pin sockets in Figure 8-43).

Figure 8-43. SainSmart compact ZigBee shield

Seeed Studio XBee Shield
The XBee shield from Seeed Studio (Figure 8-44) has the expected mounting
position for a common XBee module, and it also provides a prototyping area.
This shield uses the Rx and Tx pins from an Arduino, and a block of pins for
jumpers is used to route the Rx and Tx signals from the Arduino to the wireless
module.

Common Arduino Shields | 245

http://bit.ly/sainsm-xbee
http://bit.ly/seeedst-xbee

Figure 8-44. SainSmart ZigBee shield with prototyping area

CAN
The Controller Area Network (CAN, also known as CAN bus), is a differential signal‐
ling relative of RS-485 found in vehicles, industrial settings, and some military equip‐
ment. It is relatively fast (up to 1 Mb/s), incorporates signal collision detection and
error detection, and supports multiple nodes. It is used with the OBD-II on-board
diagnostics found in late-model automobiles, in electric vehicles, and with distributed
sensors in scientific instruments, and has even been integrated into some high-end
bicycles.

Seeed Studio CAN-BUS Shield
The CAN interface shield from Seeed Studio (Figure 8-45) utilizes an MCP2515
CAN bus controller with an SPI interface and an MCP2551 CAN transceiver
chip. Both a terminal block and a DB-9 connector are provided for the CAN bus
signals. The shield also brings out the I2C and UART communications from the
Arduino. The pin layout is shown in Figure 8-46.

Figure 8-45. Seeed Studio CAN shield with auxiliary I/O connectors

246 | Chapter 8: Shields

http://bit.ly/seeed-canbus

Figure 8-46. Seeed Studio CAN shield with auxiliary I/O pin layout

SparkFun CAN-BUS Shield
This CAN shield from SparkFun (Figure 8-47) incorporates many of the features
one might want to use when creating an OBD-II readout and data capture device.
It has a DB-9 connector for CAN bus signals, and a 4-pin header also provides
the signals. Connection points are provided for an external LCD display and an
EM406 GPS module.

An interesting feature is a four-position binary joystick, and it incorporates a
microSD flash card carrier. The joystick is connected to the Arduino analog
inputs. The CAN chip and the SD flash are separately selected via digital pins D9
and D10. Pins D3, D4, D5, and A0 are not used by the shield. The pin layout is
shown in Figure 8-48.

LinkSprite CAN-BUS Shield
The LinkSprite CAN shield (Figure 8-49) is physically similar to the Seeed shield.
It has both a DB-9 connector and a two-position terminal block for the CAN sig‐
nals. Pins D10, D11, D12, and D13 are used for the SPI interface to an MCP2515
CAN chip.

Common Arduino Shields | 247

http://bit.ly/sparkfun-canbus
http://bit.ly/linksprite-can-bus

Figure 8-47. SparkFun CAN shield with microSD carrier and digital joystick

Figure 8-48. SparkFun CAN shield I/O pin layout

248 | Chapter 8: Shields

Figure 8-49. LinkSprite CAN shield

Prototyping
If you want to create your own shield you can build a prototype (or even a permanent
shield) using a prototyping shield board. This is not the same as the process of creat‐
ing a shield described in Chapter 10, which involves laying out a PCB for (possible)
mass production. Figure 8-50 shows a prototype shield similar to those described in
this section with a temperature sensor and a relay mounted on it. A potentiometer is
connected to the +5V, ground, and A0 (analog input 0) pins passed through from the
underlying Arduino board. The pot controls the temperature set point.

This prototype was used to control an ancient (and very dangerous) portable electric
heater that used a bimetallic thermostat that couldn’t seem to hold the temperature to
better than +/– 15 degrees. Since the relay is only rated to 10 amperes at 120 VAC and
the heating elements were rated for 15 amps, it was used along with a 24 VAC trans‐
former to control a 20-amp contactor. It worked pretty well, and kept my office rela‐
tively comfortable during the winter. I plan to add a tilt sensor, output temperature
sensor, and fan motion detector to it. Just to be safe.

Common Arduino Shields | 249

Figure 8-50. Prototype temperature sensor/controller shield

The shields in this section are representative of what is available, and none are partic‐
ularly complicated. What the Arduino pins are used for is entirely up to you (it is a
prototype, after all), so there isn’t much need for diagrams.

Adafruit Stackable R3 Proto Shield
This shield (Figure 8-51) comes as a kit, which means a bare PCB and a bag of
parts. It’s not hard to assemble, but some soldering skill is essential.

Figure 8-51. Adafruit stackable prototype shield kit

250 | Chapter 8: Shields

http://bit.ly/stackable-r3

Adafruit Mega Proto Shield
Another kit from Adafruit, this stackable prototyping shield comes with all the
bits you can see in Figure 8-52. Note the double rows of solder pads for the con‐
nections along the sides of the PCB. This allows you to solder in short-lead pin
sockets to gain easy access to the signals from an underlying Mega-type Arduino.

Figure 8-52. Adafruit Mega prototype shield kit

CuteDigi Assembled Protoshield for Arduino
This prototyping shield (Figure 8-53) comes fully assembled. It also has pin sock‐
ets on the PCB for access to the Arduino signals. This is not a stacking shield.

CuteDigi Assembled Protoshield for Arduino MEGA
Designed to work with a Mega-type Arduino, this shield (Figure 8-54) also fea‐
tures a small-outline (SOIC) mounting location for an IC. This is not a stacking
shield.

CuteDigi Protoshield for Arduino with Mini Breadboard
This shield, pictured in Figure 8-55, includes a small solderless breadboard for
your own circuit creations.

Common Arduino Shields | 251

http://bit.ly/ada-mega-proto
http://bit.ly/cutedigi-assembled
http://bit.ly/assembled-mega
http://bit.ly/proto-bboard

Figure 8-53. CuteDigi prototyping shield

Figure 8-54. CuteDigi Mega prototyping shield

Figure 8-55. CuteDigi prototyping shield with breadboard

252 | Chapter 8: Shields

Creating a Custom Prototype Shield
You can whip up a workable shield using nothing more than a prototyping PCB and
some pin and socket connectors. The size of the PCB doesn’t really matter, so long as
the pins line up with the sockets on an Arduino board.

Adafruit DIY Shield Kit
If there was award for the simplest shield kit, this would definitely be at the top of
the list of contenders. Consisting of a prototyping PCB and four long-lead pin
socket connectors (Figure 8-56), this shield lets you put anything you like on it.
This is handy for prototyping a new shield design, or just quickly throwing
something together, and it’s great for using an existing module of some type that
was never intended to be connected to an Arduino.

Figure 8-56. Adafruit DIY shield kit

Unfortunately the product has been discontinued by Adafruit, but all you need is
a prototyping PCB (these are readily available from multiple sources) and the pin
sockets, which Adafruit and other vendors carry. Since the pin pads on an Ardu‐
ino use industry-standard 0.1 inch (2.54 mm) spacing, it’s easy to make some‐
thing with basic prototyping supplies that can serve as a shield.

Motion Control
Motion control is a big area of interest in the Arduino domain. From programmable
mobile robots to CNC engravers, 3D printers to laser scanners, and even automated
sun-following tracking controllers for solar panels and kinetic sculptures, Arduinos
have been used to control DC motors, servos, and stepper motors from the outset. As
you might expect, a number of shields are available for each type of motor, and this is
just a small sampling of what’s available.

Common Arduino Shields | 253

http://bit.ly/ada-diy

DC and Stepper Motor Control
Motor controller shields based on an H-bridge (a type of solid-state current routing
switch) can usually be used to control either brush-type DC motors or stepper
motors. Basically, these types of shields can be used to control any inductive DC load,
including solenoids and relays.

Rugged Motor Driver shield
The Rugged Motor Driver Shield from Rugged Circuits (Figure 8-57) can drive
either two brush-type DC motors, or one bipolar stepper motor. It is rated for up
to 30V at 2.8A peak current. The shield uses the D3, D11, D12, and D13 pins for
enable and direction control inputs. The enable inputs can be driven with a
PWM signal for smooth control of a DC motor. Check the website for more
details regarding current handling and software.

Figure 8-57. Rugged Motor Driver shield

SainSmart Motor Drive Shield
The SainSmart motor shield (Figure 8-58) is based on an L293D four-channel
driver IC. It can drive four brush-type DC motors or two stepper motors at up to
10V. It features terminals for an external power supply. Check the website for
more details regarding current handling and software.

Arduino Motor Shield
The motor shield from Arduino.cc (Figure 8-59) is based on an L298 dual-driver
IC. It can be used with relays, solenoids, DC motors, and stepper motors. An
interesting feature is the ability to measure current consumption, which can be
handy for detecting a stalled motor. Also note that it has modular connectors that
are compatible with various TinkerKit modules (described in Chapter 9).

254 | Chapter 8: Shields

http://bit.ly/rugged_motor
http://bit.ly/sainsm-motor
http://bit.ly/arduino-motor

Figure 8-58. SainSmart L239D Motor Drive shield

Figure 8-59. Arduino motor shield

PWM and Servo Control
The small servos used in RC models and small-scale robotics work by positioning an
armature relative to a series of control pulses of varying width but at a steady fre‐
quency. The width (the “on” time) of the pulses determines the rotation angle of the
servo. A PWM/servo shield can also be used to drive a DC motor, precisely control
the brightness of one or more LEDs, or operate a linear actuator.

16-Channel 12-bit PWM/Servo Shield
This shield (Figure 8-60) utilizes a PCA9685 16-channel PWM controller IC with
an I2C interface. It has the ability to generate a unique programmable PWM sig‐
nal on each output, and it doesn’t require the constant attention of the Arduino.

Common Arduino Shields | 255

http://bit.ly/ada-16-pwm

Figure 8-60. Adafruit PWM/servo shield with I2C interface

LinkSprite 27-Channel PWM Servo Shield
This shield from LinkSprite (Figure 8-61) uses an STM32F103C8T6 microcon‐
troller IC to generate up to 27 unique PWM outputs. It is worth noting that the
STM32F103C8T6 is an ARM Cortex-M3 32-bit RISC device with up to 128 KB
of flash memory and 20 KB of SRAM. The microcontroller on this shield is
actually more computationally powerful than the AVR on the Arduino it is
mounted on. It communicates with an Arduino using the SPI interface.

Figure 8-61. LinkSprite servo shield

SparkFun PWM Shield
The PWM shield from SparkFun (Figure 8-62) utilizes a TLC5940 IC and is
capable of producing 16 PWM outputs. The TLC5940 is capable of driving LEDs
or servo motors. It uses an SPI-type clocked serial interface, but only receives
data. More information and software libraries are available from SparkFun.

256 | Chapter 8: Shields

http://bit.ly/linksprite-27-pwm
http://bit.ly/sparkfun-pwm

Figure 8-62. SparkFun PWM shield

Displays
Display shields for Arduino boards might contain LED (light-emitting diode) read‐
outs, LED arrays, an LCD (liquid-crystal display), or a color graphical display. Some
of the shields utilize multiple digital outputs from an Arduino; others use the SPI or
TWI (I2C) interfaces. Whatever it is you want to display, chances are there’s a display
shield that will do the job.

LED arrays
By itself a single LED array is fun, but when they’re set side-by-side it is possible to
create marquee displays in a variety of colors. For more information about the shields
listed here, refer to the websites for each:

• Adafruit LoL Shield (Figure 8-63)

Figure 8-63. Adafruit 9 × 14 LED array shield

Common Arduino Shields | 257

http://bit.ly/ada-lol

• Solarbotics SMD LoL Shield (Figure 8-64)

Figure 8-64. Solarbotics 9 × 14 LED array shield

• Adafruit NeoPixel Shield (Figure 8-65)

Figure 8-65. Adafruit 40 RGB LED pixel matrix

7-segment LED displays
The 7-segment LED display has been around for almost as long as there have been
LEDs. While now considered rather quaint, the 7-segment display still has a role to
play when you need big, bright digits you can easily see from across the room. Also
check out the multifunction shield listed in “Miscellaneous Shields” on page 268,
which features a 4-digit numeric LED display.

258 | Chapter 8: Shields

http://bit.ly/solarbio-smd-lol
http://bit.ly/ada-neo

• 4x 7-Segment Arduino Compatible Digit Shield (Figure 8-66)

Figure 8-66. Nootropic Design 7-segment display shield

LCD displays
Many low-cost character-based LCD shields utilize 16 × 2 (16 characters in 2 rows)
displays with white letters on a blue screen, red letters on a black screen, or black let‐
ters on a green screen. Other combinations are also available, including 16 × 4 and 20
× 4 configurations. Most of these types of shields are based on the Hitachi HD44780
LCD controller, or something similar.

There are also pixel-addressable and bitmap-capable LCD displays available. Some of
these, like the popular Nokia 5110, are available from various vendors and are easy to
interface to an Arduino. You can also find displays with resolutions of 128 × 64 and
160 × 128 pixels without looking too hard, but not many of these are available in the
form of an Arduino-compatible shield. See Chapter 9 for more information about
bare (nonshield) display components.

SainSmart LCD Keypad Shield
This is a common LCD shield design, shown in Figure 8-67, that uses a 16 × 2
LCD display module and the Hitachi HD44780 LCD controller (the display mod‐
ule is available separately, and one is used in the signal generator in Chapter 11
and in the thermostat in Chapter 12).

This LCD shield uses a voltage divider for the five pushbutton switches, so each
button press results in a different voltage. Figure 8-68 shows how this works. The
advantage of this approach is that five switch inputs are routed through one ana‐
log input.

Common Arduino Shields | 259

http://bit.ly/arduino-7seg
http://bit.ly/sainsmart-keypad

Figure 8-67. SainSmart 16 × 2 LCD keypad shield

Figure 8-68. SainSmart LCD shield schematic

DFRobot LCD Keypad Shield
This is similar to the SainSmart LCD shield, except with analog pin connections
to the underlying Arduino (see Figure 8-69). According to the vendor’s docu‐

260 | Chapter 8: Shields

http://bit.ly/dfrobot-keypad

mentation the additional pins are mainly intended for interfacing to an APC220
radio module or a Bluetooth module.

Figure 8-69. DFRobot 16 × 2 LCD keypad shield with analog pins

Adafruit LCD Shield Kit
The 16 × 2 LCD shield kit from Adafruit, shown in Figure 8-70, uses the I2C
interface and an MCP232017 I/O expander IC (also used in Chapter 10) to con‐
trol the LCD display. This results in the shield only using two of the Arduino’s
pins, A4 and A5, for the I2C interface. The LCD and the pushbuttons are all con‐
nected to the MCP23017 IC, and it does not use a resistor divider. Note that this
is a kit, but it’s not too hard to assemble.

Figure 8-70. Adafruit LCD shield kit with 16 × 2 character display

Common Arduino Shields | 261

http://bit.ly/adafruit-lcd

Nokia LCD5110 Module with SD
This shield, pictured in Figure 8-71, combines a Nokia 5110 LCD display with an
SD flash card socket. It uses pins D3, D4, D5, D5, and D7 for the display, and
pins D10, D11, D12, and D13 for the SD card. Pins D0, D1, and D2 are available
for other applications.

Figure 8-71. Nokia 5110 LCD shield from Elechouse

Unlike the 16 × 2 character-based displays, the 5110 is a graphics-capable LCD
with a 48 × 84 display area. Originally manufactured for cell phones, all the cur‐
rently available units are surplus. Some may have scratches or other slight blem‐
ishes. Also bear in mind that when they are gone, that’s it. So, it’s not a good idea
to design a new product using these, but they are fun to play with and they are
relatively inexpensive.

TFT displays
The TFT LCD (thin-film transistor liquid crystal display), or just TFT for short, is a
common display type found in computer monitors, cash register displays, cell
phones, tablets, and just about anything else with a color graphical display. A color
TFT shield for an Arduino can display thousands of colors at resolutions such as 240
× 320 pixels. Larger displays are available, but these generally don’t fit on a shield.
TFT shields are generally inexpensive; most use an SPI interface, and some have a
parallel digital interface for high-speed image generation.

ITEAD 2.4” TFT LCD Touch Shield
This shield, pictured in Figure 8-72, uses a parallel digital interface with an Ardu‐
ino. An 8-bit interface is used with an S6D1121 TFT controller on the shield, and
the touchscreen functions are handled by the TSC2046 chip. For additional
detailed information, refer to the vendor’s website.

262 | Chapter 8: Shields

http://bit.ly/nokia_lcd
http://bit.ly/ITEAD-tft

Figure 8-72. ITEAD 2.4 inch color TFT shield with touchscreen

Adafruit 2.8” TFT Touch Shield
The 2.8 inch TFT shield from Adafruit (Figure 8-73) uses a high-speed SPI inter‐
face for both an ILI9341 display controller with a built-in video RAM buffer and
an STMPE610 touchscreen controller. It also incorporates a microSD flash card
carrier. The shield uses the Arduino digital pins D8 through D13, the
touchscreen controller uses pin D8, and the microSD carrier select is on pin D4.

Figure 8-73. Adafruit 2.8 inch TFT shield with resistive touchscreen

Instrumentation Shields
Although not as plentiful as some other shield types, there are instrumentation-type
shields available. These include data logging shields, logic analyzers, and precision
analog-to-digital (A/D) converters. Instrumentation, in this case, refers to the ability
to sense and capture data from the physical world, or generate an analog signal.

Common Arduino Shields | 263

http://bit.ly/ada-tft

There aren’t many shields available with on-board data capture and conversion capa‐
bilities, mainly because the AVR MCU on an Arduino already has most of these func‐
tions in the chip itself. The built-in A/D converter (ADC) in the AVR MCUs used
with Arduino boards has 10-bit resolution, which gives a conversion resolution of
1/1,024 per DN, or digital number. If you need better resolution (12, 16, or even 24
bits, for example), then you will need to consider some type of add-on module or
a shield.

Adafruit Data Logging Shield
The Adafruit data logging shield, shown in Figure 8-74, includes an SD flash card
carrier and a real-time clock (RTC) chip. The RTC can be powered by a battery
when the main power from the base Arduino is off. A small prototyping grid is
supplied for custom circuitry. This is not a stacking shield.

Figure 8-74. Adafruit assembled data logging shield

Adafruit Ultimate GPS Logger Shield
This shield, shown in Figure 8-75, incorporates a GPS receiver as well as an SD
flash carrier and an RTC chip. The output of the GPS can be automatically logged
to the flash memory card. This is not a stacking shield.

HobbyLab Logic Analyzer and Signal Generator Shield
This is actually a standalone logic analyzer on a shield. It monitors the Arduino
signals without interfering with them, which is handy to see what’s happening on
the I/O pins. In addition to the logic analyzer capability, it also includes an SPI
decoder, a UART decoder, and a one-wire monitor. It does not communicate
directly with the Arduino, but uses a USB interface to interact with a host com‐
puter. This is a stacking shield (see Figure 8-76).

264 | Chapter 8: Shields

http://bit.ly/1Tjlu5V
http://bit.ly/ada-gps
http://www.arduinolab.us

Figure 8-75. Adafruit GPS data logging shield

Figure 8-76. HobbyLab logic analyzer and signal generator

Iowa Scaled Engineering 16-Channel 24-Bit ADC Shield
This shield incorporates a 24-bit A/D converter and a precision voltage reference
to obtain readings from multiple single-ended or differential inputs. It also has
on-board EEPROM for storing and reading calibration and configuration data. It
communicates with an Arduino via the I2C (TWI) interface. This is a stacking
shield (see Figure 8-77).

Visgence Power DAC Shield
One function the AVR MCU, and by extension an Arduino, lacks is a built-in
digital-to-analog converter (DAC). The AVR’s internal ADC incorporates a 10-bit
DAC, but the output is not available externally. Although audio output shields
are readily available, there don’t seem to be a lot of pure DC output DAC shields
available. The Visgence Power DAC Shield (Figure 8-78) provides three channels
of analog output with the ability to source up to 250 mA of current.

Common Arduino Shields | 265

http://bit.ly/ard-ltc2499
http://bit.ly/power-dac

Figure 8-77. Iowa Scaled Engineering 24-bit ADC data acquisition shield

Figure 8-78. Visgence 12-bit Power DAC Shield

Adapter Shields
An adapter shield is used as a physical interface between what would otherwise be
two physically incompatible modules. The primary difference between an adapter
shield and a signal routing shield (see “Signal Routing Shields” on page 232), at least
with regard to how the shields are organized in this chapter, is that an adapter is
intended as a physical interface. A signal routing shield doesn’t deal with physical dif‐
ferences, just signals.

Tronixlabs Australia Expansion Shield for Arduino Nano
A Nano is every bit as capable as a larger baseline Arduino, but it won’t work
with conventional shields. This board, shown in Figure 8-79, addresses that by
bringing out the pins from a Nano to pin headers, and optionally to standard pin
socket connectors.

266 | Chapter 8: Shields

http://bit.ly/exp-nano

Figure 8-79. Tronixlabs Nano adapter shield

Arduino Nano I/O Expansion Board (eBay)
Another example of a Nano adapter (Figure 8-80). This was found on eBay, but
there are others like it available.

Figure 8-80. Expansion board for Arduino Nano

Screw Terminal Shield
Although not technically a shield, per se, these handy block adapters allow you to
connect up to 18-gauge insulated wire to an Arduino. They are readily available
from a variety of sources. Notice that these parts have the ability to stack (see
Figure 8-81).

Common Arduino Shields | 267

http://bit.ly/exp-nano-ebay
http://bit.ly/screw-term

Figure 8-81. Terminal block adapters

Miscellaneous Shields
This section describes some useful shields that don’t really fit into a neat category. I
like the so-called “wing shields” because they allow for neater wiring, and the multi‐
function shield shown here has a multitude of uses.

Adafruit Proto-ScrewShield (Wingshield)
The Wingshield, also known as a Proto-ScrewShield, is a passive shield with two
sets of miniature terminal blocks (see Figure 8-82). If you plan to incorporate an
Arduino into a commercial product or a laboratory setup, then you may want to
consider a shield like this. The screws in the terminal blocks provide for a much
more secure and reliable connection than pin jumpers. The prototyping area in
the middle of the shield can be used to mount sensor modules, or it can hold a
custom circuit. The shield includes a reset switch and an LED, and it’s also a
stackable shield. Be aware that this is a kit, so it comes as a bare PCB and a bag of
parts. Assembly isn’t hard, but it does require some soldering skill.

DFRobot Screw ProtoShield
Like the Adafruit Wingshield this shield (Figure 8-83) provides screw terminals
for each of the signals from an Arduino, but it comes fully assembled. It is also a
stackable shield, so you can put it under other shields and still be able to access
the terminal blocks.

DealeXtreme DIY Multifunction Shield
This is an interesting shield: it has a 4-digit numeric LED readout; an interface
point for an APC220 Bluetooth module; several pushbutton switches connected
to Arduino pins A1, A2, and A3; a reset switch; and a potentiometer connected
to the A0 input (see Figure 8-84). Four LEDs are connected to digital pins D10,
D11, D12, and D13, and a 3 × 4-pin header brings out pins D5, D6, D9, and A5,

268 | Chapter 8: Shields

http://bit.ly/ada-proto-screw
http://bit.ly/screw-protoshield
http://bit.ly/diy-multi

along with +5V and ground. Unfortunately this shield is also rather poorly docu‐
mented, and it can take some digging to get useful information. You can find
additional information on the HobbyComponents.com forum. A collection of
example sketches and a schematic can be downloaded from http://bit.ly/dx-diy-
sketch. Note that the directory names in the ZIP archive are all in Chinese, but
most of the sketches have comments in English.

Figure 8-82. Adafruit Wingshield

Figure 8-83. DFRobot terminal block shield

The arrangement of the various components of the multifunction shield is shown
in Figure 8-85. Note that this is not a stacking shield, which makes sense, because
stacking another shield on top would make the LED display useless.

Common Arduino Shields | 269

http://bit.ly/dx-diy-hc
http://bit.ly/dx-diy-sketch
http://bit.ly/dx-diy-sketch

Figure 8-84. DX DIY multifunction shield expansion board

Figure 8-85. Multifunction shield main functional features

The schematic provided for this shield is somewhat cryptic, so I’ve created an
alternate version, shown in Figure 8-86. Notice that all the Arduino pins are used

270 | Chapter 8: Shields

by this shield. Table 8-1 lists the Arduino pins and what the multifunction shield
uses them for.

This shield is a good example of what one will often encounter with a new shield
board. The documentation may be minimal, and much of it might be in a lan‐
guage you don’t understand (Chinese, in this case, but English can be just as diffi‐
cult for other people). The schematic is correct, but might be difficult to
understand at just a glance, and there is no detailed pinout description. (Well,
actually, there is now.)

Figure 8-86. Multifunction shield schematic

Common Arduino Shields | 271

Table 8-1. Multifunction shield Arduino pin functions
Pin Use Pin Use
D0 Rx from wireless module D10 LED

D1 Tx to wireless module D11 LED

D2 ID received input D12 LED

D3 Annunciator control D13 LED

D4 LED display latch A0 Potentiometer wiper

D5 To D5 on I/O block A1 Switch S3

D6 To D6 on I/O block A2 Switch S2

D7 LED display clock A3 Switch S1

D8 LED display serial data input A4 Temperature sensor input

D9 To D9 on I/O block A5 A5 on I/O block

Uncommon Arduino Shields
In addition to a large collection of shields for everything from RS-232 I/O to PWM
servo control, there are also shields created for specific applications. Some open
source 3D printers utilize an Arduino as the primary controller, and the control inter‐
faces, in the form of a shield, can be found easily. Some of these shields are intended
for Mega-type Arduinos and are sized accordingly.

Other uncommon shields don’t really fit into any of the categories in this chapter, but
are interesting nonetheless. The Gameduino is an example of this type of shield. It’s
essentially a carrier for an FPGA (field-programmable gate array) chip, and has
potential for other applications besides playing video games.

Qunqi CNC Shield for Arduino V3 Engraver
This shield, pictured in Figure 8-87, does not come with the motor driver mod‐
ules, but these are readily available. A typical driver module uses Allegro’s A4988
DMOS microstepping driver chip.

SainSmart RepRap Arduino Mega Pololu Shield
The RepRap 3D fabricator, billed as “humanity’s first general-purpose self-
replicating manufacturing machine,” is a compact fabricator that can create parts
for other RepRap machines, along with many other things. This shield, shown in
Figure 8-88, is designed to replace the electronics on a RepRap-type device and
uses a Mega-type Arduino as its processor.

excamera Gameduino
This shield uses a Xilinx FPGA (Figure 8-89) to control the graphics and sound
for a homemade games console. An Arduino is used to interface with the con‐
trols and direct the game play. The Gameduino is open source, so all the techni‐

272 | Chapter 8: Shields

http://bit.ly/qunqi-cnc
http://bit.ly/sainsmart-reprap
http://reprap.org
http://bit.ly/excam-gameduino

cal details are available, and one could conceivably repurpose the FPGA for
something other than games.

Figure 8-87. Qunqi A4988 driver CNC shield expansion board

Figure 8-88. SainSmart RAMPS 1.4 RepRap shield for 3D printer

Figure 8-89. excamera Gameduino game controller shield

Uncommon Arduino Shields | 273

Sources
Table 8-2 lists the vendors and manufacturers referenced in this chapter. There are, of
course, many others not listed here that are also good places to seek useful or novel
shields. Entering “Arduino shield” in the Google search bar returns around 400,000
results, so there’s no shortage of places to look for products and information. Just
because a vendor or manufacturer is not here doesn’t mean they aren’t worth consid‐
ering; it’s just that trying to be all-inclusive with a market as volatile as this, with so
many different products available, would be a Sisyphean task.

Table 8-2. List of shield vendors and manufacturers

Name URL Name URL
Adafruit www.adafruit.com Macetech www.macetech.com/store/

Arduino store.arduino.cc Mayhew Labs www.mayhewlabs.com

Arduino Lab www.arduinolab.us Nootropic Design www.nootropicdesign.com

Circuits@Home www.circuitsathome.com Numato www.numato.com

CuteDigi store.cutedigi.com RobotShop www.robotshop.com

DFRobot www.dfrobot.com Rugged Circuits www.ruggedcircuits.com

DealeXtreme (DX) www.dx.com SainSmart www.sainsmart.com

Elecfreaks www.elecfreaks.com Seeed Studio www.seeedstudio.com

Elechouse www.elechouse.com SparkFun www.sparkfun.com

excamera www.excamera.com Tindie www.tindie.com

Iowa Scaled Engineering www.iascaled.com Tronixlabs www.tronixlabs.com

iMall imall.itead.cc Vetco www.vetco.net

274 | Chapter 8: Shields

http://www.adafruit.com
http://www.macetech.com/store
http://store.arduino.cc
http://www.mayhewlabs.com
http://www.arduinolab.us
http://www.nootropicdesign.com
http://www.circuitsathome.com
http://www.numato.com
http://store.cutedigi.com
http://www.robotshop.com
http://www.dfrobot.com
http://www.ruggedcircuits.com
http://www.dx.com
http://www.sainsmart.com
http://www.elecfreaks.com
http://www.seeedstudio.com
http://www.elechouse.com
http://www.sparkfun.com
http://excamera.com
http://www.tindie.com
http://www.iascaled.com
http://www.tronixlabs.com
http://imall.itead.cc
http://www.vetco.net

CHAPTER 9

Modules and I/O Components

While many of the shields available for the Arduino have a lot of interesting and use‐
ful functions already built in, they don’t have everything. Nor should they, given that
there are a multitude of different types of sensors, controls, and actuator interfaces
available that can be used with an Arduino. Many vendors offer single-function add-
on sensor components and small PCB modules for the Arduino. These include tem‐
perature and humidity sensors, vibration detectors, photo detectors, keypads,
joysticks, and even solid-state lasers.

Almost any sensor, control, or actuator device that can be used with a microcontroller
can be used with an Arduino. There are some limitations in terms of DC supply volt‐
age, depending on the type of microcontroller in the Arduino itself (3.3V versus 5V),
but for the most part this is a relatively minor detail that can be resolved with simple
interface electronics and an appropriate power supply.

This chapter looks at both I/O modules and individual components. I/O modules are
small PCBs that perform a specific function and use only a few active components, if
any at all. They are small, about the size of a postage stamp or less, and they use pins
for the connections. They work well with female-to-male or female-to-female jump‐
ers, and in some cases special multiwire cables can be used to connect modules to a
shield made for just that purpose. The products from KEYES, SainSmart, and Tinker‐
Kit are featured here, primarily because they are good representatives of modules in
general. Other modules worth considering are the Grove series of modules and inter‐
face shields available from Seeed Studio, and the modules from TinyCircuits.

Individual I/O components cover the spectrum from LEDs to graphical displays, and
from mechanical sensors like switches and reed relays to self-contained temperature
and humidity sensors. The individual sensors are intentionally covered after the dis‐
cussion of modules because many of the modules use the components described
there. Cross-references are provided between the sections as appropriate.

275

Most people appreciate neatness and reliability. Unfortunately, using the ubiquitous
jumper wires to connect modules and other components can quickly become any‐
thing but neat, and the push-on crimp connectors used at each end of the jumper
wire have a tendency to work loose from a module’s pins.

Rather than resorting to soldering directly to the pins of a module, or covering the
jumper connectors with a blob of silicon adhesive to hold them in place, you can use
modular connectors. These can be custom-made for your specific application using
simple hand tools, or you can opt to use a system like TinkerKit, Grove, or TinyCir‐
cuits. This chapter wraps up with an overview of methods for connecting modules to
an Arduino that don’t involve a tangle of jumper wires.

Modules
Sensor and I/O modules are certainly the most convenient way to connect a sensor,
switch, relay, or microphone to an Arduino and experiment with it. Figure 9-1 shows
some different module types.

Figure 9-1. Different sensor module types and sizes

Over time it is easy to end up with a large collection of modules, some of which are
more useful than others. I would suggest starting off with the largest kit of modules
you can afford, and then figuring out which ones you use the most. Keep several of
those on hand, and save the other less-used modules for a future project.

276 | Chapter 9: Modules and I/O Components

The descriptions found online for how various modules work are
not always correct. It might be a translation issue, but sometimes
an online description will state that a module will generate a high
output when active, when in reality it will generate a low output.
Always check the operation of a module with a digital multimeter
(DMM) before committing it to a circuit. Most of the modules lis‐
ted in this section have been tested to determine how they really
work, and the descriptions here reflect those findings. That being
said, I can’t claim that every module that may look like one of the
modules listed in this chapter will behave the same or have the
same pin functions. In this corner of the universe, standardization
has yet to take hold.

As for schematics for the modules listed here, well, there really aren’t any official
schematics that I have been able to locate. Several brave souls across the Internet have
taken it upon themselves to trace out some of the module PCBs. I’ve attempted to
gather what I could find and combine it with my own efforts at reverse engineering.
In some cases the result is a complete schematic, and in others I just wanted to verify
that the pins really did what the available (and rather minimal) documentation stated.

Physical Form Factors
Modules can vary in size from 1.8 by 1.5 cm (approx. 3/4 by 9/16 inch) to 4.2 by 1.7
cm (approx. 1 11/16 by 5/8 inch), with some as large as 3.4 by 2.5 cm (approx. 1 5/16
by 1 inch) for a 5V modular relay. Figure 9-2 shows a variety of module dimensions.
Note that these are approximate dimensions. The actual PCB dimensions may vary
by about +/– 1 mm (0.04 inches), depending on where the modules were produced.

Many modules have mounting holes in the PCB large enough for a #2 machine screw.
The metric equivalent is typically an M1.6 or M1.8 size. Figure 9-3 shows a stack of
two modules made using 2-56 machine screws and nylon spacers. This happens to be
a one-wire temperature sensor with a mercury tilt switch module.

Unfortunately, not all modules will stack nicely. Sometimes the mounting holes don’t
have the same spacing, or they might be in the wrong places on the PCB to allow
modules to stack. Some modules don’t have mounting holes at all, so always check
before assuming that you will be able to create a stack of modules.

Interfaces
The pinouts used with the various PCB modules can vary from one type to another,
so other than the TinkerKit series there really isn’t a lot of standardization. Figure 9-4
shows some of the variations you can expect to encounter.

Modules | 277

Figure 9-2. Examples of commonly encountered module dimensions

Figure 9-3. Modules mounted using #2 machine screws and spacers

278 | Chapter 9: Modules and I/O Components

Figure 9-4. Typical pinout configurations used with modules

Although you might assume that modules with three or four pins
would be compatible with I/O extension shields that feature modu‐
lar connectors or I/O pins arranged in blocks (such as those
described in Chapter 8), that is not always the case. Pin-to-pin
compatibility between modules and shields is only guaranteed
when connecting a family of modules to an interface shield
designed to work with those components. TinkerKit is one example
of this, but only when connecting TinkerKit modules to a Tinker‐
Kit interface extender shield. Always check the module pins to ver‐
ify the voltage and signal positions before connecting a module.

Because the AVR is a rather robust device it is possible to connect many sensors
directly to the inputs of an Arduino, and some output devices as well. Power-hungry
output devices, like a solid-state laser or an RGB LED, really need some type of driver
to boost the current beyond what the AVR chip on an Arduino can supply directly
(recall the current source and current sink specifications given in Chapter 3).

Modules | 279

Some output modules have a high current interface built in, but some do not. A sim‐
ple circuit, like the one shown in Figure 9-5, can be used to safely boost the current
supplied to something like a relay or laser LED module. The value of R in the right‐
hand circuit in Figure 9-5 would be determined by the LED and the amount of cur‐
rent it needs to operate. So long as the current doesn’t exceed the rating of the
transistor it should work fine.

Figure 9-5. Output circuit for driving high-current devices

Another option is a special-purpose IC like the MAX4896, shown in Figure 9-6. It
uses an SPI interface, and an Arduino can interface directly to the IC. While intended
to drive small relays, this IC can handle large LEDs just as easily.

Module Sources
Single-PCB modules and kits of sensors with 24, 36, or more modules are available
from the sources listed in Table 9-1. They can also be found on eBay and Amazon.
Figure 9-7 shows a plastic storage container with a full suite of modules (37 different
types; the last bin contains two different modules).

280 | Chapter 9: Modules and I/O Components

Figure 9-6. Output driver IC for multiple relays or other loads

Figure 9-7. A set of input/output modules

Modules | 281

Most of the suppliers listed in Table 9-1 also sell individual modules, as well as
jumper wires, interconnection cables, and “bare” input and output components. You
can buy most any module you might need in small quantities, although not every
module in a kit may be available as a single item.

Table 9-1. Partial list of sensor and output module vendors and manufacturers

Name URL
Adafruit www.adafruit.com

CuteDigi store.cutedigi.com

DealeXtreme (DX) www.dx.com

KEYES en.keyes-robot.com

SainSmart www.sainsmart.com

Seeed Studio www.seeedstudio.com

TinyCircuits www.tiny-circuits.com

Trossen Robotics www.trossenrobotics.com

Vetco www.vetco.net

Module Descriptions
This section lists modules from three sources: KEYES, SainSmart, and TinkerKit. The
descriptions are, by necessity, terse. The main emphasis here is on the physical form
and the electrical connections of the modules listed in the tables. “Sensors” on page
312 describes the sensor components in more detail, and the modules are cross-
referenced to the detailed descriptions where appropriate.

After working with various modules for a time you may notice that many of the mod‐
ules described here use the same basic circuit. This typically consists of an LM393
comparator and some type of sensor. In each case a potentiometer sets the threshold
comparison voltage, and the output of the LM393 is wired to the signal pin of the
module. The KEYES modules with similar circuits are listed in Table 9-2, and the
SainSmart modules with similar circuits are listed in Table 9-3.

Table 9-2. KEYES modules with similar circuits (Figure 9-8)

Part no. Name
KY-025 Reed Switch Module

KY-026 Flame Sensor

KY-036 Conductive Contact Sensor

KY-037 Sensitive Microphone Sensor

KY-038 Microphone Sensor

282 | Chapter 9: Modules and I/O Components

http://www.adafruit.com
http://store.cutedigi.com
http://www.dx.com
http://en.keyes-robot.com
http://www.sainsmart.com
http://www.seeedstudio.com
http://www.tiny-circuits.com
http://www.trossenrobotics.com
http://www.vetco.net

Table 9-3. SainSmart modules with similar circuits (Figure 9-8)

Part no. Name
20-011-981 Photosensitive Sensor

20-011-982 Vibration/Shock Sensor

20-011-983 Hall Effect Sensor

20-011-984 Flame Sensor

Figure 9-8 shows a generic schematic representation of the LM393 comparator circuit
used in the modules listed in Table 9-2 and Table 9-3. The actual component values
may vary somewhat, but this same basic circuit is used in multiple modules. The sen‐
sor (IR flame, microphone, LDR, etc.) is the major difference between the modules.

Figure 9-8. Generic module circuit with comparator IC

The DO (digital output) terminal comes directly from the comparator. It is high
when the noninverting (+) input is greater than the inverting (–) input. The output of
the comparator will go low if the noninverting input is lower than the inverting input.
Some modules may be designed with the inputs to the comparator IC arranged oppo‐
site to what it shown in Figure 9-8, but the operating principle is the same.

The voltage on the noninverting input is set by the potentiometer, or pot. It is one-
half of a voltage divider, with the sensor and perhaps a current-limiting resistor mak‐
ing up the other half. A second voltage divider is used to apply about one-half of the

Modules | 283

+5V VCC to the inverting input, or about 2.5V. This is the reference input. The pot is
used to set the voltage at which the comparator will change its output as the sensor
changes its resistance in response to some type of input.

On the output end of the circuit a 10K resistor is used as a pull-up on the output pin
of the IC. The AO (analog output) is the “raw” value from the sensor at the input of
the LM393 IC (in this case). On those modules with just a single output, only the out‐
put of the comparator is brought out to a terminal pin as the DO signal. A module
may also have an LED to indicate when power is present, and some have an addi‐
tional LED to indicate when the comparator output is low (it becomes a current sink
for the LED).

How all this relates to a sensor depends on how the sensor responds to input, and you
may need to experiment with it a bit to get a feel for how it behaves. In many cases an
active sensor will exhibit decreased resistance, which will cause the noninverting
input to go below the reference voltage on the inverting input. When this happens the
output of the comparator circuit shown in Figure 9-8 will go low, and the LED on the
output of the IC will be active (the IC serves as a current sink for the LED).

Comparator circuits that exhibit a low output when the input is in an active state or
below some threshold are called active-low circuits. In these circuits, a low voltage on
the output is equivalent to a true condition. Circuits that exhibit a high output level
when the sensor is active or the input is above some threshold level are called active-
high circuits. In an active-high circuit a high output is equivalent to a true condition.
True and false in this sense just mean that the sensor is either receiving input or not,
respectively.

Spend a few moments with a DMM (digital multimeter) and a
magnifying glass or loupe and carefully examine a module before
connecting it to an Arduino. This is particularly important with the
bargain modules, where I have discovered missing parts, solder
bridges (shorts) between pads, and connection pins that go
nowhere. One module I examined had a factory-installed piece of
wire soldered between traces connected to the +5V and ground
pins! That would have caused some problems. Just because a mod‐
ule has pins for ground, +5V, and signal doesn’t mean that all the
pins are actually used, or even that the pins do what the assigned
names imply. Once any issues are addressed, the modules tend to
work just fine (they only have a small number of parts on them,
after all). Keep notes and save yourself from headaches later on.

Many common modules designed by the Chinese company Shenzhen KEYES DIY
Robot Co. Ltd. (also known simply as KEYES) can be found as single units or bun‐
dled into kits of modules, usually with 36 or so modules per kit. You may also

284 | Chapter 9: Modules and I/O Components

encounter modules with the letters “HXJ” on them. They are functionally identical to
the KEYES modules, but the PCB layout may be slightly different.

Table 9-4 is a summary list of the KEYES modules covered in this section, and
Table 9-7 contains images, notes, and pinout diagrams, from KY-001 to KY-040.
Some of the models shown are KEYES, and some are from other vendors but are
otherwise identical (the HXJ units, for example). They all share the same pinout and
functions, and often have the same name (KY-002, KY-027, and so on). Notice that
there are no KY-007, KY-014, KY-029, or KY-030 modules. I have no idea why.

Table 9-4. Commonly available KEYES I/O modules

Part no. Name Part no. Name
KY-001 Temperature Sensor KY-021 Mini Reed Switch

KY-002 Vibration Sensor KY-022 Infrared Sensor/Receiver

KY-003 Hall Effect Magnetic Field Sensor KY-023 2 Axis Joystick

KY-004 Pushbutton Switch KY-024 Linear Hall Effect Sensor

KY-005 Infrared Emitter KY-025 Reed Switch Module

KY-006 Passive Buzzer KY-026 Flame Sensor

KY-008 Laser LED KY-027 Magic Light Cup Module

KY-009 RGB Color LED KY-028 Temperature Sensor

KY-010 Optical Interrupter KY-031 Shock Sensor

KY-011 2 Color LED KY-032 IR Proximity Sensor

KY-012 Active Buzzer KY-033 IR Line Following Sensor

KY-013 Analog Temperature Sensor KY-034 Automatic Flashing Color LED

KY-015 Temperature and Humidity Sensor KY-035 Hall Effect Magnetic Sensor

KY-016 3 Color RGB LED KY-036 Touch Sensor

KY-017 Mercury Tilt Switch KY-037 Sensitive Microphone Sensor

KY-018 LDR Module KY-038 Microphone Sensor

KY-019 5V Relay KY-039 LED Heartbeat Sensor

KY-020 Tilt Switch KY-040 Rotary Encoder

SainSmart is another manufacturer of sensor modules. Table 9-5 is a summary of
what is available in a SainSmart module kit, and Table 9-8 contains images, notes, and
pinout diagrams. This is a representative list, as the contents of the kits can vary. The
modules with a SainSmart Part no. are also available individually, and some of them
are unique.

Modules | 285

Table 9-5. SainSmart modules available as a kit

Part no. Name
Part no. Name

N/A Relay Module

20-011-985 Touch Sensor

20-019-100 Ultrasonic Distance Sensor HC-SR04

20-011-984 Flame Sensor

20-011-986 Temperature & Relative Humidity Sensor

N/A Active Buzzer

20-011-982 Vibration/Shock Sensor

N/A Passive Buzzer

20-011-987 Tracking Sensor

20-011-983 Hall Effect Sensor

20-011-981 Photosensitive Sensor

N/A Infrared Receiver

20-011-944 Joystick Module

20-011-946 Water Sensor

Lastly, there are the TinkerKit modules. Table 9-6 is a summary listing, and Table 9-9
has details on each of the modules found in the “Pro” kit. The TinkerKit series of
modules are designed to work with a TinkerKit interface shield (described in Chapter
8). Although the status of TinkerKit as a company is currently in limbo, the products
are still available from Mouser, Newark/Element14, and other sources. Software libra‐
ries are available on GitHub. A set of basic datasheets for the modules are available
from Mouser.

Table 9-9 doesn’t show pinout diagrams because the TinkerKit modules all use a stan‐
dard pinout. The only difference between modules is between the discrete digital (on/
off) and analog modules. Both types use the same basic connector pinout shown in
Figure 9-9.

Circuitry on the TinkerKit modules handles the electrical interface, which might be
level sensing, amplification, and so on. So bear in mind that with many of the Tinker‐
Kit modules the Arduino isn’t communicating directly with the sensor, LED, input
control, or output device, but rather with an interface circuit. Flip a module over and
check the back side to see what circuitry is installed. Even the LED modules have a
driver transistor installed. The objective with the TinkerKit products was to create
something that was easy to connect to an Arduino and relatively insensitive to minor
errors, so some of the low-level interface interaction capability was given up to ach‐
ieve that.

286 | Chapter 9: Modules and I/O Components

http://www.mouser.com
http://www.newark.com
https://github.com/TinkerKit
http://bit.ly/mouser-tinkerkit

Figure 9-9. TinkerKit module common connector

Table 9-6. TinkerKit modules summary listing

Part no. Name Part no. Name
T000020 Accelerometer Module T010020 Mosfet Module

T000030 Joystick Module T010110 High Power LED Module

T000070 Hall Effect Sensor T010111 5 mm Blue LED Module

T000090 LDR Module T010112 5 mm Green LED Module

T000140 Rotary Potentiometer Module T010113 5 mm Yellow LED Module

T000150 Linear Potentiometer Module T010114 5 mm Red LED Module

T000180 Pushbutton Module T010115 10 mm Blue LED Module

T000190 Tilt Module T010116 10 mm Green LED Module

T000200 Thermistor Module T010117 10 mm Yellow LED Module

T000220 Touch Sensor Module T010118 10 mm Red LED Module

Modules | 287

KEYES modules

Table 9-7. KEYES-type sensor and output modules

Part
no.

Name and description Image Pinout

KY-001 Temperature Sensor
Uses a DS18B20 one-
wire temperature sensor
IC in a TO-92 package.

KY-002 Vibration Sensor
A sealed shock sensor
closes the circuit
between the GND and
signal pins. The +5V
doesn’t seem to be
connected, but there is a
position for a resistor on
the bottom side of the
PCB. Very sensitive.

KY-003 Hall Effect Magnetic
Field Sensor
Detects the presence of a
magnetic field. The
output is the open
collector of an NPN
transistor in the A3144
Hall effect device. The
output is pulled to
ground when the sensor
is active. This is not a
linear sensor, whereas
the KY-024 is.

288 | Chapter 9: Modules and I/O Components

Part
no.

Name and description Image Pinout

KY-004 Pushbutton Switch
A simple pushbutton
switch. The output is
pulled low when the
switch is pressed.

KY-005 Infrared Emitter
An IR LED suitable for
use with a KY-022. Note
that an external current-
limiting resistor must be
used. The GND pin was
not connected on the
module tested.

KY-006 Passive Buzzer
This is a small speaker
with a metal diaphragm.
The +5V pin is not used.

Modules | 289

Part
no.

Name and description Image Pinout

KY-008 Laser LED
A low-power 650 nm
(red) LED laser (see
Figure 9-51). Ground is
connected to the anode,
signal is connected to
the cathode. The +5V
pin is not used (but does
connect to signal via a
10K resistor on the PCB).
Unit needs an external
current limiting resistor.

KY-009 RGB 3-Color LED
Utilizes an LED with
simultaneous red, green,
or blue output. Several
modules tested had
inconsistent pinouts, so
check first to see how
each color is connected.

KY-010 Optical Interrupter
Incorporates an optical
interrupter (an LED and
phototransistor pair) to
detect when an object is
in the gap between the
two upright sections.

290 | Chapter 9: Modules and I/O Components

Part
no.

Name and description Image Pinout

KY-011 2 Color LED
Utilizes an LED capable
of green or red output,
or both at once. This is a
three-lead part, which
means that the internal
LEDs share a common
connection and each can
be operated
independently.

KY-012 Active Buzzer
Generates a fixed-pitch
tone when power is
applied.

KY-013 Analog Temperature
Sensor
Uses a thermistor (see
“Thermistors” on page
314) as the active
temperature sensing
element. The output
voltage will vary as a
function of the
temperature.

KY-015 Temperature and
Humidity Sensor
Uses a DHT11
temperature and
humidity sensor. Refer to
“DHT11 and DHT22
sensors” on page 313 for
more information on this
part.

Modules | 291

Part
no.

Name and description Image Pinout

KY-016 3 Color RGB LED
Basically the same as the
KY-009, but uses a
through-hole part
instead of a surface-
mount device.

KY-017 Mercury Tilt Switch
Detects tilt on one axis
using a small drop of
mercury in a glass tube
(see “Single-axis tilt
sensors” on page 318).
To sense tilt on two axes,
use two of these
modules. The +5V pin is
not connected to the
sensor, but is connected
to the signal pin via an
LED and a 680-ohm
resistor.

KY-018 LDR Module
A light-dependent
resistor (LDR) module.
The output voltage will
vary as the amount of
light impinging on the
LDR varies (see
“Photocells” on page
320).

KY-019 5V Relay
A small PCB-mount relay
(see “Relays” on page
339) with a built-in
driver to interface with a
logic-level control signal.

292 | Chapter 9: Modules and I/O Components

Part
no.

Name and description Image Pinout

KY-020 Tilt Switch
Similar to the KY-017,
but utilizes a metal ball
inside a small enclosure.

KY-021 Mini Reed Switch
A reed switch
encapsulated in a small
glass tube that closes
when in the presence of
a magnetic field.

KY-022 Infrared Sensor/
Receiver
An 1838 IR sensor like
those used for remote
control of televisions and
other appliances.
Operates at a carrier
frequency of 37.9 KHz.
The presence of the IR
carrier causes the output
to go high.

KY-023 2 Axis Joystick
Contains two
potentiometers mounted
at a right angle to one
another to detect the x–
y motion of the center
shaft.

Modules | 293

Part
no.

Name and description Image Pinout

KY-024 Linear Hall Effect
Sensor
Utilizes an SS49E linear
Hall effect sensor. An
LM393 voltage
comparator is used with
a potentiometer to
adjust the sensitivity of
the circuit.

KY-025 Reed Switch Module
Utilizes a reed switch
and the comparator
circuit shown in
Figure 9-8.

KY-026 Flame Sensor
Utilizes a sensor
optimized for IR
wavelengths between
760 and 1100 nm. A
potentiometer sets the
sensitivity level.

294 | Chapter 9: Modules and I/O Components

Part
no.

Name and description Image Pinout

KY-027 Magic Light Cup
Module
To be honest, I’m not
sure what these are
intended to be used for.
The KY-027 is basically a
KY-017 with an LED on a
separate circuit.

KY-028 Temperature Sensor
Uses a thermistor and an
comparator IC to detect a
threshold (see
“Thermistors” on page
314). The potentiometer
sets the threshold point.

KY-031 Shock (Impact) Sensor
Detects a sharp impact
and generates an output.
Does not detect tilt like
the KY-002, KY-017, and
KY-020.

Modules | 295

Part
no.

Name and description Image Pinout

KY-032 IR Proximity Sensor
Uses the reflectance of
an IR light source to
detect a nearby surface
or obstacle. The
potentiometer sets the
sensitivity. Note that
there are at least two
variants of this module.
Check the pinout before
applying power.

KY-033 IR Line Following
Sensor
Uses the reflection of IR
light from a surface to
detect the difference
between light and dark.
Typically used to create a
line-following robot that
will track a dark line on a
white surface. The
potentiometer sets the
sensitivity. Basically the
same as the KY-032 but
with the LED and IR
sensor mounted on the
underside of the PCB.

KY-034 Automatic Flashing
Color LED
LED will flash
automatically when
power is applied.

296 | Chapter 9: Modules and I/O Components

Part
no.

Name and description Image Pinout

KY-035 Hall Effect Magnetic
Sensor
Similar to the KY-003
but with an SS49E linear
Hall effect sensor.

KY-036 Conductive Contact
Sensor
The output will change
when something
conductive (like a finger)
touches the bare lead on
the sensor.

KY-037 Sensitive Microphone
Sensor
Microphone with a
variable threshold. The
larger microphone (as
compared to the KY-038
module), gives this unit
slightly more sensitivity.

Modules | 297

Part
no.

Name and description Image Pinout

KY-038 Microphone Sensor
Microphone with a
variable threshold. Due
to the smaller
microphone (as
compared to the KY-037
module) this module is
less sensitive.

KY-039 LED Heartbeat Sensor
Basically the same thing
as the finger clip popular
in hospitals and doctor’s
offices for measuring a
patient’s pulse rate. A
phototransistor is used
to detect the slight
variations in the light
from an LED as blood
flows through a finger.

KY-040 Rotary Encoder
A digital continuous
rotary encoder. Refer to
“Digital rotary encoders”
on page 329 for more
about these devices.

298 | Chapter 9: Modules and I/O Components

SainSmart modules

Table 9-8. SainSmart sensor and output modules

Part no. Name and
description

Image Pinout

Relay Module
5V relay with 10A
contacts.

20-019-100 Ultrasonic
Distance Sensor
HC-SR04
Uses a pair of
ultrasonic
transducers to emit
a signal and then
receive the echo.
The time between
the trigger and the
echo is proportional
to the distance
from the sensor to
the reflective
surface.

Active Buzzer
Emits a tone when
power is applied.

Modules | 299

Part no. Name and
description

Image Pinout

Passive Buzzer
Responds to a
square wave input,
which allows this
module to emit a
programmable
tone.

20-011-983 Hall Effect Sensor
Utilizes a linear Hall
effect sensor. The
small
potentiometer sets
the sensitivity
threshold.

Infrared Receiver
Responds to pulses
from a remote
control device to
generate a digital
signal.

20-011-946 Water Sensor
Detects the
presence of water
by responding to a
change in the
conductivity across
the metallic fingers
on the PCB. Can be
used as a rain
detector or as a
splash detector.

300 | Chapter 9: Modules and I/O Components

Part no. Name and
description

Image Pinout

20-011-985 Touch Sensor
Detects the touch
of a finger.

20-011-984 Flame Sensor
Responds to IR
between 760 and
1100 nm. The
potentiometer sets
the sensitivity level.

20-011-988 Temperature
Sensor
Uses a DS18B20
one-wire
temperature sensor
IC (see “DS18B20”
on page 312 in a
TO-92 package.

Modules | 301

Part no. Name and
description

Image Pinout

20-011-986 Temperature &
Relative
Humidity Sensor
Uses a DHT11
temperature and
humidity sensor.
Refer to
Figure 9-14 for
more information
on this part.

20-011-982 Vibration/Shock
Sensor
Senses sudden
movement (shock
or vibration) with a
sealed sensor,
similar to the
KEYES KY-002.

20-011-987 Tracking Sensor
Employs an IR LED
and a photosensor
to detect
reflectance.

302 | Chapter 9: Modules and I/O Components

Part no. Name and
description

Image Pinout

20-011-981 Photosensitive
Sensor
A basic LDR circuit
(see “Photocells”
on page 320) with
variable sensitivity.

20-011-944 Joystick Module
A two-axis linear
potentiometer
joystick. Includes a
large knob.

TinkerKit modules

Table 9-9. TinkerKit I/O modules

Part no. Name and description Image
T000020 Accelerometer Module

Based on the three-axis LIS344AL IC. Includes two
signal amplifiers.

Modules | 303

Part no. Name and description Image
T000030 Joystick Module

Two potentiometers mounted on a two-axis gimbal.

T000070 Hall Effect Sensor
Outputs a voltage that is dependent on the strength
of a local magnetic field.

T000090 LDR Module
Light-dependent resistor (LDR) with an amplifier,
outputs a voltage proportional to the light level.

T000140 Rotary Potentiometer Module
4.7K ohm rotary analog potentiometer.

304 | Chapter 9: Modules and I/O Components

Part no. Name and description Image
T000150 Linear Potentiometer Module

4.7K ohm linear (slider) analog potentiometer.

T000180 Pushbutton Module
Simple pushbutton module, normally open, outputs
+5V when pressed.

T000190 Tilt Module
Uses simple tilt sensor with internal metal ball.

T000200 Thermistor Module
Uses a thermistor and an amplifier to output a
voltage proportional to temperature.

Modules | 305

Part no. Name and description Image
T000220 Touch Sensor Module

Utilizes a QT100A single touch controller to produce
5V when sensor is touched. The touch pad is part of
the front of the PCB, which appears flat in the image.

T010010 Relay Module
Incorporates a 5V relay with 250V 10A contacts, a
driver transistor, and a screw-type terminal block.

T010020 Mosfet Module
Switches up to 24V DC using an IRF520 MOSFET. Fast
enough to be used with PWM for DC motor control.

T010110 High Power LED Module
Provides five ultra-bright LEDs. Requires significant
current, so you might want to use with a T010020
and an external power supply.

306 | Chapter 9: Modules and I/O Components

Part no. Name and description Image
T010111 5 mm Blue LED

A simple module with a single 5 mm blue LED.

T010112 5 mm Green LED Module
A simple module with a single 5 mm green LED.

T010113 5 mm Yellow LED Module
A simple module with a single 5 mm yellow LED.

T010114 5 mm Red LED Module
A simple module with a single 5 mm red LED.

Modules | 307

Part no. Name and description Image
T010115 10 mm Blue LED Module

A simple module with a single large 10 mm blue
LED.

T010116 10 mm Green LED Module
A simple module with a single large 10 mm green
LED.

T010117 10 mm Yellow LED Module
A simple module with a single large 10 mm yellow
LED.

T010118 10 mm Red LED Module
A simple module with a single large 10 mm red LED.

308 | Chapter 9: Modules and I/O Components

Grove Modules
SeedStudio has amassed a large number of modules under the Grove interconnect
system. Many of these are functionally similar to modules available from KEYES,
SainSmart, and TinkerKit. Others are unique to the Grove product line.

The Grove modules are categorized into six groups: environment monitoring, motion
sensing, user interface, physical monitoring, logic gate functions, and power control.
The modules all use a standardized connection scheme involving a 4-pin modular
connector with power, ground, and signal lines.

As with the TinkerKit modules, the advantage of the Grove modules is that you don’t
have to try to verify (or figure out) what a module’s pins actually do. A shield that
follows the Grove conventions (such as the Grove shields shown in Chapter 8) will
connect to a Grove sensor or actuator module using a prefabricated cable. Seeed Stu‐
dio also sells premade cables for connecting modules to an interface or control shield.

One feature of the Grove modules that I find appealing is the inclusion of mounting
tabs in the PCB of most of the modules. This gets the mounting hardware out of the
way of the circuitry (as opposed to mounting holes in the middle of the PCB layout)
and the modular connectors are easy to use. An example Grove module is shown in
Figure 9-10.

Figure 9-10. An example Grove module

At this time of writing, the TinkerKit modules appear to be fading, while the Grove
modules appear to be very much alive and well. That’s not to say that TinkerKit won’t
make a comeback, or that Grove will be around forever; things can and do change in
the Arduino world on short time scales. As I pointed out earlier, this chapter and
Chapter 8 are intended to provide examples of what is available, not serve as defini‐
tive references. The market is too volatile to allow for that.

Grove Modules | 309

If you are looking for modules that follow a convention of one sort or another, then I
would recommend investigating the Grove products. If you want to use a different
expansion or interface shield, you can create your own interface cables using readily
available shells, pins, and sockets, as described in “Building Custom Connectors” on
page 352. You can see a complete listing of the modules currently available at the
Seeed Studio wiki.

Sensor and Module Descriptions
The remainder of this chapter describes some of the different types of Arduino-
compatible components, modules, and sensors that are available. I say “some of ”
because, as with shields, new sensors and modules appear constantly, and some older
types vanish if there isn’t enough of a market to justify continued production. Some
modules are rather specialized one-off types, such as gas sensors or current monitors.
Some sensors may disappear as they are replaced with newer types. You can find all
the devices described here, and more, with very little effort using Google, browsing
through the listings on Amazon.com, or checking the websites listed in “Sources” on
page 355.

Table 9-10 lists the controls, sensors, actuators, displays, and modules described in
this section. They are organized by function, class (input or output), and type (device,
component, or module). Remember that the components on any module are also
available as single items, so you can create your own module or incorporate the parts
into something else.

Table 9-10. Sensors and modules index

Function Class Type Description
Audio Output Device Buzzer (annunciator) components and modules

Audio Sensor Microphone Audio pick-up (microphone) modules

Communication I/O Module 315/433 MHz RF modules

Communication I/O Module APC220 wireless modules

Communication I/O Module ESP8266 WiFi transceiver

Communication I/O Module NRF24L01 module

Contact Sensor Switch Contact switch modules

Contact Output Switch Relays and relay modules

Control Input Device Keypads

Control Input Module Joystick modules

Control Input Device Potentiometers

Display Output Module 7-segment modules

Display Output Module ERM1601SBS-2 16 × 1 LCD display

Display Output Module ST7066 (HD44780) 16 × 2 LCD display

310 | Chapter 9: Modules and I/O Components

http://bit.ly/seeed-grove

Function Class Type Description
Display Output Module ERC240128SBS-1 240 × 128 LCD display

Display Output Module ST7735R 128 × 160 TFT display

Light emit Output Display 7-segment LED display

Light emit Output Display LED matrix modules

Light emit Output Laser Laser LEDs

Light emit Output LED Single-color LEDs

Light emit Output LED Bicolor LEDs

Light emit Output LED Tricolor (RGB) LEDs

Light sense Sensor Photocell LDR modules

Light sense Sensor Diode Photodiode modules

Light sense Sensor Transistor Phototransistor modules

IR sense Sensor IR PIR sensor modules

Magnetic Sensor Solid state Hall effect sensor modules

Magnetic Sensor Solid state Magnetometer modules

Moisture Sensor PCB Soil moisture sensor modules

Motion Output Actuator DC motor control

Motion Output Actuator Servo control

Motion Output Actuator Stepper motor control

Motion Sensor Solid state Gyroscope modules

Motion Sensor Solid state Accelerometer modules

Pressure Sensor Solid state Barometric sensor modules

Range Sensor Module Laser transmitter/receiver modules

Range Sensor Module LED object sensor modules

Range Sensor Module Ultrasonic range finder modules

Rotation Sensor Control Digital rotary encoder modules

Signal Output Module Waveform generator modules

Temperature Sensor Solid state DS18B20 temperature sensor modules

Temperature Sensor Module DHT11/DHT22 temperature and humidity sensor modules

Temperature Sensor Module Thermistor temperature sensor modules

Tilt Sensor Switch Single-axis tilt sensor modules

Tilt Sensor Switch Dual-axis tilt sensor modules

Time Support Module DS1302 RTC modules

Time Support Module DS1307 RTC modules

Time Support Module DS3231 RTC modules

Time Support Module PCF8563 RTC modules

Voltage Output Module DAC modules

Water Sensor PCB Water conductivity sensor modules

Sensor and Module Descriptions | 311

Sensors
While it is possible to connect many sensors directly to an Arduino, modules like the
ones listed in the previous section are definitely easier to deal with. But modules
might not be a good choice if you want to create custom hardware for a specific appli‐
cation. In that case you will want to use just the sensor component and place it
exactly where it needs to be.

A sensor is always an input device that acquires data from the physical environment
and converts it into a form that a microcontroller can process. As the name implies, it
senses something, where that something might be temperature, humidity, magnetic
fields, visible light, heat, infrared, sound, or physical motion.

Temperature, Humidity, and Pressure Sensors
There are multiple choices available for environmental sensors that can be used with
an Arduino. From simple continuity-based water detection sensors to sensitive tem‐
perature and humidity sensors, chances are there is a sensor that can measure how
hot, how cold, how wet, or how dry the environment happens to be.

DS18B20
The DS18B20 is a so-called “one-wire” temperature sensor that returns a stream of
binary data containing the current temperature at the sensor. Figure 9-11 shows a
commonly available module with a DS18B20, some passive components, and an LED.

Figure 9-11. Typical DS18B20 module

Figure 9-12 shows the module mounted on a prototype shield along with a relay and
a potentiometer. This, by the way, is a simple digital thermostat that was cobbled
together to replace a dead bimetallic strip electromechanical thermostat in a small
portable electric heater. The old-style mechanical thermostat never worked very well,
but this simple digital replacement does an excellent job. The Arduino that it con‐
nects to also provides the ability to log temperature data and perform other functions.
A cheap heater in the Internet of Things? Sure, why not?

312 | Chapter 9: Modules and I/O Components

Figure 9-12. Example application of DS18B20 module

DHT11 and DHT22 sensors
The DHT11 and DHT22 temperature and humidity sensors come in three-terminal
plastic packages, as shown in Figure 9-13. They can also be found already mounted
on a small PCB, as shown in Figure 9-14.

Figure 9-13. DHT11 package

Figure 9-14. DHT11/DHT22 module

The DHT11 and DHT22 sensors differ in terms of resolution and serial data rate. The
DHT11 is a basic device with a temperature sensing accuracy of +/– 2 degrees C, and

Sensors | 313

a humidity resolution of +/– 5% relative humidity. It has a working range of 20 to
90% relative humidity, and 0 to 50 degrees C. The DHT22 features +/– 0.2 degrees C
temperature resolution and +/– 1% RH sensing capability, and a faster serial data tim‐
ing rate. The DHT22 has a wider sensing range than the DHT11: –40 to 80 degrees C
and 0 to 100% RH. The pinout of the DHT22 is identical to the DHT11.

Both the DHT11 and DHT22 employ a nonstandard one-wire serial communications
protocol. It works using a signal-response approach. The microcontroller pulls the
single signal line low for a brief period of time, followed by allowing it to go high (via
a pull-up resistor, either added externally or on the PCB module). The DHT11/
DHT22 responds with 40 bits of serial data, organized as five 8-bit data values,
including an 8-bit checksum.

Thermistors
A thermistor is a temperature-controlled resistor. They are available with either a
negative or positive temperature coefficient. A negative temperature coefficient
(NTC) device will exhibit a lower resistance as the temperature increases. A positive
temperature coefficient (PTC) device has the opposite behavior. NTC thermistors are
the most common types found in sensor applications, and PTC types are often used
as current inrush limiters.

Figure 9-15 shows one way to connect a thermistor to an Arduino, but be aware that
the response curve of the thermistor is not linear. Some circuits replace the fixed
resistor with a constant current source.

Figure 9-15. Simple thermistor connection to an Arduino

314 | Chapter 9: Modules and I/O Components

Although it is possible to connect a thermistor directly to an Arduino, an easier way
is to use a module that includes the passive components necessary to create a voltage
divider for the thermistor, such as the KY-028 shown in Table 9-7. You could also use
the op amp circuit shown in Figure 9-26 to increase the sensitivity of the thermistor.
Note that since most thermistors used for temperature sensing are NTC types, the
voltage that appears on the analog input of the Arduino will drop as the temperature
increases.

Water sensors
A water sensor is useful for many applications, from a flood sensor in a basement to a
rain detector for an automated weather station. Table 9-8 shows one type of water
detector available from SainSmart (the 20-011-946). This sensor incorporates an
NPN transistor that will pull the output low when the thin traces on the PCB are con‐
nected by a water drop, or basically anything wet enough to cause the transistor to
conduct.

Figure 9-16 shows the schematic for this sensor. As you can see, it’s not complicated,
and could be used with just about any conductive wires or probes. Connect this cir‐
cuit to a pair of steel wires, mount the wires so they are about 1/4 inch or so (or about
a centimeter) above the basement floor, and it could be used to trigger an alarm
upstairs when water starts to flood the basement.

Figure 9-16. Water sensor schematic

Sensors | 315

Soil moisture sensors
In its simplest form a two-prong soil moisture sensor is really nothing more than a
conductivity probe. The probe is configured to act as a component in a simple voltage
divider, and the voltage that appears across it will be a function of the conductivity of
the soil between the probes. You can purchase a kit consisting of a moisture probe, a
small interface module, and a cable from suppliers like SainSmart. Figure 9-17 shows
all three parts of such a kit.

Figure 9-17. Soil moisture probe kit with interface module

The same effect could be achieved using almost any conductive material for the
probes. For long-term use something like stainless steel or carbon rods might be a
better choice where corrosion is a concern, and some type of amplifier or buffer is
essential to get consistent readings without dumping a lot of current into the probe
(which can cause some interesting side effects, and also help to corrode the probe’s
electrodes).

Another variation on the soil moisture sensor, a Grove 101020008 from Seeed Studio,
is shown in Figure 9-18. This sensor includes an on-board NPN transistor to boost
the voltage drop to a level an Arduino AVR ADC can work with. The copper layer on
the prongs of this probe have been plated with a thin layer of gold to help resist cor‐
rosion.

Figure 9-18. Self-contained soil moisture probe

316 | Chapter 9: Modules and I/O Components

The schematic for the self-contained moisture probe is shown in Figure 9-19. It is
essentially the same as the circuit used with the water sensor, shown in Figure 9-16.
Note that this design utilizes a four-terminal connector instead of the pin connec‐
tions used on the probe in Figure 9-17. This is definitely more convenient, but pay
attention to how the terminals in the connector are wired.

Figure 9-19. Self-contained soil moisture probe schematic

Barometric sensors
With a barometric pressure sensor, like the one shown in Figure 9-20, and the
DHT11 or DHT22 modules described earlier (“DHT11 and DHT22 sensors” on page
313), an Arduino can be used to build a compact weather monitor. The sensor shown
here is based on an MPL115A2 sensor with an I2C interface.

Figure 9-20. Barometric pressure sensor module

Sensors | 317

This particular module isn’t accurate enough to be used as an altimeter, but it’s fine
for acquiring and logging weather data. Other modules based on sensors like the
MPL3115A2 or BMP085 are accurate enough to be used as altimeters.

Tilt Sensors
A tilt sensor is typically nothing more than a small sealed capsule with a set of inter‐
nal contacts and a small metal ball or bead of mercury inside. If the device is moved
from its “neutral” orientation (perpendicular to the local gravitational pull), the ball
or bead will move and close a circuit across the contacts. The operation is identical to
closing a switch.

Bear in mind that a tilt sensor is not a proportional sensor. It is either tilted or not, so
it is either open or closed electrically. There is nothing in between.

Single-axis tilt sensors
Figure 9-21 shows a module with a mercury bead tilt sensor, which happens to be a
KY-017. This particular module will only sense tilt in one direction. You’ll need to use
two or more of them to sense a tilt along either end of an axis.

Figure 9-21. Single-axis tilt sensor

Dual-axis tilt sensors
The key to using a tilt sensor effectively is to determine the neutral position in a par‐
ticular axis. Once this is known the sensor can be oriented to sense tilt along a partic‐
ular horizontal axis. Figure 9-22 shows two tilt sensors on a single base to sense tilt in
the x- and y-axes. Note that this arrangement will only sense tilt in one direction
(either up or down, depending on how they are mounted).

If you want to sense up or down tilt in both axes, then four tilt sensors can be
arranged at right angles to each other. This will detect tilt in both the +/– x and +/– y
directions. Unlike a solid-state gyroscope (like those described in “Gyroscopes” on
page 326), this type of circuit does not require a starting reference, and it will always

318 | Chapter 9: Modules and I/O Components

work as long as there is gravity. The down side is that there is no in between: the tilt
sensors are either on or off.

Figure 9-22. Dual-axis tilt sensor

Audio Sensors
A microphone can be used in a number of interesting ways. One way is to incorpo‐
rate the microphone as part of a security system to detect loud noises such as break‐
ing glass, someone kicking in a door, or the sound of a gun being discharged. If it is
sensitive enough it can even be used to detect footsteps.

A contact microphone can be used to collect diagnostic data from an internal com‐
bustion engine or even an electric motor while it is running. It is possible to detect
noisy bearings and loose components this way. When combined with an optical sen‐
sor an omnidirectional microphone can be used to build a lightning range detector
(the thunder arrives about 4 seconds after the flash for every mile of distance from
the observer to the lightning bolt).

There are small modules available with microphones and an IC, like the one shown
in Figure 9-23. The miniature potentiometer is used to set the trip threshold of the
circuit. This module uses a circuit similar to the one shown in Figure 9-8.

Figure 9-23. Audio pick-up module

Sensors | 319

It is also possible to connect a microphone directly to one of the analog inputs of an
Arduino, although you wouldn’t have any control over the sensitivity. A simple op-
amp circuit like the one shown in Figure 9-26 can be used to improve the sensitivity.

Light Sensors
Sensors for detecting light come in a variety of styles and types. Some, like infrared
(IR) sensors, can detect heat; some respond to the IR emitted by flames, others
respond to visible light. A light sensor may employ a resistive element that changes its
intrinsic resistance in response to the amount of light that falls on it. Others employ a
semiconductor for increased sensitivity and fast response.

Photocells
A photocell, also known as a light-dependent resistor (LDR), is exactly what the name
implies: a component in which the resistance changes as a function of the amount of
light impinging upon it. Most look like the one shown in Figure 9-24. While these
devices aren’t all that fast by photodiode or phototransistor standards, they are still
fast enough to carry audio in an amplitude-modulated beam of light. They are useful
as ambient light level detectors, simple low-speed pulse-coded optical data links, bea‐
con sensors for a robot so it can find a recharging station, and solar position trackers
for a solar cell array.

Figure 9-24. Typical low-cost LDR device

Photodiodes
Although most diodes have some degree of light sensitivity, a photodiode is built to
enhance this effect. A photodiode is, as the name implies, a diode that has been man‐
ufactured such that it will go into conduction when light impinges on it, and a com‐
mon type of photodiode is a PIN diode. The “I” stands for the layer of “intrinsic”
silicon material between the P and N silicon parts of the diode, and that layer of
intrinsic material makes a PIN diode a good light detector. Because they respond very
quickly they are useful for optical data communications links and as position sensors
for rotary mechanisms. PIN diodes are also found in high-frequency radio circuits,

320 | Chapter 9: Modules and I/O Components

where they serve as switches. For more information about diodes and other solid-
state devices, refer to the references listed in Appendix D.

Figure 9-25 shows how to connect a photodiode to an Arduino. Notice that the diode
is reverse biased—in other words, it won’t normally conduct current until it is
exposed to light. While this circuit will work with a sufficiently bright light source, it
may struggle with low illumination levels.

Figure 9-25. Simple photodiode connection to an Arduino

One way to improve the sensitivity is to use an op amp, as shown in Figure 9-26. In
this case an LM358 op amp with a gain of up to around 10 is used to boost the small
voltage change when the diode conducts to a level that the ADC in an Arduino can
easily detect and convert. The trimmer potentiometer sets the gain of the circuit, so it
can be adjusted to suit a particular application. This circuit can easily be assembled
on a small solderless breadboard module, or the components can be mounted on a
prototyping PCB (often called a “perf board”) for a more permanent arrangement.

You can browse the selection of photodiodes (and op amps) available from electron‐
ics distributors such as Digikey, Mouser, and Newark/Element14. Many surplus elec‐
tronics suppliers also have stocks of photodiodes on hand.

Sensors | 321

http://www.digikey.com
http://www.mouser.com
http://www.newark.com

Figure 9-26. Photodiode connection with an op amp

Phototransistors
As the name implies, a phototransistor responds to light by varying the amount of
current passing through the device, just as the base input lead would otherwise do.
The circuit shown in Figure 9-8 will work with a phototransistor. Some modules, like
the KY-039, simply bring out the transistor’s leads to the connector pins (you can clip
off the LED and use the module as a phototransistor sensor module, by the way).

You can expand on the basic circuit by adding an op-amp for some gain. Figure 9-27
shows how this can be done. Just about any garden-variety NPN phototransistor will
work, but I happen to like the BFH310, mainly because I got a great deal on a large
bag of the things (check with an electronics distributor such as DigiKey or Mouser
for availability).

Common optical interrupters, like the one used in the KY-010 module, employ a
phototransistor to sense the output of an LED. When something blocks the light by
entering the gap in the component, the transistor will cease to conduct. Optical isola‐
tors (also called optocouplers or opto-isolators) also utilize an LED–phototransistor
pair to couple a signal from one circuit to another without a direct electrical connec‐
tion. You can build your own coupler with an LED, a phototransistor, and a section of
black heat-shrink tubing to cover it all and keep out stray light.

322 | Chapter 9: Modules and I/O Components

Figure 9-27. Phototransistor circuit with both analog and digital outputs

PIR sensors
A PIR (passive infrared) sensor measures the amount of infrared in its field of view.
These are popular for security systems because they can usually detect very small
changes in the ambient IR “glow” of a room. If the IR level deviates from the ambient
baseline (such as when a warm human enters the room), the device will emit a signal.
A PIR sensor can also be used to obtain a rough measurement of the temperature of
whatever is in the field of view. Figure 9-28 shows a commonly available PIR module.

Figure 9-28. PIR detector

Sensors | 323

This module is available for around $2 from Banggood and other distributors. It uses
three connections: +5V, ground, and output. The output goes high when the sensor
detects a change in the ambient IR. Combine this and an audio sensor, like the one
shown in Figure 9-23, with the basic security system code described in Example 5-5,
and you’ll have a complete burglar alarm system.

Magnetic Sensors
One of the areas where semiconductor technology has made considerable strides is in
the detection of static magnetic fields. Detecting an oscillating magnetic field, such as
that produced by a coil, is relatively easy since all that is needed is another coil.
Detecting a static magnetic field, such as that around a permanent magnet or the
Earth’s magnetic field, is a bit more challenging. Prior to the development of elec‐
tronic devices magnetic field sensors often incorporated magnets, coils, mirrors, and
other components. A standard camping compass is an example of old-style technol‐
ogy, and it works fine for a hiking trip or for detecting the magnetic field around a
wire carrying a continuous direct current, but collecting data from it is rather tedious.
These days you can build a magnetic field detector or an electronic compass with no
moving parts that will interface directly with a microcontroller.

Hall effect sensors
A Hall effect sensor can detect the presence of a magnetic field. Some types, like the
A3144 used in the KY-003, are designed to be on/off-type devices: there either is or is
not a magnetic field present. Other types, like the SS49E, are linear types, with an
analog output proportional to the sensed magnetic field. The KY-024 is an example of
a module with a linear Hall effect sensor.

Both the A3144 and the SS49E look like small plastic body transistors, so I won’t
show them here. In the case of the A3144 and similar devices, you can connect it
directly to an Arduino, which is essentially what the KY-003 module does. The
KY-024 module uses the common comparator circuit shown in Figure 9-8.

Magnetometer sensors
Another form of magnetic sensor that can be useful with an Arduino is a compass,
like the one shown in Figure 9-29. This unit from Adafruit uses an HMC5883L three-
axis magnetometer. It features an I2C interface.

Vibration and Shock Sensors
Vibration and shock sensors are usually based on the detection of movement in a
sensing mass of some sort. The sensing mass can be as simple as a mechanical arm
with a small mass on the end and some contacts arranged so that the arm will close a
circuit with one or the other as it deflects. Another variation might use an optical sen‐

324 | Chapter 9: Modules and I/O Components

http://www.banggood.com

sor that will change its output state when the arm breaks a beam of light. It might also
be a spring-loaded sliding mass with contacts, optical sensors, or even a magnetic
sensor. One type that is also used employs a piezo-electric sensor to detect movement
in a sensing mass.

Figure 9-29. Magnetometer compass module

A very inexpensive type of vibration sensor uses a small conductive mass in a sealed
enclosure. When the mass moves it will break and make contact with conductive
sleeves at each end of the enclosure. The KY-020 is a typical module with a sensor of
this type.

A shock sensor is similar to a vibration sensor, but in some cases shock sensors are
designed to respond to specific input force levels in terms of some multiple of g (1g =
the force of gravity at Earth’s mean sea-level surface). The KY-031 is an example of a
small low-cost shock sensor module.

You can build your own shock or impact sensor using a metal ball (a BB works well),
a spring (perhaps from a ballpoint pen), a short section of plastic tubing, and some
fine-gauge wire. Figure 9-30 shows how all the parts are assembled.

If you need more precision, industrial-grade shock sensors are available that are cali‐
brated to specific force levels. These are used for things like automobile impact test‐
ing and testing the impact tolerance of shipping cases for delicate devices. They aren’t
cheap, however.

Motion Sensors
The ability to sense angular changes in position at varying rates is key to keeping
things stable in three-dimensional space. Many quadcopters (or drones, as they are
sometimes called) incorporate some form of multiaxis motion sensing to simulate the
operation of a true mechanical gyroscope or inertial management unit (IMU). These
types of devices are also popular with RC airplane and helicopter enthusiasts, and
some adventurous souls have even incorporated them into model rockets to track and
log the motion of the rocket during powered flight.

Sensors | 325

Figure 9-30. A homemade impact or shock sensor

Recent advances in technology and manufacturing techniques have driven down the
prices of these devices to previously unimaginable levels. A solid-state rate gyroscope
or accelerometer that once cost upwards of $50 can now be had for around $10. With
the low cost, and the fact that the IC components are very small surface-mount pack‐
ages with fine pitch leads, it makes more sense to buy a module rather than attempt
to assemble something from scratch—unless, of course, you want to use it as part of
something larger and you have the ability to deal with surface-mount parts.

Gyroscopes
The term “gyroscope,” or “gyro,” is something of a misnomer when applied to digital
sensing devices. Unlike true mechanical gyroscopes, these devices are more like angu‐
lar rate sensors intended to sense motion around an axis. They don’t inherently refer‐
ence an inertial starting position like a true gyroscope. An IMU can do that, but most
electromechanical IMU devices are large, heavy things with three (or more) internal
high-speed gyroscopes in precision ball-bearing gimbal mounts along with electric
motors and position sensors. They also tend to be very, very expensive. However,
with some clever programming and the use of multiaxis accelerometers (discussed
next) it is possible to simulate an IMU. Figure 9-31 shows a three-axis rate gyro mod‐
ule, available from DealeXtreme, Banggood, and other suppliers.

326 | Chapter 9: Modules and I/O Components

Figure 9-31. Three-axis rate gyroscope module

Accelerometers
An accelerometer senses a change in velocity along a particular linear axis. When the
accelerometer is moving at a constant velocity it will not detect any change, but when
the velocity changes due to either acceleration or deceleration, the sensor will gener‐
ate an output. A three-axis accelerometer arrangement will detect velocity changes in
the x-, y-, and z-axes. Figure 9-32 shows an inexpensive MMA7361-based single-axis
accelerometer module from DealeXtreme, but modules like this can also be obtained
from Adafruit, SparkFun, and other suppliers.

Figure 9-32. Accelerometer module

Contact and Position Sensors
Contact sensors are found in all manner of applications, from beverage bottling
machines to computer-controlled tools in a machine shop. The heavy-duty pushbut‐
ton on an effects box like those used by musicians is a type of contact sensor. But
regardless of how they are made, contact sensors all work on the same principle:
either they are in physical contact with something, or they are not.

Position sensors, as the name implies, are used to sense the position of something.
Unlike a contact sensor, a position sensor will usually have the ability to sense the
degree of closeness or some amount of angular rotation. Some position sensors

Sensors | 327

employ reflected light, others utilize sound, and still others incorporate a specially
designed rotor and a light beam to measure angular motion. One other form of posi‐
tion sensor, called an absolute encoder, uses an internal glass disk with very fine
marks to determine the precise degree of rotation of a shaft. Absolute encoders aren’t
covered here.

Contact switches
A contact switch can be as simple as a wire “whisker” made from a spring with a con‐
ductive post through the center, like those found on the little robotic bugs sold as
children’s toys. When the whisker is bent it causes the spring to make contact with the
conductive post and closes the circuit. In other words, it’s just a switch. Figure 9-33
shows a close-up view of this type of contact sensor.

Figure 9-33. Spring and whisker contact sensor

At the other end of the spectrum are so-called snap-action switches like the one
shown mounted on a module in Figure 9-34. This happens to be a Meeeno crash sen‐
sor module. These types of switches are often found in applications such as limit sen‐
sors for robotics or computer-numeric controlled (CNC) machine tools.

A pushbutton switch can also serve as a contact sensor. The old-style push switches
used in automobiles to turn on the interior light when the door is opened make excel‐
lent contact sensors (although they might require a fair amount of force to activate
them—more than the typical little robot can deliver). Even a copper strip and a screw
can be used to sense physical contact, as shown in Figure 9-35. The main thing is that

328 | Chapter 9: Modules and I/O Components

the switch closes (or opens, as the case may be) the circuit, which an Arduino can
sense and then respond to.

Figure 9-34. Typical snap-action switch

Figure 9-35. Simple contact sensor made from a metal strip

Digital rotary encoders
A digital rotary encoder, like the units shown in Figure 9-36, will generate pulses or
emit a numeric value as a shaft is rotated. The KY-040 module also uses a rotary
encoder. Some rotary encoders have detents on the shaft so that the operator will feel
slight bumps as the shaft is turned. For applications that don’t involve someone turn‐
ing a knob, the shaft just moves freely and continuously. See Chapter 12 for an exam‐
ple of how to create software to read a rotary encoder like the KY-040.

Sensors | 329

Figure 9-36. Digital rotary encoders

Old-style computer mice used a coated metal ball instead of an LED, and two rotary
encoders to detect the motion of the ball. These are becoming scarce, but they have
some interesting parts inside. If you take one apart you can see the plastic wheels with
evenly spaced slots. As the wheels move, the beam of light from an LED is interrup‐
ted. By sensing the timing of the pulses the small microcontroller in the mouse could
generate numeric values indicating how far the mouse had moved in the x and y
directions across a surface. Figure 9-37 shows the insides of a typical ball mouse.

Figure 9-37. Old-style mouse with a ball and rotary encoders

In this particular mouse the LED sender and phototransistor (or photodiode, per‐
haps) are two separate components. Other models of these old ball mice use optical
interrupter components, like those used on the KY-010 module shown in Table 9-7.
The interrupt wheels are driven by shafts that contact the sides of the metal ball. If
you’ve ever used a ball mouse for any period of time you know that you must occa‐
sionally remove the ball and clean any accumulated stuff from the shafts (and the ball,
as well). You can remove the interrupter wheels and the optical sensors and reuse
them in something else—frankly, the interrupter wheels are probably the most useful
parts in a ball mouse.

330 | Chapter 9: Modules and I/O Components

Laser transmitter/receivers
The module shown in Figure 9-38 is a short-range laser transmitter and receiver
designed primarily for obstacle detection or any other task where reflectance can be
used to sense an object. It could possibly be used as a data link, but the optics would
need to be refined to achieve any significant range.

Figure 9-38. Short-range laser object detector

Range Sensors
The ability to both detect an object and determine its distance from the sensor is a
key function in many robotics applications. A range sensor typically employs reflec‐
tion, be it of light, sound, or radio waves in the case of radar. We’ll cover light and
sound here, as radar sensors tend to be rather pricey and work better over extended
distances. For short-range sensing an optical or acoustic sensor works fine, and
they’re very inexpensive.

LED object sensors
An LED object sensor works by measuring the light from an LED (either optical or
IR) reflected from a surface. These devices typically have an IR LED and a detector
situated side-by-side, like the module shown in Figure 9-39. They don’t measure the
travel time of the light from the emitter back to the sensor, because at short ranges the
speed of light makes that extremely difficult to do. If you want to measure the dis‐
tance from the Earth to the Moon using one of the retroreflectors left by the Apollo
missions, then a pulsed laser, and a big telescope, and a good high-precision timer
will do the job. But for an Arduino, a reflective sensor will serve to keep a small robot
from colliding with a wall or allow it to follow a line on the floor.

Ultrasonic range finders
If you’re old enough, you might remember the old “instant” cameras that came with
an ultrasonic range finder for automatic focusing and ejected a photograph that you
could watch develop. The range finder typically consisted of a pair of piezoelectric

Sensors | 331

sensors, one wired as an emitter and the other as a receiver. The emitter generated a
short pulse of ultrasonic sound and the echo was detected by the receiver. With this
kind of range finder, the time between the output of the pulse and the echo return is
determined by the distance to whatever the sensors are pointing toward. This works
because sound moves relatively slowly, so obtaining the time between the pulse and
the return is not a particularly difficult thing to do with fast enough logic.

Figure 9-39. Reflective object sensor module

These days you can pick up an ultrasonic range finder for a few dollars that can be
connected to an Arduino. An example of a readily available ultrasonic sensor is the
20-019-100 module shown in Table 9-8.

Communications
There are numerous modules for communications applications, ranging from plain
RS-232 adapters to wireless communications and laser transmitter/receiver modules.

APC220 Wireless Modules
APC220 transceiver modules operate at 418 to 455 MHz. A complete digital link con‐
sists of two modules and an optional USB adapter. This allows for one module to be
connected to a PC, and the other to be attached to an Arduino. The APC220 can
transfer data at 19,200 bits per second with a range of up to 1,000 meters. The multi‐
function shield described in “Miscellaneous Shields” on page 268 comes with a con‐
nection point for an APC220 module, as does the 16 × 2 LCD shield from DFRobot
(also covered in Chapter 8). Figure 9-40 shows a pair of APC220 modules.

315/433 MHz RF Modules
With a range of up to 500 feet (150 meters) these modules are a low-cost alternative
to the APC220. The downside is that they are not transceivers, but come as a set con‐
sisting of a transmitter and a receiver as shown in Figure 9-41. They are available pre‐
set to either 315 MHz or 433 MHz. Note that you will need to add your own antenna.

332 | Chapter 9: Modules and I/O Components

Figure 9-40. APC220 RF transceiver modules (image source: DFRobot)

Figure 9-41. 433 MHz transmitter and receiver

ESP8266 Transceiver
This highly integrated WiFi module, shown in Figure 9-42, supports the 802.11 b/g/n
protocols and uses a serial interface to communicate with an Arduino. The on-board
32-bit MCU has a TCP/IP network protocol stack in its firmware. It handles the low-
level details of establishing and maintaining a digital link, so all the Arduino needs to
do is specify an address to connect with, or wait for some other module to connect
with it.

Figure 9-42. WiFi transceiver module

Communications | 333

NRF24L01
The NRF24L01 module, shown in Figure 9-43, is a low-power transceiver operating
at 2.4 GHz with about an 800 foot (250 meter) range. It uses an SPI interface to com‐
municate with an Arduino. These modules can be purchased for around $3 from
multiple sources.

Figure 9-43. NRF24L01 RF transceiver

RS-232 adapter
The AVR MCU devices used in Arduino boards have a built-in UART (or USART, if
you want to follow Atmel’s terminology), but it doesn’t generate standard RS-232 sig‐
nals. Rather than build a custom converter, an RS-232 adapter module provides the
converter, IC, and a DB-9 connector, as shown in Figure 9-44. The RxD and TxD
pins from the MCU connect directly to the module.

Figure 9-44. RS-232 adapter module

Output Devices and Components
An output from an Arduino can be an LED, a servo motor, a relay, or some other
module, component, or device that responds to a signal or command from the AVR
microcontroller on an Arduino. This section starts with light sources, followed by
relays, motors, and servos. It also covers sound sources, like the KY-006 pulse-

334 | Chapter 9: Modules and I/O Components

responsive speaker shown in Table 9-7. User input and output components are cov‐
ered in later sections.

Light Sources
Light sources range from old-fashioned light bulbs in a wide range of sizes and types
to LEDs, solid-state devices that act like diodes but emit a bright glow when current
flows through them. We’ll focus on LEDs in this section, mainly because they’re inex‐
pensive, they last a long time, and they don’t always need a driver circuit. Even a tiny
incandescent light bulb can draw a significant amount of current, and they tend to
burn out and can get hot. That being said, there’s no reason you can’t use incandes‐
cent bulbs; just be prepared for additional circuit complexity (and cost) and the need
to occasionally replace a dead bulb.

LEDs come in a wide range of styles, sizes, and colors. An AVR microcontroller can
supply the 5 to 10 mA necessary to operate an LED, but it is generally not a good idea
to directly connect a lot of LEDs or attempt to drive something like a high-output
LED module. For that, a driver of some sort is the best way to go. The following
images show some of the types of LEDs that are available, and they can also be found
already mounted on module PCBs, like those shown in Table 9-7 and Table 9-9.

Single-color LEDs
Single-color LEDs range in size from miniscule surface-mount components like the
D13 LED on an Arduino board to the huge devices used for lighting and illumination
applications. Figure 9-45 shows a selection of some of the various types available.

Bicolor LEDs
A bicolor LED is basically just two LEDs mounted in a single package, which gener‐
ally looks like a regular LED with an internal connection arrangement like that shown
in Figure 9-46. The internal LEDs are connected backward with respect to one
another. When current flows in one direction one of the LEDs will glow, and when
the current is reversed the other LED will glow.

Another available type of bicolor LED employs three leads. One lead is common; the
other two each connect to one of the LED chips inside the device’s plastic package.

Tricolor (RGB) LEDs
A tricolor LED is comprised of three separate LED chips in a single molded plastic
package. Figure 9-47 shows a surface-mount part. Large numbers of these can be
mounted in an array on a single PCB, and multiple PCBs can be mounted side-by-
side to create a large full-color LED display.

Output Devices and Components | 335

Figure 9-45. Common single-color LEDs

Figure 9-46. Two-lead bicolor LED internal connections

Figure 9-47. Surface-mount tri-color LED

336 | Chapter 9: Modules and I/O Components

A tricolor LED can produce an approximation of any visible color by varying the
intensity of the output of each of the internal LEDs. Because the LED die (the individ‐
ual LED chips) are physically separate, the colors are blended with a diffuser of some
sort. From a distance it can look convincing. High-power, high-output RGB LEDs
have been used to create huge color displays, like those seen on the sides of buildings
or in large sports stadiums.

LED matrix
An LED matrix is useful for a variety of applications. An 8 × 8 matrix, like the one
shown in Figure 9-48, can be used to display letters or numbers. If you arrange a lot
of these modules side-by-side you can create a moving text display.

Figure 9-48. 8 × 8 LED matrix

Notice that the module is designed such that there is only a small amount of space at
the side between the LED “pits” and the edge of the module. When these types of
matrix modules are mounted side-by-side the gap between the last column or row on
one module and the adjoining column or row on the next module is the same as the
gap between the LEDs in the center of the module. This preserves the spacing when
many modules are used to create large displays.

7-segment LED display
The venerable 7-segment display has been around for a long time. Other than single
LEDs, this was the first viable application for LED technology, and by the late 1970s
7-segment and alphanumeric LED digit display modules were starting to show up in
all types of applications. Figure 9-49 shows a typical four-digit display module.

As with the LED matrix module shown in Figure 9-48, the spacing gaps at the ends of
this module are small so that multiple modules may be placed end-to-end. You could
easily create a 12-digit floating-point display with three of these parts.

Output Devices and Components | 337

Figure 9-49. Typical 4-digit 7-segment display

7-segment LED modules
7-segment display modules are available with a built-in SPI or I2C interface. The
module shown in Figure 9-50 is one such example. This particular module can be
purchased from Tindie (see Table 9-11). There are also modules available with multi‐
ple displays, and they can be had in red, green, yellow, and blue.

Figure 9-50. 7-segment display module with SPI interface

Lasers
Some types of diode light sources are also lasers, like those found in laser pointers,
while others are powerful enough to cut plastic or wood. A solid-state laser is essen‐
tially an LED with some internal tweaks to make it produce coherent light. Laser
LEDs are available with output wavelengths ranging from infrared to blue. Without
these devices things like laser levels for construction work, pointers for lecturers and
instructors, surface profilers for 3D modeling, CD and DVD players and recorders,
and some types of industrial cutting tools would not be possible. A typical small LED
laser module is shown in Figure 9-51 (this is a KY-008). The laser LED can be pur‐
chased as a separate component from electronics distributors.

338 | Chapter 9: Modules and I/O Components

Figure 9-51. Typical low-power red LED laser

Relays, Motors, and Servos
Many small relays can draw more current to energize the internal coil than the AVR
microcontroller on an Arduino PCB can safely deliver. Motors and servos are exam‐
ples of very useful devices that often need a driver component of some sort to deliver
the current they need to operate.

Relays
Relays come in a wide variety of sizes and shapes, ranging from small packages that
look like a 14-pin DIP IC to huge things for controlling high-current loads in indus‐
trial equipment. For most Arduino applications a small relay is all that is needed. A
small relay can operate a larger relay, which in turn can operate an even larger relay,
and so on. The KY-019 is an example of a relay module that can be connected directly
to an Arduino.

A relay driver can be as simple as a 2N2222 transistor, or it might be an IC designed
specifically to deal with the current and reverse spikes encountered with relays. The
circuit in Figure 9-5, shown earlier, uses an NPN transistor to control a small PCB-
mounted relay.

Figure 9-52 shows a module with four relays. The PCB also includes the driver tran‐
sistors, resistors, and diodes needed. All that is required is a source of 5V DC to drive
the coils in the relays and standard logic signals to control them.

Servo control
The term servo typically refers to a small device something like a motor, although at
one time it used to refer to large bulky actuators used for things like positioning guns
on a naval vessel or performing analog calculations. Typical small servos, like the
ones shown in Figure 9-53, are intended for use in radio-controlled cars and aircraft,
as well as hobbyest robotics.

Output Devices and Components | 339

Figure 9-52. Relay module with four PCB-mounted relays

Figure 9-53. A selection of small servos

Although shields are available for use with servos (see Chapter 8), an AVR microcon‐
troller can drive these devices directly with its PWM outputs. A servo like those in
Figure 9-53 rotates a drive shaft through 180 degrees, with the amount of rotation
determined by the pulse width and frequency of a control signal.

DC motor control
DC motors are commonly controlled with what is called an “H-bridge” circuit, and
Figure 9-54 shows a simplified diagram. An H-bridge can be used with continuous
DC or a PWM signal, and depending on how it is driven the motor can run in either
forward or reverse.

I wouldn’t recommended building a motor control circuit from scratch (unless you
really want to, of course). A shield like the one shown in Figure 9-55 has everything
needed to control a DC motor. It also has a heat sink to dissipate the heat generated
with high current loads. This particular shield is from Seeed Studio. Note that the
shield will control two DC motors or one stepper motor.

340 | Chapter 9: Modules and I/O Components

http://bit.ly/seeed-motor-v2

Figure 9-54. Simplified H-bridge

Figure 9-55. Motor control shield

Stepper motor control
Stepper motors are relatively simple to control, provided that the necessary electron‐
ics are in place to generate the pulses that will cause the motor shaft to rotate. One
requirement is current, and while an IC like the ULN2003A provides everything nec‐
essary to drive a small stepper motor, it won’t handle large motors with high current
demands. The ULN2003A is basically just an array of eight Darlington transistors, so
the Arduino has to take care of all of the timing for the motor pulses.

There are shields available (see Chapter 8) that contain circuitry for one to four step‐
per motors, along with connectors to make the job of wiring them up a bit easier. As
with DC motors, using something that is already built is much easier than building it
from scratch, and if you take your time into account, it’s probably less expensive
as well.

Output Devices and Components | 341

Analog Signal Outputs
Analog signals refer to the continuously variable cyclic phenomena we often refer to
as sound, as well as those signals well above the range of human hearing, such as
radio. There are multiple ways to use an Arduino to produce sine wave–type analog
signals, all of which require some additional external components. An AVR micro‐
controller does not incorporate a digital-to-analog converter (DAC) in its design, so if
you want anything other than square waves from a PWM or timer output, you’ll need
something to generate the signals.

Buzzers
Buzzers can be simple things that emit a fixed-pitch tone when active, or they can be
a bit more sophisticated and generate a programmable pitch. The KY-006 and
KY-012 are examples of these types of audio sources.

DAC modules
One way to give an Arduino digital-to-analog capability is with a DAC module, like
the unit shown in Figure 9-56. This particular item is from Adafruit, and it is based
on the MCP4725 IC, which is a single-channel 12-bit DAC with an I2C interface.

Figure 9-56. MCP4725-based DAC module

A DAC is useful when there is a need for a continuously variable signal, such as a
control voltage for some other circuit or device. A DAC can also be used to generate a
waveform such as a ramp or sine wave.

With the 100 Kb/s communications rate of standard mode I2C used with an AVR
microcontroller it isn’t possible to achieve the update rate possible with faster I2C
interface types, but a DAC can still generate a respectable low-frequency sine wave.
The downside is that the AVR will usually be doing nothing else but updating the
DAC to produce a waveform.

342 | Chapter 9: Modules and I/O Components

Waveform generators
While it is possible to generate low-frequency waveforms directly with an Arduino
and a DAC module, for quality waveforms beyond about 1 KHz an outboard circuit is
necessary. One such device is the direct digital synthesis (DDS) module shown in
Figure 9-57.

Figure 9-57. AD9850-based DDS module

The AD9850 IC can generate both square and sine waves from 1 Hz to 40 MHz. You
can download the datasheet for the AD9850 from Analog Devices. The AD9850 uses
its own unique interface, and can be controlled using either an 8-bit parallel or a
serial interface. Arduino libraries for the AD9850 are readily available.

User Input
Sometimes its is necessary for a human to interact directly with an Arduino project,
and this means pushbuttons, knobs, keypads, and joysticks. In addition to the mod‐
ules described in this chapter, you can also purchase the bare components and mount
them as you see fit.

Keypads
The term “keypad” usually refers to a small arrangement of switches with key caps,
typically in a 3 × 3, 3 × 4, or 4 × 4 grid. It can also refer to a so-called membrane
keypad, which is an array of thin membrane switches on a PCB. The keys are typically
marked with letters and numbers, like the examples shown in Figure 9-58. Keypads
aren’t limited to small rectangular arrays, but can be found in a wide range of styles
and layouts. In fact, a computer keyboard is just a large keypad.

User Input | 343

http://bit.ly/ad9850-data

Figure 9-58. An assortment of keypads

Joysticks
Joysticks typically come as one of two types: continuous analog and discrete digital. A
continuous analog joystick, like the one shown in Figure 9-59, uses two potentiome‐
ters, each connected to the x- and y-axes. The values read from the potentiometers
indicate how far the joystick has moved and what position it is currently in.

Figure 9-59. Analog joystick module

A discrete digital joystick uses small switches or some other type of detector to sense
when the joystick has moved to its maximum extent in either or both of the x or y
directions. These types of joysticks were used with early low-cost consumer games
and personal computers. They are all-or-nothing devices, but they are cheap to man‐
ufacture and they don’t have the issues with dirt and wear that can affect an analog
joystick. Many LCD shields incorporate a discrete joystick.

344 | Chapter 9: Modules and I/O Components

Potentiometers and Rotary Encoders
A potentiometer is a variable resistor, typically used for control input. A potentiome‐
ter, or pot, can be used in a light dimmer module, as a volume control, as a control
input for a test instrument, or as an input for a wide variety of analog circuits. The
TinkerKit T000140 and T000150 modules are examples of potentiometers.

A rotary encoder, like the one shown earlier in Figure 9-36, can also be put to use as a
user input device. Instead of producing a variable voltage that must be converted into
digital numbers so an AVR microcontroller can use it, the rotary encoder produces
digital output that can be used directly.

User Output
The ability to display information to a user allows you to make something truly inter‐
active. It might be simple status conveyed by LEDs, or complex messages or images
on an LCD or TFT display screen. Whatever form they take, output devices give the
user immediate feedback in response to command inputs.

There are a variety of displays available that can be used with an Arduino. The LCD
display shields described in Chapter 8 utilize these same components, but in a more
convenient form. There are, however, situations where a shield may not be appropri‐
ate, and in these cases an LCD display component that can be mounted in a specific
fashion may be the better choice.

More examples of displays in the form of shields for Arduino
boards are described in Chapter 8. Be sure to look there as well.
Unless you absolutely must have a display with bare pins, a shield is
a much easier way to go.

Text Displays
Some of the more common and inexpensive text-only displays have anywhere from 1
to 4 lines, with each line capable of displaying 8, 16, 20, 24, 32, or 40 characters. Of
course, as the display density increases, so does the price. A 1-line 8-character display
can be had for around $2, while a 4-line 40-character display goes for somewhere in
the neighborhood of $18.

ERM1601SBS-2
The ERM1601SBS-2 LCD display is a 16 × 1 display with white characters on a blue
background. A typical module is shown in Figure 9-60. These displays utilize an
HD44780 or KS066 controller chip and LED backlighting, and this particular unit

User Output | 345

sells for around $3. Similar products are available with black letters on a yellow-green
background and black letters on a white background.

Figure 9-60. ERM1601SBS-2 display module

ST7066 (HD44780)
This is a 16 × 2 line LCD display with a simple parallel interface that uses either an
HD44780 or an ST7066 controller. It is the same part as found on the LCD display
shields from Adafruit, SparkFun, SainSmart, and other sources. Figure 9-61 shows an
example of this type of display. These sell for about $10.

Figure 9-61. 16 × 2 display using an HD44780 or ST7066 controller

You may notice that the ERM1601SBS-2 shown in Figure 9-60 looks a lot like the dis‐
play shown in Figure 9-61. This is because they both use the same ICs to drive the
LCD. The only major difference is that one has a single-line display and the other has
a two-line display.

Other types of both nongraphical and graphical LCD displays are available from a
variety of sources. Occasionally you can find new surplus displays at very low prices,
and if they use a standard controller chip they can usually be easily integrated into an
Arduino project. The downside is that these surplus displays often have special-
purpose symbols built in—so you might get a great deal but have a display with sym‐

346 | Chapter 9: Modules and I/O Components

bols for a microwave oven or a lawn sprinkler system that you don’t need. (Or then
again, maybe you do…)

Graphical Displays
Graphical displays are available using LCD, TFT, or OLED technologies in both mon‐
ochrome and color formats. The TFT and OLED devices look much better than a
simple dot-addressable LCD, but the prettiness comes at a price.

ERC240128SBS-1
The ERC240128SBS-1 display shown in Figure 9-62 is a 240 × 128 dot-addressable
LCD display with an 8-bit parallel interface. It is available from BuyDisplay.

Figure 9-62. 240 × 128 color TFT display

ST7735R
An example of another type of display is the 128 × 160 TFT unit sold by Adafruit and
shown in Figure 9-63. This display has a 1.8 inch (4.6 cm) diagonal size display and is
capable of 18-bit color selection for 262,144 different shades. It uses an ST7735R con‐
troller with an SPI interface, and even includes a microSD card carrier on the back
side of the PCB.

Support Functions
Most modules provide input or output functions. Not many have functions that could
be classified as non-I/O support. Those that do generally fall into the categories of
clocks and timers.

Support Functions | 347

http://www.buydisplay.com

Figure 9-63. 1.8” color TFT display module

Clocks
There are multiple types of real-time clock (RTC) ICs available, including the
DS1302, DS1307, DS3231, and PCF8563. They all do basically the same thing: keep
track of the time and date. Some have on-board EEPROM and some do not. Some
use a nonstandard interface, some use SPI, and others use I2C. Other than the obvi‐
ous interface differences, the primary differences are largely a matter of accuracy as a
function of stability over time, temperature sensitivity, power consumption, and cost.

Four common RTC modules encountered are those based on the DS1302, DS1307,
DS3231, and PCF8563 ICs. The modules will usually have a holder for a “coin cell"–
type battery, often a CR2032 or an LIR2032. Independent testing has shown that the
DS3231 has the best overall long-term stability, but the other RTCs are perfectly usa‐
ble. The modules with external crystals can suffer from temperature-induced drift,
and all of them will deviate to some degree over extended periods of time.

DS1302 RTC module
The DS1302 RTC IC (Figure 9-64) uses a nonstandard serial interface. It’s not SPI,
but it is clocked. One line carries data, one is a clock signal, and another is the chip
enable (CE) line. This is what Maxim (née Dallas Semiconductor) refers to as a three-
wire interface. Figure 9-64 shows a typical DS1302 module. More information about
the DS1302 is available from Maxim Integrated.

DS1307 RTC module
The DS1307 RTC is an I2C device. It is not code- or pin-compatible with the DS1302,
but the end result is the same. Refer to the datasheets from Maxim for details.
Figure 9-65 shows a DS1307 RTC module from Tronixlabs.

348 | Chapter 9: Modules and I/O Components

http://bit.ly/maxim-ds1302
http://bit.ly/maxim-ds1307
http://tronixlabs.com

Figure 9-64. A DS1302 RTC module

Figure 9-65. A DS1307 RTC module

DS3231 RTC module
Like the DS1307, the DS3231 RTC uses an I2C interface, and it is code-compatible
with the DS1307. The main difference is the accuracy. The DS3231 uses an internal
crystal. This makes it less temperature sensitive. Figure 9-66 shows a typical DS3231
RTC module.

Figure 9-66. A DS3231 RTC module

Support Functions | 349

RTC module using PCF8563
The PCF8563 is another RTC IC with an I2C interface. It is an NXP part, and its
internal registers are completely different from the Maxim DS1307 or DS3231.
Figure 9-67 shows a typical module based on the PCF8563.

Figure 9-67. A PCF8563 RTC module

Timers
Although the AVR MCU contains a built-in watchdog timer, there are modules avail‐
able that perform essentially the same function. One potential application for an
external watchdog, or resettable countdown timer to be more precise, is when it
makes sense for the timer reset signal to come from an external device instead of
from the AVR itself. Consider a rotating mechanism fitted with a magnetic sensor
that will emit a pulse for every revolution of the shaft. If the pulses are used to reset
an outboard watchdog timer it can detect when the mechanism fails and stops turn‐
ing. By either using an interrupt or just polling the status of the countdown timer the
MCU can detect the fault condition and take appropriate action.

Many of the outboard timer modules seen in the wild use a 555 timer. A MOSFET is
used to discharge the timing capacitor and reset the timer whenever a reset pulse is
applied. Some other timer modules from Asian sellers use a black blob of epoxy to
hide whatever is doing the actual timing on the PCB. I would avoid these, since there
is no easy way of knowing what is inside without destroying the IC under the blob.

If you are interested in external countdown timer modules, I would suggest picking
up a copy of Howard Berlin’s book The 555 Timer Applications Sourcebook (see
Appendix D). The original 1979 edition is out of print, but you can still find copies of
it on Amazon, and there is newer, but slightly different, version available. The Aus‐
tralian company Freetronics sells an inexpensive watchdog timer module based on a
555 timer.

350 | Chapter 9: Modules and I/O Components

http://www.nxp.com
http://www.freetronics.com.au

Connections
Over the past several years a trend has begun to emerge in module and shield inter‐
connect methods where modular connectors are replacing the connector pins and
sockets once found on both shields and modules. Often referred to as systems, these
involve a set of modules and some form of interface shield that all use the same con‐
nector types and pinouts for voltage, signal, and ground.

The TinkerKit modules (listed in Table 9-9) are just one example of a module con‐
nection system. Another is the Grove line of modules and associated base interface
shields from Seeed Studio. Other shields feature three- and four-pin connectors for
use with prefabricated cables with mating connectors at each end, such as the passive
patch shield kit shown in Figure 8-21.

Working with Naked Jumper Wires
Let’s say that you plan on permanently connecting a single module to an Arduino
(perhaps it will be embedded somewhere and left to do its job for extended periods of
time), and you don’t want to take the time to build your own connector. That’s fine;
there is nothing wrong with using jumpers so long as you take some simple steps to
make the connections more physically reliable.

The crimp socket (or pin) terminals used in jumper wires are the same terminals used
in modular connectors. The difference is that a jumper wire has just one terminal,
whereas a connector will have two or more. The more crimp terminals there are in a
connector, the more robust it will be. This is due to the increased mechanical friction
of multiple socket terminals all working together in the same connector housing.

A single jumper wire can wiggle and flex, and it doesn’t have the mechanical grip
afforded by a gang of terminals in a single connector housing. One way to achieve a
more reliable connection is to apply a small blob of silicon rubber (also known by the
brand name “RTV”) to hold the jumper connectors in place on a module’s pins. It
might not be as elegant or robust as a modular connector, but unless the module is
operating in a high-vibration environment like an RC vehicle or a machine tool in a
factory, it will hold up just fine.

Just don’t go crazy with the silicon, as you might want to remove it at some point and
replace the module. A sharp razor knife will cut the soft silicon rubber and not dam‐
age the jumper (if you are careful, of course).

Module Connection Systems
In general, a shield with connectors—whether the open frame style used by TinkerKit
or the closed shell types used by the Grove components and others—can also be used
with either individual jumpers or crimped socket headers, just like the shields and

Connections | 351

modules with bare pins. Prefabricated connectors make it easier for someone to con‐
nect a module and not worry about how the pins are wired, so long as the module is
designed to connect to a particular shield with the same types of connectors. This is
the approach that the TinkerKit and Grove modules have taken. (More information
about the Grove modules can be obtained from the Seeed Studio website.)

Other systems, like the TinyDuino modules from TinyCircuits, utilize small surface-
mounted multipin connectors. Figure 9-68 shows a few examples of these types of
modules. While technically not modules in the sense of the modules described in this
chapter, this approach shows just one of the many ways to deal with the interconnect
problem. TinyCircuits also produces sensor modules with the same type of connector,
and they have extension cables available. These things are very small (look at the USB
connector on a Nano and then compare that to Figure 9-68), and the first thing that
popped into my mind when I saw them was “model rocket.” More information is
available at the TinyCircuits website.

Figure 9-68. Example modules available from TinyCircuits

The connectors are the real problem with using modules and shields made for a par‐
ticular interconnect system. There is no consistent standardization across all the dif‐
ferent manufacturers, and no guarantee that a module from one vendor will just plug
in to an interface shield from somewhere else. One way to address this is to create
both the base interface shield and a selection of modules to go with it, which is
exactly what the folks behind the TinkerKit products elected to do. When considering
a particular module, pay attention to the connection method it uses. You should also
be prepared to purchase additional cables, and perhaps some prototyping modules in
order to interface with components not made for a paricular connector system. Or
you could elect to build your own custom cables, which is covered in the next section.

Building Custom Connectors
Connectors are not only easier to use, they are also more robust and reliable than
jumpers. But not having connectors isn’t all that bad. An interface shield like the sen‐
sor interface shield from SainSmart shown in Figure 8-3 has the I/O pins arranged in

352 | Chapter 9: Modules and I/O Components

http://www.seeedstudio.com
https://www.tiny-circuits.com

neat rows with 0.1 inch (2.54 mm) spacing. A connector header, like those shown in
Figure 9-69, with the same spacing and holes for crimp terminals will mate with the
pins and make a solid connection.

Figure 9-69. Pin and socket headers for crimped terminals

Connector shells and crimp terminals come in a variety of styles. The shells, or hous‐
ings, are available with positions for one or more terminals. You may occasionally
come across a jumper wire with single-position plastic housings at each end instead
of the heat shrink insulation that is also used. I prefer the plastic shells, even if the
jumpers do cost a bit more.

For those who just want to connect one or two modules and not worry about the
jumpers coming loose and falling off, the socket header approach is an alternative
worth considering. The downside is that you will need to invest in a crimping tool
and a good pair of wire strippers. Figure 9-70 shows a crimping tool, and Figure 9-71
shows how it works.

Figure 9-70. Typical terminal crimping tool

Connections | 353

Figure 9-71. How a crimped terminal is attached to a wire

Figure 9-72 shows a three-position socket terminal header connected to a tempera‐
ture and humidity sensor module (a KEYES KY-015). This arrangement allows the
sensor to be mounted where it is needed and connected to an interface shield. A small
amount of clear silicon between the connecter housing and the module’s PCB can be
used to ensure that it won’t easily come loose from the module.

Figure 9-72. Using a three-position header to connect a sensor module

Choosing a Connection Method
The trade-off boils down to either using modular connectors and prefabricated cables
that are reliable and robust but require a matching set of components or making your
own connections, either using jumper wires with crimped socket terminals or making
your own socket header for a particular module. Which path you choose may depend
on how much effort you want to expend to connect modules to an Arduino or a
shield, and how “locked in” you want to be to a particular connection scheme.

354 | Chapter 9: Modules and I/O Components

You may have noticed that I didn’t discuss one other available method for connecting
modules: soldering. This is always an option, but unless a module is intended to
become a permanent part of something it should be considered a last resort. Solder‐
ing a module directly to wires or onto a PCB makes a solid connection, but it’s not
easily undone and it can be ugly. It also means that you will have one less module to
use in other projects.

That being said, you may have noticed in Figure 9-12 that the relay and temperature
sensor modules are soldered directly onto a prototyping shield for the Arduino ther‐
mostat. The reasoning here is that the module will not be taken out of service any
time soon, and it will operate in a somewhat nasty environment inside of an electric
heater, with thermal fluctuations and fan vibrations. So, I elected to make it relatively
permanent. While I may regret that at some point, for now it works just fine. You will
need to make the soldering decision for yourself should the occasion arise.

Sources
The sources listed in Table 9-11 are just a sample of the companies selling Arduino-
compatible components and modules. They are just the ones I happen to be aware of,
and I’ve done business with most of them. There are many other sellers that I don’t
know about, but you may discover them if you look around on the Internet. And
don’t forget eBay.

Table 9-11. Parts sources

Distributor/vendor URL Distributor/vendor URL
Adafruit www.adafruit.com Mouser Electronics www.mouser.com

Amazon www.amazon.com RobotShop www.robotshop.com

CuteDigi store.cutedigi.com SainSmart www.sainsmart.com

DealeXtreme (DX) www.dx.com DFRobot www.dfrobot.com

Seeed Studio www.seeedstudio.com Elecfreaks www.elecfreaks.com

SparkFun www.sparkfun.com Elechouse www.elechouse.com

Tindie www.tindie.com Freetronics www.freetronics.com.au

Tinkersphere tinkersphere.com iMall imall.itead.cc

Tronixlabs tronixlabs.com ITEAD Studio store.iteadstudio.com

Trossen Robotics www.trossenrobotics.com KEYES en.keyes-robot.com

Summary
This chapter has provided a survey of some of the various modules and components
available for implementing input and output functions with an Arduino (or just
about any modern microcontroller, for that matter). As was stated earlier, you can

Sources | 355

http://www.adafruit.com
http://www.mouser.com
http://www.amazon.com
http://www.robotshop.com
http://store.cutedigi.com
http://www.sainsmart.com
http://www.dx.com
http://www.dfrobot.com
http://www.seeedstudio.com
http://www.elecfreaks.com
http://www.sparkfun.com
http://www.elechouse.com
http://www.tindie.com
http://www.freetronics.com.au
http://tinkersphere.com
http://imall.itead.cc
http://tronixlabs.com
http://store.iteadstudio.com
http://www.trossenrobotics.com
http://en.keyes-robot.com

find many of the capabilities described here on a shield, but there may be times when
a shield isn’t appropriate. With an Arduino Nano and some sensors, input compo‐
nents, and some type of output, you can arrange things to suit your particular
requirements.

With a web browser and access to the Internet you can easily locate hundreds of dif‐
ferent I/O components that can be connected to an Arduino, or even just a bare AVR
IC. Sources range from large electronics distributors like Digi-Key, Mouser, and New‐
ark/Element14 to companies like Adafruit, SparkFun, SainSmart, and CuteDigi.
There are also distributors that specialize in low-cost new and surplus components.

When it comes to purchasing sensors for an Arduino project, there are a few points
to keep in mind:

1. Does the device use a simple interface (discrete digital, SPI, I2C, etc.)?
2. Does the device come with technical data (or is it readily available)?
3. Are Arduino software libraries available?

Depending on your programming skill level, item 3 may or may not be a dealbreaker
for you. Personally, I put much more emphasis on items 1 and 2, mainly because I
have better things to do than reverse engineer a complex interface for some really
cool-looking thing I picked up for sale through eBay. For me, it makes more sense to
buy the not-so-cool thing and get the technical information I need to get it up and
running. The main thing is getting something that will do the job, and at a price that
is within your budget.

356 | Chapter 9: Modules and I/O Components

CHAPTER 10

Creating Custom Components

The more you work with Arduino devices in general, and the AVR microcontroller in
particular, the more you may come to realize just how flexible and versatile they are.
There seems to be a sensor or shield for almost any application you might imagine,
and new shields appear on a regular basis. Even so, there are still a few applications
for which there is no shield. There may be times when you spend hours online
searching fruitlessly for a shield with specific capabilities, only to finally realize that it
just doesn’t exist. In that situation you basically have three choices: first, you could
just give up and try to find another way to solve the problem; second, you might find
someone to build it for you (for a fee, usually); or third, you could design and build
your own PCB. This chapter describes two projects that illustrate the steps involved
in creating a custom shield and an Arduino software–compatible device.

The first project is a shield, shown in Figure 10-1, that is intended for a specific range
of applications. The GreenShield, as I’m calling it, is based on a conventional shield
form factor. It utilizes surface-mount components in a layout that includes potenti‐
ometers, relays, and LEDs.

When coupled with an Arduino the GreenShield will be able to function as a stand-
alone monitor and controller for gardening or agricultural applications. This shield
can also serve as the foundation for an automated weather station, a storm warning
monitor, or a thermostat (note that a programmable thermostat built using ready-
made modules and sensors is described in Chapter 12).

The second half of this chapter describes the Switchinator, an AVR ATmega328-based
device that doesn’t rely on the Arduino bootloader firmware, but can still be pro‐
grammed with the Arduino IDE and an ICSP programming device. The Switchinator
PCB is shown in Figure 10-2.

357

Figure 10-1. The GreenShield

Figure 10-2. The Switchinator

The Switchinator can remotely control up to 14 DC devices such as relays or high-
current LEDs, drive up to 3 unipolar stepper motors, or control AC loads using exter‐
nal solid-state relays. It uses an RS-232 interface and does not require a connection to
a host PC via USB.

The Switchinator incorporates all of the essential components of an Arduino into a
board of our own design. We won’t need to worry about the socket header dimen‐
sions and layout considerations required for a shield PCB; the only constraints on
overall size and shape will be those that we impose on the design.

With some patience and a plan you can easily create a custom PCB that doesn’t look
anything like an Arduino, but has the same ease of programming. Best of all, it will
do exactly what you design it to do, and in a physical form that exactly meets your
requirements.

358 | Chapter 10: Creating Custom Components

Creating a PCB is not all that difficult, but it is a task that requires some knowledge of
PCB design and electronics. There are low-cost/no-cost software tools available to
handle PCB layout chores, and getting a circuit board fabricated is actually rather
easy. The projects in this chapter will also require some soldering skill, particularly in
the case of surface-mounted components. If you’re already experienced in these areas,
then you’re almost there. If not, then learning how to create a schematic, work with
PCBs, use a soldering iron, and select the right parts can be an enjoyable and reward‐
ing experience.

For the shield PCB we will use the Eagle schematic capture and PCB layout tool, and
for the Arduino-compatible PCB we’ll use the Fritzing tool. Both of these are very
common and capable tools. Best of all, they are free (well, Fritzing is free, and the
entry-level version of Eagle, with limitations, is available at no cost).

When creating custom shields or Arduino-compatible boards, you
can do yourself a huge favor by keeping a notebook. Even if it’s
nothing more than a collection of printed or photocopied pages in
a three-ring binder, you will be grateful if you need to look up some
tidbit of information in the future for a similar project. Why not
just save it all on disk in your PC? Because it can evaporate if the
disk drive fails without a backup, or even get lost in the crowd if
there are lots of things already stored on the drive (this happens to
me more than I’d like to admit). Also, putting it into a notebook
allows you to go back later and annotate things as you gain experi‐
ence with testing, fabricating, and deploying your device. Red pens
aren’t just for high school English teachers.

This chapter also provides a list of resources for software, parts, and PCB fabrication.
The only assumption I’ve made is that you may already have some electronics experi‐
ence, or at least be willing to put in a little extra effort to learn some of the basics.
Be sure to take a look at the brief overview of tools in Appendix A, and definitely
check out the reading suggestions found in Appendix D. Finally, don’t forget to
peruse articles from websites like Hackaday, Makezine, Adafruit, SparkFun, and
Instructables. You can also find tutorial videos on YouTube. Many others have been
down these paths before, and many of them have been kind enough to document
their adventures for the benefit of others.

Remember that since the main emphasis of this book is on the
Ardunio hardware and related modules, sensors, and components,
the software shown is intended only to highlight key points, not
present complete ready-to-run examples. The full software listings
for the examples and projects can be found on GitHub.

Creating Custom Components | 359

http://hackaday.com
http://makezine.com
http://www.adafruit.com
http://www.sparkfun.com
http://www.instructables.com
https://www.github.com/ardnut

Getting Started
As with any endeavor worth devoting any significant amount of time to, planning is
essential. This applies to electronics projects just as it applies to the development and
implementation of complex software, building a house, designing a Formula 1 race
car, or mounting an expedition to the Arctic. As the old saying goes, “Failure to plan
is planning to fail.”

Every project that is beyond trivial can be broken into a series of steps. In general,
there are seven basic steps to creating an electronic device:

1. Define
2. Plan
3. Design
4. Prototype
5. Test
6. Fabricate
7. Acceptance test

Some projects may have fewer steps and some more, depending on what is being
built. Here’s some more detail about each step:

Define
In formal engineering terms this might be referred to as the requirements defini‐
tion phase, or, more correctly, the functional requirements definition phase. A
brief description of what the end result of the project will do and how it will be
used is sufficient for simple things. A more detailed description will probably be
needed for something complex, like a shield for use with an Arduino on board a
CubeSat. But regardless of the complexity, putting it down in writing can help
chart the course for the steps to come, and it can also reveal omissions or errors
that may otherwise go unnoticed until it’s too late to easily make substantive
changes. Lastly, it’s a good idea to write the project definition such that it can be
used to test a prototype or a finished device. If the functional requirements don’t
clearly state what the device is supposed to do in such a way that someone could
use this description to test the device, then it really isn’t a good set of require‐
ments and it doesn’t define the desired device or system very well.

Writing functional requirements may sound like the equivalent of watching paint
dry, but it’s actually an essential aspect of engineering. If you don’t know where
you are going, how can you tell when you get there? A good requirement, of any
type, should have four basic characteristics: (1) it should be consistent with itself
and the overall design, (2) it should be coherent so that it makes sense, (3) it

360 | Chapter 10: Creating Custom Components

should be concise and not overly wordy, and (4) it must be verifiable. A functional
requirement that states that “The device must be able to heat 100 milliliters of
water in a 250 ml beaker to 100 degrees C in 5 minutes” is testable, but a state‐
ment like “The device must be able to make hot water” is not (How hot? How
long? How much water?).

Plan
Sometimes planning and definition can happen in the same step, if the device is
something relatively simple and well understood. But in any case, the planning
step involves identifying the information necessary for the design step and get‐
ting as much essential information assembled in one place as possible—things
like component datasheets, parts sources, identification of necessary design and
software tools, and so on. The idea is to go into the design step with everything
needed to make good decisions about what is available, how long it may take to
get it, and how it will be used.

The planning step is also where you make some educated guesses as to how long
it will take to complete each of the upcoming steps: designing, prototyping, test‐
ing, fabrication, and acceptance testing. I say “educated guesses” here because you
should have some idea of what will be involved after collecting as much informa‐
tion as possible, but these are guesses because no one has a crystal ball that can
let them see the future. Unexpected things can happen, and sometimes it takes
longer to complete some aspect of the project than could be realistically anticipa‐
ted. This is just how things go in the real world. It’s also why people who do
project management for a living multiply their time estimates by a factor of two
or three. It’s better to overestimate and get it done early than to underestimate the
amount of time necessary and deliver it late.

A planning tool is handy both for establishing a realistic schedule and as a way to
gauge progress. My favorite tool for quick and simple scheduling is the timeline
chart, also known as a Gantt chart in fancier form. These can be complicated
affairs created using project management software, or simple charts like the one
shown in Figure 10-3.

For many small projects the fancy charts are not necessary, and the added com‐
plexity is just extra work. The important things are: (1) all the necessary tasks are
accounted for in the planning, (2) the plan is realistic from both time and
resource perspectives, and (3) the plan has a definite objective and ending. One
other thing to notice about the simple timeline chart is that some tasks start
before a preceding task is complete, and the chart does not show the dependen‐
cies that would indicate a critical path. I have found that for small projects
involving one or just a few people, this overlapped scheduling more realistically
reflects how things really happen.

Getting Started | 361

Figure 10-3. Example timeline chart

Design
For a hardware project, the design step is where the circuit diagrams start to
emerge and the design of the physical form takes shape. With the project defini‐
tion and the planning information in hand, what needs to be done should be
clear. While defining the circuitry is what most people think of when considering
design, other significant activities in the design step include selecting compo‐
nents for form and fit, evaluating electrical ratings of components and environ‐
mental considerations (humidity, vibration, and temperature), and perhaps even
potential RFI (radio frequency interference) issues.

When designing a new device there are always choices to be made. Sometimes
the reason for choosing one method over another comes down to cost and availa‐
bility of parts or materials. The intended functionality is another consideration,
such as in the case where an input control may need to perform more than one
function. Other times the choice might be based on aesthetics, particularly if
there is no cost benefit of going one way over another. Lastly, in some cases it’s
just a matter of using something that is known and familiar rather than working
with something unknown. This isn’t always the best reason for making a choice,
but it does happen quite often.

Regardless of the type of project (hardware, software, structure, or whatever), the
design step is typically iterative. It’s not realistic to expect that the design will just
fall into place on the first attempt, unless perhaps it’s something profoundly triv‐
ial (and even then, it’s not a sure thing). Actually, design and prototyping (dis‐
cussed next) work together to identify potential problems, devise feasible
solutions, and refine the design. This is common in engineering, and while some‐
times aggravating, iteration is an essential part of design refinement.

362 | Chapter 10: Creating Custom Components

Changes and More Changes
During the development of the signal generator in Chapter 11, it went through sev‐
eral major revisions. The original plan called for the ability to have remote host con‐
trol of all of the generator’s functions via a serial RS-232 interface, and a parallel
digital pattern output function. It turns out that there just aren’t enough I/O pins on
the Arduino to make all that happen without resorting to the use of I/O expansion
and RS-232 shields. Other options, such as the use of a rotary encoder, could have
been used to solve some problems, but each alternative brought challenges of its own
into play. The instrument would still need pushbutton controls for some functions,
and the LCD was becoming very cramped in terms of available display space.

So, rather than incorporate more complexity into both the hardware and software, I
opted to keep it simple. The resulting design does not use interrupts in the software
(no need for them), the LCD isn’t overly crowded with cryptic data values, and only
two main PCB components are needed: the Arduino board and the DDS module. The
resulting device provides quite a bit of functionality as a signal generator, even if it
doesn’t have an arbitrary pattern output or remote host control.

Prototype
For simple things, such as a basic I/O shield with no active circuitry, building a
prototype may not really be necessary (or even feasible). In other cases, a proto‐
type can be used to verify the design and ensure that it performs according to the
definition created at the start of the project. For example, it might not be a good
idea to jump right into laying out a PCB for a device that combines an AVR pro‐
cessor, an LCD display, a Bluetooth transceiver, a multiaxis accelerometer, and an
electronic compass, all on the same PCB. It might all work the first time, but if
there are unforeseen subtle issues, they may not be apparent until after the PCB
has already been made and paid for. Building and testing a prototype first can
save a lot of aggravation and money later.

Problems identified with a prototype feed back into the design to help improve it.
In an extreme case the prototype might even demonstrate that the initial design
is just wrong, and you might need to start over. While this is annoying, it’s not a
disaster (it’s actually more common than you might think). Building a hundred
circuit boards only to find out that there is a fundamental design flaw—now
that’s a disaster. Prototyping, testing, and design revision can prevent that from
occurring.

Test
The essence of testing is simply, “Does it correctly do what it’s supposed to do,
and does it do it as safely and reliably as intended?” The project definition cre‐
ated at the outset is the yardstick used to determine if the device has the desired

Getting Started | 363

functionality and exhibits the required safety and reliability. This is basic func‐
tional testing. It can get a lot more complicated, but unless you plan to send your
design into space (or to the bottom of the ocean), or it will be controlling some‐
thing that could cost a lot of money if something goes wrong (or damage some‐
thing else, such as human beings), then basic functional testing should be
sufficient for the prototype.

A word about the differences between “correct,” “safe,” and “reliable”: just because
something behaves in a correct way doesn’t means it’s safe (safe can also mean
“operates without introducing unacceptable risk”), and something that behaves in
a safe way isn’t necessarily correct or even reliable. If a device won’t turn on, it
could be considered to be safe and reliable (it reliably will not do anything), but it
definitely would not be correct. Lastly, to say that something is correct and relia‐
ble does not automatically mean that it’s safe. A power tool such as a handheld
circular saw may correctly and reliably cut lumber, but it will also correctly and
reliably cut off a hand just as easily. An electrical device with an internal short
circuit will reliably emit smoke (and perhaps even some flames) when power is
applied, but the overall operation is neither safe nor correct.

Fabricate
After the prototype has been tested and has demonstrated correct behavior in
accordance with the functional requirements, the design can move on to the fab‐
rication stage. This step may involve fabricating a PCB and then loading it with
parts. It might also refer to the integration of prefabricated modules and associ‐
ated cables and wires into an enclosure or a larger system. In terms of possible
delays, fabrication can be problematic. A supplier might be out of stock of a criti‐
cal component, or if the assembly has been contracted, the assembly house might
be having some problems or be overbooked. Custom-made parts might be late
for any number of reasons.

Fortunately, if you are only making one or a few of something and you are doing
all of the fabrication yourself, then you can avoid many of these potential prob‐
lems. It still doesn’t hurt to give yourself plenty of time, however. Making a run to
the hardware store for a box of 3/8 inch 6-32 machine screws takes time, and if
they’re out of stock then it is going to take that much longer to try another store.
Of course, if the planning and design steps were done with an eye toward what
would be needed for fabrication, then you should have all the components, PCBs,
nuts, bolts, screws, washers, connectors, wire, brackets, and glue you will need.

Acceptance test
This last step is also known as final testing, since it is the last thing to occur
before the device is deemed ready to use or deploy. Some basic functional testing
was already done with the prototype, but now it is time to test the final product.
This is definitely not duplicated effort. It’s all too easy to mount the wrong part

364 | Chapter 10: Creating Custom Components

on a PCB, or even install a part backward. Also, circuits on a PCB will sometimes
behave differently than those built on a solderless prototyping block, so thor‐
oughly testing the assembled device is always a good idea.

The testing is typically conducted in two steps. The first step verifies that the
device or system behaves in the same manner as the prototype. The idea is to
apply the same tests used with the prototype to verify that nothing has changed.
In software engineering this is referred to as regression testing. The next step of
testing involves additional tests to verify that the thing you’ve built works cor‐
rectly in its final configuration with actual I/O. This is why this step is referred to
as acceptance testing, and the main point is to answer the question, “Is the device
or subsystem acceptable for its intended application?”

Custom Shields
There are basically three primary form factors to consider when designing an Ardu‐
ino shield. These are the baseline, extended, and Mega pin layouts. The original or
baseline (a.k.a. R2) layout, found on the Duemilanove, Uno R2, and other older
boards, can be considered to be the standard for shield layouts, but that doesn’t mean
a shield can’t be designed to utilize the extended (a.k.a. R3) layout found on later-
model Uno and Leonardo boards. Shields can also been designed to utilize all of the
pins on a Mega-style Arduino, and there’s no reason why a shield has to have the
same outline shape as an Arduino. Some shields, such as those with relays or large
heat sinks, have a physical form factor suited to the components on the shield, rather
than the Arduinos to which they are connected.

A novel approach that ignores size constraints is to create a large PCB with a set of
pins arranged so that an Arduino can be connected in an inverted position. This
might sound odd, but take a look at Figure 10-4. This is a board from a Roland
SRM-20 desktop CNC milling machine. You can read more about it at Nadya Peek’s
infosyncratic.nl blog.

Figure 10-4. An inverted Arduino on a large PCB (image courtesy of Nadya Peek)

Custom Shields | 365

http://bit.ly/open-hardware-footbath
http://bit.ly/open-hardware-footbath

If you are designing a shield to sell commercially, then you may want to use the base‐
line layout as your template, since it will also work just fine with an Uno or Leonardo
board, as well as a Mega-type PCB. Chapter 4 describes each of these board types and
provides dimensions and pinout information.

The small form-factor Arduino boards such as the Nano, Mini, and Micro are unique
in that they have all of the I/O pins on the bottom of the PCB, rather like a large IC.
Adding a shield to one of these boards entails using an adapter, like the one shown in
Figure 10-5, to bring out the signals to pin sockets for connecting a shield PCB.

Figure 10-5. Arduino Nano interface adapter PCB

You might notice in Figure 10-5 that pin socket headers have been added to the PCB.
This was done largely as an experiment to see what would be involved in physically
interfacing a Nano with a regular shield. With some creativity one could conceivably
plug a shield into the board, except for the fact that the Nano sits too high on its
socket headers. One solution would be to use extensions for the shield pins, which are
just extended pin socket headers with some of the pin length removed. A more dras‐
tic solution would be to desolder the existing headers for the Nano and replace them
with shorter types. I recommend the pin extension option. This chapter doesn’t cover
the steps involved in creating this type of adapter.

Using something like a Nano, Mini, or Micro Arduino with a shield actually doesn’t
make a whole lot of sense most of the time (although in Chapter 12 there is an exam‐
ple where this was done for a particular application). It does make sense to treat these
small PCBs as if they were large ICs, and use them as components on a large PCB.

Physical Considerations
Be aware that on the Duemilanove PCB, and probably other boards as well, there are
two surface-mounted capacitors that can collide with the extra pins found on the
power and analog connector row of some shields designed for the R3 extended base‐

366 | Chapter 10: Creating Custom Components

line layout. Some variants of the Uno also have components that can collide with
shield pins.

Another consideration is that the type B USB jack found on the Duemilanove and
Uno boards can potentially short out against a shield PCB. The DC power jack on
these boards can also interfere with a shield PCB. Although it is plastic and won’t
short anything, it can prevent the shield from seating completely. Figure 10-6 shows
this situation with a Duemilanove and an Ethernet shield.

For these reasons, it’s a good idea to either size the length of the shield so that it won’t
interfere with the underlying Arduino, or design the component placement on the
shield PCB to leave collision areas blank. See the next section, Chapter 4, and Chapter
8 for more on PCB dimensions and shield stacking.

When designing a shield you may also want to consider what will no longer be acces‐
sible on the Arduino under the shield and what can, or cannot, be mounted on it.
This includes the reset button, the surface-mounted LEDs, and the ICSP pin group.
Some shields deal with this by simply replicating the pinout of the Arduino board.
Others, like most LCD shields, may not replicate the Arduino’s pins to the top side of
the shield PCB, but sometimes provide a reset button. With an LCD shield this makes
sense, of course, since it would be the top shield in a stack in any case.

Figure 10-6. Duemilanove with shield

Stacking Shields
One of the nice things about the Arduino form factor is the ability to stack shields.
You could create a stack containing a base Arduino board (an Uno, for example) with
an SD memory card shield on top of it, followed by an input/output shield of some
sort, and then an LCD or TFT display shield on top of all of that. Presto, you now
have a basic data logging device.

Custom Shields | 367

What can be mounted above a shield should always be a consideration, be it another
shield or perhaps some type of sensor module. When selecting components for a
shield it is wise to consider the height of the various parts. If the parts are too high
and another shield cannot be physically attached without interfering with something,
then that shield will always need to be on the top of the stack.

There are basically two ways to allow for shield stacking: staggered socket and pin
headers, and extended pin socket headers. Staggered, in this context, means that the
upper connectors (socket headers) are offset from the lower pins (pin headers) by
some amount, with both the upper digital I/O and power/analog headers shifted to
the same side by the same amount.

In Figure 10-7 you can see a modular I/O shield on a Duemilanove. There are a few
things to notice here. First, the modular I/O shield uses the staggered connector
approach, so it is not vertically edge-aligned with the underlying Arduino board. This
may need to be taken into account if the assembly will be mounted in some type of
enclosure that might be subjected to shock or vibration—it may not be possible to
secure the shield with nuts and bolts. Secondly, the shield does not bring out the ICSP
pins, so that functionality is effectively lost (which may, or may not, be a big deal).
Lastly, the pins of the connectors along the edge of the shield above the Arduino’s
power and USB connector can (and do) collide, so some type of insulating shim is
necessary.

Figure 10-7. Example of a staggered shield

Extended pin connector sockets are a common variation on the 0.1 center connectors
that have a long pin that goes through the PCB. The pin is long enough to make a
solid connection with an underlying board, and the connector sockets provide for
another shield board to mount on top and be in alignment with the shield below it.
These are found on many shields, and you should look for them when selecting a
shield.

368 | Chapter 10: Creating Custom Components

A big consideration in shield design is Arduino pin usage. This is in addition to
stacking concerns. The pins used by a shield determine what else can be used with
that shield in a stack. Avoiding exclusive use of the SPI and I2C pins means other
shields can be used in a stack, including SD and microSD flash memory, I/O
expander, Bluetooth, ZigBee, Ethernet, and GSM shields. In other words, don’t repur‐
pose the SPI or I2C pins unless the shield design absolutely needs them.

Sometimes you may encounter shields that someone obviously thought were a good
idea, but which don’t always work out so well in practice. I/O shields often have mul‐
tiple blocks of connector pins that are rendered inaccessible if another shield is placed
on them. Other shields have solder pads that interfere with the ICSP pins on the
Arduino PCB. Problems like these are not uncommon. Unfortunately it’s not always
possible to know in advance if there are problems with a shield, and sometimes the
only way to know if a particular shield might have physical mounting issues is to pur‐
chase one and try it.

Electrical Considerations
If your custom shield has nothing but passive components (i.e., connectors, switches,
resistors), power supply requirements probably won’t be an issue for the board. How‐
ever, if it has LEDs or active circuitry, it is a good idea to consider how much power it
will need, and where it will get it. Even something as simple as an LED draws some
power, and enough of them can overload an AVR processor and do some damage.

As a general rule, if a shield has one or more relays or connectors to attach things that
could draw more than a few milliamps each, then some type of driver circuit or IC
should be considered. It is possible to operate a shield from a separate power supply,
but passing signals between the Arduino and the shield can sometimes be tricky.

If a shield has its own DC power source, then ground might also be something to
consider. There are three ground sockets on a baseline Arduino: two on the side with
the analog inputs and one on the digital I/O side. If you use only one of the Arduino’s
ground sockets for the signal ground reference for a shield, you can avoid potential
problems with induced noise and ground loops. Although these situations are very
rare, they are still a possibility, particularly for shields that may incorporate high-gain
operational amplifiers or high-frequency circuits. Applying good design practices can
help avoid strange and hard-to-diagnose problems in the future.

The GreenShield Custom Shield
In this section we will create a custom shield to illustrate the steps involved in the
design and fabrication of an Arduino shield. The shield will be a humidity, tempera‐
ture, ambient light, and soil moisture monitor. It is intended mainly for use in a
greenhouse, although with the correct enclosure, some solar cells, and a wireless

The GreenShield Custom Shield | 369

transceiver of some sort it could be put into a field to monitor the turnips (or what‐
ever). As water gets scarcer in some parts of the world (including the Western United
States), keeping an eye on the soil moisture content as well as temperature and
humidity can help to minimize watering times and volumes while still keeping the
crops healthy. The farmer can sit in the living room and get a quick readout of how
things are doing in the field from a smartphone, tablet, or desktop PC.

I’m calling this the GreenShield, for obvious reasons, and the definition and planning
steps are combined into one step. The GreenShield is physically very simple, and the
main hardware design challenge will be fitting some large components (two relays
and a DHT22) onto a small shield PCB.

Objectives
The goal of this project is to create a shield that can be used as an autonomous
remote monitor to sense temperature, humidity, soil moisture content, and ambient
light level. Based on predefined sensor input limits, it will control two relays.

The relays can be used to control a water valve, and perhaps a fan or maybe some
lights to compensate for cloudy days. It also has six LEDs: two for high and low
humidity points, two for high and low soil moisture levels, and an LED for each relay
to indicate activity.

The software will support a command-response protocol and maintain an internal
table of automatic relay functions mapped to sensor inputs and limits. Alternatively, a
host control computer can obtain the sensor readings on demand and control the
relays directly.

Definition and Planning
The shield will incorporate a DHT22 combination temperature and humidity sensor,
a light-dependent resistor (LDR) sensor (see Chapter 9) to detect the ambient light
level, and a conductivity-based soil moisture probe. Two relays will provide auto‐
matic or commanded control of external devices or circuits.

Sensor inputs:

• Temperature
• Relative humidity
• Soil moisture (relative)
• Ambient light level

Control and status outputs:

• Two control relays, software function definable, 10A control capability

370 | Chapter 10: Creating Custom Components

• Four LEDs to indicate soil moisture and humidity limits
• Two LEDs to indicate relay status

Electrical interface:

• Two-position terminal block for moisture probe input
• Two-position terminal block for LDR connection
• One three-position terminal block per relay (NC, C, and NO)
• +5V DC supplied by attached Arduino board

Control interface:

• Command-response protocol, control host driven
• Sensor readings available on demand
• Relay override by control host

All of the components will be placed on a standard baseline-type shield, with dimen‐
sions as described in Chapter 4. Most of the components will be surface-mount types,
with the exception of the terminal blocks, the relays, and the DHT22 temperature and
humidity sensor.

Design
The GreenShield is intended to be used without a display or user controls. In other
words, it and an Arduino will operate as an autonomous remote sensor and control‐
ler. It can be connected to another computer system (the master host system) to
receive operating parameters, return sensor data, and override relay operation.

Autonomous in this case means the GreenShield will be able to operate the relays
automatically when specific conditions are met, such as humidity, soil moisture, or
light levels. The software will accept commands from a master computer to set the
various threshold levels and override the operation of the relays. It will generate a
response on command containing the current temperature, humidity, light level, and
relay states. All interactions between the control host and a GreenShield Arduino will
be command-response transactions.

The GreenShield software will be developed entirely with the Arduino IDE. The host
computer used to compile and upload the finished code will also serve as the test ter‐
minal interface when the code is running on the Arduino. Ideally one would want to
create a custom interface program using something like Python, or, in a Windows
environment, a terminal emulator like TeraTerm. It includes an excellent scripting
facility, and I highly recommend it.

The GreenShield Custom Shield | 371

https://ttssh2.osdn.jp/index.html.en

Eagle Schematic and PCB Tool
For this project I’m using the Eagle schematic and PCB tool. If you don’t already have
it, you can download it from http://www.cadsoftusa.com/download-eagle. Most major
Linux distributions have an older version available in their package repositories. The
limitations of the free version of Eagle are given on the CadSoft website as:

• The usable board area is limited to 100 × 80 mm (4 × 3.2 inches).
• Only two signal layers can be used (Top and Bottom).
• The schematic editor can only create two sheets.

The baseline Arduino dimensions are approximately 69 mm × 53 mm, so there is no
problem with using Eagle for a baseline- or extended-type shield. It cannot be used to
create a shield for an Ardiuno Mega-type PCB, due to the size limitation. The two
layer limitation is usually not a problem for most shield designs, but in some cases
shields that process video or RF signals may need additional layers for ground and
power planes.

The folks at SparkFun have some clear and concise tutorials online to help you get the
Eagle software installed and running. You can find those at http://bit.ly/sparkfun-eagle
and http://bit.ly/sparkfun-using-eagle.

You can also get Eagle PCB library components from SparkFun’s GitHub repository. I
found that the SparkFun libraries didn’t work with the version of the Eagle package
used by Kubuntu 12.04 (the latest version of Eagle available is 5.12), but the newest
version from CadSoft (version 7.4.0) will install and run just fine. I did it the lazy way
and installed 7.4.0 with 5.12 already installed, copied the old Eagle executable
in /usr/bin to eagle.old, and created a symbolic link in /usr/bin to point at the newer
version in /opt/eagle-7.4.0/bin.

Functionality
The first consideration is the physical design of the shield PCB. The block diagram
shown in Figure 10-8 gives an overview of what types of functions will be on the
shield.

Note that in Figure 10-8 none of the hardware functions interact directly. The sen‐
sors, LEDs, and relays are just extensions of the Arduino’s basic I/O capabilities.

The humidity/temperature sensor is mounted on the PCB, while the photocell (a
light-dependent resistor) and the soil moisture probe can be located off-board if
desired. Miniature terminal blocks are used for sensor connections, so no soldering
or connector crimping is required.

372 | Chapter 10: Creating Custom Components

http://www.cadsoftusa.com/download-eagle
http://bit.ly/sparkfun-eagle
http://bit.ly/sparkfun-using-eagle
https://github.com/sparkfun/SparkFun-Eagle-Libraries

Figure 10-8. GreenShield block diagram

The GreenShield is intended to be the last (top) shield on a stack. This is due to the
relays and the temperature/humidity sensor, all of which are tall enough to prohibit
stacking another shield.

Hardware
Circuit-wise the GreenShield isn’t very complicated, as can be seen in the schematic
shown in Figure 10-9. A ULN2003A is used to drive status LEDs and two relays. A
dual op amp is used to buffer the voltage level from a soil moisture sensor and an
LDR for input to the AVR ADC.

The sensors connected to the op amp inputs are effectively variable resistors, and
with the two trimmer potentiometers they form a voltage divider. The trimmers can
be adjusted to achieve an optimal response from the op amp without driving it too far
one way or the other voltage-wise.

The GreenShield Custom Shield | 373

Figure 10-9. GreenShield schematic

The GreenShield has been designed to allow for extending the Arduino shield stack
by avoiding critical digital and analog I/O pins. Table 10-1 lists the Arduino pins and
assignments used for the GreenShield.

Table 10-1. GreenShield Arduino pin usage

Pin Function Pin Function
D2 ULN2003A channel 1 D7 ULN2003A channel 6

D3 ULN2003A channel 2 D8 DHT22 data input

D4 ULN2003A channel 3 A0 Soil moisture sensor input

D5 ULN2003A channel 4 A1 LDR sensor input

Notice that the SPI pins—D10, D11, D12, and D13—are not used, so they are avail‐
able for SPI shields. D0 and D1 are also available if you want to connect an RS-232
interface and forgo the USB. A4 and A5 are available for I2C applications.

374 | Chapter 10: Creating Custom Components

Now that we have a schematic we can assemble a complete parts list, which is given in
Table 10-2.

Table 10-2. GreenShield parts list

Quantity Type Description Quantity Type Description
2 SRD-05VDC-SL-C Songle 5A relay 4 2.2K ohm, 1/8W Resistor

1 DHT22 Humidity/temperature sensor 2 3.3K ohm, 1/8W Resistor

1 Generic LDR sensor 2 10K trim PCB mount potentiometer

1 SainSmart Soil moisture probe 2 0.1” (2.54 mm) 3-position terminal block

6 3 mm LED 2 0.1” (2.54 mm) 2-position terminal block

1 LM358N Op amp 2 0.1” (2.54 mm) 8-position socket header

1 ULN2003A Driver IC 2 0.1” (2.54 mm) 6-position socket header

6 1K ohm, 1/8W Resistor 1 Custom Shield PCB

Software
The GreenShield software is based on three primary functions: sensor input, com‐
mand parsing and output generation, and relay function mapping. The first function
is responsible for obtaining data from each of the four sensor inputs (temperature,
humidity, soil moisture, and ambient light level) and storing the values for use by
other parts of the software. The command parsing functions interpret the incoming
command strings from a host PC and generate responses using the command-
response protocol described here. The output functions control the relays based on
the sensor inputs and preset limits defined by the various commands.

The command-response protocol used for transactions between the host computer
and the GreenShield Arduino is shown in Table 10-3. Note that the GreenShield only
responds to the host; it will never initiate a transaction on its own.

You can use the built-in serial terminal tool in the Arduino IDE, or you can exit from
the IDE and connect directly to the USB port that the Arduino with the GreenShield
happens to be using. This approach can be used to create a user interface application
for setting up the GreenShield and monitoring its operation. In practice the idea is to
configure the GreenShield software on an Arduino and then let it run unattended.

Status query commands
The GreenShield software provides four query commands. These are listed in
Table 10-4. These commands allow a control host to get the current on/off state
of either of the two relays, the last value read from either the LDR or the mois‐
ture sensor analog input, and the latest temperature and relative humidity read‐
ing from the DHT22 sensor.

The GreenShield Custom Shield | 375

Table 10-3. GreenShield command-response protocol (all commands)
Command Response Description

AN:n:? AN:n:val Get analog input n in raw DN

GT:HMX GT:HMX:val Get humidity max value

GT:HMN GT:HMN:val Get humidity min value

GT:LMX GT:LMX:val Get light max value

GT:LMN GT:LMN:val Get light min value

GT:MMX GT:MMX:val Get moisture max value

GT:MMN GT:MMN:val Get moisture min value

GT:TMX GT:TMX:val Get temp max value

GT:TMN GT:TMN:val Get temp min value

HM:? HM:val Return current humidity

RY:n:? RY:n:n Return status of relay n

RY:n:1 OK Set relay n ON

RY:n:0 OK Set relay n OFF

RY:A:1 OK Set all relays ON

RY:A:0 OK Set all relays OFF

RY:n:HMX OK Set relay n to ON if humidity >= max

RY:n:HMN OK Set relay n to ON if humidity <= min

RY:n:LMX OK Set relay n to ON if light level >= max

RY:n:LMN OK Set relay n to ON if light level <= min

RY:n:MMX OK Set relay n to ON if moisture >= max

RY:n:MMN OK Set relay n to ON if moisture <= min

RY:n:TMX OK Set relay n to ON if temp >= max

RY:n:TMN OK Set relay n to ON if temp <= min

ST:HMX:val OK Set humidity max value

ST:HMN:val OK Set humidity min value

ST:LMX:val OK Set light max value

ST:LMN:val OK Set light min value

ST:MMX:val OK Set moisture max value

ST:MMN:val OK Set moisture min value

ST:TMX:val OK Set temp max value

ST:TMN:val OK Set temp min value

TM:? TM:val Return current temperature

376 | Chapter 10: Creating Custom Components

Table 10-4. GreenShield query commands
Command Response Description

RY:n:? RS:n:n Return status of relay n

AN:n:? AN:n:val Get analog input n in raw DN

TM:? TM:val Return latest DHT22 temperature

HM:? HM:val Return latest DHT22 humidity

Relay override commands
The relays on the GreenShield may be controlled via software commands. Four
relay control commands allow an individual relay to be set to either on or off, or
both relays may be set on or off at one time. Table 10-5 lists the relay override
commands.

Note that when a relay is set using an override command any
previous setpoint mapping is deleted. To use the relay again
with a setpoint, one of the setpoint commands must be sent to
the GreenShield.

Table 10-5. GreenShield relay commands
Command Response Description

RY:n:1 OK Set relay n ON

RY:n:0 OK Set relay n OFF

RY:A:1 OK Set all relays ON

RY:A:0 OK Set all relays OFF

Relay action mapping commands
The activation of either of the two relays may be mapped to a specific minimum
or maximum setpoint condition for humidity, light level, soil moisture content,
or ambient temperature. Table 10-6 lists the relay setpoint commands. When
mapping an action to a relay, the most recent mapping command will override
any previous command.

Setpoint commands
The minimum and maximum setpoints are defined using the ST commands, lis‐
ted in Table 10-7. The setpoint value may be returned to the host control PC
using the GT commands. The setpoint values may be modified at any time.

The relay function mapping associates a relay with a sensor input and a set of state
change conditions in the form of upper and lower limits. A relay may be enabled if a
sensor value is above or below a limit set by the host control system. Relay association

The GreenShield Custom Shield | 377

is not exclusive, meaning that both relays could be assigned to the same sensor input
and limit conditions. This might not make sense to do, but it can still be done.

Table 10-6. GreenShield relay setpoint commands

Command Response Description

RY:n:HMX OK Set relay n to ON if humidity >= max

RY:n:HMN OK Set relay n to ON if humidity <= min

RY:n:LMX OK Set relay n to ON if light level >= max

RY:n:LMN OK Set relay n to ON if light level <= min

RY:n:MMX OK Set relay n to ON if moisture >= max

RY:n:MMN OK Set relay n to ON if moisture =< min

RY:n:TMX OK Set relay n to ON if temp >= max

RY:n:TMN OK Set relay n to ON if temp <= min

Table 10-7. GreenShield min/max setting commands

Command Response Description

ST:HMX:val OK Set humidity max value

ST:HMN:val OK Set humidity min value

ST:LMX:val OK Set light max value

ST:LMN:val OK Set light min value

ST:MMX:val OK Set moisture max value

ST:MMN:val OK Set moisture min value

ST:TMX:val OK Set temp max value

ST:TMN:val OK Set temp min value

GT:HMX GT:HMX:val Get humidity max value

GT:HMN GT:HMN:val Get humidity min value

GT:LMX GT:LMX:val Get light max value

GT:LMN GT:LMN:val Get light min value

GT:MMX GT:MMX:val Get moisture max value

GT:MMN GT:MMN:val Get moisture min value

GT:TMX GT:TMX:val Get temp max value

GT:TMN GT:TMN:val Get temp min value

Although the GreenShield is currently configured for two relays, there is no hard
limit on the number of relays that could be used. As can be seen from Table 10-1 the
I2C pins (A4 and A5) are available, so an I2C digital I/O expander shield can be used
to connect additional devices to the Arduino.

378 | Chapter 10: Creating Custom Components

Prototype
To create the prototype for this project I’m using something called a Duinokit, which
is shown in Figure 10-10. This clever thing has an array of sensors, LEDs, switches,
and other accessories along with an Arduino Nano, all mounted on a large PCB with
lots of socket headers. It also has a position for attaching a conventional shield (or
stack of shields). It’s like a modern take on the old all-in-one electronics project kits
that were once popular.

Figure 10-10. The Duinokit

An equally valid approach would be to assemble all the necessary components from a
sensor kit and just about any Arduino, but the Duinokit keeps things neat and tidy,
and it provides a nice development platform to use to create the software while wait‐
ing for the PCB and some of the other parts to show up. The Duinokit is available
from http://duinokit.com and through Amazon.com.

The Duinokit has one DHT11 temperature/humidity sensor, which is a slower, lower-
resolution version of the DHT22 that will be used with the GreenShield. In terms of
software, the DHT11 and DHT22 are similar but not identical. The DHT22 uses a
different data word (bit string) than the DHT11 to accommodate the improved accu‐
racy of the DHT22 sensor.

The LDR and soil moisture sensor use an LM358 dual op amp, with one-half assigned
to each input. I placed the LM358 on the solderless breadboard provided on the Dui‐
nokit’s single large PCB. This also provided a place to mount the resistors, and the
two 10K potentiometers on the Duinokit served as the input offset trim controls.

Prototype software
The software will be developed in prototype and final forms. The first step is to create
software to run on the Duinokit prototype that will read sensor inputs, verify that the

The GreenShield Custom Shield | 379

http://duinokit.com

LM358 op amp circuits are behaving as expected, and support some testing to deter‐
mine initial input range limits. The next step is the development of the final software
that will support the command-response protocol defined in “Software” on page 375
and the relay function mapping. The actual shield hardware will be used to develop
the final software.

The prototype software is intended for reading data from the analog inputs and the
on-board DHT11 sensor. This is what will be used for prototype testing when the ini‐
tial input ranges are established. The output appears in the serial monitor window
provided by the Arduino IDE. The prototype test software shown in Example 10-1 is
contained in a single sketch file called gs_proto.ino.

The functions shown in Example 10-1 for the various temperature
conversions and dewpoint values aren’t really necessary for the
basic Greenshield. I’ve included them as examples if you want to
use them.

Example 10-1. GreenShield sensor prototype software

// GreenShield prototype software
// 2015 J. M. Hughes
//
// Uses DHT11 library from George Hadjikyriacou, SimKard, and Rob Tillaart
//
// Repeatedly reads and outputs temperature, humidity, soil moisture,
// and light level. No relay setpoint functionality.

#include <dht11.h>

// Definitions

#define LHLED 2 // D2 Low humidity LED
#define HHLED 3 // D3 High humidity LED
#define LMLED 4 // D4 Low moisture
#define HMLED 5 // D5 High moisture
#define RY1OUT 6 // D6 RY1 enabled
#define RY2OUT 7 // D7 RY2 enable
#define DHT11PIN 8 // D8 DHT11 data
#define SMSINPUT A0 // A0 SMS input
#define LDRINPUT A1 // A1 LDR input

// Global Vars

int curr_temp = 0; // current (latest) temperature
int curr_hum = 0; // current humidity
int curr_ambl = 0; // current ambient light level
int curr_sms = 0; // current soil moisture

380 | Chapter 10: Creating Custom Components

int cntr = 0;

// dht11 object is global
dht11 DHT11;

// Read data from DHT11 and store in curr_hum and curr_temp global
// variables for later use
void readDHT()
{
 if (!DHT11.read(DHT11PIN)) {
 curr_hum = DHT11.humidity;
 curr_temp = DHT11.temperature;
 }
}

// Read data from analog inputs via LM358 op amp circuits and store
// in curr_ambl and curr_sms for later use
void readAnalog()
{
 curr_ambl = analogRead(LDRINPUT);
 curr_sms = analogRead(SMSINPUT);
}

// Celsius to Fahrenheit conversion
// From example code found at http://playground.arduino.cc/main/DHT11Lib
double Fahrenheit(double celsius)
{
 return 1.8 * celsius + 32;
}

// Celsius to Kelvin conversion
// From example code found at http://playground.arduino.cc/main/DHT11Lib
double Kelvin(double celsius)
{
 return celsius + 273.15;
}

// dewPoint() function NOAA
// reference: http://wahiduddin.net/calc/density_algorithms.htm
// From example code found at http://playground.arduino.cc/main/DHT11Lib
double dewPoint(double celsius, double humidity)
{
 double A0= 373.15/(273.15 + celsius);
 double SUM = -7.90298 * (A0-1);
 SUM += 5.02808 * log10(A0);
 SUM += -1.3816e-7 * (pow(10, (11.344*(1-1/A0)))-1) ;

The GreenShield Custom Shield | 381

 SUM += 8.1328e-3 * (pow(10,(-3.49149*(A0-1)))-1) ;
 SUM += log10(1013.246);
 double VP = pow(10, SUM-3) * humidity;
 double T = log(VP/0.61078); // temp var
 return (241.88 * T) / (17.558-T);
}

// delta max = 0.6544 wrt dewPoint()
// 5x faster than dewPoint()
// reference: http://en.wikipedia.org/wiki/Dew_point
// From example code found at http://playground.arduino.cc/main/DHT11Lib
double dewPointFast(double celsius, double humidity)
{
 double a = 17.271;
 double b = 237.7;
 double temp = (a * celsius) / (b + celsius) + log(humidity/100);
 double Td = (b * temp) / (a - temp);
 return Td;
}

void setup()
{
 // Init the serial I/O
 Serial.begin(9600);

 // Set up the AVR's pins
 pinMode(LHLED,OUTPUT);
 pinMode(HHLED,OUTPUT);
 pinMode(LMLED,OUTPUT);
 pinMode(HMLED,OUTPUT);
 pinMode(RY1OUT,OUTPUT);
 pinMode(RY2OUT,OUTPUT);

 // Initial current data variables
 curr_temp = 0;
 curr_hum = 0;
 curr_ambl = 0;
 curr_sms = 0;
}

void loop()
{
 // Get DHT11 readings
 readDHT();

 // Get LDR and SMS readings
 readAnalog();

 // Print data to output
 Serial.println("\n");

382 | Chapter 10: Creating Custom Components

 Serial.print("Raw LDR : ");
 Serial.println(curr_ambl);
 Serial.print("Raw SMS : ");
 Serial.println(curr_sms);
 Serial.print("Humidity (%) : ");
 Serial.println((float)DHT11.humidity, 2);
 Serial.print("Temperature (oC) : ");
 Serial.println((float)DHT11.temperature, 2);
 Serial.print("Temperature (oF) : ");
 Serial.println(Fahrenheit(DHT11.temperature), 2);
 Serial.print("Temperature (K) : ");
 Serial.println(Kelvin(DHT11.temperature), 2);
 Serial.print("Dew Point (oC) : ");
 Serial.println(dewPoint(DHT11.temperature, DHT11.humidity));
 Serial.print("Dew PointFast (oC): ");
 Serial.println(dewPointFast(DHT11.temperature, DHT11.humidity));

 // Scroll up to align display
 for (int i = 0; i < 12; i++)
 Serial.println();

 delay(1000);
}

The setup() function simply initializes and opens the serial I/O, sets some pin
modes, and clears the global variables for current data readings. Each time the
readDHT() and readAnalog() functions are called they will obtain the latest values
from the DHT11 and the analog inputs and place them into these variables.

The main loop reads the analog inputs and the DHT11, formats the data, and writes
the current values to the USB serial monitor. It does not communicate with a control
host computer and it doesn’t do any relay setpoint mapping. Its purpose is to continu‐
ously obtain and display sensor data.

The prototype uses an open source library for the DHT11. The final version will use a
custom library for the DHT22, but it’s not needed for the prototype. The DHT11
library by George Hadjikyriacou, SimKard, and Rob Tillaart is available from the
Arduino Playground. The Fahrenheit(), Kelvin(), dewPoint(), and dewPoint
Fast() functions are from the same source.

Prototype testing
Using the Duinokit we can test the various sensor input functions of the GreenShield
and fine-tune the operation. If there’s a problem with the circuitry (which will be easy
to resolve, given that it’s so simple), this is where you would want to find it and fix it.
Trying to fix a problem on a PCB after it has been fabricated and loaded with parts
can be really frustrating, and there is always the risk of something being damaged in
the process.

The GreenShield Custom Shield | 383

http://bit.ly/apg-dht11
http://bit.ly/apg-dht11

For the GreenShield we want to verify that the sensors work correctly, the software is
able to derive sensible values for things like the soil moisture sensor and the LDR,
and the humidity/temperature sensor is operating as expected. To do this we’ll use
some dry sand, water, a reliable digital thermometer, a refrigerator, an oven, and a
sunny day.

The first thing to check is the humidity/temperature sensor. Using a external ther‐
mometer (in this case I used a digital thermometer with the sensor on a long lead), I
started with an ambient reading. The next step was to put the Duinokit and the ther‐
mometer into a refrigerator. A small netbook PC provided power and displayed the
temperature, and the USB cable was thin enough to allow the door of the refrigerator
to close completely. Last, the Duinokit and the thermometer were placed in a warm
oven that was at about 140° F (60° C). With three data points we can generate a rough
calibration curve to compensate for variances in the temperature sensor.

Testing the humidity response is a bit trickier, but getting readings near the ends of
the usable range isn’t too hard to do. A short stay in the freezer section of the refriger‐
ator will expose the sensor to a very low-humidity environment. Freezers are dry
because moisture in the air condenses on the coils inside the freezer compartment.
This is what causes “freezer burn,” by the way, when food isn’t properly sealed before
being frozen. It’s also the principle behind freeze-drying, although that is typically
done at much colder temperatures (around –112° F, or –80° C), and in a partial vac‐
uum. In the case of a kitchen freezer we would expect to see something like 5%
humidity, or perhaps a bit lower.

Another method is the so-called “salt test.” This technique uses
water-saturated salt to establish a constant relative humidity in a
sealed environment. You can read one way to perform a salt-base
calibration at the Ambient Weather wiki. If you elect to do this, be
careful not to get any of the salt or water on the circuit compo‐
nents. This might not be very practical with a large item like the
Duinokit, but it can be used with the finished Greenshield.

Once we have a low-humidity reading, the next step is to boil some water on the stove
and use a small fan to blow the steam over the sensor. The resulting flow of air won’t
be fully saturated, but it will be in the 80 to 90% humidity range. These tests verify
that the sensor is working, but we can’t really use the data for anything beyond that
because we have no reference to compare it to. If you happen to have an accurate
humidity sensor available, then by all means use it and create a calibration curve like
the one that was created for the temperature.

Testing the soil moisture sensor involves some clean, dry sand, a scale, and some
water. First, get a large glass jar or ceramic bowl. Either will work; choose one that
can hold a quart or so (or about 1 liter). Don’t use a metal bowl for this test, because

384 | Chapter 10: Creating Custom Components

http://bit.ly/wiki-aw

the moisture probe uses current flow and a metal bowl could create a false reading.
First, weigh the container and record the value. We’ll need this later on. Next, meas‐
ure out about 1/2 pound (or about 225g) of sand into the container. Put it back on the
scale and weigh it again. The actual weight of the sand is whatever the scale shows
minus the weight of the container. You can leave the container on the scale for the
rest of the test procedures if you want to.

Now insert the soil moisture probe into the dry sand and note the reading shown on
the Arduino IDE’s serial monitor output. Remove the sensor and add water until the
weight is about one-quarter more than the original weight of the sand plus the weight
of the container. Let it sit for a bit to allow the water to work through the sand. The
sand should feel damp to the touch, but it shouldn’t be wet or muddy.

Reinsert the sensor and observe the output. The sand is now about 50% saturated,
and from these two readings, dry and damp, we can interpolate a point in between,
which we will call the 25% point.

Lastly, there is the LDR photocell. The response of the photocell really isn’t all that
critical, but it is a good idea to establish a low-light trip point. On a cloudy day this is
when the GreenShield can be used to turn on some auxiliary lighting, or it can simply
be used to determine the difference between day and night. All that is needed to test
the photocell is an interior room in your house (perhaps with the curtains partly
drawn, and no lights on) and a nice sunny day outside. The direct sunlight outside is
as much light as the photocell is ever likely to be exposed to, and an interior room in
your house is roughly equivalent to the light level of a dim, cloudy day outside.

We need to record the data for the temperature/humidity sensor, the LDR, and the
soil moisture probe. These will be our initial values when we set up the GreenShield
for the first time, and since we now know what to expect we won’t have to guess at
appropriate minimum and maximum setpoint values to start off with.

Final Software
The prototype software only handles the sensor inputs. The final version will also
handle the host control interface and relay setpoint function mapping. This involves
input command parsing, along with data storage and lookup.

There are no output displays beyond the four humidity and temperature range status
LEDs, and no manual control inputs. A simple USB serial interface is used for
command-response transactions between the GreenShield Arduino and a host con‐
trol computer. The bulk of the software involves interpreting the commands from the
control host PC, and then applying the setpoint mapping to the relays.

The GreenShield Custom Shield | 385

Source code organization
The final version of the GreenShield source code is contained in multiple source files,
or modules. When the Arduino IDE opens the main file, GreenShield.ino, it will also
open the other associated files in the same directory. The secondary files are placed in
“tabs” in the IDE as shown in Figure 10-11.

Figure 10-11. The Arduino IDE with the GreenShield files loaded

386 | Chapter 10: Creating Custom Components

Table 10-8 lists the files in the GreenShield set. Two files are shared by all the source
modules. These are gs.h and gs_gv.h. The global variables defined in gs_gv.cpp that
would otherwise be found at the start of a conventional sketch are compiled sepa‐
rately and shared as necessary among the other modules.

Table 10-8. GreenShield source code modules

Module Function
GreenShield.ino Primary module containing setup() and loop()

gs_gv.cpp Global variables

gs_gv.h Include file

gs.h Constant definitions (#define statements)

gs_mapping.cpp Function mapping

gs_mapping.h Include file

gs_parse.cpp Command parsing

gs_parse.h Include file

gs_send.cpp Data send (to host) functions

gs_send.h Include file

Organizing a project in this manner makes it easier to deal with just one section at a
time without wading through line after line of source code. Once the main section is
done, then changes can be made to other modules without interfering with the fin‐
ished code. This approach also helps in thinking about your software from a modular
perspective, and this in turn makes it easier to understand and easier to maintain.

Software description

Figure 10-12 shows the flowchart for the main loop of the software. The loop() func‐
tion begins with the “Start” block and it will continue until the Arduino is powered
off. Note that there are three primary functional sections: command input and
response processing, data acquisition, and minimum/maximum setpoint testing. Also
note that the block labeled “Setpoint Test” is one instance of four blocks, one for each
pair of min/max setpoints. In order to keep the size of the diagram reasonable, only
one test section is shown.

The GreenShield.ino source file, shown in Example 10-2, contains the setup() and
loop() functions. The complete GreenShield software can be found on GitHub.

The GreenShield Custom Shield | 387

https://github.com/ardnut

Figure 10-12. GreenShield flowchart

388 | Chapter 10: Creating Custom Components

Example 10-2. GreenShield main source file

// GreenShield.ino
//
// Created for "Arduino: A Technical Reference," 2016, J. M. Hughes
// Chapter 10

#include "gs.h"
#include "gs_gv.h"
#include "gs_parse.h"
#include "gs_send.h"
#include "gs_mapping.h"
#include <dht.h>

void setup()
{
 Serial.begin(9600);

 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
 pinMode(LED4, OUTPUT);

 pinMode(RY1, OUTPUT);
 pinMode(RY2, OUTPUT);

 Serial.println("OK");
}

void loop()
{
 ParseCmd();

 curr_temp = ReadTemp();
 curr_humid = ReadHumidity();
 curr_moist = ReadMoisture();
 curr_light = ReadLight();

 ScanMap();
}

The Arduino IDE relies on the #include statements to determine which modules
belong in the code set. Even if a source file isn’t directly used by the top-level module,
it must still be included.

The global definitions file gs.h, shown in Example 10-3, defines a set of constants
used by the GreenShield source modules. The #define statements result in a smaller
compiled object, as demonstrated in “Constants” on page 110.

The GreenShield Custom Shield | 389

Example 10-3. GreenShield global definitions

// gs.h
//
// Created for "Arduino: A Technical Reference," 2016, J. M. Hughes
// Chapter 10

#ifndef GSDEFS_H
#define GSDEFS_H

#define MAXINSZ 12 // Input buffer size

#define NOERR 0 // Error codes
#define TIMEOUT 1
#define BADCHAR 2
#define BADVAL 3

#define LED1 2 // LED pin definitions
#define LED2 3
#define LED3 4
#define LED4 5
#define RY1 6 // Relay pin definitions
#define RY2 7

#define DHT22 8 // DHT22 I/O pin
#define MPROBE A0 // Moisture probe input
#define LDRIN A1 // LDR input

#define MAXRY 2 // Maximum num of relays

#define MAP_NONE 0 // Mapping vectors
#define MAP_TEMPMIN 1
#define MAP_TEMPMAX 2
#define MAP_HUMIDMIN 3
#define MAP_HUMIDMAX 4
#define MAP_MOISTMIN 5
#define MAP_MOISTMAX 6
#define MAP_LIGHTMIN 7
#define MAP_LIGHTMAX 8

#endif

In Example 10-3 the definition of MAXRY is 2. This can be a larger value if the hard‐
ware to support additional relays is present, and the outputs don’t have to be relays.
The include file gs_mapping.h, shown in Example 10-4, declares the functions for
reading the DHT22 and the analog inputs, setting the on/off state of each relay (or all
relays), controlling the status LEDs, and performing a scan through the response con‐
ditions that will control the relays in the function ScanMap().

390 | Chapter 10: Creating Custom Components

Example 10-4. GreenShield mapping functions

// gs_mapping.h
//
// Created for "Arduino: A Technical Reference," 2016, J. M. Hughes
// Chapter 10

#ifndef GSMAP_H
#define GSMAP_H

void ReadDHT22();
int ReadTemp();
int ReadHumidity();
int ReadMoisture();
int ReadLight();

int RyGet(int ry);
void RySet(int ry, int state);
void RyAll(int state);

void LEDControl(int LEDidx);
void ScanMap();

#endif

The ScanMap() function in gs_mapping.cpp, shown in Example 10-5, is executed on
each cycle of the loop() function in the GreenShield.ino main source file. It evaluates
the analog inputs against a set of configurable limits, and either enables or disables
the relays based on those conditions.

Example 10-5. The GreenShield function map scanner

// NOTE: There are no checks in this code to prevent multiple relays being
// mapped to the same operational mode.

// Each RY is mapped to one of 8 possible operational modes. Determine the
// mapping for a specific relay and see if the enable condition has been
// met. This is extensible to any reasonable number of relays.
void ScanMap()
{
 for (int i = 0; i < MAXRY; i++) {
 if (rymap[i] != MAP_NONE) {
 switch (rymap[i]) {
 case MAP_TEMPMIN:
 if (curr_temp < mintemp)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 case MAP_TEMPMAX:
 if (curr_temp > maxtemp)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;

The GreenShield Custom Shield | 391

 case MAP_HUMIDMIN:
 if (curr_humid < minhum)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 case MAP_HUMIDMAX:
 if (curr_humid > maxhum)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 case MAP_MOISTMIN:
 if (curr_moist < minmoist)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 case MAP_MOISTMAX:
 if (curr_moist > maxmoist)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 case MAP_LIGHTMIN:
 if (curr_light < minlite)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 case MAP_LIGHTMAX:
 if (curr_light > maxlite)
 { RySet(i, 1); } else { RySet(i, 0); }
 break;
 default:
 // Do nothing
 break;
 }
 }
 }
}

The source module gs_parse.cpp contains one primary function, ParseCmd(), and a
couple of support functions (CntInt() and SendErr()). Example 10-6 shows the con‐
tents of gs_parse.h.

Example 10-6. GreenShield parse module include file

// gs_parse.h
//
// Created for "Arduino: A Technical Reference," 2016, J. M. Hughes
// Chapter 10

#ifndef GSPARSE_H
#define GSPARSE_H

void ParseCmd();
int CvtInt(char *strval, int strt, int strlen);
void SendErr(int errtype);

#endif

392 | Chapter 10: Creating Custom Components

The ParseCmd() function is by far one of the largest functions in the GreenShield
code set. If uses a fast descending conditional tree-type parser to determine the type
of an incoming command, and then extract the subfunction code and any parame‐
ters. This function will also execute any immediate commands such as enabling or
disabling relays, returning relay state information, and acquiring and returning ana‐
log data to the control host or a user. Immediate command execution occurs at the
endpoints of the descending tree structure.

Fabrication
It is beyond the scope of this book to provide a step-by-step walk-through for creat‐
ing schematics and printed circuit boards. This is a high-level description of the steps
involved to move from schematic to PCB layout to finished PCB. For the low-level
details, I would refer you to the texts listed in Appendix D. A Google search for “Cad‐
Soft Eagle” will come back with numerous tutorials. I recommend the tutorials from
SparkFun, Adafruit, and, of course, CadSoft.

The Eagle version of the Greenshield schematic is shown in Figure 10-13. Notice the
block labeled “ARDUINO_R3_SHIELD.” This is from the SparkFun parts library for
Eagle, and it’s intended specifically for creating shields. It is much more convenient
than working out the placement of the pin header pads manually later on during the
PCB layout phase.

Figure 10-13. GreenShield schematic (Eagle version)

The GreenShield Custom Shield | 393

http://www.cadsoftusa.com

The Eagle schematic editor, like all such tools, takes some time to get used to. It’s not
always intuitive or obvious. Normally I use a different tool to create publication-
quality line art, including schematics, but to create a PCB it’s useful to have a sche‐
matic editor and PCB layout tool that can share data. You can compare Figure 10-13
with Figure 10-9 to see the difference. The Eagle tool, and the Fritzing design tool
used in the Switchinator project, can keep schematics and layouts synchronized,
whereas a standalone graphics tool for line art and illustrations cannot.

When creating a schematic, make sure you have selected the correct part. For exam‐
ple, the symbol for a resistor is the same no matter if it’s an 0805 SMD (surface-
mount) part or a 1/4 watt through-hole component. Sometimes it can be a challenge
to find the right part in the schematic editor’s parts library. With Eagle you can use
wildcard characters to search the library. When looking for the ULN2003AD part for
the GreenShield I entered *2003* and found what I was looking for under the uln-udn
category. Sometimes it is necessary to go online and search for a part that someone
may have already created. SparkFun, Adafruit, and others have created large libraries
of parts that are available to download for free.

Once the schematic is complete the PCB can be generated. Initially the PCB layout is
just a jumble of parts and thin connection lines (“air wires,” as they are sometimes
called) that form a wiring “rat’s nest.” The rat’s nest shows the point-to-point connec‐
tions as defined in the netlist (the network list) created from the schematic.

The first step is to move all the parts into the PCB region, and then arrange them.
The main objectives when arranging the parts are to locate connectors in the desired
locations, group parts by function, and minimize the number of occurrences of
crossed rat’s nest lines by rotating parts as necessary. Once this initial step is complete
it’s much easier to start creating the traces that will connect the parts.

You can elect to route each trace (or track, as they are sometimes called) by hand,
using the rat’s nest wires as a guide, or if you are feeling lucky you can let an autor‐
outer take a shot at it. Eagle does have an autorouter, but I generally don’t use it.
Autorouting is typically an iterative process of trying to get a good layout, ripping it
up, moving and rotating parts, and then trying it again. After a while it becomes obvi‐
ous with some designs that it is quicker to just do it manually.

In Eagle, you do not need to manually place a via. (A via transfers a trace from one
side of the PCB to the other via a plated-through hole, hence the name.) If you need
to transition from the top to the bottom of the PCB (or vice versa), simply change
from one side to the other with the layer selection pull-down located at the lefthand
side of the trace draw toolbar. Eagle will automatically place a via at that location for
you and switch the trace routing to the selected side of the PCB.

The PCB layout is shown in Figure 10-14. The top (component) side is brownish-red,
and the bottom (solder) side is blue. If you happen to have the printed version of this

394 | Chapter 10: Creating Custom Components

book you should see the top side traces as light gray, and the bottom traces as dark
gray. The component outlines are in light gray.

Figure 10-14. GreenShield PCB layout

The files generated by the Eagle CAM (Computer Aided Manufacturing) tool, called
“Gerber” files, are used by a PCB fabricator to create the actual PCB. I used the Gerbv
tool, part of the gEDA package, to load and view the Gerber files as a last step check.
A screenshot of the Gerbv screen is shown in Figure 10-15.

Figure 10-15. Gerbv Gerber file viewer

The GreenShield Custom Shield | 395

In order to take advantage of the low-cost service for prototype
PCBs, the board outline for the GreenShield was squared to make a
rectangle. It might look a little odd, but that won’t affect how it
works. You will not see this in the photos, but the layout was origi‐
nally done using the Arduino shield outline. Converting the cor‐
ners to right angles took about 5 minutes, and it happened just
before the layout was sent off for fabrication. If it really mattered I
could have paid a whole lot more money for an edge route and
trim operation, or I could have used my own router and done it
myself. I opted to just leave it as a rectangle.

It takes about 7 to 10 days to get a finished PCB back. Figure 10-16 shows the bare
PCB from the fabricator.

After the parts are soldered onto the PCB it’s always a good idea to spend a few
minutes examining both sides for cold solder joints and shorts (called “bridges”)
between the pads and traces. I use a standard jeweler’s loupe for this. Figure 10-17
shows what a completely assembled GreenShield looks like.

You might notice that I used stacking headers for the connections to an underlying
Arduino or another shield. While it would be awkward to put another shield on the
GreenShield (and I would advise against it), I wanted to have some readily accessible
test and I/O points.

Figure 10-16. Finished bare GreenShield PCB

396 | Chapter 10: Creating Custom Components

Figure 10-17. Fully populated GreenShield PCB ready to go

Final Acceptance Testing
Surface-mounted parts have their own unique set of potential problems. Before
applying power to the GreenShield we should do some quick checks to make sure
things are wired correctly and there are no short circuits on the PCB:

Visual inspection
Carefully examine the components on the PCB for solder bridges (solder bridg‐
ing two pads or between a pad and a trace). Examine the resistors to see if any
have an end that may be lifted above the pad and not connected. This can happen
when using regular solder and a soldering iron (I used solder paste and a hot air
SMD reflow tool). Look at the pads for the ICs (U1 and IC1) to make sure there
are no solder bridges between them.

Component placement
There are nine parts that may accidentally be mounted backward. These are the
two ICs, the LEDs, and the DHT22 sensor module. The op amp IC may have a
dimple or dot to indicate pin 1, but some packages have a beveled edge. In addi‐
tion to different lead lengths, LEDs will usually have a small flattened area next to
the cathode (–) connection.

Short circuits
Using a DMM, preferably with a continuity test function (the beeper mode),
check each pair of pins on the LM358 op amp (IC1) for shorts. None of the pins
should short to another pin. Now check that the VCC on pin 8 of IC1 is tied to
the 5V on the pin header. Also check that pin 4 is tied to one of the ground pins
on the pin header.

The GreenShield Custom Shield | 397

Repeat this process for the ULN2003A driver (U1). None of the input or output
pins should be shorted, pin 8 should be tied to ground, and pin 9 should be con‐
nected to the 5V supply.

Power safety
Before connecting the GreenShield to an Arduino board, use a DMM to measure
the resistance between the +5V and ground pins on the pin header. You should
see a value of no less than about 30K ohms, probably higher. If you get a reading
of zero then there is a short somewhere, and it will need to be found and cleared
before attempting to power up the GreenShield.

If the GreenShield appears to be acceptable electrically, then we can mount it on an
Arduino and apply power. None of the LEDs on the GreenShield should be active ini‐
tially (unless there is some software already running on the AVR on the Arduino that
is controlling the digital I/O pins). Functional testing involves four basic steps:

Initial functional testing
The first part of functional testing is rerunning the same tests as were done with
the prototype to test the analog inputs and the DHT22.

Upload the prototype version of the software to the Arduino and open the IDE’s
serial monitor window. If everything is working correctly you should see a
repeating display with the temperature, humidity, and analog inputs.

Analog input testing
Connect a 470-ohm resistor across the LDR inputs. While observing the continu‐
ous output, adjust R12 until the value goes to zero. This demonstrates that this
part of the circuit is working correctly. Now repeat this with R8 for the moisture
sensor.

DHT22 testing
The output readings from the DHT22 should be what you would expect for the
local ambient temperature and humidity. You can use a hot air source (a hair
dryer, for instance) to apply warm (not hot!) air to the DHT22 and observe its
response.

Software functional testing
Now load the full version of the GreenShield software. You can use the serial
monitor window of the Arduino IDE for these tests. This is not an extensive suite
of tests, as we’ve already been through some of this earlier with the prototype.

With the full GreenShield software loaded, you should see the word “OK” when
it first starts. The GreenShield does not provide a prompt. Enter the command
RY:0:? and the response should be RY:0:0. Now enter the command RY:0:1.
The relay should click and the associated LED should illuminate. Using the RY:
0:? command now will return RY:0:1.

398 | Chapter 10: Creating Custom Components

We should exercise the rest of the commands as well. We can test the analog lim‐
its by shorting or opening the analog inputs. The DHT22 is self-contained, so we
don’t need to do a lot with that, but you can set the limits very close and use a hot
air source and some steam from a pot of boiling water to verify that the tempera‐
ture and humidity limits work as expected.

Testing Confession
When assembling the first GreenShield board I couldn’t find a packaging tray of new
Songle 5V relays I had purchased. I looked everywhere. So I grabbed a couple of blue
relays from a box and soldered them onto the PCB. They were the right shape, the
right color, and the right brand. Turned out they were the wrong coil voltage; 12V DC
instead of 5V DC. I was baffled as to why the relays wouldn’t respond to the software
commands until I looked at the lettering on the tops of the two relays and discovered
what I had done. In the meantime I had found the missing 5V relays (they were right
where I’d left them, of course). A short while later the 12V relays were removed, the
correct 5V parts were installed, and the relay control commands and the function
mapping worked as expected.

The moral of the story: always examine the parts you are installing before you com‐
mit them to a PCB with solder.

Operation
The GreenShield is physically simple, but it can be functionally complex in terms of
how it is integrated into its intended environment. The two main variable inputs,
light level and soil moisture, must be calibrated for a specific set of conditions. The
range of the light-dependent resistor and the soil moisture probe determine how the
midpoints are set using the trimmer potentiometers. Not all LDRs are the same, and
there will be a difference between a moisture probe that is just a pair of probes and
one with a transistor on it.

There are two basic approaches for adjusting the GreenShield: (1) calibrate the
GreenShield for known ranges using references of some sort, or (2) adjust the Green‐
Shield to a specific environment using subjective evaluation (i.e., does the soil feel wet
enough?).

The calibrated approach will allow you specify ranges based on hard data, and if you
know the ideal soil moisture content for, say, tomatoes, then you can use those values
once you have done the calibration and worked out how the ADC readings corre‐
spond to moisture content. “Prototype testing” on page 383 described the basic pro‐
cedures involved in calibrating the GreenShield for soil moisture and light levels, but
you could also use expensive lab equipment as reference sources.

The GreenShield Custom Shield | 399

The subjective approach is much easier, and since the primary intent is to avoid kill‐
ing off your plants it’s probably just as effective after a bit of tweaking. You can adjust
the trimmer potentiometers to suit the high and low ends of a subjective evaluation of
what is acceptable.

I would suggest some experimentation to see which approach works best for your
intended application. I would also suggest taking the time to log data from the Green‐
Shield and build up some profiles that you can study to achieve the best responses for
your situation.

Next Steps
The GreenShield is rather minimal, to be sure, but it has a lot of potential. You can
use it with a Bluetooth shield or even an Ethernet shield, and remotely monitor the
soil conditions of your favorite potted plant, some tomatoes or orchids in a green‐
house, a small outdoor vegetable plot, or a garden in a Mars colony. Connect a stan‐
dard 24VAC sprinkler system valve to one of the relays and you can automate the
watering. You could use the other relay to enable a ventilation fan in a greenhouse to
cool it down, or connect it to a heater to keep the interior nice and warm during the
winter. And, of course, you could always add another relay or two with an external
relay module like those described in Chapter 9.

A microSD shield could also be used if you wanted to strap the GreenShield to a tree
in the forest and do some long-term data logging (a solar panel to keep it running
would be a good idea, as well). Add a WiFi or GSM shield, and you could scatter
GreenShields around a good-sized farm to keep an eye on soil conditions.

The Greenshield software currently does not save the set-point val‐
ues if power is lost to the Arduino. One way to get around this is to
use the EEPROM in the AVR IC. Refer to Chapter 7 for an over‐
view of the EEPROM library.

Custom Arduino-Compatible Designs
Building an Arduino hardware–compatible PCB is straightforward. In fact, the Ardu‐
ino folks even provide the schematics and PCB layout files for download. They don’t
provide the top or bottom silkscreen masks, however, as these are copyrighted by
Arduino.cc and are not covered under an open license. You will need to create your
own graphics for the board.

Although much of what you need to build a copy of an Arduino or a shield is readily
available, it really isn’t economical to clone an existing Arduino design (either a shield
or an MCU board). Unless you own or have access to a PCB production facility and a
need for hundreds, or even thousands, of a particular board type, odds are you can

400 | Chapter 10: Creating Custom Components

find something already fabricated for much less per unit than it would cost you to
build it yourself.

The custom approach does make sense if the existing available PCB form factors
won’t work for you. Perhaps you want to integrate an Arduino into a larger system, or
put an AVR MCU into a uniquely constrained location such as an unmanned aircraft
or a robot. If that’s the case, then you might want to consider creating a software-
compatible PCB. Your board doesn’t have to look like an Arduino, and there’s no rea‐
son it needs to be compatible with existing shields, unless of course you want to use it
with a shield from some other source.

As discussed in Chapter 1, a device can be Arduino software compatible without
being hardware compatible. All that is needed is a suitable AVR processor, the boot‐
loader firmware, and the Arduino runtime libraries. Even the bootloader firmware is
optional. In this section we will design and build an AVR-based DC power controller
suitable for use with heavy-duty relays, high-power LEDs, and AC or DC motors.

Programming a Custom Design
If you want to use the Arduino bootloader with a brand-new AVR microcontroller,
then you will need to install the bootloader in the chip’s built-in flash memory. Once
this is done, you can then treat your custom board like any other Arduino. The tools
and procedures involved in uploading executable code to an AVR MCU are covered
in “Uploading AVR Executable Code” on page 146 in Chapter 6. As an alternative to
installing the bootloader firmware yourself, many sources sell AVR devices with the
Arduino bootloader already installed. Check out Adafruit and SparkFun for
ATmega328 ICs with the Arduino bootloader firmware preinstalled. Entering
“ATmega328 with Arduino bootloader” into the search box on Amazon.com or eBay
returns numerous listings.

Once the bootloader is in place, you can use a USB-to-serial adapter or even a stan‐
dard serial interface with a suitable RS-232 module like the one shown in
Figure 10-26 or a USB-to-serial breakout like the SparkFun device shown in
Figure 6-8. For some projects, such as the Switchinator in the next section, the serial
interface is not an option for programming the MCU if it is already in use, or if the
bootloader is not used. This means you will need to use an ISP (ICSP) programmer
such as the Atmel-ICE or the USBtinyISP, both of which are discussed in Chapter 6.

The Switchinator
The device described here, which I am calling the Switchinator (for lack of anything
better), is a remote-controlled, 14-channel DC switch with 4 analog input channels.
This initial version uses an RS-232 interface and a simple command-response proto‐

The Switchinator | 401

https://www.adafruit.com
https://www.sparkfun.com

col. A possible change for a future version would be the use of an RS-485 interface
instead of RS-232.

Definition and Planning
The Switchinator is a standalone PCB that can use a plain ATmega328 or
ATmega328p MCU without the Arduino bootloader. It can also use an MCU with the
bootloader firmware installed with a serial programmer or a USB-to-serial converter.
I have elected to use the Arduino IDE for compiling, and an Adafruit USBtinyISP for
the programming. Refer to Chapter 6 for more on programming the MCU.

Core hardware:

• ATmega328
• 16 MHz crystal clock source
• ICSP programming interface
• Integrated 5V DC power supply (9 to 12V DC input)

Inputs and outputs:

• 4 analog inputs
• 14 discrete digital outputs

Control interface:

• RS-232 host interface
• Command-response protocol, control host driven
• Analog readings available on demand
• Output override by control host

The Switchinator provides 14 discrete digital outputs and 4 analog inputs, and the
SPI interface is available through an ICSP pin array. The discrete digital outputs and
the analog inputs are terminated at the edge of the PCB using screw terminal blocks.
An RS-232 interface is used for communication between the board and a control host
computer via the D0 and D1 pins on the MCU.

The PCB is a 100 percent through-hole design. This simplifies the assembly at the
expense of a larger PCB and a potentially more challenging PCB layout. The PCB size
will not exceed a rectangular size of 100 mm by 140 mm. Mounting holes are located
in each corner of the PCB.

402 | Chapter 10: Creating Custom Components

The discrete digital outputs of the Switchinator can be used for driving relays, such as
the type used on the GreenShield, or controlling up to three unipolar stepper motors
using a basic circuit like the one shown in Figure 10-18.

Figure 10-18. ULN2003A connected as stepper driver

The digital outputs of the Switchinator can also drive high-current LEDs, solenoids,
or DC motors, as shown in Figure 10-19.

A basic prototype based on a solderless breadboard will be used to develop the initial
version of the software. The final version will be completed on the finished hardware.

For the final hardware design I will use Fritzing for schematic capture and PCB lay‐
out.

Design
The Switchinator is a single PCB, 124 × 96 mm in size with four corner mounting
holes. The final board size is larger than would otherwise be possible with a surface-
mount design (it is also larger than the size limits set by the free version of the Eagle
tool used for the GreenShield).

There is no enclosure or power supply, which greatly simplifies the design. The
Switchinator is entirely self-contained, requiring only an external DC power source
for operation.

Functionality
The Switchinator is a digital output device with some analog input capability. Its pri‐
mary purpose is to switch DC loads, both inductive and noninductive. An

The Switchinator | 403

ATmega328 AVR MCU is used to decode command inputs and return status data to
the control host.

Figure 10-19. ULN2003A DC motor driver

An ATmega328 is used primarily as a command decoder to interface the I/O on the
PCB to a host system. Although it has been programmed to act as an I/O device, it
could also be programmed to perform autonomous functions based on the analog
inputs. By using a linear temperature sensor, such as the LM35, the Switchinator
could easily be reprogrammed to serve as a controller for an environmental test
chamber or an epoxy curing chamber.

Circuit-wise the Switchinator is comprised of three main sections: MCU, digital I/O,
and power supply. Figure 10-20 shows a block diagram of the Switchinator.

The discrete digital outputs are driven by ULN2003A ICs. Four analog inputs are also
provided, and the analog reference and AVCC voltages may be supplied either on-
board from the internal power supply or externally. Jumpers are used to select the
analog voltage sources.

A simple, human-compatible command-response protocol is used to monitor and
control the Switchinator.

Hardware
The Switchinator will have 14 digital outputs, each connected to the Darlington out‐
puts of a pair of ULN2003A driver ICs. The ULN2003A drivers have seven channels
per IC, and each ULN2003A channel can handle up to 300 mA or more in some
cases.

A Microchip MCP23017 I2C digital I/O expander will be used to drive the
ULN2003A parts, mainly to avoid using up all of the available digital I/O pins on the
AVR MCU. Two of the digital I/O pins on the AVR are used for the serial interface,

404 | Chapter 10: Creating Custom Components

and two of the analog pins are used for the I2C interface to the MCP23017 IC. The
unconnected digital I/O pins are not used, but are available for future expansion.

Figure 10-20. Switchinator block diagram

An RS-232 interface is implemented using a MAX232 TTL-to-RS232 transceiver IC.
The serial interface will be used to communicate with a host system acting as a master
controller. The master controller may be a PC, an Arduino, or some other type of
programmable controller with an RS-232 interface. A DB-9 connector is used for the
serial interface. This is not a full implementation of RS-232, just the RxD and TxD
signals. The Switchinator does not have a USB connector.

The digital outputs and the analog inputs are terminated using 3.5 mm (0.138 inch,
138 mil) pitch screw-type terminal blocks. In addition, two jumpers allow for exter‐
nally supplied analog V+ and analog reference voltage inputs via a terminal block. A
standard PCB-mount DC-barrel type connector is used for DC power. The power
input can range from 6 to 12V DC (9V is optimal). A 7805 in a TO-220 package is
used for voltage regulation to 5V on the PCB. Figure 10-21 shows the schematic cre‐
ated by Fritzing.

The schematic notation used in Figure 10-21 illustrates what hap‐
pens when the parts in a tool’s library don’t all follow the same con‐
ventions for size and spacing. This is a common issue with open
source tools because not every contributed part may have followed
the same rules. That doesn’t mean it won’t work; it just looks odd.

The Switchinator | 405

Fi
gu

re
 1

0-
21

. S
w

itc
hi

na
to

r s
ch

em
at

ic

406 | Chapter 10: Creating Custom Components

The MCP23017 Digital I/O Expander
The MCP23017 with an I2C interface and its sibling, the MCP23S17 with an SPI
interface, are register-controlled I/O devices for routing binary signals between a
master device and up to 16 discrete digital inputs or outputs. The discussion of the
internal workings of the MCP23017 also applies to the MCP23S17.

These devices are used in I/O expander shields such as the ones described in Chap‐
ter 8, and provide a simple means to extend the I/O capabilities of an MCU. Using the
addressing pins it is possible to connect up to 8 MCP23017 ICs to an AVR MCU,
resulting in 128 channels of discrete digital I/O.

The behavior of the MCP232017 is defined by the contents of a set of control and data
registers. The master can read or set register values at any time via either the I2C or
the SPI interface. Figure 10-22 shows a block diagram of the MCP23017. The
MCP23S17 is identical except for the incorporation of an SPI interface instead of the
I2C interface.

Figure 10-22. The MCP23017 I/O expander

The Switchinator | 407

The MCP23017 has 22 internal registers arranged as 11 pairs with an A register for the
GPIO port labeled A, and a B register for the B port. Port direction (input or output)
is set with the appropriate IODIRA or IODIRB register. Port polarity (active high or
active low) is set with the IPOLA or IPOLB registers. GPINTENA and GPINTENB enable
interrupt generation. GPPUA and GPPUB enable internal pull-ups. The signal at the port
A or port B pins is read from the GPIOA or GPIOB registers. The OLATA and OLATB regis‐
ters return the states of the internal output latches, which are set when a port is in
output mode and data is written into the GPIOA or GPIOB registers. Table 10-9 lists the
full register set. Note that the register addresses are in hex (Addr = address in
MCP23017 register space), and POR/RST translates as power-on-reset or external
reset.

Table 10-9. MCP23017 control registers (IOCON.BANK = 0)

Register Addr Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR/RST
val

IODIRA 00 IO7 IO6 IO5 IO4 IO3 IO2 IO1 IO0 1111
1111

IODIRB 01 IO7 IO6 IO5 IO4 IO3 IO2 IO1 IO0 1111
1111

IPOLA 02 IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0 0000
0000

IPOLB 03 IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0 0000
0000

GPINTENA 04 GPINT7 GPINT6 GPINT5 GPINT4 GPINT3 GPINT2 GPINT1 GPINT0 0000
0000

GPINTENB 05 GPINT7 GPINT6 GPINT5 GPINT4 GPINT3 GPINT2 GPINT1 GPINT0 0000
0000

DEFVALA 06 DEF7 DEF6 DEF5 DEF4 DEF3 DEF2 DEF1 DEF0 0000
0000

DEFVALB 07 DEF7 DEF6 DEF5 DEF4 DEF3 DEF2 DEF1 DEF0 0000
0000

INTCONA 08 IOC7 IOC6 IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 0000
0000

INTCONB 09 IOC7 IOC6 IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 0000
0000

IOCON 0A BANK MIRROR SEQOP DISSLW HAEN ODR INTPOL — 0000
0000

IOCON 0B BANK MIRROR SEQOP DISSLW HAEN ODR INTPOL — 0000
0000

GPPUA 0C PU7 PU6 PU5 PU4 PU3 PU2 PU1 PU0 0000
0000

408 | Chapter 10: Creating Custom Components

Register Addr Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR/RST
val

GPPUB 0D PU7 PU6 PU5 PU4 PU3 PU2 PU1 PU0 0000
0000

INTFA 0E INT7 INT6 INT5 INT4 INT3 INT2 INT1 INTO 0000
0000

INTFB 0F INT7 INT6 INT5 INT4 INT3 INT2 INT1 INTO 0000
0000

INTCAPA 10 ICP7 ICP6 ICP5 ICP4 ICP3 ICP2 ICP1 ICP0 0000
0000

INTCAPB 11 ICP7 ICP6 ICP5 ICP4 ICP3 ICP2 ICP1 ICP0 0000
0000

GPIOA 12 GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0 0000
0000

GPIOB 13 GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0 0000
0000

OLATA 14 OL7 OL6 OL5 OL4 OL3 OL2 OL1 OL0 0000
0000

OLATB 15 OL7 OL6 OL5 OL4 OL3 OL2 OL1 OL0 0000
0000

The MCP23017 has other functionality, all of which may be useful for certain applica‐
tions. For simple digital I/O applications all that really needs to happen is reading or
writing the GPIO register. See the Microchip datasheet for the MCP23017/MCP23S17
for additional details about the registers.

Another aspect of the MCP23017 is how to communicate with it. A two-phase proto‐
col is used to access the internal registers. The first step is to send a control byte and
the address of the register to access. The second step is to either read from or write to
the register. The most recently selected register will remain active until a new register
is selected with a control byte–register address pair of bytes.

The control byte is the 7-bit address of the MCP23017 with a read/write (R/W) bit. In
a system with a single IC this should always be 0 for the A0, A1, and A2 bits with the
sixth bit predefined as 1, which results in byte values of 0x20 if this is a write opera‐
tion, and 0x21 if we are reading data (the read/write bit is the least significant bit in
the control byte).

There are several libraries available for interaction with the MCP23017 and
MCP23S17 devices, and writing a custom library is not difficult. The snippet of code
in Example 10-7 shows how to address the I/O direction register and the GPIOA reg‐
ister as an input using the I2C interface and the Wire library.

The Switchinator | 409

http://bit.ly/micro-mcp

Example 10-7. Accessing the IODIRA and GPIOA registers in the MCP23017

// Send control and register address bytes
Wire.beginTransmission(0x20);
Wire.write(0x00);
// Write data to IODIRA register
Wire.write(0xFF);
// End session
Wire.endTransmission();

// Send control and register address bytes
Wire.beginTransmission(0x20);
Wire.write(0x12); // GPIOA
Wire.endTransmission();
// Read data from port A
Wire.requestFrom(0x20, 1); // set R/W bit to 1 (read)
portval = Wire.read(); // still points to 0x12

Since the GP I/O ports are configured as inputs by default at power-up or after a reset
(see Table 10-9), the first step could have been omitted. To configure the port as an
output the IODIRA bits would be set to 0. This is shown in the code snippet in
Example 10-8.

Example 10-8. Writing data to the output port

// Send control and register address bytes
Wire.beginTransmission(0x20);
Wire.write(0x00);
// Write data to IODIRA register
Wire.write(0x0);
// End
Wire.endTransmission();

// Send control and register address bytes
Wire.beginTransmission(0x20);
Wire.write(0x12); // GPIOA
// Write data to port A
Wire.write(portval);
Wire.endTransmission();

The SPI interface in the MCP23S17 behaves in a similar fashion, and even the address
pins can be used if desired. All other behaviors are identical to the MCP23017. The
operations in the MCP23017 happen as fast as the I/O, either I2C or SPI.

I used a 16 MHz crystal in the Switchinator for the MCU clock, mainly because I have
a bunch of them. For the Switchinator the internal RC oscillator in the AVR would
probably do just fine. While the crystal will allow the MCU to run at a specific rate, it
also adds some complications with the internal fuse bits the AVR MCU employs for

410 | Chapter 10: Creating Custom Components

internal configuration. Reading and setting these is discussed in “Setting the AVR
MCU Fuse Bits for a 16 MHz Crystal” on page 418.

The four analog inputs are brought out to a pair of four-position terminal blocks. The
remaining positions are used for V+, ground, and optional analog reference and
AVCC inputs. Jumpers JP10 and JP11 are used to select the external voltage sources
by removing them from the PCB.

Two of the MCU’s digital pins (D0 and D1) are used for the RS-232 serial interface.
Three of the digital pins (D11, D12, and D13) are used for the ICSP programming
interface. The remaining digital pins are unassigned. Four of the analog inputs (A0,
A1, A2, and A3) are used as general-purpose analog inputs. Pins A4 and A5 are used
for the I2C interface between the MCU and the MCP23017 IC. Table 10-10 lists the
pin assignments for the Switchinator.

Table 10-10. Switchinator MCU pin usage

Pin Function Pin Function Pin Function
D0 RxD for RS-232 D7 Not used A0 General-purpose analog input

D1 TxD for RS-232 D8 Not used A1 General-purpose analog input

D2 Not used D9 Not used A2 General-purpose analog input

D3 Not used D10 Not used A3 General-purpose analog input

D4 Not used D11 ICSP MOSI A4 I2C SCL

D5 Not used D12 ICSP MISO A5 I2C SDA

Based on the schematic presented in Figure 10-21 we can generate a detailed parts list
as shown in Table 10-11.

Table 10-11. Switchinator parts list

Quantity Description Quantity Description
2 Capacitor, .1 uF 4 Red LED

2 Capacitor, 10 uf 1 Green LED

2 Capacitor, 27 pF 5 1K ohm resistor, 5%, 1/4 W

1 Capacitor, .001 uF 1 10K ohm resistor, 5%, 1/4 W

4 Capacitor, 1 uF 1 330 ohm resistor, 5%, 1/4 W

1 1N4001 diode 1 Switch, tactile pushbutton

1 MCP23017 I2C I/O expander 1 ATmega328 MCU, 28-pin DIP

2 ULN2003A output driver 1 MAX232 RS232 transceiver, 16-pin DIP

1 Power jack, 5.5 mm barrel 1 7805 voltage regulator, TO-220

1 AVR ISP connector package, 2 × 3 pins 1 DB9 connector, PCB mount, male

6 Terminal block, 3.5 mm pitch 1 16 MHz crystal

2 2-pin jumper header 1 Custom PCB

The Switchinator | 411

Software
As with the GreenShield project, the most complex part of the Switchinator is
actually the software. Figure 10-23 shows a block diagram of the software.

Figure 10-23. Switchinator software block diagram

When the Switchinator is waiting for command input it will send a single “>” charac‐
ter followed by a space. Responses are preceded with a “<” character and a space, fol‐
lowed by the response data. The use of the “>” and “<” characters is mainly for the
convenience of software running on a control host system. All input and output lines
are terminated with a newline (\n or 0x0A) character.

On every pass through the main loop the analog inputs are read and the values saved.
These are returned to the control host when an analog reading is requested, which
means they will be updated at the rate of the main loop.

Next, the software checks for incoming serial data. If there is data in the input buffer
the input read function is called to read characters until a newline (a linefeed charac‐
ter), ASCII value 10 (0x0A or \n), is encountered. The parser then extracts the com‐
mand from the string, parses out the parameters, and executes the commanded
operation.

412 | Chapter 10: Creating Custom Components

Control of the Switchinator is done using a simple command-response protocol. For
every command or query sent by the control host the Switchinator will respond with
a single response. The Switchinator will never initiate a communications transaction
with the control host. The complete command-response protocol is shown in
Table 10-12.

Table 10-12. Switchinator command-response protocol

Command Response Description In/out format

A:n A:n:val Get analog input n in raw DN Hex

R:nM R:n:val Read status of output n Hex (0 or 1)

W:n:val OK Write 0 or 1 to output n Hex

S:val OK Set all outputs to hex value 4-digit hex

G:? G:val Get hex value for all outputs 4-digit hex

The command set is simple, and only the W (write) command uses two parameters
instead of just one. All parameter and response values are in hexadecimal notation.
This allows digital port numbers to be single hex digits, while the analog input values
(the A command) and the mass set and retrieve commands (S, or set all ports, and G,
get all ports, respectively) use four-digit hex values. The digits 0 and 1 are nominally
in hex, but they are the same in decimal notation.

Error detection is handled by examining the string returned from the Switchinator. If
the A, R, or G commands return the string sent, then an error occurred. If the S or W
commands encounter an error they will return the original string; if they succeed,
then the string “OK” will be returned.

Octal and Hexadecimal Numbers
If you already know how to work with octal and hexadecimal notation, then feel free
to skip this sidebar. But if not, then let’s take a short history break and see where these
software number systems came from and how they work.

Long ago, when computers filled entire rooms and generated enough heat to cook
instant oatmeal for breakfast, it quickly became apparent that handling numbers in
binary wasn’t going to work out very well. And because the machines were inherently
binary, decimal values didn’t map gracefully to the bit patterns seen on the control
panel lights and stored in memory.

The solution was to use a number base other than 2 or 10 to represent numeric val‐
ues. It turns out that two base systems have direct mapping to binary values: the octal
(base-8) system and the hexadecimal (base-16) system.

The base-8 octal number system was popular with computers that used 12-, 24-, or
36-bit words for data and addressing, since each size value can be evenly divided by 3.

The Switchinator | 413

An octal digit can have a value between 0 and 7, so octal digits each map to three bits.
Table 10-13 shows how it works.

Table 10-13. Octal number system for a 12-bit computer

Decimal Binary Octal Decimal Binary Octal
0 000 000 000 000 0000 9 000 000 001 001 0011

1 000 000 000 001 0001 10 000 000 001 010 0012

2 000 000 000 010 0002 20 000 000 010 100 0024

3 000 000 000 011 0003 30 000 000 011 110 0036

4 000 000 000 100 0004 40 000 000 101 000 0050

5 000 000 000 101 0005 50 000 000 110 010 0062

6 000 000 000 110 0006 100 000 001 100 100 0144

7 000 000 000 111 0007 200 000 011 001 000 0310

8 000 000 001 000 0020 511 000 111 111 111 0777

Octal numbers can still be found in modern Unix and Linux computers as the file
permissions bits, but otherwise they are scarce these days. No one runs 12- or 24-bit
general-purpose computers anymore, although some research groups have created
24-bit microprocessor designs for specific applications, and the DSP56303 DSP (digi‐
tal signal processor) device from Freescale can be used as a 24-bit machine.

As computer architectures shifted to data and address sizes that are multiples of 4, the
octal system quickly became cumbersome. The solution was the hexadecimal base-16
system, or just hex. In the hex number system each digit can represent a value from 0
to 15, or binary 0000 to 1111. In other words, each hex digit is a “nibble,” and two hex
digits represent an 8-bit “byte.”

There is a problem with hex notation, however. The base-10 numbers cannot repre‐
sent any value greater than 9 as a single digit. The value of 10 is written with two dig‐
its. During the 1950s different schemes were proposed and tried to address the
notation problem, some of which are rather strange-looking to us today. After a few
years the dust settled and we ended up with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and
F for the values 0 through 15. Table 10-14 shows the relationship between decimal,
binary, and hex values for a selection of numbers.

In software you will sometimes see hex values written as 0x3F in C and C++, 3Fh in
assembly language, $3F in Forth, or %3F in a URL. A numeric seven-segment LED
display can handle hex by modifying the display of some of the digits to get symbols
that look like A, b, c, d, E, and F, as shown in Figure 10-24.

Early on it quickly became apparent in both the octal and hex numbering systems
that there are some special values, sometimes referred to as “magic numbers,” that
keep popping up. For example, in hex the value 0xFF is a byte with all bits set to 1.

414 | Chapter 10: Creating Custom Components

0x5A5A is an alternating pattern (binary 0101 1010 0101 1010) sometimes used as
filler for checking stack usage or to overwrite a disk drive to obscure previously
stored data. 0x7F is 127, 0x1FF is 511, and 0x3FF is 1023. 0x3FF (1023) is the maxi‐
mum value the 10-bit ADC in an ATmega328 AVR can produce, and 0x1FF is the
midpoint of its range.

Table 10-14. Hexadecimal number system for a 16-bit computer

Decimal Binary Hex Decimal Binary Hex
0 0000 0000 0000 0000 0000 10 0000 0000 0000 1010 000A

1 0000 0000 0000 0001 0001 20 0000 0000 0001 0100 0014

2 0000 0000 0000 0010 0002 30 0000 0000 0001 1110 001E

3 0000 0000 0000 0011 0003 40 0000 0000 0010 1000 0028

4 0000 0000 0000 0100 0004 50 0000 0000 0011 0010 0032

5 0000 0000 0000 0101 0005 100 0000 0000 0110 0100 0064

6 0000 0000 0000 0110 0006 200 0000 0000 1100 1000 00C8

7 0000 0000 0000 0111 0007 255 0000 0000 1111 1111 00FF

8 0000 0000 0000 1000 0008 511 0000 0001 1111 1111 01FF

9 0000 0000 0000 1001 0009 4095 0000 1111 1111 1111 0FFF

Figure 10-24. Hex display with a conventional 7-segment LED display

It is possible to do math with either octal or hexadecimal numbers, and in assembly
language programming there is often a need to add or subtract hex address values
(for indirect jump or relative branch instructions, for instance). Doing things like
multiplication and division with hex numbers is possible, but it does take some prac‐
tice. Unless you want or need to do a lot of low-level assembly language program‐
ming, hex math is probably not something you need to add to your skill set, but to
work with microcontrollers you should be able to translate from hex to binary (and
vice versa) on a digit-by-digit basis.

The A command accepts a single digit from 0 to 3, and the analog data is the actual
value returned by the ADC in the AVR MCU. It is returned as a hexadecimal value of
1 to 3 digits, with 0x3FF as the maximum possible value.

The Switchinator | 415

The R and W commands have the specific digital output port number in the form of a
single hex digit, ranging from 0 to 0xF (15). Output channels 7 and 0xF are used for
on-board LEDs; they are not brought out through the ULN2003A drivers.

Notice in Table 10-12 that to control or get the status of more than one output the S
and G commands are used with a hexadecimal value. With this scheme we can enable
(set to an on state) noncontiguous outputs, or read back the state of all the outputs.

If, for example, we wanted to set outputs 5, 6, 12, and 13 to an on state, then we
would send the value 3060h, which translates to binary as follows:

Bit | 15 11 7 3 0
---------+----+----+----+---
Binary| 0011 0000 0110 0000
Hex | 3 0 6 0

Remember that the channel numbering is zero-based.

Sending a hexadecimal value will cause outputs to change state to
match the command value. That means that if an output is on, and
the command value has a zero in that position, it will be set to off.
Use a read-modify-write operation (get bits, change data, set bits)
to set or clear a specific output bit without disturbing other bits.
This is how the W command works.

The last step in the loop transfers the digital output state bits to the hardware. If no
changes have been made since the last update the outputs will not do anything; other‐
wise, bits that have been changed will appear as changes in the on or off state of the
ULN2003A outputs.

Prototype
The prototype mainly focuses on the RS-232 interface and the command-response
control protocol, so the prototype hardware consists mainly of an ATmega328 moun‐
ted on a solderless breadboard. An RS-232 adapter module is used as a stand-in for
the MAX232 in the final board. Figure 10-25 shows the prototype fixture.

The RS-232 module is a self-contained unit with a MAX3232 IC. This part is func‐
tionally equivalent to the MAX232 used in the Switchinator. The MAX3232 is nomi‐
nally a 3.3V part, although it is 5V tolerant. It is also slightly more expensive than the
MAX232. Figure 10-26 shows a close-up of the RS-232 interface module.

These modules are available from multiple vendors for between $3 and $6. A Google
search for “arduino rs232 module” or “arduino rs232 converter” will turn up numer‐
ous results.

416 | Chapter 10: Creating Custom Components

Figure 10-25. Switchinator prototype fixture

Figure 10-26. RS-232 interface module

Most desktop PCs still have a single RS-232 port and a DB-9 connector on the rear
panel, but if you have a late-model notebook PC you may not have a serial port avail‐
able. To get around this, you can use a USB-to-RS232 adapter. These range in price
from around $4 to over $30, with some specialty types costing even more. For more
details about RS-232 and the connectors used with it, I would recommend my books
Real World Instrumentation with Python and Practical Electronics: Components and
Techniques (see Appendix D). Both contain sections dealing specifically with RS-232,
DB-9 connectors, gender changers, and how to wire a DB-9 to allow RxD/TxD com‐
munications without the handshaking signals.

The Switchinator | 417

Setting the AVR MCU Fuse Bits for a 16 MHz Crystal
Unlike the other examples in this book, the Switchinator is not an Arduino board. It
can be software compatible if the bootloader is installed, but that’s not a requirement.
It is basically just an AVR MCU design.

That means that the MCU isn’t preconfigured as it is with an Arduino board. A fresh
MCU from Atmel will run in RC clock mode using an internal oscillator at about 8
MHz. If a bootloader has been installed, then some internal switches are set to indi‐
cate that a portion of the flash memory space has been reserved. MCUs with preloa‐
ded bootloader firmware will also typically have the fuse bit set for a 16 MHz external
crystal, but a brand-new part will have only the default configuration.

In order to configure the MCU to use the 16 MHz crystal as its clock source we need
to set the fuse bits. For more details on the fuse bits used in the AVR MCUs refer to
“Fuse Bits” on page 60 in Chapter 3. The definitive source of information is, of course,
the Atmel datasheet for the AVR MCU you are using.

If you want to use the Arduino configuration for AVRDUDE (and you have a Linux
system), then the following command will do the job for an ATmega328:

sudo avrdude -cusbtiny -p atmega328 -U lfuse:w:0xFF:m \
-U hfuse:w:0xDE:m -U efuse:w:0x05:m

For an ATmega328p part simply change the part parameter, like so:

sudo avrdude -cusbtiny -p atmega328p -U lfuse:w:0xFF:m \
-U hfuse:w:0xDE:m -U efuse:w:0x05:m

On a Linux system, if you have set the permissions rule for the USB I/O then you
won’t need to use sudo to run avrdude. For more information about the command-
line options and interactive commands supported by avrdude, refer to the online
manual.

The last step is to inform the compiler that you are now running at 16 MHz. You do
this by defining F_CPU like so:

#define F_CPU 16000000UL

This line is usually added by the Arduino environment when working with a conven‐
tional Arduino board, but you may need to explicitly specify the clock speed with a
custom target board.

The Windows and Mac OS versions of AVRDUDE behave the same way as with
Linux. See this tutorial for more information about the Windows version of AVR‐
DUDE.

418 | Chapter 10: Creating Custom Components

http://bit.ly/avrdude-manual
http://bit.ly/avrdude-manual
http://www.ladyada.net/learn/avr/setup-win.html

Prototype software
The prototype software is essentially the same as the final version, only without the
code to set the digital outputs via the MCP23017. The main focus with the prototype
is the implementation of the command-response protocol. The states of the outputs
are represented as bits in a 16-bit word in the software.

“Software” on page 420 contains a detailed discussion of the software, so rather than
put it here and possibly repeat parts of it later, I would recommend that you look
there for the details. The software is compiled using the Arduino IDE and then
uploaded to the AVR MCU using an Adafruit USBtinyISP ICSP interface device.

I used the Arduino IDE to handle compiling chores, but I disabled its internal editor
in the Preferences dialog. This allowed me to use a different editor (I write commer‐
cial and scientific software for living, so I have some definite preferences when it
comes to text editors—I’m not a big fan of the editor in the Arduino IDE). The board
was set to “Duemilanove with ATmega328” and the programmer to “USBtinyISP.”

On a Linux system the USBtinyISP doesn’t use a pseudo-serial port, but instead com‐
municates directly with the underlying USB I/O subsystem. Attempting to run the
Arduino IDE with the programmer will initially result in a permissions error. You can
run the Arduino IDE using sudo, but this is not a convenient way to transfer your
code. To get around this you need to add an access rule for the udev handler.

Create a file in /etc/udev/rules.d called tinyusb.rules, and add the following string to it:

SUBSYSTEM=="usb", ATTR{product}=="USBtiny", ATTR{idProduct}=="0c9f", \
ATTRS{idVendor}=="1781", MODE="0660", GROUP="dialout"

I used vi and sudo to accomplish this:

sudo vi tinyusb.rules

Then restart the udev subsystem to make the new rule take effect:

sudo restart udev

You could also use some other type of programming device (even another Arduino,
as described in Chapter 6). I have an Atmel-ICE, but ended up not using it under
Linux because I don’t have the latest version of AVRDUDE and I was too lazy to build
it and fiddle with the configuration files. It works with Atmel’s AVR Studio software,
so if you’re using Windows you might want to take that route. On my Linux system
the little gadget from Adafruit works just fine.

Using the upload icon in my version of the IDE causes it to try to start a transfer
using the USB-to-serial method built into Arduino boards (and supported by a USB-
to-serial converter like the one mentioned earlier). This won’t work with the USBti‐
nyISP, so instead I use the File→Upload Using Programmer option.

The Switchinator | 419

One thing I noticed is that the AVRDUDE transfer software is slow getting started,
but runs quickly once it has established a solid communications link with the AVR
MCU. You can see this both in the Arduino IDE and by running AVRDUDE from the
command line. Don’t panic if it looks like things are hung; they aren’t. If there is a
problem AVRDUDE will eventually time out and tell you what went wrong.

Prototype testing
Testing the prototype is straightforward, and this section describes tests to specifically
exercise the command parser. The ability to successfully interact with the software
will demonstrate that the RS-232 interface portion of the code is working correctly. It
is assumed that the external RS-232 transceiver works as intended.

First, the output (OUT), status (ST), and input (AN) commands are tested. The OUT:A:1
and OUT:A:0 commands are used to set the outputs either all on or all off. The state of
each output is held in memory so there is no need for output hardware at this point.

With the ST:n:? command the n parameter is a single digit from 0 to 13 (D in hex).
Note that the OUT:n:0 and OUT:n:1 command forms also use a single digit. If the soft‐
ware is working correctly it should be possible to set all outputs to off (0), and then
selectively enable and disable any of the outputs from 0 to 13 without altering any of
the other outputs.

The analog input (AN) command is tested by applying a variable voltage source (0 to
5V only) to A0 through A3 and requesting the value. As the input voltage is changed
the returned data should change as well. The input value is returned as a three-digit
hexadecimal value. The two most significant bits are always 0 (the AVR MCU only
has a 10-bit ADC).

The SP:val and GP:? commands use a four-digit hexadecimal value, as described ear‐
lier. Testing will involve setting all odd outputs on and all even-numbered outputs off,
then checking the states of each using the ST command. Then the odd-numbered out‐
puts will be set to off and the even outputs set to on, and the states of the output bits
will again be checked using the ST command.

Software
Although it is possible, and often advisable, to create a simplified version of the soft‐
ware for use with the prototype, in the case of the Switchinator it begins life as a mul‐
tifile code set. The main file is, of course, Switchinator.ino. The other files in the set
contain the global definitions, the global variables, the command parser, the response
generator, and the I/O control code. The I/O module, sw_io.cpp, is not necessary in
the prototype version of the software.

420 | Chapter 10: Creating Custom Components

Source code organization
The Switchinator source code is comprised of eight files, or modules, described in
Table 10-15. The primary module, Switchinator.ino, contains the setup() and loop()
functions. It also references the other modules using #include statements.

Table 10-15. Switchinator source code modules

Module Function
Switchinator.ino Primary module containing setup() and loop()

sw_defs.h Constant definitions (#define statements)

sw_gv.cpp Global variables

sw_gv.h Include file

sw_io.cpp Hardware I/O functions

sw_io.h Include file

sw_parse.cpp Command parsing

sw_parse.h Include file

Full listings of all the Switchinator source files are available on GitHub.

Software description
As with any Arduino program, the action begins in the main sketch file. The contents
of the Switchinator.ino main file are listed in Example 10-9.

Example 10-9. Switchinator.ino

//---
// Switchinator.ino
//
// Created for "Arduino: A Technical Reference," 2016, J. M. Hughes
// Chapter 10
//---

#include <stdint.h>
#include <Wire.h>

// the MCP23017 library
#include <IOexp.h>

// Include all source modules
#include "sw_parse.h"
#include "sw_gv.h"
#include "sw_defs.h"
#include "sw_io.h"

// define the clock rate

The Switchinator | 421

#define F_CPU 16000000UL

bool waitinput = false;
bool usedelay = false;

void setup()
{
 Serial.begin(9600);

 // Startup banner and start flag string
 Serial.println();
 Serial.println("SWITCHINATOR V1.0");
 Serial.println("READY");
 Serial.println("####"); // Start flag
}

void loop()
{
 // Read analog inputs and update GV array
 ScanAnalog();

 // Emit only one input prompt
 if (!waitinput) {
 waitinput = true;
 Serial.print(INPPCH);
 }

 // Check for incoming command
 if (GetCommand()) {
 waitinput = false; // Reset input prompt output flag
 }
 else {
 ClearBuff(0);
 ResetBuffLen();
 // if no input then enable loop delay
 usedelay = true;
 }

 // Parse command (if received)
 if (DecodeCommand()) {
 // Return response to control host (or user)
 Serial.println();
 Serial.print(OUTPCH);
 Serial.println(gv_cmdinstr);
 }

 // Update the digital outputs using state bits
 SetDigBits();

 // delay briefly if no input detected
 if (usedelay) {

422 | Chapter 10: Creating Custom Components

 usedelay = false;
 delay(50);
 }
}

The setup() function contains the usual initialization statements along with the ini‐
tial startup message. The loop() function continuously updates the output bits and
checks for incoming commands from a control host system via the GetCommand()
function in the SW_parse.cpp module.

Referring back to Figure 10-23 the block “Get command string” refers to the
GetCommand() function in the sw_parse.cpp module, the “Parse” and “Generate
response” function blocks are contained in the DecodeCommand() function, and
“Update digital output bits” is the SetDigBits() function in the sw_io.cpp module.
Figure 10-27 shows how the output bit state buffer, gv_statebits, is used to hold an
internal representation of the output bits. All bit modification functions operate on
gv_statebits, not on the actual digital outputs.

Figure 10-27. Switchinator’s virtual bit buffer in operation

Note that writing 0x00 to either port A or port B will also enable the associated port
LED. Writing an 0xFF to either port will disable the LED. The output bits are updated
about once every 50 ms if no serial input is present to be parsed and decoded.

Fabrication
For the hardware design I used the Fritzing design tool. This is an integrated virtual
breadboard, schematic capture, and PCB layout tool that is easy to install and rela‐
tively easy to use. Fritzing has a large and vibrant user base and lots of preloaded
parts in its library, and best of all, it’s free. Some Linux distributions may have an
older version of Fritzing in their repository, but you can download the latest version
from http://fritzing.org/home. I used version 0.8.5 running on a Kubuntu 14.04 LTS

The Switchinator | 423

http://fritzing.org/home

Linux system. There are also versions of Fritzing available for Windows and Mac
OS X.

Compared to other tools I’ve worked with over the years, I was pleasantly surprised at
how easy Fritzing’s user interface was to use. To be honest, I wasn’t all that impressed
by the autorouter, but then I’ve seen high-end autorouters struggle with things I
thought would be easy. And autorouting software is very challenging to program, so I
wasn’t expecting a miracle. I ended up doing the layout manually (and it shows, I’m
sure). The DRC (design rules check) worked well, and while the schematic editor had
some unique quirks, it too was completely usable. My main complaint with Fritzing is
the parts library. It seems that not everyone is on the same page when it comes to
dimensions for schematic symbols, so parts from one contributed library might be
really small, while the stock parts supplied with Fritzing are actually nice, large sym‐
bols. You will see this when you look at the schematic in Figure 10-21. The upshot
is that unless all the parts in a tool’s library—both the symbols and the layout foot‐
prints—adhere to the same dimensioning constraints, it is difficult to get perfectly
orthogonal lines or traces without doing some serious fiddling with the grid sizing
and snap functions.

Once the schematic (shown in Figure 10-21) is complete, the PCB layout work can
begin. The first time the PCB layout appears it will have no traces, just the rat’s nest
lines to indicate which pins are connected on the parts. In Figure 10-28 I’ve already
placed the components where I think they should go, and Fritzing is showing some of
the rat’s nest lines. Clicking and holding on a pin on any part will highlight all the
other places it should be connected in bright yellow.

Figure 10-28. PCB after parts placement, but before routing

424 | Chapter 10: Creating Custom Components

The components are grouped by function: the power supply is in the lower-left part
of the PCB; the MCP23017 and the two ULN2003A parts are in the upper-left region;
the MCU, crystal, ICSP connector, and analog inputs are located at the upper right;
and the serial interface is located at the bottom right of the layout.

You might notice that I reversed the analog input terminal block symbols to simplify
the wiring. They will still be mounted correctly, and since a prototype PCB like this
doesn’t have a top layer silkscreen it won’t make any difference.

Some of the trace routing is rather tortuous, due mainly to the use of through-hole
parts. Vias are used to shift the traces between the top and bottom sides of the PCB in
order to route without collisions. Figure 10-29 shows the final version of the PCB that
went out for fabrication.

Figure 10-29. Final version of the Switchinator PCB layout

Before sending out the Gerber files, I checked the design with the Gerbv tool (which
was introduced earlier with the GreenShield). A screenshot is shown in Figure 10-30.

Fortunately, the fabrication house (Advanced Circuits) discovered two pads that were
almost, but not quite, connected. It would have been easy to fix on the workbench,
but it would have been a challenge to find the problems. Good thing someone was
paying attention and checked the layouts.

The Switchinator is a through-hole PCB, so assembly is straightforward. Figure 10-31
shows the bare PCB before any parts are installed.

The first parts to solder into place are the DC jack and the 7805 regulator, along with
the associated power supply components, consisting of D1, C2, C3, C4, and C5. Note

The Switchinator | 425

that there is no C1 (it vanished in an earlier revision). To test the power supply we
also need to install R5 and LED5. Once these parts are installed we can connect a 9 to
12V DC wall supply via the DC power jack and verify that the regulator is producing
5 volts DC at the anode of LED5 (which should be glowing).

Figure 10-30. Gerbv PCB layout display

Next we will install the RS-232 connector, labeled X1 in the schematic; U2 (the
MAX232 IC); and C9, C10, C11, and C12. Using the prototype breadboard we can
attach the Rx and Tx signals from pins 2 and 3 of the MCU to the U1 pins 2 and 3 on
the PCB. Then we run the software already on the AVR MCU and verify that our
integrated RS-232 is working correctly. Remember to tie the ground and 5V DC
power from the PCB to the breadboard (and disconnect the breadboard’s power sup‐
ply, of course).

With the power supply and the RS-232 interface installed and running, we can now
install U1 (the MCU), IC1, IC2, and IC3. LED1, LED2, R1, and R2 can also be sol‐
dered in place, along with the six terminal blocks. Next, the crystal, C6, C7, C8, R3,
R4, R6, LED3, and LED4 are installed. The reset switch, S1, and the ICSP connector
are the last things to mount on the PCB.

426 | Chapter 10: Creating Custom Components

Figure 10-31. The bare Switchinator PCB

Figure 10-32 shows the finished PCB with everything installed and ready to go. The
maximum current that the ULN2003A drivers can supply is determined by the power
supply and by the ratings for the ICs themselves. The datasheet states that the
ULN2003A is capable of supplying around 300 mA per channel, or about 2.1A per
IC. By comparison, the ATmega328 and the MCP23017 draw very little current, so
the major concern will always be the ULN2003A devices. A power source capable of
supplying at least 5A should be more than sufficient if you want to use the Switchina‐
tor for something like a small CNC tool or an LED display controller.

Acceptance Testing
Final testing of the finished Switchinator is largely a repeat of the testing done with
the prototype. The big difference now is that there are two ULN2003A drivers and an
integrated RS-232 interface based on a MAX232 IC. The power supply also needs to
be tested, as well as the analog inputs.

Figure 10-32. The finished Switchinator

The Switchinator | 427

Next Steps
Not all of the discrete digital I/O pins on the MCU have been used; 10 pins (including
6 capable of PWM output) are available. I didn’t bring these out due to space con‐
straints on the PCB, but it should be possible to modify the PCB for a couple of six-
position pin socket headers. It will, however, require some clever use of vias to get the
traces routed through the resulting traffic jam around the MCU.

The SPI interface is available on pins D11, D12, and D13, and these are wired to the
ICSP connector. If you select an unused pin for the SS line you can connect an SPI
module to the Switchinator. The analog pins can be used as digital I/O pins by refer‐
encing them as pins D14 through D19.

You may have also noticed that there is no fuse, and no input protection for the ana‐
log inputs. For an example of analog input protection, see Chapter 11 and the input
circuit used for the signal generator.

Resources
This chapter has covered a lot of ground, and taken a few leaps of faith. Here are
some resources that will help shed more light on the topics only touched on briefly in
the text:

Reference texts
There are numerous texts available that cover all aspects of electronics. These are
some that I am particularly fond of that relate directly to material covered in this
chapter (refer to Appendix D for ISBN numbers and even more recommended
texts):

• Jan Axelson, Making Printed Circuit Boards
• Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd Edition
• J. M. Hughes, Practical Electronics: Components and Techniques
• J. M. Hughes, Real World Instrumentation with Python
• Simon Monk, Fritzing for Inventors
• Matthew Scarpino, Designing Circuit Boards with EAGLE

Schematic capture and PCB layout
Fritzing and Eagle aren’t the only electronics CAD tools available, but they are
commonly encountered when downloading schematics or board layouts created
and posted online by others. Fritzing is free and open source, and there are many
sources for parts definitions beyond those that are supplied with it. It is easy to
learn and easy to use, and for Arduino projects it is a good choice.

428 | Chapter 10: Creating Custom Components

The free version of Eagle has the features found in the commercial versions of the
tool, so it presents a clear upgrade path when you want to explore the world of
professional CAD/CAM tools for electronics. Just remember that the free Eagle
has some limitations, and it’s not intended to be used in any situation where you
plan to make money from your work. For that you will need to purchase a com‐
mercial license.

Some other CAD tool options are the open source Linux tools like the gEDA
suite and KiCad, both of which have features comparable with commercial prod‐
ucts. For more information on the tools mentioned here, see their websites:

• Eagle
• Fritzing
• gEDA
• KiCad

PCB fabricators
There are many PCB fabrication firms that offer low prices and quick turn-
around times. Check around on the Web, and if you happen to live in a large
metropolitan area, also be sure to take a look at what services are available locally.
I’ve listed Advanced Circuits mainly because I am most familiar with them, and
I’ve never had a problem with their work. The folks at Fritzing.org offer a PCB
fabrication service, too (you can access it from within the Fritzing tool):

• Advanced Circuits
• Fritzing Fab

Component sources
Throughout this book I’ve referred to many different sources for everything from
single components to modules and complete Arduino boards. The following
companies are some starting points to consider (for more pointers, see Appen‐
dix C):

• Adafruit
• All Electronics
• DigiKey Electronics
• Mouser Electronics
• Newark/Element14
• SparkFun

Resources | 429

http://www.cadsoftusa.com/download-eagle
http://www.fritzing.org
http://www.geda-project.org
http://kicad-pcb.org
http://www.4pcb.com/bare-bones-pcbs
http://fab.fritzing.org/fritzing-fab
http://www.adafruit.com
http://www.allelectronics.com
http://www.digikey.com
http://www.mouser.com
http://www.newark.com
http://www.sparkfun.com

CHAPTER 11

Project: A Programmable Signal Generator

Almost every electronics lab, be it large or small, needs signal sources. In some cases
these might be simple sine wave generators, and some situations might call for more
complex instruments like a function generator. The signal generator described in this
chapter, shown in Figure 11-1, is capable of both sine and square wave outputs up to
40 MHz.

Figure 11-1. Homemade DDS signal generator

Of course, you could also purchase a signal generator. Prices vary, depending on the
frequency range, features, and capabilities. You can find signal and function generator
kits for anywhere from about $6 to around $50 for a device like the one shown in
Figure 11-2. At the other end of the scale are commercial high-end instruments cost‐
ing hundreds or thousands of dollars, or even more (for example, $72,000 for a used
20 GHz multifunction arbitrary waveform generator).

431

Figure 11-2. FG085 function generator kit (assembled)

While the kits are fine for generating waveforms, they may not have all the features or
capabilities you want or need. They are, after all, someone else’s idea, and that person
may have a different notion of what makes a signal generator useful. By building it
yourself you can get exactly what you want, and you can modify or expand it over
time as your needs change.

A primary consideration is how the signal is generated. In other words, is the micro‐
controller doing all the work, or is it offloading the job of generating waveforms to a
dedicated IC in the circuit? In the case of the FG085 function generator shown in
Figure 11-2, an ATmega168 is used as the primary controller for the instrument, a
CP2101 is used for the USB interface, and the signal is generated by an ATmega48
and a DAC comprised of a resistor array. There is nothing wrong with this approach,
and it does allow the generator to do more than just generate sine and square wave‐
forms; it can also produce arbitrary waveforms from preloaded data patterns (which
can be very useful). The downside of using a microcontroller to do the signal genera‐
tion is that it does put a limit on the highest possible frequency the device can gener‐
ate. The limit is around 200 KHz for this particular function generator. This isn’t a
failing on the part of the FG085, or any device that uses a microcontroller in this
manner—it’s simply a fact.

A microcontroller can only run so fast, and that top clock rate sets a hard upper limit
on how quickly it can change its outputs to create a cyclic signal. For many applica‐
tions 200 KHz is fine, particularly in the world of embedded sensing and control. As
I’ve pointed out before, things don’t usually change very rapidly in the real world, at
least on the microsecond time scales of microcontrollers.

If we want to go beyond about 200 KHz, we’ll need to take a different route. Fortu‐
nately all the parts we need to build a signal generator capable of both sine and square
wave output up to 40 MHz are readily available as Arduino-compatible modules.

432 | Chapter 11: Project: A Programmable Signal Generator

You can read more about the FG085 on the JYE Tech website. As a
disclaimer, I’m not specifically endorsing this product, but I do
own one and it lives on my workbench with the other pieces of test
gear. I also have other signal and function generators, some fancy
and some not, and each has a role to play during the development
and testing of a new design.

In all fairness, I should point out now that the signal generator instrument described
in this chapter is going to cost more than the $50 device shown in Figure 11-2. The
total cost will be tallied when the final parts list is created in “Cost Breakdown” on
page 468. You will need to decide for yourself if the cost is justified by the degree of
control you will have over the design and its operation, and by the packaging method
I have chosen. For me it was worth the cost, but for you it might not be.

Remember that since the main emphasis of this book is on the
Arduino hardware and related modules, sensors, and components,
the software shown is intended only to highlight key points, not to
present complete ready-to-run examples. The full software listings
for the examples and projects can be found on GitHub.

Project Objectives
For this project the definition and planning phases (described in Chapter 10) are
done in a single step. Physically the project isn’t all that complicated, so we can com‐
press these development steps to save effort and keep things moving along. The most
complex part is the software, which is often the case when working with modular
microcontroller hardware components.

The goal of this project is to build a signal generator suitable for use as a bench test
instrument. While it is perfectly feasible to use the digital I/O of an Arduino to gener‐
ate square waves or pulses, control a DAC of some sort, or use the PWM outputs to
create a waveform simulating a sine wave, the output frequency range is limited by
the speed of the microcontroller. There is, however, another way to use an Arduino to
build a signal generator, and that involves a dedicated signal generator IC, the
AD9850.

The AD9850 is a direct digital synthesis (DDS) chip that can output both sine and
square waves. It can be programmed to generate output from 0 to 40 MHz. A readily
available AD9850 module is described in Chapter 9 and shown in Figure 9-57.
Because the AD9850 is handling the signal generation chores for the Arduino, we can
use the free CPU cycles for other functions at the same time. Display update, detect‐
ing a gate input, and monitoring operation control inputs are just some of things the
Arduino can do along with controlling the DDS IC.

Project Objectives | 433

http://bit.ly/jye-fg085
https://www.github.com/ardnut

This also means that the signal generator doesn’t need interrupts to handle the con‐
trol switches. Because the AD9850 is always running (except when the gate mode is
active), the MCU can take the time to poll the pushbutton switches and it won’t inter‐
fere with the signal output.

Definition and Planning
The goal of this project is to create a portable test instrument suitable for use on a
workbench or in a similar environment. It will be powered from a wall-plug power
supply, and the enclosure will have enough interior space to add batteries at a later
date if so desired.

Signal outputs:

• Sine wave output (always active), 0 to 40 MHz, 0 to 1V P-P
• Square wave output (always active), 0 to 40 MHz, 0 to 5V P-P

Functional control inputs:

• External gate control input
• Control voltage input for VCO operation

User interface and controls:

• Two-line LCD display
• Frequency select inputs (pushbuttons)
• Signal output level controls
• Gate input jacks
• CV input BNC connector
• Power on/off

The whole project will be built into a plastic enclosure with a carry handle, like the
one shown in Figure 11-3. The device will be powered by a wall-plug power supply (a
so-called “wall-wart”) with between 9 and 12V DC output.

On the front panel the signal generator will incorporate a two-line LCD display to
show output frequency and status, various input controls, control voltage (CV) and
gate inputs, and both sine wave (1V P-P) and square wave (5V P-P) outputs. The rear
panel will have a DC barrel-type connector for the external power supply.

434 | Chapter 11: Project: A Programmable Signal Generator

Figure 11-3. Portable instrument enclosure

The preliminary parts list for this project is given in Table 11-1. This parts list will be
refined as we go along, but this gives us an idea of what will be used. An initial parts
list will usually go through many changes between concept and final form, some
minor and some rather drastic. It’s all part of the design refinement process.

Table 11-1. Initial parts list

Quantity Description Quantity Description
1 Arduino Uno 3 Female BNC connectors

1 AD9850 DDS module 2 Banana jacks (for gate input)

1 Prototype shield 1 Wall-plug power supply

1 Two-line LCD display 1 Plastic enclosure

Design
Now that we have some design objectives and a preliminary parts list, we can start to
refine the design. We’ll start with the intended functionality to define what exactly the
device will do, and the controls and I/O needed to perform the intended functions.

After we have a clear idea of what the signal generator will do we can turn our atten‐
tion to the enclosure, since that is where the parts will be mounted, and it will ulti‐
mately determine what we will be able to use for a display, control inputs, and I/O
connectors. The objective here is to balance the need for a robust and compact enclo‐
sure with cost and fabrication considerations.

Because the project uses mostly prebuilt modules there is no significant circuit design
or PCB layout involved. The various modules and signal connectors will need to be
wired, so there will be some soldering, but we’ll deal with that in the assembly step.

For the signal generator I elected to use pushbutton control inputs rather than a
rotary encoder as in some of the designs for DDS signal generators found on various
websites like Instructables. The reason is because the rotary encoder, while conve‐

Design | 435

http://www.instructables.com

nient for rapidly setting a value, really only does one thing: measure the amount and
direction of rotation. Pushbuttons, on the other hand, can do many different things
depending on how they are interpreted by software in context with other controls
and the state of the devices they are controlling.

Functionality
The primary purpose of this instrument is to generate a signal at a specific frequency
from 0 to 40 MHz. The AD9850 incorporates a built-in comparator, and this is used
to create a simultaneous square wave. The sine wave is a 1V P-P (peak-to-peak) sig‐
nal, and the square wave is 5V P-P. The output frequency is continuously variable
from 0 to 40 MHz under the control of an Arduino Uno. The output frequency may
be externally varied by the application of a control voltage (CV), and it may be gated
(or triggered) by an external signal (either active high or active low). Figure 11-4
shows a block diagram of the instrument with all the components identified in
Table 11-1.

The block diagram in Figure 11-4 shows three major components. The Arduino han‐
dles all the control inputs—those from the user as well as the gate and CV inputs. The
LCD displays the current state of the instrument, and the DDS module generates the
sine and square wave outputs.

Figure 11-4. Signal generator block diagram

The block diagram doesn’t provide low-level details such as pin numbers or polari‐
ties. That is not its purpose. A block diagram graphically shows how things relate to
one another in a functional sense. It also serves as a check to see if the ambitions of
the design have exceeded the capabilities of the components.

I’ve arranged Figure 11-4 so that the outputs are on the right, and the control inputs
are on the left. The large circle symbol is a BNC-type connector for shielded coaxial
cables, and the small circle symbol represents a banana-type jack.

436 | Chapter 11: Project: A Programmable Signal Generator

A 2-line 16-character-wide LCD display will show the current frequency and the state
of the gate and CV inputs. A set of pushbutton controls will be used to adjust the fre‐
quency and the operation of the external control inputs. Two potentiometers will be
used to adjust the output level of the sine and square wave signals.

Enclosure
For this project I’ve selected the Bud Industries IP-6130 enclosure, which is shown in
Figure 11-3. This enclosure includes a carrying handle that also doubles as a stand
when it’s on the bench, which I find very useful at times. You can download the data‐
sheet from Mouser Electronics. The enclosure costs about $25, but I consider that to
be a reasonable price to pay for something that will last a long time and looks profes‐
sional. The basic dimensions are shown in Figure 11-5. For more details refer to the
product datasheet.

Figure 11-5. Portable instrument enclosure dimensions

One thing to notice is that the front and rear panels are not perfect rectangles; they
are narrower across the top edge than the bottom to match the slope of the sides of
the enclosure. This isn’t a problem, but it is worth noting because the front and rear
panels will only mount correctly in one orientation. It wouldn’t be a total disaster to
cut the holes in the panels only to find out they are upside down, but it would be
slightly embarrassing (at least for me). The screws that hold the top and bottom
halves together are meant to be covered by adhesive rubber bumpers on the bottom
of the case.

Design | 437

http://bit.ly/mouser-ip-6130

Also notice that the front and rear panels are not of sufficient height to mount an
Arduino and a stack of shields directly inside the panels. The IP-6131 model is taller
(3.54 inch/8.99 cm), but it would have a whole lot of empty vertical space inside. So, I
decided to mount the LCD, the input/output connectors, and the controls on the
front panel, place the Arduino and the DDS generator on the floor (bottom) of the
enclosure, and mount the jack for the external power pack on the rear panel. This
leaves enough room inside for a built-in power supply or batteries (if I decide to
incorporate either or both of those). Figure 11-6 shows the front panel layout.

Figure 11-6. Signal generator front panel layout

Another thing to consider is the pushbutton switches used as control inputs. A mod‐
ule with an array of small pushbuttons with low-profile square caps is not something
that can be easily found as a stock item. In most cases these are custom assemblies
created for a specific product. Since we aren’t going into full-scale production it
doesn’t make sense to spend the time and money to design and build a custom 3 × 2
switch array module, so what ends up on the front panel may not look like the draw‐
ing in Figure 11-6. But that’s fine; it will still work the same regardless of what push‐
button switches are used.

Schematic
Looking at Figure 11-4, we can see that it looks like almost all the available pins on
the Arduino are in use. This is indeed the case, as only the A4 and A5 pins are not
assigned. With the LCD, DDS, and control switches connected all of the discrete digi‐
tal I/O pins will be used, and some of the analog inputs will need to be pressed into
service for digital I/O as well. This is shown in the schematic in Figure 11-7.

Table 11-2 lists the Arduino pins and assignments in the signal generator. Any further
I/O expansion will need to be done using shields with an I2C interface via the A4 and
A5 pins.

438 | Chapter 11: Project: A Programmable Signal Generator

Table 11-2. Signal generator Arduino pin usage

Pin Function Pin Function Pin Function
D0 DDS FQ_UP D7 LCD E A0 Select button

D1 DDS W_CLK D8 Range + button A1 Mode button

D2 LCD D4 D9 Range – button A2 Gate input

D3 LCD D5 D10 Freq + button A3 CV input

D4 LCD D6 D11 Freq – button A4 SDA to I/O expansion

D5 LCD D7 D12 DDS RST A5 SCL to I/O expansion

Figure 11-7. Signal generator schematic

The DDS module I’m using for this project is shown in Figure 9-57 in Chapter 9. It is
available from multiple sources, including DealeXtreme, for about $8. Figure 11-8
shows the pinout diagram for the module.

The AD9850 supports both a parallel binary and a serial word interface. For this
application the Arduino will communicate with the DDS module using the serial
word interface mode. This mode uses pin D7 on the DDS module for the data.

The LCD module has 16 pin positions. These connect ground, power, data, and con‐
trol signals to the LCD controller ICs, which are on the back of the PCB under blobs
of black epoxy. Figure 11-9 shows the pin definitions for the LCD module.

Design | 439

http://bit.ly/dx-ad9850

Figure 11-8. DDS AD9850 module pinout

Figure 11-9. LCD module pinout

440 | Chapter 11: Project: A Programmable Signal Generator

Prototype
This project uses off-the-shelf components, and a prototype built from the same
shields and modules is useful for developing the software. If you are waiting for parts
to arrive, a work-alike prototype can help move the software along. For this project
I’m using a test setup consisting of an Arduino Uno mounted on a wood base, as
shown in Figure 11-10.

Figure 11-10. Arduino prototype fixture

In the prototype I’m using an Arduino Uno, a PCB with a 5 × 4 array of miniature
pushbutton switches that also includes 8 LEDs, a pair of screw terminal extenders, a
prototype shield with a DDS module mounted on it, and the LCD module that will
eventually end up in the final instrument. The pushbuttons will stand in for the con‐
trol inputs of the signal generator. The four relays shown in Figure 11-10 are not used
in this project, so they are not connected. The connections to the Arduino are identi‐
cal to those shown in Figure 11-7.

Control Inputs and Modes
There are six buttons on the front panel. Table 11-3 shows how they are assigned to
various functions.

Table 11-3. Signal generator control button functions

Button Mode: Frequency Mode: Gate Mode: CV
Freq Inc frequency Gate on CV enable

Freq – Dec frequency Gate off CV disable

Range Inc freq range Gate CV zero set

Range – Dec freq range Gate – CV zero reset

Prototype | 441

The signal generator has three control input modes. From Table 11-3 we can see that
there are actually 12 possible control inputs, depending on the mode. The Select but‐
ton isn’t shown because it’s used as a type of “Enter” key; pressing the Select button
will exit the input mode for gate or CV controls and return the instrument to the nor‐
mal range and frequency mode of operation.

The waveform output is always active unless blocked by the gate mode. The fre‐
quency and range can be altered at any time that the instrument is not in the gate
mode. Pressing the Freq + or Freq – button and then releasing it will cause the fre‐
quency to change by 1 Hz. When the Freq + or Freq – button is held down the value
will change in increments (or decrements) of 10, 100, or 1,000 (depending on the cur‐
rent value) for as long as the button is pressed.

The frequency output of the generator is divided into ranges, each of which spans
10,000 Hz. So if range 1 is 0 to 9,999 Hz, then range 2 will be 10,000 to 19,999 Hz, and
so on. The use of the range controls is not mandatory. The main reason for including
these controls is to allow the Freq + and Freq – controls to adjust the output in man‐
ageable increments within a particular range. Otherwise, the user might be mashing
the Freq + or Freq – buttons for a while to get to the desired frequency. The output
frequency is updated continuously, so there is no need to press the Select button.

The range can be any value between 1 and 4,000. If the frequency is incremented past
the end of a range, the range number will automatically increment. If the frequency is
decremented below the minimum value of the current range, the range value will dec‐
rement by 1. The range will autoincrement or autodecrement in steps of 10, 100, or
1,000, just like the frequency control inputs.

The CV and gate settings are modified by placing the instrument into the appropriate
control input mode. The Mode button selects the command input mode, and the
Select button makes the current setting active and puts the instrument back into nor‐
mal operation mode.

When the gate is active the generator will not produce any output until the selected
gate condition is present on the gate input. The Freq + and Freq – buttons are used to
enable or disable the gate. The Range + and Range – buttons select the gate sense
mode: either active high or active low, respectively.

The control voltage (CV) input is an analog voltage between 0 and 5V DC, with 2.5V
being the nominal zero point (negative voltages are not used). In CV mode the Freq +
and Freq – buttons enable or disable the CV input. The zero point can be changed by
selecting the CV mode and pressing the Range + button. The Range – button resets
the CV zero point to the default of 2.5V.

Once enabled, the CV input is active until specifically disabled. An input voltage
above the zero point will cause the output frequency to increase, and an input voltage
below the zero point will cause the output frequency to decrease. To set the zero

442 | Chapter 11: Project: A Programmable Signal Generator

point, the desired voltage is applied to the CV input and the Range + button is
pressed. Disabling the CV input does not alter the zero point setting.

Display Output
A big challenge with something that uses a minimal display is figuring out how to
use it effectively to display information in a condensed form. The LCD used for the
signal generator has two position-addressable lines with 16 characters each.
Figure 11-11 shows how I elected to fit all the essential information on the display
during operation.

Figure 11-11. Signal generator operation display layout

When the signal generator is in any mode other than frequency output, the colon
after the mode field letter will blink. So, if it’s in CV mode, the colon after the C char‐
acter will blink, and the colon after the G character will blink when it’s in gate mode.

Pressing the Mode switch will repeatedly cycle through Gate, CV, and control inputs
off (normal operation). The C and G functions may only be altered when the associ‐
ated control mode is active. Once the desired value is displayed, the Select button will
set the output to the displayed configuration and the instrument will resume normal
operation.

The G (gate) field will display X, +, or –, depending on the state of the gate function. A
+ symbol means that the gate is active on a high input, and a – symbol means that the
gate will respond to a low input. X means that the gate function is disabled. The gate
settings will become active when the Select button is pressed.

The C (CV) field will display of X, 0, +, or –. It will show + if the CV function is active
and the input control voltage is greater than the zero point, if CV is active and the
control voltage is less than the zero point, and 0 if CV is active and the control voltage
is equal to the zero point. The 0, +, and – symbols are updated in real time when the
CV input is enabled. An X means that CV input is disabled. The CV settings will
become active when the Select button is pressed.

Prototype | 443

In many ways this is a throwback to a time when many devices had small displays.
Before the advent of high-resolution LCD and TFT displays, small displays like this
were common, when a display was used at all. Prior to the introduction of alphanu‐
meric LED displays this would have been done using numerals only, and interpreting
some of these old displays was definitely a skill. Fortunately we can now purchase
small, inexpensive alphanumeric LCD components, but they still need some creativity
in the data layout, and some degree of interpretation.

DDS Module
The AD9850 DDS module is mounted on a prototype shield, as shown in
Figure 11-12. This is optional, and you could just mount it to the floor of the enclo‐
sure and use wires to connect it. I would recommend the shield, though, because it
provides a robust place for the module and it allows for the use of screw terminals.
This is a much neater way to make connections than with solder, and they are far
more reliable than the plug-in jumper wires.

The entire DDS shield consists of the parts listed in Table 11-4.

Table 11-4. DDS prototype shield parts list

Quantity Description
1 Prototype shield, Adafruit #51 or equivalent

1 8-position 0.1 inch (2.54 mm) screw terminal block

1 6-position pin socket header

1 AD9850 DDS module

Figure 11-12. DDS module prototype shield

The inputs to the DDS module are connected to the six-position socket header, and
the outputs are wired to the eight-position terminal block. Power and ground are

444 | Chapter 11: Project: A Programmable Signal Generator

supplied by the prototype shield. The LEDs aren’t currently used, but one could be
connected to power and the other to the D7 input (D13 on the Arduino).
Figure 11-13 shows how the various signals and lines from the DDS modules are
brought out on the prototype shield.

Figure 11-13. DDS prototype shield signals

The PCB terminal block and the six-position socket header are wired on the under‐
side of the prototype shield. I used 28-gauge wire, but anything in the 24- to 32-gauge
range will work. I didn’t use shielded cable for connections between the module pins
and the terminal block, but it might be something to consider, particularly at high
frequencies.

I would have preferred not to use a socket header for the DDS control inputs, but
given the lack of space on the prototype shield there wasn’t a lot of leftover room. In
the final assembly I used some existing pin jumpers and snipped off the ends that
would go into the screw terminals for the Arduino control signals. In the final version
these wires will be secured to the socket header with some clear silicon rubber.

Prototype | 445

Software
The software for the signal generator is structured in the conventional way for an
Arduino application, with a setup() and a loop(). The setup() function handles
I/O pin modes and other configuration chores, and the loop() function does the
control input and signal output management. Where the signal generator departs
from a conventional sketch is in its organization. It is comprised of multiple source
files—six in all—with associated include (i.e., “header”) files.

Complexity and Interface Bloat
While this project may be conceptually simple, there is a surprisingly high degree of
complexity in the software. Why? Because of the control interface. Software develop‐
ers and engineers who work with GUI-oriented software on a regular basis are very
familiar with this, as it’s common for up to 70% or more of the code to be dedicated to
just handling the GUI. This is also one of the reasons why the command-line utilities
found on a Unix or Linux system tend to be functionally powerful yet very compact;
there is no GUI baggage to deal with, just the command-line interface.

Microcontroller applications also experience “interface bloat” whenever code must be
implemented to allow the system to interact with a human user. Humans tend to be
slow, sloppy, and not very good at remembering and using compact command codes
or interpreting cryptic responses. So, some part (sometimes a large part) of the MCU
software must be dedicated to creating a user interface that a normal human can
interact with effectively.

In some designs this is dealt with by running the user interface on a separate host sys‐
tem where things like limited memory and slow CPU clock speeds are not an issue,
and then using a compact and efficient machine-oriented interface to pass com‐
mands, parameters, and status data between the host and the MCU. With this project
that was always a possible approach, but the downside is that it limits the portability
of the MCU device because it will always be tethered to the host system with the user
interface. For some applications that is not a major consideration, such as with
remote sensing and control devices in permanent locations connected to a central
control computer. However, the signal generator we’re building here is intended to be
a portable test instrument, so it needs to have at least a basic user interface incorpora‐
ted into its design.

The challenge then becomes devising a way to get the most functionality possible
from a limited number of control inputs, putting the maximum amount of useful
information onto a severely constrained display, and doing all of that without inter‐
fering with the core operations of the instrument or consuming so much of the avail‐
able flash memory that the software is unable to load onto the MCU.

446 | Chapter 11: Project: A Programmable Signal Generator

The software to control the DDS actually does nothing more involved than reading
the gate or CV inputs and then writing the appropriate control data to the DDS IC.
The tricky part is how to map the control inputs so that we can control how those
actions take place, and when. As with any microcontroller-driven device, it is the
software that gives it the desired functionality. Without software it’s just a pile of plas‐
tic, wires, circuit boards, and some silicon.

Source Code Organization
The signal generator code is contained in multiple source files. When the Arduino
IDE opens the main file, sig_gen.ino, it will also open the other files in the same direc‐
tory. The secondary files are placed in tabs in the IDE, as shown in Figure 11-14.

Figure 11-14. The Arduino IDE after loading the sig_gen.ino sketch

The signal generator code is structured such that the global variables are in a separate
compilation module, sig_gen_gv.cpp. The LCD, control inputs, control voltage (CV),

Software | 447

and gate functions are also in separate modules. Table 11-5 lists the source modules
and their respective functions.

Table 11-5. Signal generator source code modules

Module Function
sig_gen.ino Primary module containing setup() and loop()

sig_gen.h Constant definitions (#define statements)

sig_gen_control.cpp Control pushbutton input processing

sig_gen_control.h Include file

sig_gen_cv.cpp CV input processing

sig_gen_cv.h Include file

sig_gen_gate.cpp Gate input processing

sig_gen_gate.h Include file

sig_gen_gv.cpp Global variables

sig_gen_gv.h Include file

sig_gen_lcd.cpp LCD functions

sig_gen_lcd.h Include file

Notice that the LCD and DDS objects are instantiated using the
C++ new operator in the file sig_gen_gv.cpp. This is possible
because the “anchor” variables for the objects, lcd and ddsdev, are
defined in the global variables module and exported in
sig_gen_gv.h. In order for this to work the main module must con‐
tain the include statements for LiquidCrystal.h and DDS.h, and the
same include statements must appear in the global variables file as
well. Due to a quirk in the way that the Arduino IDE handles scop‐
ing and include statements, any reference to an external library
included in a tab file must also be included in the main file. Also
notice that the auxiliary modules contain the statement #include
"Arduino.h" to allow each one to access the Arduino environment.
The new operator is discussed in the sidebdar “Instantiating Class
Objects with new” on page 99 in Chapter 5.

Software Description
The code for the signal generator is somewhat lengthy, so rather than try to list it all
here I’ll focus on the major sections and some of the highlights, using flowcharts and
code snippets. I would suggest that you download the source code from GitHub and
follow along with this text as you examine it.

The module sig_gen.h is a collection of the #define constants used in the program.
Rather than have “naked numbers” running loose in the code, a #define statement

448 | Chapter 11: Project: A Programmable Signal Generator

https://github.com/ardnut

can be used to reference the values. This makes it easier to change something, like an
LCD position or a time delay used in multiple places, without having to hunt down
every instance of the naked value. It’s easy to miss one or two when making changes
manually, but with the #define you can be assured that they will all be the desired
value. You could, of course, also use the C++ const statement, but as discussed in
Chapter 5 the #define statements consume less memory.

The file sig_gen_gv.cpp contains the global variable declarations. The contents of
sig_gen_gv.cpp are given in Example 11-1. Since sig_gen_gv.cpp is executable source
code, it can contain initialization statements.

Example 11-1. Global variables

// sig_gen_gv.cpp

#include "Arduino.h"
#include <LiquidCrystal.h>
#include <DDS.h>
#include "sig_gen.h"

// initialize the LCD and DDS objects and map digital pins
LiquidCrystal *lcd = new LiquidCrystal(LCD_RS, LCD_E, LCD_D4, LCD_D5,
 LCD_D6, LCD_D7);
DDS *ddsdev = new DDS(DDS_OSC, DDS_DATA, DDS_FQ_UP, DDS_W_CLK, DDS_RESET);

// alternate form
//LiquidCrystal lcdobj(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7);
//DDS ddsobj(DDS_OSC, DDS_DATA, DDS_FQ_UP, DDS_W_CLK, DDS_RESET);
//LiquidCrystal *lcd = &lcdobj;
//DDS *ddsdev = &ddsobj;

// button input state values (0 or 1)
int fpls = 0; // freq +
int fmn = 0; // freq -
int rpls = 0; // range +
int rmn = 0; // range -
int mode = 0; // mode
int sel = 0; // select

// last button states
int last_fpls = 0;
int last_fmn = 0;
int last_rpls = 0;
int last_rmn = 0;

// internal control
int mode_cnt = 2; // mode cycle counter
bool new_mode = false; // true if mode has changed
int btncnt = 0; // used to detect button hold-down
bool btnhold = false; // true if button is held down

Software | 449

int dds_load_cnt = 0; // update cycle delay counter for DDS update

// output control settings
unsigned long fval = 1000;
unsigned int rval = 1;

// display characters
char gval = 'X';
char gpol = '+';

char cval = 'X';
char cpol = '0';

// gates to control loop actions
bool dogate = false;
bool docv = false;
bool gate_output = true;

// CV zero control
bool set_cvzero = false;
bool reset_cvzero = false;
unsigned long cv_zero = 512;
unsigned long cv_input = 0; // latest value from CV input

int currmode = MODE_DISP; // init starting control input mode

// CV input
unsigned int cvinval;
unsigned int cvzero;
unsigned int fvalset;

Note that two different methods are presented for creating global objects. The first
uses the new statement, and the second uses pointer assignment. The end result is
effectively the same from a functionality standpoint, but there is a slight memory
usage difference.

The include file sig_gen_gv.h contains the export declarations. The export statement
tells the compiler that these variables will be used by other modules, so placeholders
are created when a module is compiled that refers to a variable declared in the
sig_gen_gv.h file. The linker will stitch it all together when the final executable image
is built.

The output of the signal generator is controlled by a set of global variables that con‐
tain the current frequency and range values, and the state of the gate and CV func‐
tions. In embedded systems this is a common approach, particularly in situations
where there isn’t a lot of RAM available to store large amounts of data in the stack.
Rather than pass a lot of arguments to functions, the global variables are used as a
type of shared memory space. The key to using global variables effectively is to apply

450 | Chapter 11: Project: A Programmable Signal Generator

the “write-by-one, read-by-many” rule as much as possible. In a small system with
only one active program there isn’t much chance of a situation where a variable is
modified by two processes at the same time, but in multithreaded applications this is
a very real concern.

Since we’re using the conventional setup() and loop() structure favored by the
Arduino IDE, the first primary function of interest is start(). Figure 11-15 shows a
detailed flowchart diagram for setup().

Figure 11-15. Flowchart of setup() function

The setup() function (Example 11-2) is straightforward. It initializes the LCD object,
displays a startup message, initializes the digital inputs for the control buttons, dis‐
plays “Ready” on the LCD, and finally writes the frequency, gate, range, and CV fields
onto the LCD. These will remain unchanged for the remainder of the time that the
signal generator is active.

Delay calls are used in the TitleDisp1() and TitleDisp2() functions to slow things
down so that the startup text doesn’t flash by too quickly for the user to read it.

Software | 451

Example 11-2. Signal generator setup() function

void setup() {
 lcd->begin(16, 2); // Set the dimensions of the LCD

 TitleDisp1();

 pinMode(SW_FPLS, INPUT);
 pinMode(SW_FMIN, INPUT);
 pinMode(SW_RPLS, INPUT);
 pinMode(SW_RMIN, INPUT);
 pinMode(SW_MODE, INPUT);
 pinMode(SW_SLCT, INPUT);

 TitleDisp2();

 InitLCDFields();
}

The function InitLCDFields(), found in the file sig_gen_lcd.cpp and called from
setup(), writes the static fields to the LCD after the power-up display is complete. It
can be called multiple times from different locations in the code as necessary.

The software’s main loop performs four primary steps:

1. Check for control button inputs.
2. Check for CV input (if enabled).
3. Check for gate input (if enabled).
4. Update the output frequency.

Steps 1 and 2 involve parsing command strings from a host PC and decoding the
control buttons based on the current mode. This is the most complex part of the soft‐
ware. Steps 2 and 3 just check inputs to determine what change to the output, if any,
should occur. Step 4 writes the control data to the AD9850 after performing a simple
calculation. Figure 11-16 shows a high-level flowchart for loop().

The source code for the loop() function, listed in Example 11-3, looks simple
because all the functionality is in the auxiliary modules. As each of the functions is
called, it sets or reads the global variables.

Example 11-3. Signal generator loop() function

void loop() {
 // read switch states
 ReadControls();

 // handle control modes
 SetMode();

452 | Chapter 11: Project: A Programmable Signal Generator

 switch(currmode) {
 case MODE_DISP:
 getFreq();
 SetLCDVals();
 ShowGate();
 ShowCV();
 break;
 case MODE_GATE:
 SetGate();
 ShowGate();
 break;
 case MODE_CV:
 SetCV();
 ShowCV();
 break;
 }

 // check for active CV input
 fval = RunCV();

 // set DDS output frequency
 dds_load_cnt++;
 if (dds_load_cnt >= DDS_LOAD_GO) {
 dds_load_cnt = 0;

 if (RunGate()) {
 ddsdev->setFrequency(fval);
 }
 else {
 ddsdev->setFrequency(0);
 }
 }

 delay(MAIN_DLY);
}

The control output to the DDS module is the last thing that the main loop does
before it delays for MAIN_DLY milliseconds then starts over. The output frequency,
fval, is modified by the CV input via RunCV() if CV is active, and it can be set on or
off by the RunGate() function if that mode of operation is active. The DDS data is
written after DDS_LOAD_GO number of iterations of loop() to give the module time to
process the control data from the Arduino. The frequency update interval is equal to
DDS_LOAD_GO times MAIN_DLY milliseconds. If you modify the value of MAIN_DLY you
may also need to modify DDS_LOAD_GO.

The largest of the source files is sig_gen_control.cpp. It contains the code to detect
control input switch activity, debounce switch inputs, determine if a button has been
held down by the user, and set the input control mode.

Software | 453

Figure 11-16. High-level signal generator flowchart (loop() function)

454 | Chapter 11: Project: A Programmable Signal Generator

Switches tend to be electrically noisy. To compensate for this the signal generator
incorporates a simple debounce function, as shown in Example 11-4.

Example 11-4. Debounce function

bool debounce(int switchid)
{
 int swval = 0;

 if (swval = digitalRead(switchid)) {
 delay(DBDLY);
 if (swval != digitalRead(switchid)) {
 return false;
 }
 else {
 return true;
 }
 }

 return false;
}

The idea behind debounce() is to determine if a switch has maintained the same state
between two input samples. If so, then the switch is considered to be in that state;
otherwise, it has glitched. The test time interval, DBDLY, is defined in sig_gen.h and
has an initial value of 10 ms. This can be increased to improve debounce reliability,
but if increased too much it will cause the control inputs to respond slowly, which
may not be desirable.

The function readControls() scans through the six input pushbutton switches. If a
switch has been pressed, then it will increment a count value each time loop() calls
readControls(). If the count exceeds a preset value (defined as HOLD_CNT in sig-
gen.h), then the input is flagged as being held down by setting the global variable
btnhold to true. Recall that loop() executes every MAIN_DLY milliseconds.

The function getFreq() handles the frequency input control. It will automatically
increment or decrement the frequency in steps of 10, 100, or 1,000 Hertz. The range
value is also automatically adjusted as the frequency passes a range boundary at
RSTEP Hertz.

The SetMode() function changes the current control mode of the instrument if the
Mode pushbutton has been pressed and detected by readControls(). It will cycle
through the three control modes (normal, gate, and CV) as long as it is held down.
The behavior of the gate and CV modes may only be altered when the corresponding
mode is active.

Software | 455

The full source code for the signal generator is available on GitHub. It is commented
and hopefully self-explanatory.

The DDS Library
A simple library for the DDS module has been included with the signal generator
source code. To install the DDS library simply create a directory in your sketchbook/
libraries directory called DDS and place DDS.cpp and DDS.h there. The DDS library
will appear in the libraries drop-down when you restart the IDE (or immediately with
newer versions of the IDE). You may notice that there is no README, nor is there a
keywords.txt in the DDS library subdirectory file. This class is so simple that I didn’t
see a need for them.

The DDS library used with the signal generator illustrates some of the custom library
creation concepts presented in Chapter 5. It is a simple class that handles the neces‐
sary calculation to create the control data word used by the AD9850. The file DDS.h,
shown in Example 11-5, contains the class definition.

Example 11-5. The DDS class

class DDS {
 private:
 float dds_cal;

 unsigned long dds_clock; // ext clock, in Hz

 uint8_t dds_reset; // DDS reset pin
 uint8_t dds_data; // DDS data pin
 uint8_t dds_load; // DDS data load pin
 uint8_t dds_wclk; // DDS data load clock pin

 void pulseHigh(int pin);
 unsigned long freqData(unsigned long freq);
 void sendBit(uint8_t outbit);

 public:
 DDS(unsigned long clockfreq, uint8_t dds_data, uint8_t dds_load,
 uint8_t dds_wclock, uint8_t dds_reset);
 void setFrequency(unsigned long freqval);
 void calibrate(float calval);
};

After the DDS object is instantiated, you can pass in a calibration coefficient if you
want to improve the accuracy of the signal generator. Refer to the datasheet for the
AD9850 to see how this value is calculated. In this class it simply defaults to a value
of 0.

456 | Chapter 11: Project: A Programmable Signal Generator

https://github.com/ardnut

Other than the object constructor and the calibrate() function, the only other
method used by code outside of the class is the setFrequency() function. The fre‐
quency is given in Hertz. The calculated control word is pushed to the DDS IC one
bit at a time.

Testing
Assuming that the prototype is wired correctly, you should be able to compile and
upload the software to the Arduino Uno. Upon startup the display will show “DDS
Signal Gen” and “Initializing,” followed by “Ready” and then the data display fields.
You can adjust the delay times to make the startup text linger longer or eliminate it
completely. It’s up to you.

When the signal generator is wired as shown in Figure 11-7 you
cannot use the Serial library. The library takes over the Rx and Tx
pins (D0 and D1, respectively) and pulls them high. This confuses
the 9850 DDS, and it will not generate any output. The Serial
library is fine for debugging the control inputs, which is what I did,
but it must not be instantiated when the DDS is connected. You
could always shuffle the analog and digital pin assignments around
to use A4 and A5 for control switch inputs and free up D0 and D1
for serial I/O, but I didn’t see a need to do this for this project. The
USB interface still works fine for uploading new software to the
Arduino if necessary, even with the DDS module connected.

The code is preset to generate an output of 1,000 Hz when the prototype is powered
on. This can be any value you like within the range of the AD9850, but I picked 1,000
as something I could easily see with any oscilloscope that happened to be handy.

To check the DDS output you will need an oscilloscope of some
sort, and the faster the better. Something like the low-cost single-
or dual-channel Nano digital oscilloscopes from Seeed that look
like repurposed MP3 players generally won’t go above about 1
MHz. If you want to check the high frequency end of the DDS IC’s
range you will need something with at least a 100 MHz bandwidth.
I keep my little Seeed DSO Nano handy for quick peeks at slow cir‐
cuits, but I reach for something heftier when I need to work above
1 MHz.

The first thing to check is the sine wave output. The 1,000 Hz sine wave is shown in
Figure 11-17, and it should be about 1V P-P. The prototype doesn’t have the output
level controls that the finished unit will have, so if you don’t see the sine wave unplug
the unit and double-check your connections.

Software | 457

Figure 11-17. Default 1 K Hz sine wave output

The square wave output will have the same frequency as the sine wave, with an ampli‐
tude of around 5V P-P (actually, whatever V+ happens to be). The output will look
like Figure 11-18.

Figure 11-18. Default 1KHz square wave output

If both outputs are present, then testing can proceed to the control inputs. The fre‐
quency and range inputs can be tested by first pressing the Freq + and Freq – buttons.
The frequency on the display should change by 1 Hz for each button press. Now hold
the Freq + button down. The frequency should increment first by 1, then by 10, then
100, and finally 1,000. Stop at about 15,000 and check the output. Note that the range
value will automatically increment when the frequency passes 9,999. Repeat this with
the Freq – pushbutton. The range value should decrement as the frequency decreases.

Pressing the Range + button will cause the frequency to increment by 10,000 for each
button press. Change the range to a value of 4 and observe the output. It should be

458 | Chapter 11: Project: A Programmable Signal Generator

near 40 KHz. Press the Range – button and observe the display. The frequency should
decrease by 10,000 for each decrement in the range value.

Press the Mode button and hold it momentarily until the colon next to the G symbol
blinks. Now press the Freq + and Freq – buttons to enable and disable the gate input.
Press the Range + and Range – buttons to change the input sense state. It should cycle
between + and –. Press the Select button to return to normal operation.

When the gate is active and there is no gate input the output should cease. Select the –
(active low) input mode and observe that the output becomes active whenever a
jumper is connected from the gate input (A2 on the Uno) to ground. When in the +
(active high) input mode the output will be enabled whenever the jumper is connec‐
ted to a positive voltage source, but will cease when the A2 input is grounded. Disable
the gate input by entering the gate control mode and using the Freq – button to dis‐
able the gate operation.

To test the CV input (A3 on the Arduino) you will need either a variable power sup‐
ply or a 5V power source and a 10K potentiometer, and also a DMM, shown in
Figure 11-19. If your oscilloscope doesn’t have a frequency display function (most
modern DSO instruments do), some type of frequency counter will also be useful.

Figure 11-19. Control voltage input test setup

Enable the CV input using the Mode button, but don’t set the zero point (leave it at
the default midrange value of about 2.5V). Press the Select button to return the nor‐
mal operation. Apply a voltage between 0 and 5V while observing the frequency out‐
put. The frequency should decrease when the CV input is less than 2.5V, and increase
when it is greater than 2.5V. Also observe the polarity of the CV input by watching
the + and – polarity indication. It will be next to impossible to set the CV manually at
the zero point, but you may see the display briefly show a 0 as the input passes the
zero value.

Software | 459

Now adjust the CV input voltage for about 2V on the DMM. Put the instrument into
CV mode, enable the CV input, and press the Range + button to set a new zero value.
The polarity symbol should now be 0, and it will stay at zero so long as the input volt‐
age does not vary. Change the input voltage and observe that the output frequency
varies up or down as the CV input goes above or below the new zero point value.
When finished, use the Mode and Freq – buttons to disable the CV input function.

Do not apply more than 5V or a negative voltage to the CV input.
This prototype circuit does not have any input protection. Exceed‐
ing the input range of the ADC in the AVR MCU can destroy it.
When the final unit is assembled it will have a simple input protec‐
tion circuit.

This concludes the basic functional testing. If everything works correctly, then now is
a good time to experiment with the signal generator to see how it responds to control
inputs. This is also a good time to set the square wave duty cycle.

There is small PCB potentiometer on the DDS module’s PCB on the opposite end
from the silver oscillator module. Set the frequency for around 10 KHz, and using an
oscilloscope adjust the square wave so that the “on” and “off ” portions are equal in
time. In the finished unit you might want to desolder the PCB potentiometer and
replace it with a panel-mounted control on the front or rear of the signal generator.

Final Assembly
If you elect to use the prototype shield for the DDS module then I would suggest a set
of screw terminal extenders, like those shown in “Adapter Shields” on page 266 in
Chapter 8. These not only provide reliable connections for wires but also raise the
DDS shield above the Arduino. This leaves space if you need to access the ICSP con‐
nector. You can also use a screw terminal shield, like the kit shown in “Reducing the
Cost” on page 466.

Pull-up Resistor Array
Six 2.2K resistors mounted on a section of prototype perfboard are used as pull-ups
for the six pushbutton switches. While the AVR MCU does have some degree of pull-
up capability, the resistor array ensures that there will be a positive voltage for the
switches to work with. It also means that the switch inputs are active low (0V input
= on).

Electrically the pull-up module is very simple, as can be seen from the schematic
shown in Figure 11-20. The six resistors are wired across the signal lines for each con‐
trol input switch, and the common connection for all of the resistors is connected to
+5V DC.

460 | Chapter 11: Project: A Programmable Signal Generator

Figure 11-20. Control switch input pull-up resistor array schematic

The completed pull-up array board is shown in Figure 11-21. The use of 0.1 inch PCB
terminal blocks allows for easy wiring and reliable connections. Figure 11-21 also
shows the input protection module and the mounted Arduino with the DDS proto‐
type shield. Only the +5V and ground have been wired at this point.

Figure 11-21. Pull-up array and input protection module

Input Protection
A small perfboard module is used to construct the simple input protection circuit
shown in Figure 11-22. The idea is to prevent any voltage greater than +5V DC or less
than 0V (i.e., negative) from getting into the gate or CV inputs.

The 470-ohm current-limiting resistors in series with the inputs may result in a slight
decrease in the voltage that appears on the input of the AVR’s ADC, but since the gate
is acting as a binary input and the CV is a relative input, it doesn’t really matter. The
resistor values could even be increased if you are worried about either of the diodes

Final Assembly | 461

passing too much current in an over-voltage or under-voltage situation. The comple‐
ted protection module was shown in Figure 11-21. PCB terminal blocks were used
here as well.

Figure 11-22. External control input protection circuit schematic

Chassis Components
The software is ready, all the parts are at hand, and it’s now time to put it all into the
enclosure. The most complicated part is making the holes in the front panel, and get‐
ting them right. To do this, I drill and cut from the back of the front panel. This helps
to keep things neat, and if it gets scratched or cut by a wandering tool no one will ever
see it. Next, the Arduino and the DDS module are mounted to the bottom of the
enclosure, followed by the USB and DC power connectors on the rear panel. Last
comes the task of wiring the controls, connectors, and modules to each other as
appropriate.

The front and rear panels are cut and drilled first. The front panel has a rectangular
cut-out for the LCD and holes for the switches and connectors. The rear panel has a
panel-mounted DC power connector and a potentiometer for the LCD contrast. The
USB from the Arduino is not brought out to the rear panel. The USB connector on
the Arduino can be accessed after the cover of the enclosure is removed. Figure 11-23
shows the holes being drilled in the front panel using a miniature drill press, although
a full-size drill press would work just as well. You could also use a hand drill, but
carefully mark where the holes need to go, take it slowly, and drill small starter holes

462 | Chapter 11: Project: A Programmable Signal Generator

first. I transferred the dimensions from the drawing (Figure 11-24) with a machinist’s
rule and calipers, and then made pilot holes with a rotary tool and a small drill bit.

Figure 11-23. Drilling holes in the front panel

Figure 11-24 shows the drilling template used for the front panel of the signal genera‐
tor. I specified #4 holes for mounting the LCD module, but you can use smaller-
diameter holes if they are accurately placed. The rear panel has only a DC barrel-type
power connector and a potentiometer for the LCD contrast, and these can be moun‐
ted as you see fit.

Figure 11-24. Signal generator front panel drilling layout

Final Assembly | 463

While it may not be necessary to go to the trouble of creating detailed drawings like
the ones that have been created for this project, they do have long-term value. Design
and fabrication drawings are a record of what was done, and they ensure that, should
the need ever arise to build more signal generators, none of the design work needs to
be repeated unless there are drastic changes.

The Arduino Uno and the DDS prototype shield are mounted on the floor of the
enclosure, along with the pull-up resistor array and input protection module. The
actual locations are not particularly critical, but the Arduino should be mounted close
to the front panel to help keep the wiring neat. Figure 11-21 shows the internal com‐
ponents mounted and ready to be wired to the front panel components.

After the interior components are mounted and the holes are drilled and cut in the
front panel, the next logical step is to mount the various controls and the LCD display
module on the front panel. Don’t forget about labeling the controls and connectors.

If you plan to use a labeling machine, you can print and apply the
various labels either before or after the controls are mounted. How‐
ever, if you plan to use rub-on dry-transfer lettering or paint the
lettering onto the panel in some fashion (silkscreen, perhaps?),
then you really should do that before mounting the parts. Also,
when using a labeling machine make sure you have the appropriate
lettering tape for the device. For example, some models don’t have
“white-on-black” lettering tape available. Make sure you can get the
lettering tape you need, or are happy with the available options,
before you commit to using the labeling machine. I used a laser
printer and adhesive-backed labels to print the lettering (as white
on black), and then cut out each and affixed them to the front
panel.

It’s surprising how quickly the enclosure can start to fill up once all the parts are in
place and wires are routed between the various components. Figure 11-25 shows
what the interior of the signal generator looks like just before the top cover is put in
place. Note that I didn’t bother to put a knob on the contrast pot mounted on the rear
panel.

Don’t mount the top cover just yet. Leave the instrument open until
the final testing is complete. No one is perfect, and little errors can
happen. If the unit is open it is a lot easier to reach in and fix a
loose terminal screw or reattach a wire.

The LCD module is mounted using four nylon spacers with split-ring lock washers
under the nuts. I soldered standard stacking socket headers onto the LCD PCB from
the front, and then trimmed the leads on the rear by about 1/4 inch (6.5 mm) to allow

464 | Chapter 11: Project: A Programmable Signal Generator

socket headers to be pressed onto the pins. Wires soldered to the header pins and
protected with heat shrink result in some decent homemade connectors for the LCD
module. You can see the LCD connectors in Figure 11-25.

Figure 11-25. The electrically complete signal generator

I used nylon zip ties to keep the wiring neat, and the PCB terminal blocks made the
connections a breeze. The only part that was a bit tricky was coming up with a way to
connectorize (yes, that’s a real word) the DC power input and the LCD contrast con‐
trol mounted on the rear panel. I ended up settling on a six-position terminal block
with #6 screws and crimped lug terminals.

DC Power
The signal generator includes a barrel-type connector on the rear panel for DC power
input. In addition to the DC power jack I also purchased mating plugs. This meant
that I could select a wall transformer (DC adapter) with a suitable voltage output,
attach the plug, and know that it would mate correctly with the power connector. The
DC voltage from the rear connector is routed to a terminal block, then to the front
panel power switch, and finally to a DC connector that plugs into the Uno board.
There is no fuse as the DC power is not routed anywhere where it might find a direct
external path to ground, but adding one would not be difficult.

Final Assembly | 465

The Arduino folks recommend a 9 to 12V DC adapter for running an Arduino
without the USB connected. With a 5V DC adapter there is a large drop across the
internal voltage regulator on the Arduino PCB, and the 5V terminals will read
around 3.5V. I modified an existing 9V DC adapter from my large box of surplus
“wall-warts” (it’s amazing how rapidly those things can accumulate over time). You
can read more about DC adapters at the Arduino Playground.

Final Testing and Closing
Now that everything is in the enclosure, the labels have been applied, and the soft‐
ware is loaded, it’s time to give the signal generator a final shake-down. The test pro‐
cedure is really just a regression test, and it is the same as the tests performed for the
prototype. The primary intent is to verify that nothing has changed or failed between
the prototype and the final unit.

Any further testing will require equipment that most people won’t have just lying
about, like a distortion analyzer or a spectrum analyzer. If you happen to know some‐
one who does own or have access to this type of test equipment, then by all means
avail yourself of it if you can. Depending on how you intend to use your new signal
generator, it might be useful to know the harmonic distortion level at various fre‐
quencies (is it constant, or does it change with output frequency?), and how harmon‐
ically “pure” the sine wave output is. Other things to investigate include the rise and
fall times of the square wave output, the output impedance, the hertz-to-voltage rela‐
tionship for the CV input, long-term stability (i.e., does the frequency drift over
extended periods of time?), and both CV and gate control input response times.

Once the final testing is complete, the last step is to mount the top cover. Don’t forget
to put some adhesive rubber bumpers on the bottom of the enclosure. You don’t need
to cover the case cover screws with them. Figure 11-26 shows the finished instrument
posing on my workbench with a USB digital oscilloscope and a netbook PC.

I should mention that there is something a bit odd about the handle on the instru‐
ment in Figure 11-26. I kept the top and bottom orientation of the enclosure correct,
but I accidentally flipped the front and back. I’m not going to lie and claim it was on
purpose, because it was definitely a mistake on my part, but it actually works out
pretty well. Normally the handle would protrude out in front of the unit when resting
in a supported position. With the handle to the rear the generator can still be set in a
tilted position, but now the handle doesn’t waste a lot of space on the workbench. I
was lucky. Mistakes usually don’t work out as well as this.

Reducing the Cost
As described in this chapter, the signal generator is not a cheap project. That is due in
part to the packaging selected, the connectors and controls, and additional things like

466 | Chapter 11: Project: A Programmable Signal Generator

http://bit.ly/apg-what-adapter

the screw terminal extenders and the auxiliary pull-up array and input protection
modules. But if you want to cut costs, there are a few ways to get the price down
somewhat and still have something useful.

Figure 11-26. Finished signal generator ready to go to work

I’ve seen some Arduino clones for as little as $15. The DDS module is an essential
part of the project, so there is another $10 or so. A prototype shield with screw termi‐
nals is about $16, but you could opt for a simpler prototype shield just to have a place
for the DDS module for about $10. To further reduce the cost you could forgo an
enclosure completely and just have a stack of shields on the Arduino. There are
several LCD shields with pushbuttons available, like the one shown in “LCD displays”
on page 259 in Chapter 8, and these go for around $12 each. These shields typically
only have four or five pushbuttons available for programmed functions, so you may
need to redesign the control interface software slightly to accommodate fewer control
inputs.

If there is no need or desire for a standalone device, the LCD and pushbutton con‐
trols can be eliminated and the unit can run under the control of a host computer
with just an Arduino and the DDS module. That’s a different kind of device, and I
didn’t cover that in this chapter. For some ideas about how to implement a remote
control interface, take a look at the software presented in Chapter 10 for the Green‐
Shield and Switchinator projects.

Reducing the Cost | 467

If you had a stack of boards consisting of an Arduino, a prototype shield to hold the
DDS module, and an LCD shield it would look something like Figure 11-27.

In this setup there is an Arduino Leonardo, an Adafruit screw terminal prototype
shield with the DDS module mounted on it, and a SainSmart LCD shield with push‐
buttons. A 0.1 inch (2.54 mm) PCB terminal block has been installed on the proto‐
type shield for the signals from the DDS module, but there are no connectors, no
output level control potentiometers, and no enclosure. Bear in mind that without a
protective enclosure there is a much higher chance that something bad could happen
if a stray wire or screwdriver happened to encounter the stack of boards while it was
powered on, and it will never be as robust as it would be in a solidly built enclosure.

Figure 11-27. A low-cost version of the signal generator

A low-cost version of the DDS signal generator can save you about $30 over the cost
of the “fancy” version described in this chapter, which means it will come in at
around $65, or lower with some careful shopping. It may not be worth saving $30 to
create something that isn’t as rugged and portable as it could be. But, as always, the
choice is yours.

Cost Breakdown
Table 11-6 lists the primary components used in the signal generator. The total cost
does not include things like wire, solder, or nylon zip ties. It also doesn’t include ship‐
ping charges, and in some cases there are vendors who don’t offer low-cost USPS
shipping, but instead insist on shipping a $4.95 part for $9 via UPS. I plan to avoid
vendors like this in the future if possible, at least until they figure out how to mail
things. Many Chinese vendors, on the other hand, offer free shipping, but it might
take a couple of weeks to get your parts. Shop around. eBay is a good place to start
looking, and if you aren’t sure about eBay, you can find similar deals, often from the
same vendors, on Amazon.com.

468 | Chapter 11: Project: A Programmable Signal Generator

As I stated at the start of this chapter, the signal generator described here costs more
to build than many of the kits that are available. But then again, you have total control
over it and it will generate output at high enough frequencies to be useful for amateur
radio and high-speed digital applications.

Table 11-6. Parts price list

Quantity Item Source Unit price Extendeda

1 Enclosure, Bud IP-6130 Mouser 25.40 25.40

1 Arduino Uno Adafruit 24.95 24.95

1 DDS module DealeXtreme 7.99 7.99

1 Prototype shield Adafruit 9.95 9.95

1 set Screw terminal adapters Seeed Studio 7.50 7.50

1 LCD display, 16 × 2 Amazon/Uxcell 4.71 4.71

3 BNC connectors All Electronics 1.25 3.75

2 Banana jacks Amazon 0.67 1.34

3 Potentiometer, 10K Amazon/Amico 1.28 3.84

1 Power switch pushbutton All Electronics 1.35 1.35

6 Miniature pushbutton switch All Electronics 0.60 3.60

1 DC power jack, barrel type Parts Express 1.98 1.98

a The extended amount is the total cost of each line item for a given quantity.

Total parts cost = $96.33

Note: Total cost does not include wire, solder, adhesives, or the wall transformer. Pri‐
ces were accurate at the time of writing but should be treated as a guide; there may be
some variation.

With some careful shopping I suspect that you could get the total cost down to
around $75, even for this full version. Having a large collection of parts on hand, par‐
ticularly if they were purchased in bulk, can also cut the costs for things like connec‐
tors, switches, and potentiometers. Lastly, if you happen to have an old piece of test
equipment that no longer works but still has a useful case, you could get creative and
put the signal generator into that.

Resources
Table 11-7 lists the distributors and vendors where I purchased the parts for the sig‐
nal generator (yes, I actually do keep track of all that—it’s tax deductible—and you
should consider keeping all your receipts and packing lists as well, if you don’t
already). For any given module or part there are numerous sources; these are just the

Resources | 469

ones I happened to have used at the time I made the purchases, and can give you an
idea of where to start looking.

Table 11-7. Parts sources

Distributor/vendor URL
Adafruit www.adafruit.com

All Electronics www.allelectronics.com

Amazon www.amazon.com

DealeXtreme (DX) www.dx.com

Mouser Electronics www.mouser.com

Parts Express www.parts-express.com

Seeed Studio www.seeedstudio.com

470 | Chapter 11: Project: A Programmable Signal Generator

http://www.adafruit.com
http://www.allelectronics.com
http://www.amazon.com
http://www.dx.com
http://www.mouser.com
http://www.parts-express.com
http://www.seeedstudio.com

CHAPTER 12

Project: Smart Thermostat

You may have heard of so-called “smart” thermostats (I suspect that many people
have at least seen the advertisements for them). These devices are a type of program‐
mable digital temperature controller. You might even have one installed in your house
or apartment. Some allow you to change settings using Bluetooth or some other wire‐
less connection method, along with an associated app for a smartphone or tablet.
Others offer data collection capabilities with wireless download, which can be useful
if you want to find out when you are using the most energy to heat or cool your
home. There are also, of course, some that don’t do much more than what the old-
style bimetallic coil types did, except that an LCD display is used instead of a dial and
some switches.

Disclaimer: If you elect to build and use the thermostat described
in this chapter, you do so at your own risk. While it utilizes low-
voltage circuits with minimal shock hazard, there is still the risk of
damage to your heating or cooling equipment from excessive
power cycling or temperature settings that exceed the safe limits of
the equipment (most systems have built-in safeguards, however).
Use only the low-voltage control circuit for your heating and cool‐
ing equipment. DO NOT CONNECT YOUR CUSTOM THER‐
MOSTAT TO HIGH-VOLTAGE (110V AC or greater) CIRCUITS.
This includes evaporative coolers and electric heaters.

Background
There are multiple ways to improve on a classic bimetallic coil thermostat like the one
shown in Figure 12-1. This type of device has been around for about a century. It uses
a coil comprised of two different metals, each with a different thermal expansion
coefficient, so that as the temperature changes the coil tightens or loosens slightly.

471

This movement is then used to bring some contacts together to open or close a cir‐
cuit, or in some versions a small sealed glass tube containing two contacts and a drop
of mercury is moved so that the mercury bridges the gap between the contacts and
completes the circuit (the KY-017 tilt sensor module described in Chapter 9 uses this
same technique). The control action is either on or off; there is nothing in between.

Figure 12-1. Electromechanical thermostat

In this chapter we’ll look at what is involved in designing, building, and programming
a smart thermostat using only readily available Arduino boards and common add-on
components. But before we dive into that, we need to get a basic understanding of
what, exactly, it is that we want to measure and control.

HVAC Overview
The main idea behind altering the temperature in a structure is to either put heat in
or take heat out. Or, to put it another way, cold is just the absence of heat, and we can
alter the amount of heat in a system to achieve a particular temperature. Adding heat
to an environment can be accomplished with a furnace of some sort (natural gas, pro‐
pane, oil, wood, or coal), electric heating elements, or solar energy. In a heat pump
system the heat in the outside air is extracted and put back into the structure, which
is similar to running an A/C unit in reverse. To remove heat from a structure, it is
extracted using a refrigeration system that employs the condensation and evaporation
cycle of a refrigerant fluid (ammonia, Freon, or any one of a number of modern cool‐
ants). The inside heat is absorbed by the refrigerant fluid, which then transfers it to
the outside in a closed-cycle system. Some large-scale cooling systems use chilled
water to achieve the same result, but the physical plant (the equipment and the build‐
ing to house it) tends to be large and expensive to operate, so these types of systems

472 | Chapter 12: Project: Smart Thermostat

are usually found only in university buildings, high-rise office structures, hospitals,
and other large facilities. Chilled water systems aren’t commonly used in residential
settings outside of large apartment buildings.

In many residential settings the heating and cooling are handled by two separate sys‐
tems, but in other cases the heater and air conditioner may all be in the same large
cabinet situated on the roof or along the side of the house. A heat pump does both
heating and cooling, depending on how it is configured at any given time, and often
consists of two units, one inside the house and one outside. In any case, in a conven‐
tional thermostat there will usually be a switch to select automatic or manual fan
operation, and another to select the mode (heating, cooling, or off). A dial or lever
sets the target temperature, or setpoint. The entire system, which incudes the heating
unit, the cooling unit, and the thermostat, can be referred to as the heating, ventila‐
tion, and air conditioning, or HVAC, system. (Actually, the term HVAC is most often
heard when referring to large commercial systems, but I will use it here because it’s
more convenient than writing “heating and air conditioning system.”) With the possi‐
ble exception of an active air-exchange ventilation function, a residential HVAC sys‐
tem does everything the large system can do, just at a smaller scale.

An important thing to note is that most HVAC systems can and do operate as closed-
loop circulation systems. In other words, they work by continuously recirculating the
air in the structure. While some systems might have the ability to draw in outside air
or exchange inside and outside air (the V in HVAC), some don’t, and as a result the
smell of last night’s burned dinner will tend to linger for a while before it finally dissi‐
pates. This is also why many homes have a distinct smell unique to that residence. As
a child I noticed that the inside of a neighbor’s house always smelled like fried
chicken in the summer when they ran their A/C, so I assumed that they really liked
fried chicken. I never did learn the actual source of that peculiar smell.

Temperature Control Basics
Temperature control involves controlling the subsystems that will either heat or cool
an environment to achieve a specific temperature (setpoint). In most cases this is an
all-on or all-off type of operation; there are no intermediate heating or cooling rates
in most residential HVAC systems. I say “most” because it’s possible that someone,
somewhere, has a variable-output resistive heater system, but I’ve yet to see anything
like that outside of a laboratory or industrial setting.

The “all-or-nothing” nature of an HVAC system means that the actual indoor temper‐
ature will never be exactly at the setpoint, except for brief periods as it either falls or
rises. For example, let’s assume that we’re running the air conditioner, with a target
setpoint of 72 °F (22 °C). If we were to record and plot both the inside and outside
temperatures over the course of a day we might get something like Figure 12-2 (this is
not real data, of course, it’s just for illustration purposes).

Background | 473

Figure 12-2. Temperature plot over the course of a day

In Figure 12-2 we can see where the air conditioner is active because the interior tem‐
perature drops. Early in the day it doesn’t cycle (turn on and turn off) as often as hap‐
pens later in the day. It takes time for the heat outside to work its way through the
structure, and the better the insulation is, the longer it takes for the inside to start to
warm up. Later in the afternoon, the air conditioner is working hard to keep the
inside at the setpoint temperature. Things don’t start to slow down until later in the
evening as the outside temperature drops.

A controller with only two states, on or off, is called a hysteresis controller. It is also
known as a bang-bang controller. The amount of hysteresis in the controller deter‐
mines how often the cooling or heating equipment will turn on and for how long.
You can think of hysteresis as the lag between when a system turns on, or turns off,
based on a setpoint value somewhere in between. A physical example of this is the
snap-action of a three-ring binder. It takes some effort to open the rings, and again to
close them, but once in the open or closed state the rings will stay that way.

Figure 12-2 is estimated, but it is representative of the effect of a conventional ther‐
mostat on the temperature in a typical residential structure. When the inside temper‐
ature reaches about 73 °F the air conditioner is powered on, and it continues to run
until the temperature drops to just below 71 °F. That means there is about 2 degrees
of hysteresis in this hypothetical system. This range is referred to as the “hysteresis
band” (actually, the hysteresis band in this system is too tight, and the A/C is cycling
far too often later in the day).

474 | Chapter 12: Project: Smart Thermostat

Each on/off action of the HVAC system is referred to as a cycle. Figure 12-3 shows
what happens when the difference between the on and off points becomes smaller
(less range between Hmax and Hmin, which define the hysteresis band). The system is
able to maintain the setpoint temperature better with a tighter hysteresis, but at the
expense of cycling the power much more often. We would ideally want to make the
hysteresis band as wide as possible, because each time the heater or A/C unit cycles
brings it one step closer to wearing out and failing. It also drives up the electric bill.

Figure 12-3. Effect of hysteresis

While the 5° hysteresis band is more energy-efficient and doesn’t beat up the equip‐
ment with as much cycling as the 3.5° band, it also means that the actual temperature
can swing as much as 7° between hot and cool. (Remember that these graphs are
illustrative, and do not reflect real data.)

There are multiple factors that affect how often a heating or cooling system will cycle,
the most obvious being how quickly heat is being removed when running the A/C, or
how quickly heat is being introduced when running the heater. Less obvious, but also
important, are things like humidity and interior air flow. As the humidty increases air
will retain more heat, which can help when heating. An A/C unit also acts as a dehu‐
midifier, condensing and removing moisture from the air passing over the cold evap‐
orator coils in the system, and dry air evaporates sweat more readily, which allows us
to cool off faster. Stagnant air (that is, air that’s not moving unless the HVAC system
is active) can lead to “hot spots” or “cold spots” in a structure, and it’s possible that the
thermostat will end up regulating just one part of an interior space if the rest of the
air isn’t passing by it.

Background | 475

Ideally a temperature control system should be able to sense the temperature in all
parts of a structure, but in the real world this often isn’t the case. There will invariably
be a room that gets direct sunlight most of the day, while other areas are shaded, or
perhaps a room that has poor air flow. So even though the thermostat is doing its job
and working to keep the temperature in the immediate area where it is located at the
desired setpoint, other parts of the structure will not be heated or cooled correctly.
Just moving the air around can help avoid this, and monitoring the humidity will also
help to determine when to run the fan or when to use the heating or cooling. Run‐
ning the fan alone is a lot less expensive than running the heater or A/C unit.

Smart Temperature Control
The main idea behind a smart thermostat is to reduce the amount of energy wasted
and achieve a more even temperature distribution within the structure. This might
involve altering the cycle time (i.e., adjusting the hysteresis), only running the system
when someone is in the house, altering the setpoint based on the time of day and/or
day of the week, and taking advantage of the built-in fan in the HVAC system.

Some common features of modern commercial digital thermostats include adjustable
cycle times, automatic heating/cooling mode changeover, and day-by-day programm‐
ability. We’ll briefly review these capabilities to see which ones make sense for a small
project like the one described here.

Adjustable cycle times can be used to reduce frequent on/off heating or cooling
cycling. This can occur when the temperature is at or near the setpoint and varies just
enough to cause the heater or air conditioning (A/C) to turn on. What it does, in
effect, is increase the hysteresis in the system, so that it takes longer to cycle when the
temperature is hovering around the setpoint, but the amount of hysteresis is reduced
when the temperature rapidly changes one way or the other over a short period of
time.

Auto-changeover allows the system to switch between cooling and heating as neces‐
sary. If, for example, you are experiencing warm days and cold nights, then the ther‐
mostat will automatically switch from cooling to heating at night to maintain a
relatively constant average indoor temperature. The Arduino thermostat will support
auto-changeover and adjustable cycle times as well.

Profile scheduling is a big feature with smart thermostats. Most programmable digital
thermostats have the ability to schedule heating or cooling for specific days of the
week, so if your house is empty during weekdays you can trim some expense from
your electric bill by not running the heater or A/C when there is no one home to
appreciate it. By the same token, some models allow you to automatically “dial down”
the heating or cooling at night, while the home’s occupants are asleep. Our controller
will have the ability to create profiles (also sometimes called programs) for day, night,
and weekend operation.

476 | Chapter 12: Project: Smart Thermostat

A digital thermostat can be packaged in a slick-looking enclosure with a high-tech
glowing faceplate and a numeric display behind frosted plastic, but that’s just market‐
ing razzle-dazzle. It can also be housed in a commonly available plastic enclosure. It
may not look as flashy and high-tech as the commercial units, but that has no bearing
on how well it works, or how easily someone can use it. You can save money and time
by using a low-budget enclosure for this project, and what I decided to use is defi‐
nitely low-budget.

Project Objectives
The primary objective of this project is to create a replacement for a conventional res‐
idential thermostat. There are numerous descriptions for Arduino-based thermostat
projects available online, and this project is similar to many of them. There are only
so many ways to arrange an Arduino, a temperature sensor, a simple display, and a
relay or two. What makes this project unique is the incorporation of a humidity sen‐
sor and the ability to use the fan alone to move air around and help shift cool or
warm air to where it’s needed without lighting up the heater or powering up the A/C
unit.

Our Arduino thermostat will also have the ability to use the interior temperature and
humidity data to determine if it needs to adjust the cycle time. There is also the
option to add an additional sensor to read the outside temperature and humidity.
Finally, it will use relays to connect to existing 24VAC control wiring used by most
residential HVAC systems in the US, so there’s no serious shock hazard and no real
risk to your heating or cooling equipment (at least not electrically—it is still possible
to cycle too fast and damage the compressor or heater ignition components).

This project is very straightforward, and requires a minimal amount of parts and very
little soldering. Actually, the two main challenges are coming up with a good enclo‐
sure and programming the device.

The thermostat will be designed to replace a conventional low-voltage four-wire resi‐
dential thermostat. It is not limited to four-wire systems, however. Controlling just a
heater or an A/C unit alone is simply a matter of not using all the available control
outputs and making some minor modifications to the software.

Definition and Planning
Based on what we’ve covered so far we can identify the basic features we want to
incorporate into our design. These involve the functions already provided by a con‐
ventional four-wire thermostat, plus some additional capabilities based on humidity:

• Real-time clock
• Inside humidity sensor

Project Objectives | 477

• Inside temperature sensor
• Automatic heating or cooling operation
• Automatic fan control
• Seven-day scheduling

The basic version of the HVAC controller is similar in many ways to the units avail‐
able at big-box home improvement stores (and even some of the small-box local
hardware stores), from HVAC supply houses, and from various vendors online.

This project intentionally avoids dealing directly with the high-
voltage AC control circuits in an HVAC system. It is intended
for low-voltage (24VAC) systems only. High-voltage AC can dam‐
age your HVAC equipment, burn down your house, and kill you
(not necessarily in that order). If you need that type of system, con‐
sider a commercial controller with a UL and CSA safety rating, and
hire a licensed electrician or HVAC technician to install it.

The controller will use an Arduino Nano mounted on a screw terminal prototype
shield. A real-time clock (RTC) module will be used to keep track of the date and
time. The Arduino PCB stack mounts to the lid of the enclosure. A quad relay mod‐
ule with be mounted inside the enclosure on the bottom panel. All the wiring will
enter the enclosure through a hole in the bottom.

Design
The Arduino thermostat is intended to be a drop-in replacement for a standard four-
wire thermostat. It is not intended for systems with multistage heating or cooling, or
a heat pump system. It is best suited for older homes with a conventional thermostat,
like the one shown in Figure 12-1.

Functionality
The Arduino thermostat has three basic functions: heat, cool, and fan. Figure 12-4
shows a block diagram with the primary components. The secret to success lies in
how those basic functions are used to achieve the most efficient operation.

A rotary encoder will be used for various functions such as setting temperatures,
stepping through days of the week, and so on. The LCD shield also has a set of push‐
buttons, but these will not be used.

Many older HVAC systems have only four wires, while some newer systems also have
auxiliary power wiring. The Arduino thermostat can use this AC source if it is avail‐
able if a small power supply is also mounted in the enclosure. For this version of the

478 | Chapter 12: Project: Smart Thermostat

thermostat I will use an external wall power supply, or wall-wart. Ideally it would be
better to draw power from the HVAC wiring, but many older systems don’t have a
spare 24VAC line available.

Figure 12-4. Arduino thermostat block diagram

Figure 12-5 shows how a typical older thermostat might be wired internally. The
actual internal details will, of course, vary from one type to another, but the basic idea
is the same.

Figure 12-5. Typical old-style thermostat internal circuit

Design | 479

A key thing to note about this type of old-style thermostat is that the fan is wired so
that it will always come on when either heating or cooling is enabled. It is not a good
idea to run the A/C or the heater without the fan. In some systems the heater fan is
separate from the A/C fan, and it will come on only when the internal temperature in
the heater has reached a specific level.

Enclosure
For an enclosure, I’ve selected a plastic electrical junction box with a detachable cover
suitable for wall mounting, as shown in Figure 12-6. After some finishing the box will
be painted a neutral color to improve its appearance.

Figure 12-6. Arduino thermostat enclosure

Yes, the enclosure is really ugly. I won’t deny that. But for this project the main con‐
cern was wall mounting and having enough internal space for the components. The
side mounting tabs will be removed and the front cover will be sanded and polished,
which will help improve its appearance.

The controls are simple, with just an LCD display and a rotary encoder. It will all fit
comfortably on the front cover panel. The planned layout of the front panel is shown
in Figure 12-8.

The relay module will be mounted to the bottom of the enclosure, and the existing
wires for the thermostat will enter through a hole in the bottom of the case. The RTC
module will be mounted to the inside of the enclosure, and the DHT22 will be
attached to the bottom so it will be exposed to the ambient environment. I elected to
mount the DHT22 this way rather than put it inside because I didn’t want to drill an
array of holes in the enclosure for air flow. An alternative would be to make a square
hole just large enough for the DHT22 so it can mount inside but still have access to
the outside air. Four screws will hold the thermostat to the wall.

480 | Chapter 12: Project: Smart Thermostat

Figure 12-7. Arduino thermostat schematic

Figure 12-8. Arduino thermostat front panel layout

Design | 481

Schematic
There is no significant difference between the prototype and the final unit, so there is
only one version of the schematic. The prototype is electrically identical to the final
thermostat, but it uses an Arduino Uno rather than a Nano board (the AVR MCU is
the same for both), mainly because that is what is mounted in the prototype fixture.

Notice that every single pin on the MCU is in use. The Arduino programming inter‐
face, via D0 and D1, is shared with the rotary encoder. So long as the rotary encoder
is not in use this will not create a conflict.

You may also notice that the analog inputs have been pressed into service as digital
I/O pins. This is completely normal, and if you refer back to Chapter 2 and Chapter 3
you can see how the ATmega328 port used for analog input (the C port) is also a stan‐
dard discrete digital I/O port. By referring to the pins as D14 through D19 we can
access these like any of the other digital I/O pins. Of course, the analog inputs are
now unavailable, but the thermostat doesn’t use any analog input (except for the A0
pin, which is used by the LCD shield), so it’s not a problem.

Just because the Arduino convention is to assign functionality like
analog input to specific pins doesn’t mean the pins can’t be used for
something else. That’s just how the folks at Arduino.cc decided to
name them. Since an Arduino board is a breakout for the MCU
with nothing between the board’s pins and the MCU IC itself, what
really determines what a pin can or cannot do is the MCU, not the
labels on the PCB.

Software
This is a software-intensive project, but most of the software is involved with the user
interface and the active profile. The actual control logic for thermostat operation is
not all that complex.

Remember that since the main emphasis of this book is on the
Arduino hardware and related modules, sensors, and components,
the software shown is intended only to highlight key points, not to
present complete ready-to-run examples. The full software listings
for the examples and projects can be found on GitHub.

On each iteration through the main loop the software will check for user input from
the rotary encoder; update the current temperature and humidity data; and deter‐
mine if the display should switch between screens, move to various settings, or
change values. Interrupt handlers are used to capture the inputs from the rotary
encoder. A high-level version of the software block diagram is shown in Figure 12-9.

482 | Chapter 12: Project: Smart Thermostat

https://www.github.com/ardnut

Figure 12-9. Arduino thermostat software block diagram

The main function blocks in Figure 12-9 give an indication of what to expect in terms
of actual source code. In addition to the Thermostat.ino main file, there will be source
modules for handling user inputs using interrupts, processing schedules (daytime,
evening, or weekend), and updating the display.

The first thing the loop checks is the switch (SW) on the rotary encoder. This is the
signal that indicates that the user wants to do something. The pushbutton switch in
the rotary encoder is used to move between screens and between the fields in a
screen. The type of action is determined by how long the switch is held down.

The interrupt handlers for the rotary encoder switch and the A/B inputs set flags in
the global variables module. The main loop examines these to determine what display

Design | 483

update action to take, if any. The interrupt handlers are not shown in Figure 12-9.
They will be covered in “Software” on page 493.

The block labeled “Heat/cool/fan control” is the actual control logic of the thermo‐
stat. As stated earlier, this is a discrete-state hysteresis controller, also known as a
“bang-bang” controller. Figure 12-10 shows the relationship between temperature,
time, and hysteresis range in a timeline format for an A/C system. For heating, the
operation is simply the inverse.

Figure 12-10. Time, temperature, and hysteresis range

Another way of representing this is shown in Figure 12-11. This graph shows hystere‐
sis as a function of temperature. The message of both types of graphs is the same: a
bang-bang control system (such as a thermostat) coupled with an on/off actuator (the
heater or A/C unit) can never precisely hold a specific temperature. The system will
always be at some point between the high and low ends of the hysteresis range.

Figure 12-11. Effect of hysteresis on control system response

In a real system the rate at which the temperature increases or decreases will depend
on the rate at which heat is being put into or taken out of the system, and how effi‐
ciently the heating or cooling equipment can add or extract heat. The upshot is that
the heating and cooling times will almost never be the same, although both
Figure 12-10 and Figure 12-11 might seem to imply that they are.

484 | Chapter 12: Project: Smart Thermostat

The thermostat’s control logic is shown in Figure 12-12. Notice that the heating and
cooling are simply inverse operations. In an old-style electromechanical thermostat
the H (hysteresis) term is established using a set screw on the bimetallic coil assembly.
In software we can set this dynamically if we wish.

Figure 12-12. Thermostat control logic for heating and cooling

User Input/Output
The control input consists of a single rotary encoder. This might seem odd, but the
encoder also has an integrated switch that is engaged when a user presses on the
knob. The switch is used to move between display configurations (or screens, as I’m
calling them). Each screen contains fields that display data or settings, and the rotary
encoder is also used to move between the fields in each screen. The length of time the
pushbutton switch in the rotary encoder is held down determines which action the
software will take. A short press is a selection, and a long press commands the soft‐
ware to move to the next screen.

Design | 485

The display is the same type of 16 × 2 LCD used with the signal generator in Chap‐
ter 11. In this project it is premounted on a shield PCB. This simplifies the internal
wiring. The LCD backlight is not enabled unless the control inputs are active. The
small pushbutton switches on the LCD shield are not used, but they could be if you
are willing to drill more holes through the front panel and find some type of exten‐
sions that a user could press. I elected to just ignore them.

Normally two primary screens will be displayed that alternate when the control
inputs are not active. The first shows the current temperature readings, the setpoint,
the operation mode, and the active profile (if any). The second screen shows the cur‐
rent date and time. Figure 12-13 shows the screens during normal operation. The
symbols ^, v, and – are used to indicate if a reading is increasing, decreasing, or hold‐
ing steady, respectively, relative to the previous reading.

Figure 12-13. Normal operation screens

The fields shown in Figure 12-13 are defined in Table 12-1. In the second screen the
“END” field shows the time at which the current profile will end.

Table 12-1. Normal screen field definitions

Field Purpose
T Current inside temperature, in degrees (F or C)

E Exterior temperature (if enabled)

H Humidity

M Mode: A (auto), H (heat), C (cool), F (fan), or X (off)

P Profile: D (day), N (night), W (weekend), or X (none)

The screens shown in Figure 12-13 are purely informational with no modifiable
fields. The temperature units may be either Celsius or Fahrenheit. The default is Fah‐

486 | Chapter 12: Project: Smart Thermostat

renheit. I elected to use 24-hour format for the time. It can be modified to accommo‐
date 12-hour format (AM/PM) without too much effort.

The settings screen, shown in Figure 12-14, allows the user to enable or display the
profile, and if the profile is disabled the user may manually adjust the temperature
setpoint, temperature scale, hysteresis, and operation mode.

Figure 12-14. Settings screen

The settings screen is the primary control point for the thermostat. It is intentionally
arranged to appear only when specifically invoked by a user. The fields used in the
settings screen are listed in Table 12-2.

Table 12-2. Settings screen field definitions

Field Purpose
S Temperature setpoint

C Cycle range (hysteresis, in degrees)

F Either F or C for temp scale

O Override time

M Mode: A (auto), H (heat), C (cool), F (fan), or X (off)

P Profile: D (day), N (night), W (weekend), or X (none)

The main form of preset control for the thermostat is the user-defined profiles. Pro‐
files are defined with the screen shown in Figure 12-15.

Figure 12-15. Profile editing screen

Design | 487

There are profiles for daytime, nighttime, and weekends; these are labeled D, N, and
W, respectively. Rotating the encoder when the profile editing screen is first selected
will step through the three profiles. Each profile has a start time and end time. In the
case of the weekend (W) profile, the default start time is Friday at midnight, and the
end time is Sunday at midnight. If the end time of a profile overlaps the start time of
another, then the end time of the preceding profile always takes precedence. The
fields used in the profile editing screen are listed in Table 12-3.

Table 12-3. Profile editing screen field definitions

Field Purpose
P Profile: D, N, W

B Begin time

E End time

S Temperature setpoint

C Cycle range (hysteresis)

M Mode: A (auto), H (heat), C (cool), F (fan), or X (off)

Navigating through the screens and fields does require some learning, but by using
the length of the rotary encoder switch press and a tree structure the user can navi‐
gate the primary screens and the fields without getting lost. Figure 12-16 shows how
the screens and fields respond to either a long or a short button press.

Figure 12-17 shows all four screens in one view. This might make it easier to visualize
how the screens are arranged.

A long button press is defined as 1 second or longer. A short button press is 500 ms
or shorter. The software uses an interrupt and a counter to monitor the button hold-
down time.

Control Output
The control output consists of a quad relay module with four independent SPDT
relays. It incorporates drivers for the relays and PCB terminal blocks, so connecting it
to the existing thermostat wiring is straightforward. It can be seen in Figure 12-18.
The common line is routed through the fourth (lower right in the diagram) relay.

In the block diagram in Figure 12-4 you will notice that the common line from the
existing HVAC system is also routed through one of the relays. This is a fail-safe
measure. If the thermostat loses power the relay with the common line drops out, and
none of the other functions of the HVAC can be enabled. All the external HVAC con‐
trol voltage lines, including the common return, are connected to the C and NO
(common and normally open) terminals of the relays.

488 | Chapter 12: Project: Smart Thermostat

Prototype
The prototype for this project is comprised of an Arduino Uno, a pair of terminal
block extensions, and an LCD shield. These are essentially the same components that
will be packaged in an enclosure later on (the Nano and the Uno use the same
ATmega328 MCU).

Figure 12-16. Thermostat screen and field navigation

Prototype | 489

Figure 12-17. The four screens used by the thermostat

I’m reusing the Arduino-on-a-board that was used in Chapter 11 for the signal gener‐
ator, but I could also have used the Duinokit introduced in Chapter 10. I elected to
give the board another mission because it’s small enough to mount on the wall next to
the existing thermostat during testing. The prototype is shown in Figure 12-18.

Figure 12-18. Arduino thermostat prototype

The prototype uses a slightly different, but electrically equivalent, set of parts to the
final unit. The LCD shield is the same as the final unit will use, but the Arduino is an
Uno whereas the final unit will use a Nano. In Figure 12-18 you can see the rotary

490 | Chapter 12: Project: Smart Thermostat

encoder, the RTC module, and the DHT22 sensor on the small solderless breadboard
module. The parts list for the prototype is given in Table 12-4.

Table 12-4. Prototype thermostat parts list

Quantity Description
1 Arduino Uno (or equivalent)

1 LCD 16 × 2 display shield

1 DS1302 real-time clock module

1 set Screw terminal adapters

1 Quad relay module

1 DHT22 temperature/humidity sensor

1 KEYES KY-040 rotary encoder module

DHT22 Sensor
For temperature and humidity sensing we will use the DHT22 device, which is the
same device used with the GreenShield in Chapter 10. In the final version the DHT22
sensor will be connected to the Arduino Nano with leads attached to screw terminals.
The pinout of the DHT22 is shown in Figure 12-19.

Figure 12-19. DHT22 sensor pinout

A 1K ohm pull-up will be used on the data line, as recommended in the datasheet
(available from Adafruit, SparkFun, and other locations). In the prototype, the
DHT22 will be connected using a small solderless breadboard block on the wood
base, as can be seen in Figure 12-18.

Rotary Encoder
The primary (and only) control input is a KEYES KY-040 module (see Chapter 9 for
information about KEYES modules) with a Bonatech rotary encoder, similar to an
Alps EC11 part. The module is shown in Figure 12-20, and the pinout is shown in
Figure 12-21.

Prototype | 491

http://www.adafruit.com
http://www.sparkfun.com

Figure 12-20. Rotary encoder module

Figure 12-21. Rotary encoder module pin functions

The rotary encoder module circuit is simple, as shown in Figure 12-22. The encoder
contains an internal switch that is engaged when the shaft is pressed in, and the three
signal lines use 10K pull-up resistors. The pins labeled CLK and DT correspond to
the A and B signals (respectively) found in most software examples and descriptions
of simple quadrature rotary encoders.

Figure 12-22. Rotary encoder module schematic

492 | Chapter 12: Project: Smart Thermostat

The rotary encoder’s integrated switch is used to change between display screens, and
also for various user-modifiable items on each screen. It and the rotary encoder itself
are the only two control inputs. The internal switch is normally open.

Real-Time Clock Module
The thermostat needs to be able to keep time in order to determine which thermal
profile to use. A real-time clock (RTC) module based on a DS1302 IC is used for this
purpose. The RTC module is really nothing more than a carrier for the DS1302 IC, a
crystal, and a battery. Figure 12-23 shows a schematic of the RTC module. The pinout
is self-explanatory.

Figure 12-23. RTC module schematic

A library for the DS1302 is available from the Arduino Playground. The thermostat
will use this rather than create a new library from scratch.

LCD Shield
The LCD shield, which can be seen in Figure 12-18 and is described in Chapter 8, is a
common and readily available shield. It is the largest consumer of digital I/O pins on
the Nano. In this application the shield was selected because it incorporates a potenti‐
ometer for contrast and a control transistor for the display backlight. It also connects
directly to the underlying Arduino, thus eliminating wiring like that used in the sig‐
nal generator in Chapter 11.

Software
The thermostat software is straightforward, and like most embedded software it is
designed to run continuously with a primary loop. Unlike the other examples presen‐
ted so far, the thermostat utilizes interrupts to handle a rotary encoder. Implementing
an interrupt handler with an Arduino isn’t particularly difficult, and interrupts are by
far the best way to deal with asynchronous events from the real world.

Software | 493

http://bit.ly/apg-ds1302rtc

Source Code Organization
As with the other projects in this book, the source code is organized as a set of source
files (see Table 12-5). These include the primary module with the setup() and
loop() functions, a module for global variables, and the logic for controlling the
HVAC functions in accordance with user-defined heating and/or cooling “programs.”
The display module borrows from work already done for the signal generator in
Chapter 11, and the interface module, tstat_iface.cpp, also includes the interrupt han‐
dler for the rotary encoder.

Table 12-5. Thermostat source code modules

Module Function
Thermostat.ino Primary module containing setup() and loop()

tstat.h Constant definitions (#define statements)

tstat_ctrl.cpp HVAC control logic

tstat_ctrl.h Include file

tstat_gv.cpp Global variables

tstat_gv.h Include file

tstat_iface.cpp Control input processing

tstat_iface.h Include file

tstat_lcd.cpp LCD functions

tstat_lcd.h Include file

tstat_util.cpp Utility functions

tstat_util.h Include file

Software Description
The software can be divided into three functional sections: user interface, control
logic, and display management. The user interface functions, contained in the source
module tstat_iface.cpp, provide the functionality to read the rotary encoder and navi‐
gate the display screens. tstat_lcd.cpp contains the LCD display handling functions.
The source module tstat_ctrl.cpp provides the functionality for temperature and
humidity sensing via the DHT22 sensor, the controller logic, and the user-defined
programs.

Various libraries are used with this project for the DS1302 RTC, the rotary encoder,
time and date functions, and the AVR’s timer 1 peripheral. These are listed in
Table 12-6. This is one of the nice things about working with the Arduino: if you
need a library to use a particular module, sensor, or shield, chances are someone,
somewhere, has taken the time to create it so that you don’t have to.

494 | Chapter 12: Project: Smart Thermostat

Table 12-6. External libraries used with the thermostat

Name Function Author
Time Time functions Michael Margolis

DS1302RTC RTC class Timur Maksimov

ClickEncoder Rotary encoder class Peter Dannegger

TimerOne Timer 1 class Lex Talionis

These libraries can be found in the Arduino Playground and on GitHub. Be sure to
read the included documentation and the source code to gain a better understanding
of what the code is doing and how to configure it if necessary. The DHT22 library is
the same one that was used with the GreenShield in Chapter 10.

The file tstat.h contains the global definitions used by the other modules. These fol‐
low the pin assignments shown in Figure 12-7, illustrated in Example 12-1.

Example 12-1. tstat.h I/O definitions

#define ROTENC_A 0
#define ROTENC_B 1
#define ROTENC_SW 2

#define LCD_D4 4 // Predefined by the LCD shield
#define LCD_D5 5 //
#define LCD_D6 6 //
#define LCD_D7 7 //
#define LCD_RS 8 //
#define LCD_E 9 //
#define LCD_LED 10 //
#define LCD_SW A0 //

#define RTC_SCLK 11
#define RTC_IO 12
#define RTC_CE 13

#define RY1 15 // A1
#define RY2 16 // A2
#define RY3 17 // A3
#define RY4 18 // A4

#define DHT1 3 // Internal DHT22
#define DHT2 19 // A5, external DHT22

Software | 495

http://playground.arduino.cc
http://www.github.com

The function setup() in Thermostat.ino, shown in Example 12-2, initializes the LCD,
displays some startup messages, checks the RTC module, and displays the first screen.

Example 12-2. setup() function

void setup()
{
 lcd->begin(16, 2); // Set the dimensions of the LCD

 TitleDisp("Initializing...", "", 1000);

 lcd->clear();

 if (rtc->haltRTC())
 lcd->print("Clock stopped!");
 else
 lcd->print("Clock working.");

 lcd->setCursor(0,1);
 if (rtc->writeEN())
 lcd->print("Write allowed.");
 else
 lcd->print("Write protected.");

 delay (2000);

 // Setup time library
 lcd->clear();
 lcd->print("RTC Sync");
 setSyncProvider(rtc->get); // The function to get the time from the RTC
 lcd->setCursor(0,1);
 if (timeStatus() == timeSet)
 lcd->print(" Ok!");
 else
 lcd->print(" FAIL!");

 delay (1000);

 TitleDisp("Initialization", "complete", 1000);

 curr_screen = 0;
 Screen1();
 disptime = millis();
}

The loop() function in Thermostat.ino isn’t complicated, as you can see from
Example 12-3. Most of the work takes place when the rotary encoder is in use and
when the software is retrieving temperature and humidity data and executing the
control functions in tstat_ctrl.cpp.

496 | Chapter 12: Project: Smart Thermostat

Example 12-3. Thermostat main loop function

void loop()
{
 // Get current date and time from RTC
 RTCUpdate();

 if (input_active) {
 HandleInput();
 }
 else {
 // Toggle between screen 1 and screen 2
 if ((millis() - disptime) > MAX_DISP_TIME) {
 if (curr_screen) {
 Screen1();
 curr_screen = 0;
 disptime = millis();
 }
 else {
 Screen2();
 curr_screen = 1;
 disptime = millis();
 }
 }
 }

 GetTemps();
 SystemControl();
}

When the encoder is not in use the display will alternate between screens 1 and 2,
which show the current conditions and operating state and the date and time, respec‐
tively. When the encoder is used the input_active flag is set to true, and it will
remain true until the user returns to screen 1 by pressing the encoder knob to engage
the pushbutton switch. Notice that the system control is still active while the input
screens are in use.

Testing
Testing is a three-step process, and this section applies to both the prototype and the
final unit. The first step involves setting the date and time in the RTC. This is done by
changing to the time and date setup screen using the encoder pushbutton. After
returning to the main displays, the correct time and date should appear. The next step
involves setting the target temperature, the hysteresis range (the C parameter in the
display), and the operation mode. I started by verifying that I could manually enable
the system fan, and then entered a temperature setpoint and set the mode. You will
want to watch the display and verify that the system stops heating or cooling when it

Software | 497

has reached a temperature equal to the setpoint plus or minus one-half of the cycle
(hysteresis) range.

Lastly, you should step through the profiles and set each one up the way you think is
best for your situation. Remember that a conflict between the end time of one profile
and the start of another is resolved by honoring the end time of a preceding profile,
not the start time of a subsequent profile.

You should keep an eye on the operation of the thermostat over a period of a couple
of weeks. It will probably require some fine-tuning to get the times and setpoints
established for the most efficient operation. If you have built a GreenShield you can
use it to log the temperature and humidity to capture performance data for the ther‐
mostat. A simple Python script will work nicely to query the GreenShield at regular
intervals to collect data.

Final Version
The final version of the thermostat differs from the prototype in a few ways physi‐
cally, but it is otherwise identical in terms of both function and signal connections.
The three primary differences are the use of Nano board, a bare LCD module rather
than an LCD shield, and an enclosure to mount it all into. The parts list for the final
version of the thermostat is given in Table 12-7.

Table 12-7. Final version thermostat parts list

Quantity Description
1 Arduino Nano (or equivalent)

1 Screw terminal prototype board

1 16 × 2 LCD display module

1 Quad relay module

1 DHT22 temperature/humidity sensor

1 KEYES KY-040 rotary encoder module

1 Real-time clock module

1 Plastic enclosure

Assembly
The final assembly mainly consists of mounting the components in and on the enclo‐
sure. But before that, the enclosure itself went through some changes. The embossed
lettering was sanded off the top cover, the side mounting tabs were removed, and
holes were cut and drilled for the display and the rotary encoder. Holes were also dril‐
led into the bottom of the enclosure for mounting screws and the existing heater and

498 | Chapter 12: Project: Smart Thermostat

A/C control wires. The case was painted a nice neutral shade of ivory after all the
sanding, drilling, and cutting was done.

I used a screw terminal prototype shield to hold the Nano board, and wired the
Nano’s pins to the appropriate terminals and pin headers. Figure 12-24 shows the
topside view of the Nano’s prototype shield, along with the LCD shield, the rotary
encoder, and the RTC module. The RTC module will be mounted to the inside of the
enclosure.

Figure 12-24. Nano prototype board and other top cover components

As I elected to keep all the wiring on the top of the prototype shield, the bottom of
the shield is nothing but soldered pads. I used the smallest gauge of insulated stran‐
ded wire that I had available (28-gauge 7-strand) without resorting to wire-wrap wire.
Solid 30 AWG wire with Kynar insulation is great for wire-wrap construction, but it
can be less than ideal for something like this.

The big advantage of the screw terminal prototype shield is the ease with which wires
to or from other components may be connected to the terminals. In the case of the
thermostat this includes the DHT22 sensor, the real-time clock module, the relay
module, and the rotary encoder.

Figure 12-25 shows what the enclosure looked like after its makeover. The LCD shield
and the rotary encoder are already mounted. What isn’t shown is the DHT22 sensor,
which is mounted on the outside of the bottom of the enclosure. You might also
notice that the cover screws aren’t installed.

Final Version | 499

The small hole to the upper left of the LCD window is an access hole for the trim
potentiometer on the LCD shield to set the display contrast. The LCD window will
get some edge trim as the very last step, and a clear plastic cover might also be a good
idea. Yes, it looks like something from an industrial plant, but as I said before, how it
looks has no bearing on how it works. The gold knob is there (if you can see the
image in color) because that was the only knob I had available at the time that didn’t
have a pointer molded into it.

Figure 12-25. Almost finished thermostat enclosure

The quad relay module is mounted to the bottom of the enclosure. The RTC module
is mounted to an interior side of the box. Figure 11-25 shows how things are arranged
in the enclosure. The existing HVAC wiring is brought in through an access hole in
the bottom of the enclosure. Note that the hole is offset vertically from center to allow
clearance for the relay module.

It’s a tight fit, to be sure, but it does all fit. There are still several steps necessary before
closing it up and turning it loose:

1. Locate the mounting screw locations on the wall and drill holes.
2. Pull the existing HVAC control wires through the bottom hole and mount the

enclosure to the wall.
3. Connect the HVAC wires to the relay module.
4. Connect the power source and check the display.
5. Attach the cover to the enclosure.

500 | Chapter 12: Project: Smart Thermostat

Assuming that the software was already loaded onto the Nano, the thermostat should
now be operational. There is no power switch, so it will start functioning as soon as
the power is connected. The display backlight should remain active for 15 seconds
after power is applied, so you may need to turn the encoder knob slightly if it has
timed out and turned off.

Figure 12-26. Thermostat internal components

The enclosure comes with a rubber gasket, which you can use if you think it is neces‐
sary. I used it simply because it allows for a snug fit of the cover and gives a bit more
space inside for the components, but I’m not worried about rain getting into the unit.

Testing and Operation
Testing consists of using the encoder to step through the display screens and verify
that the long and short switch sensing is working correctly. You will need to set the
parameters again, since loading the software doesn’t load the EEPROM, just the flash
program memory. If the installed unit appears to operate correctly then you can start
setting it up for your particular environment and preferences.

I would suggest something simple to begin with. Just controlling the heating or cool‐
ing is a good place to start. After you are satisfied that the unit is working as it should,
then you might want to try setting up daytime/nighttime profiles and see how that
works. As you gain more experience with the unit you can incorporate the humidity
and cycle time settings. A device like this requires some amount of “tuning” to get it
set so it will integrate effectively with your environment.

Final Version | 501

The Second DHT22
You may recall from Figure 12-4 that there is an input for a second DHT22 sensor. I
elected to leave it out for the first iteration of this unit so that I could focus on the
basic functionality. Incorporating the input from a second DHT22 is trivial electri‐
cally, but it introduces a new level of complexity into the software.

The reason is that with a second sensor the thermostat must not only monitor the
inside environment, but now must also factor in the outside environment—things
like internal versus external temperature difference, the rate of change at any given
moment in time, and the estimated heat loss or gain through walls and windows.
With enough effort and clever programming, the thermostat could attempt to balance
the various factors and arrive at an optimal heating or cooling profile. This may
sound really interesting, but it’s not trivial.

As with all the software in this book, the source code for the thermostat is available
on GitHub. I will occasionally post updates for the thermostat and the other example
projects.

Cost Breakdown
One of the objectives of this project was to use off-the-shelf boards and modules as
much as possible. This not only saved time and effort, but also helped hold down the
cost (custom PCBs are not inexpensive). Build-wise, this project required much less
effort than the signal generator in Chapter 11. Table 12-8 lists the primary compo‐
nents.

Table 12-8. Thermostat parts price list

Quantity Item Source Unit price Extendeda

1 Arduino Nano SainSmart $14.00 $14.00

1 Screw terminal prototype shield Adafruit $15.00 $15.00

1 RTC module DealeXtreme $2.00 $2.00

1 Rotary encoder module Various $6.00 $6.00

1 LCD display shield SainSmart $10.00 $10.00

2 DHT22 sensors Adafruit $10.00 $20.00

1 Quad relay module SainSmart $7.00 $7.00

1 Electrical enclosure Home Depot $7.00 $7.00

a The extended amount is the total cost of each line item for a given quantity.

Total parts cost = $81.00

502 | Chapter 12: Project: Smart Thermostat

https://www.github.com/ardnut

Note that KEYES modules, like the KY-040 rotary encoder, are often found in kits of
modules. They can be purchased as single items from vendors on both eBay and
Amazon, but picking up one of the kits is a better bargain.

As with the other example projects in this book, you can probably do better price-
wise than what is shown in Table 12-8 by shopping around and doing some bargain
hunting. I’ve seen Nano-type boards going for as little as $5, and DHT22 sensors in
the $7 to $8 range.

Next Steps
This project is an example of the limitations that you can encounter when trying to
create complex devices using only off-the-shelf shields and modules. If I were to cre‐
ate a Version 2 of the thermostat I would build a custom PCB that would contain
everything on one board. Like the GreenShield from Chapter 10 it would have on-
board relays, and a power supply would be incorporated as well.

This design is also a prime candidate for an I/O multiplexer like the MPC23017 used
in the Switchinator PCB in Chapter 10. The LCD display can be controlled via an
MPC23017. Adafruit sells a version of the display shield with an MPC23S17, which is
the SPI version of the IC.

Additionally, I would use surface-mount parts for everything except perhaps the
relays, the DHT22, and the terminal blocks. I would think that the relays could be
downsized a bit, perhaps even to surface-mount parts, since they don’t really need to
handle a lot of current through the contacts. With some careful design and parts
selection the size of the entire PCB could be significantly reduced.

Some nice-to-have features that simply won’t fit in the current design include a Blue‐
tooth or WiFi interface, a microSD flash card carrier for long-term data logging, and
perhaps some additional LEDs for the front panel. As it stands, the Arduino thermo‐
stat is almost an Internet of Things (IoT) device, but it will require some redesign and
enhancement to get it all the way there. Of all the things touted as IoT devices, a ther‐
mostat might make the most sense. I’m not convinced that letting the coffee maker or
the microwave oven talk to the refrigerator is a good idea.

Resources
Table 12-9 lists the distributors and vendors where I purchased the parts for the
thermostat. As with all of the example projects in this book, there are multiple sour‐
ces for most of the components. These are simply the ones I used at the time I made
the purchases.

Next Steps | 503

Table 12-9. Parts sources

Distributor/vendor URL
Adafruit www.adafruit.com

DealeXtreme (DX) www.dx.com

DFRobot www.dfrobot.com

SainSmart www.sainsmart.com

I found the enclosure in the electrical section of my local Home Depot store, but you
can find similar electrical enclosures at any electrical supply house or well-stocked
hardware store.

504 | Chapter 12: Project: Smart Thermostat

http://www.adafruit.com
http://www.dx.com
http://www.dfrobot.com
http://www.sainsmart.com

CHAPTER 13

Model Rocket Launcher: A Design Study

This chapter is a departure from the previous three chapters. Instead of using an
example project (or projects, in the case of Chapter 10) to illustrate how the concepts,
tools, and components described in earlier chapters are used in real applications, this
chapter illustrates how to perform a design study. We won’t actually build anything,
but we will define some possible approaches, identify suitable tools and components,
and evaluate design trade-offs. This type of engineering activity applies to more than
just model rocket launchers; it can be applied to an Arduino design project with any
degree of complexity.

Remember that since the main emphasis of this book is on the
Arduino hardware and related modules, sensors, and components,
the software shown is intended only to highlight key points, not to
present complete ready-to-run examples. The full software listings
for the examples and projects can be found on GitHub.

Overview
An Arduino-controlled rocket launcher is an interesting application for several rea‐
sons: first, it is very extensible and you can take it as far as you want (and can afford)
within the limits imposed by the Arduino hardware; second, physically the launcher
can be anything from a small plastic box with a switch and an LED to a console with
digital readouts and a keyswitch or two; third, the launcher can support a wide range
of functions beyond simply applying current to an igniter. It could have WiFi or Blue‐
tooth connectivity, the ability to continuously check igniter continuity, synthetic
speech generation for the countdown and launch status reports, range safety inputs,
and even the ability to disconnect DC power from a rocket prior to launch to keep

505

https://www.github.com/ardnut

the internal batteries fully charged. How much (or how little) effort you want to put
into it will depend on your objectives, abilities, and finances.

By the end of this chapter you should be able to make informed decisions about what
hardware to buy, how difficult the software will be to write and test, and how to antic‐
ipate the level of effort a given design will entail. Using the material presented in ear‐
lier chapters you should be able to create a parts list and get an idea for how much the
design will cost and how difficult it will be to build. You should also be able to create
a preliminary block diagram and software flowchart for your design. Once all these
things are in place, all that remains is gathering up the parts, assembling it, and then
creating and loading the software to make it go.

Before attempting to build something like this, make sure you
understand the safety considerations that are involved with some‐
thing like a rocket launcher. The National Association of Rocketry
(NAR) and the Tripoli Rocketry Association have published guide‐
lines for safely handling and launching model rockets, and many
states have basic rules in place regarding where and when you can
launch, and what qualifies as a model rocket.

The Design Cycle
When we design anything with even a moderate degree of complexity, it is rare that
we don’t find ourselves going back to an earlier step in the process to make modifica‐
tions or seek alternatives. Sometimes that might even mean tossing out the original
design and starting over. This is not uncommon. Design is an iterative process, and as
it progresses things become apparent that weren’t obvious at the outset. It is almost
impossible to anticipate everything in advance.

The design process follows the general outline presented in Chapter 10. We begin
with a set of objectives. The objectives are refined to create functional requirements.
From the functional requirements we can identify the types of hardware and software
that will fulfill the requirements. Then we look at the details of the selected compo‐
nents and techniques to evaluate their suitability. Figure 13-1 shows how the design
cycle works.

At the end of each step we will stop and consider what we’ve done up to that point. If
there is problem, that is where we want to evaluate how to resolve it. Depending on
the type and severity of the problem, we could elect to step back and revise a previous
step, or we might decide to drop something that isn’t essential and go forward with
reduced expectations. We might also find issues during the activity for a particular
step. Say, for example, that we discover that a particular shield, sensor, or module
simply isn’t available, and we can’t justify building it ourselves. In that case we need to

506 | Chapter 13: Model Rocket Launcher: A Design Study

stop, step back, and see what drove that selection in the first place and if it can be
revised to accommodate the current situation.

Figure 13-1. The design cycle

The Design Cycle | 507

In some cases it may not be necessary to build a real prototype. This is often the case
when a design consists primarily of ready-made modules, as is the case with many
Arduino-based designs. I like to build prototypes with prototyping platforms I have
created or purchased, such as the Duinokit and solderless breadboard used in Chap‐
ter 10, or the Arduino-on-a-board used in Chapters 11 and 12. It allows me to con‐
nect things without resorting to soldering wires and drilling holes, and still get the
same functionality that the finished unit will have. You may find that you can skip the
prototyping step for some design projects, but be aware that if a problem does pop up
in the final design it may be expensive and time-consuming to deal with it.

In a real-world situation the cost of dealing with a defect in the
design or implementation, either hardware or software, increases as
the project progresses through the steps shown in Figure 13-1. In
other words, it is much cheaper to fix an invalid functional require‐
ment than it is to rewrite defective software or deal with a hard‐
ware design flaw. By the same token, it is easier and cheaper to deal
with a problem in a prototype than it is to address a problem in a
design that is about to go into production. This is why building
prototypes is so popular.

Objectives
The first step for a design activity is to decide what objectives the design is intended
to meet. We may not have all the details starting out, but we should be able to decide
on the fundamental characteristics, even if it’s just a small set initially. The list of
objectives can grow over time, sometimes dramatically. In fact, it is often a challenge
to keep the design objectives in line with reality, particularly when the person defin‐
ing the objectives is not the same person who will be building the final design. Fortu‐
nately, this is not the case here. So long as we keep our enthusiasm and optimism in
line with reality we should be fine.

When setting down a list of objectives I recommend organizing the list by impor‐
tance. In other words, put the “must have” features at the top of the list, and the “bells
and whistles” features toward the end of the list. That will allow you to trim off items
from the list should the level of effort, cost, or time constraints exceed acceptable lim‐
its without losing the essential functionality of what you’re trying to build.

Here is my list of prioritized objectives for an automatic rocket launch controller (aka
launcher). The primary objectives are:

1. The launch controller will incorporate a countdown timer with presettable times
(5, 10, 15, 30, and 60 seconds).

2. The countdown may be aborted at any time for a number of reasons (given next).

508 | Chapter 13: Model Rocket Launcher: A Design Study

3. The launch controller must have a key-operated safety interlock (arming) switch.
The launcher will not start the count or activate the igniters unless the interlock
is set to the “on” position.

4. The launch countdown timer is started by pressing a pushbutton switch.
5. The launch countdown cannot proceed unless a safety switch is depressed prior

to pressing the countdown start button and during the entire period of the count.
This could be a handheld pendant or small box, and it is separate from the count
start switch.

6. If the safety switch is released prior to launch, the countdown will abort and the
controller will enter a “safe” mode (igniter circuits disabled and grounded).

7. The launcher must be capable of energizing multiple igniters at the same time.
Two would be a minimum number, with up to eight if possible.

8. Each igniter should be monitored independently of any others to detect circuit
continuity problems prior to launch.

9. A continuity failure of any igniter will abort the launch (the same response as a
premature release of the safety switch).

10. The controller will use a flashing LED to track the countdown in seconds. Other
LED indicators will show the status of the controller (armed, counting, safety
abort, or igniter fault).

The secondary objectives are as follows:

1. A 7-segment LED display will display the countdown.
2. A 7-segment LED display will display the current time.
3. A 16 2 LCD will display system status data and error messages.
4. All components will be mounted in a low-profile sloped-top console chassis.

And these are the optional objectives:

1. The launch controller will have the ability to activate external devices at specific
points in the countdown sequence, such as ground power disconnect, launch
warning siren, and on-board electronics activation (camera start and so on).

2. The controller will have a connector for attaching a large 7-segment display for
group event display purposes.

3. The controller will incorporate the ability to generate synthetic speech for count‐
down and status announcements.

4. A Bluetooth interface will be used to connect to a remote weather monitoring
system (primarily used to detect excessive wind speed in the launch area). If this

Objectives | 509

is used then the system must also have the ability to abort on out-of-range wind
speed and indicate this to the launch director (the user).

That’s a rather extensive and ambitious list, to be sure. Achieving the primary objec‐
tives doesn’t seem like it would be too difficult, which is what we want for primary
objectives. The secondary objectives are a bit more challenging, and the optional
objectives, while intriguing, could tax the stamina of the builder (not to mention
costing more money).

Selecting and Defining Functional Requirements
The way I’ve written the objectives allows us to move directly into the functional
requirements with very little translation. A requirement needs to be clear, concise,
coherent, and verifiable, and in some cases the objectives are worded like require‐
ments, so that makes it easier for us.

The big question now is, how many of the objectives do we adopt and move forward
with as functional requirements? In order to answer that question we need to use
some type of scoring system to determine how hard, how expensive, and how neces‐
sary each objective will be to achieve.

We’ll start with the primary objectives. Table 13-1 shows a list of the primary objec‐
tives with my best estimates for difficulty, expense, and overall necessity. Each aspect
is scored on a scale of 1 to 5, with 1 being the least and 5 being the most.

Table 13-1. Primary objectives ranking

Objective Difficulty Expense Necessity
1.1 2 2 2

1.2 3 2 5

1.3 3 2 5

1.4 2 2 4

1.5 2 3 5

1.6 2 1 5

1.7 3 3 3

1.8 4 3 5

1.9 3 2 5

1.10 3 2 2

From this we can conclude that objective 1.1, a presettable countdown timer, could
be replaced with a fixed 10- or 15-second count if need be. It is also apparent that
objective 1.10, the blinking lights, might fall under the category of “bells and whis‐
tles,” or secondary objectives, and could be dispensed with if necessary (although we

510 | Chapter 13: Model Rocket Launcher: A Design Study

would likely want to keep at least the countdown LED to let us know something is
happening).

We can do the same thing for the secondary and optional objectives, as shown in
Table 13-2.

Table 13-2. Secondary and optional objectives ranking

Objective Difficulty Expense Necessity
2.1 3 3 2

2.2 3 3 2

2.3 3 3 2

2.4 3 3 2

3.1 4 4 1

3.2 4 3 1

3.3 4 4 1

3.4 4 4 1

You may notice that there is an interesting pattern emerging between Table 13-1 and
Table 13-2. The primary objectives are all relatively inexpensive and easy to imple‐
ment. Also, with the exceptions of 1.1 and 1.10, they are all necessary. In Table 13-2
we see that as the expense and difficulty increase, the necessity decreases. None of the
optional objectives are necessary, although they would be really fun to implement.

I didn’t intentionally arrange the objectives like this when I wrote them down; they
just fell out that way. Honest. I suppose it might be the result of doing this sort of
thing quite a bit over the years, but in any case you’ll want to organize your objectives
first on the basis of necessity, then on the basis of either cost or difficulty, depending
on what is more important to you: money or time.

This brings us to a trade-off point. If something is necessary but it will be expensive,
do we eliminate something that is not as necessary to keep the project budget sensi‐
ble, or would we be willing to throw more money at it to get both objectives met? In
some cases, such as choosing between the primary and optional objectives, the choice
is clear-cut. The end result might not be as dazzling as it could otherwise be, but we
won’t break the bank building it, either. It will still launch rockets just fine. On the
other hand, when choosing between two primary objectives with equal necessity and
equal expense, such as objectives 1.1 and 1.10, the choice could hinge on how difficult
the objectives will be. In this case it would probably be easier to install one rotary
switch to select the countdown time than it would be to drill holes for LEDs, wire and
install them, and then create the software to control them all.

Selecting and Defining Functional Requirements | 511

For the sake of continuing with the design analysis, let’s assume that we will keep all
of the objectives so we can see how they will drive the design and component selec‐
tions in later steps. Table 13-3 lists the functional requirements derived from the
objectives.

Table 13-3. Rocket launcher functional requirements

Req # Description
1.1 The launch controller will incorporate a countdown timer. At the count of zero, the

igniter(s) will be energized.

1.1.1 The countdown timer will have five presettable times of 5, 10, 15, 30, and 60
seconds.

1.1.2 The countdown times will be selected using a five-position rotary switch.

1.1.3 If the countdown time is changed in mid-count the countdown will be aborted.

1.2 The countdown may be aborted at any time for a number of reasons (given below).

1.2.1 The countdown will be aborted if any igniter circuit is open that should be closed
(see 1.7.1 and 1.9.1).

1.2.2 The countdown will be aborted if the count time is changed while the countdown
is active.

1.2.3 The countdown will be aborted if the safety switch is released during the count.

1.3 The launch controller must have a key-operated safety interlock (arming) switch.

1.3.1 The launcher will not start the count or activate the igniters unless the interlock
switch is set to the on position.

1.3.2 The countdown will abort if the interlock switch is set to off during the countdown.

1.4 The launch countdown timer is started by pressing a pushbutton switch.

1.4.1 A “launch” button will be used to start the countdown.

1.4.2 The launch button will not function unless the range safety switch is engaged.

1.5 The launcher will use a range safety switch to control the countdown and launch.

1.5.1 The launch countdown cannot proceed unless a safety switch is depressed prior to
pressing the launch button.

1.5.2 The range safety switch must be manually engaged during the entire period of the
countdown.

1.5.3 The range safety switch can be a handheld pendant or small box, and it must have
at least 10 feet (3 m) of electrical cable.

1.6 If the countdown is aborted for any reason the launcher will enter “safe mode.”

1.6.1 In safe mode all igniter lines will be de-energized and grounded.

1.6.2 Exit from safe mode will require that the launcher be disarmed using the safety
interlock switch.

1.7 The launcher must be capable of energizing multiple igniters at the same time.

1.7.1 The launcher will support up to six active igniter circuits.

1.7.2 A rotary switch will be used to select the number of active igniter circuits.

512 | Chapter 13: Model Rocket Launcher: A Design Study

Req # Description
1.8 Each igniter should be monitored independently of any others to detect circuit

continuity problems prior to launch.

1.8.1 Each igniter circuit must have continuity to verify that the igniter is connected.

1.8.2 The sense current used to determine continuity shall not exceed 250 uA on any
igniter circuit.

1.9 A continuity failure of any igniter will abort the countdown timer.

1.9.1 The countdown will not start if any active igniter circuit has no continuity.

1.9.2 The countdown will abort if any active igniter circuit loses continuity during the
count.

1.9.3 The launcher will use LEDs to indicate active and ready igniter circuits (see 1.1.2).

1.10 The controller will use LEDs to indicate the countdown and status.

1.10.1 A flashing LED will track the countdown in seconds, one flash per second.

1.10.2 An array of LEDs will show the active state and continuity of the igniter circuits.

1.10.3 An LED will indicate the active state of the range safety switch.

1.10.4 An LED will indicate a range safety abort.

1.10.5 An LED will indicate the interlock switch state.

1.10.6 A flashing LED will indicate when the launcher is in safe mode after an abort.

2.1 A 7-segment LED display will display the countdown.

2.1.1 A 2-digit 7-segment red LED display will be used to display the countdown.

2.1.2 The countdown will display dash characters after a successful launch.

2.1.3 In event of an abort the display will show the word “Abort.”

2.2 A 7-segment LED display will display the current time.

2.2.1 A 4-digit 7-segment yellow LED display with HH:MM format will show the current
time.

2.2.2 The time display will be settable using pushbuttons on the front panel of the
launcher.

2.2.3 The time display will be in 24-hour format.

2.3 A 16 × 2 LCD will display system status data and error messages.

2.3.1 A 16 × 2 LCD display will show messages for readiness status and faults.

2.3.2 The LCD display will also be capable of displaying messages from external sources
such as a remote weather station.

2.4 All components will be mounted in a low-profile sloped-top console chassis.

2.4.1 A low-profile metal chassis will be used to contain the launcher.

2.4.2 The chassis will be at least 14 inches wide by 10 inches (35.5 × 25.5 cm) deep,
with a height of 1.5 inches at the front and 3 inches at the rear of the chassis (3.8
× 7.6 cm).

3.1 The launch controller will have the ability to activate external devices at specific
points in the countdown.

3.1.1 The controller will be capable of activating external devices via relays at user-
definable points in the countdown.

Selecting and Defining Functional Requirements | 513

Req # Description
3.1.2 The action points will be set using a USB connection to the Arduino in the launcher.

3.2 The controller will have a connector for attaching a large 7-segment display for
group event display purposes.

3.2.1 The signals to the internal two-digit countdown display will be duplicated to a
connector on the rear of the chassis.

3.2.2 The external display signals will be controlled by a high-current IC to provide
sufficient drive current.

3.3 The controller will incorporate the ability to generate synthetic speech for
countdown and status announcements.

3.3.1 The launcher will incorporate a speech synthesis shield to produce intelligible
speech.

3.3.2 The speech output will be user defined.

3.4 A Bluetooth interface will be used to connect to a remote weather monitoring
system.

3.4.1 The user can define an upper limit for wind speed. Exceeding the limit will cause a
launch abort.

3.4.2 An LED on the front panel will indicate a wind speed launch abort.

I endeavored to maintain a one-to-one relationship to the objectives listed earlier, but
there is some deviation, mainly involving the elimination of redundancy.

This design utilizes a “range safety switch” that must be held down
(active) during the countdown. This is an essential safety feature.
In practice there could be two people involved: a launch director
and a range safety officer. It is the range safety officer’s job to abort
the launch if anything is not as it should be prior to ignition (e.g.,
wind, or people in the launch area).

Creating the Preliminary Design
Now that the functional requirements have been defined, we can see some obvious
design criteria as we read through them. We know that we are going to need two
rotary switches, an LCD display, two 7-segment displays, a real-time clock of some
sort, a pendant or small box with a pushbutton switch (the range safety switch), some
connectors on the rear panel, some relays, and multiple LEDs of various colors.

In order to get a better idea of what will be involved in the design we can create a
preliminary block diagram like the one shown in Figure 13-2. From the block dia‐
gram it becomes immediately apparent that something like an Arduino Uno isn’t
going to be able to handle all the required I/O. We need to consider a Mega2560
instead. We might also want to consider more than one Arduino to spread the work‐
load around.

514 | Chapter 13: Model Rocket Launcher: A Design Study

Figure 13-3 is a more refined version of the block diagram. Notice that it uses one
Uno for the speech synthesis, another for the Bluetooth, and a Mega2560 for the pri‐
mary control functions. The ATmega2560 MCU used in the Mega2560 has multiple
USART interfaces, so each of the outboard Unos can have its own dedicated commu‐
nications channel.

Figure 13-2. Preliminary launcher block diagram

Creating the Preliminary Design | 515

In Figure 13-3 several of the interfaces to external modules have been refined and
designated as I2C types. In addition, the digital I/O (DIO) ports have been identified.
An I/O expander (similar to what was used in the Switchinator in Chapter 10) has
been selected to handle the relays and the 12 igniter status LEDs.

Figure 13-3. Refined launcher block diagram

516 | Chapter 13: Model Rocket Launcher: A Design Study

Build or Buy
At some point with moderately complex projects trade-off decisions may need to be
made regarding buying a ready-made hardware module versus designing and build‐
ing something tailored to the specific requirements of the design. This decision can
be difficult, and it involves more than just cost.

A commercial off-the-shelf (COTS) component or module may or may not have all
the features you need for your design. It might have the correct functions, but the
wrong connectors, or even vice versa. It might be the wrong size, or maybe just a bit
off in one dimension or another. It might even require a supply voltage that’s different
from all the other components in the design, which could require some additional
circuitry to accommodate it.

So, does it make sense to adapt the design to the COTS part, or would it be better to
build a custom part that has exactly what you need? If the required change to the
module is minimal, then it’s probably smart to simply adapt it rather than spend the
time and money on a custom design. However, if the issue is a showstopper, like
physical dimensions or unneeded functions that will create conflicts, then it may
make more sense to build something from a clean-sheet design and keep it consistent
with the rest of the components.

If you’re not sure, the decision usually comes down to weighing the cost and time
required to use the COTS component versus the cost and time to build a custom
item. If it’s a close call, then one other criterion can be used to cast the deciding vote:
how much control do you really need over the production and internal functions of
the component in question? If you are building a commercial product and there’s a
possibility that the COTS module you want to use will be discontinued while your
product is still in production, then you might want to consider building it yourself.
Likewise, if you need visibility into the inner workings of the COTS component but
it’s a “black box” to you, then you might want to consider creating your own version
of it.

Design Feasibility
So just how realistic is the design we’ve come up with? It is sufficient? Yes, undoubt‐
edly. Is it overkill? Perhaps. Now is the time to step back and review the preliminary
design with a critical eye and a willingness to cut out unnecessary or frivolous fea‐
tures without remorse or regret.

Creating the Preliminary Design | 517

Bells and Whistles
In engineering the term “bells and whistles” is often used to describe features that
don’t really contribute to the functionality of a system, but just add some razzle-
dazzle to the final product. Things like a color TFT display on a coffee maker. Does it
really help the device make better coffee? No, of course not. Does it look cool and
high-tech in your kitchen? Yes, and that’s why it’s there, and that’s why you might be
willing to pay extra for that bit of flashiness.

Consider this: modern automobiles are rolling palaces of bells and whistles. All that’s
really needed for a car is four wheels, an engine, some seats, and a body with windows
to keep the rain, wind, and dust at bay. No one really needs a 10-speaker sound sys‐
tem, hands-free cell phone, navigation system, and multiposition electric seats just to
drive to work or make a run to the grocery store, right? A basic car without all the
gadgets and gizmos might be ugly as sin, but it will still get you to where you want or
need to be. Better yet, that plain, ugly car will probably still be running while the
fancy ride with all the bells and whistles is spending its time at the dealership in the
repair department.

The upshot is that not only are simpler things less expensive, but they tend to be more
reliable—there are fewer things to fail. So, when reviewing the feasibility of a design it
is important to pay attention to more than just the technical feasibility. Also look out
for the bells and whistles that don’t really contribute to the operation of the device,
but may end up contributing to early failures.

Feasibility is a relative assesement. In other words, feasible in relation to what? Some
things that might not be feasible for someone working on the kitchen table could be
perfectly feasible for another person with access to a complete shop. Budget limita‐
tions are another important concern, as are level of effort limitations. One person
with a small budget and limited time cannot hope to achieve what someone else with
a generous amount of money to spend and lots of time can do. Since I’m just one per‐
son, and I don’t have lots of spare time and have only a limited amount of funds at my
disposal, I have to be prudent about how much I can take on and how quickly I can
expect to accomplish it. I’m sure I’m not alone in that regard.

I like to use the following five criteria when evaluating the feasibility of a design and
its features:

• Does the feature or design make sense functionally?
• Does it make sense cost-wise?
• Is there any component that might be hard to get?
• Are there any unsafe aspects to the feature or the design?

518 | Chapter 13: Model Rocket Launcher: A Design Study

• Can it be assembled, programmed, and tested by one person in a reasonable
period of time?

If the answer to any of these questions is no, or even a maybe, then the component or
design feature in question should be considered for removal.

The design of the rocket launcher, as represented by Figure 13-3, would indeed be a
wondrous thing, but I don’t think it’s something I could expect to finish in a reason‐
able period of time. The better approach might be to keep it simple (as simple as pos‐
sible, anyway) and create a design that can be expanded in the future.

Because of the way the objectives for the launcher were organized, trimming back the
design is actually rather easy. The level 3 functional requirements define things that
will be both time- and money-intensive. They also don’t contribute anything critical
to the core function of the launcher, which is of course launching model rockets. I am
going to designate all the level 3 functional requirements as optional future add-on
features for future implementation.

Let’s call the basic launcher, which is comprised of the level 1 and level 2 functional
requirements, the Phase I version. We can refer to the extended design as the Phase II
version. While we’re thinking about the Phase I design we can also be looking at ways
to further simplify the design without sacrificing any of the required functionality.

For example, in Figure 13-3 there is an I/O expander. What is this? It could be some‐
thing like a Centipede I/O expander shield, described in Chapter 8. The Centipede
has 64 digital I/O lines, so one of these could easily handle the igniter status LEDs, the
4 system status LEDs, and the 2 rotary switches. We can further simplify the wiring
by using SPI and I2C as much as possible. The RTC, 16 × 2 LCD, and I/O expander
are all available with I2C interfaces, and 7-segment display modules for the count and
time display are available with SPI interfaces. The revised block diagram for Phase I is
shown Figure 13-4.

I elected to leave the launch control relays connected to discrete digital I/O pins on
the Mega2560 rather than route them through the I/O expander. This is so that there
is nothing between the launch relays and the Arduino controlling them. It probably
won’t make that much difference, but it does take a potential fault source out of the
primary control path in the launcher. The same reasoning is why the count start, sys‐
tem arm, and range safety switches are connected directly to the Arduino. Also, by
connecting the switches directly we can take advantage of the AVR MCU’s pin change
interrupt capability, should we want to do so.

The diagram in Figure 13-4 is what we will use going forward. At some point in the
future it might be feasible to try for Phase II, but not at this time. It will still be there
waiting, when it is time to make it happen.

Creating the Preliminary Design | 519

Figure 13-4. Phase I launch block diagram

Preliminary Parts List
With a preliminary design in hand for the Phase I version we have enough informa‐
tion to assemble a preliminary parts list. By going through the functional require‐
ments and counting the number of times various types of controls and functions are
mentioned, we can get a start on the quantities that will be needed.

The preliminary parts list doesn’t include things like prototype PCBs for patching the
wiring and mounting small terminal blocks (like the ones shown in Chapter 11).
These requirements can be discovered and documented when it comes time to con‐
nect it all into a working unit, either as a prototype or the final version.

520 | Chapter 13: Model Rocket Launcher: A Design Study

Table 13-4. Preliminary launcher parts list

Quantity Description Quantity Description
1 Arduino Mega2560 1 2-digit 7-segment LED display

1 Mega screw terminal shield 1 4-digit 7-segment LED time display

1 LCD display shield 1 Keyed switch

1 Real-time clock module 1 Large pushbutton switch

2 Quad relay modules 1 Sloped-top metal console

Prototype
As discussed earlier, a prototype serves several valuable functions. First off, it allows
you to work with the design and its member components in a flexible and easily
modifiable form. If a module or sensor doesn’t work out the way you thought it
would, then it’s a lot easier to change it in the prototype than it would be by drilling
more holes in a metal chassis. Second, for designs that involve a custom PCB (or two
or three), there will be a lead time between when the PCB design is sent off and when
the finished boards arrive and assembly can start. If you’re making a prototype, this
time can be put to good use working on the software or the documentation, or both.
Finally, in some cases you may have most of what you need for a prototype already on
hand, and getting it to the point where it can serve as a stand-in for the final product
is relatively simple. Figure 13-5 shows a simple prototype fixture for an Arduino
Mega2560 built from some angle-cut sections of pine board.

Prototypes can definitely save time and hassle, but as was also mentioned earlier,
sometimes you can skip over this step. In the case of the model rocket launch control‐
ler, we have a design that is not overly complex physically, there are no custom PCBs
involved, and all the components are well-understood COTS parts.

You could definitely build a prototype if you wanted to do so. If you plan to incorpo‐
rate the optional objectives, then a prototype would probably be a good idea. You
could mount all the parts on a large board and make sure that everything works as
expected before committing it to a metal enclosure. A cutting board from the kitchen
would probably be about the right size. This, by the way, is where the term “bread‐
board” arose, in case you’ve ever wondered about that. Mounting Arduino boards,
terminal blocks, and other assorted things to a board is part of a long tradition going
back to the early days of radio at the start of the 20th century. Radio experimenters
would literally use a breadboard, like those found in kitchens, as a base for terminal
posts, tube sockets, and other components. Sometimes a schematic would be pasted
to the board to give the builder something to follow. Many of the early radios were
built mostly of wood, and the base for the components in the production radio wasn’t
much different from the breadboard that had been used to prototype and test the
radio initially.

Prototype | 521

Figure 13-5. Mega2560 prototype fixture

But while the breadboard may have a storied legacy, for this design study I will
assume that we will go directly to the final unit (for examples of prototypes, see the
previous three chapters). For the launcher we have a good set of Phase I functional
requirements and we know what primary components will be needed, so let’s move
on to the final hardware and software design.

Final Design
The final design is where the functional requirements are applied, along with what
was learned from the prototype (if one was created), to come up with a design that
describes what the finished device will look like and how it will function. Ideally it
should behave the same as the prototype, and the software should be the same, or
very nearly so.

Electrical
The schematic shown in Figure 13-6 covers all of the circuitry for the launcher except
the igniter continuity check circuit, which is shown in Figure 13-7. Notice that the
RTC, the LCD display, and the I/O expander shield all use the I2C interface. The two
7-segment displays use the SPI interface. Only the relays use discrete digital outputs.

A typical igniter for model rockets requires around 0.5A or greater for ignition. A cir‐
cuit like the one shown in Figure 13-7 can be used to determine if the igniter circuit is
open or closed by measuring the voltage at the point labeled “sense.” The main con‐
cern is sensing the open or closed state of the igniter without applying enough cur‐
rent to cause it to ignite. With this circuit only about 2 mA is flowing through the
igniter, and the 4.9V Zener diode will prevent the full launch voltage from getting
back into the Arduino’s analog inputs.

522 | Chapter 13: Model Rocket Launcher: A Design Study

Figure 13-6. Phase I final schematic

Final Design | 523

Figure 13-7. Igniter continuity check circuits

Other igniter continuity check circuits have been devised, some
more complex than others (there seems to be a minor cottage
industry involved in creating launch controllers and continuity test
circuits for model rockets). If you want to learn more, one source is
J. R. Brohm’s detailed study of igniter continuity test techniques.

In the schematic shown in Figure 13-6, six continuity circuits would be connected to
the six analog inputs of the Mega2560 labeled “Igniter Continuity Sense.” For this I
would suggest that the six identical circuits be built using a piece of prototype board
and some 0.1 inch (2.54 mm) terminal blocks, similar to what was done for input
protection in Chapter 11.

Binding posts, like the types used for connecting speakers to high-end stereo receiv‐
ers, can be used to connect the igniters to the launch controller. I would also suggest
using binding posts to connect an external battery. If you want to have batteries in the
launch controller enclosure, then an additional pair of binding posts can be used to
connect the internal batteries to the igniter circuits. The will allow you to choose
which power source will be used, depending on the number of igniter circuits that
will be active. Connecting the igniter continuity sense circuits to the igniter binding
posts is shown in Figure 13-8.

524 | Chapter 13: Model Rocket Launcher: A Design Study

http://bit.ly/brohm-igniter

Figure 13-8. Connecting the igniter sense circuit board

The idea behind the 12 LEDs connected to the I/O expander and labeled “Igniter
Continuity Indicators” and “Igniter Select Indicators” in Figure 13-6 is to show how
many igniter circuits are active and what state they are in at any given time. This is
determined by the six-position rotary switch S6, with the settings of 1, 2, 3, 4, 5, and
6. The corresponding continuity LEDs will glow to indicate that the selected igniters
are connected and ready. After launch the continuity LEDs should be dark, and only
the active selection LEDs will remain lit.

Figure 13-9 shows a different view of the wiring with an emphasis on the igniter out‐
puts, the perfboard modules for LED and switch pull-up circuits, and the DC power
routing for the various modules. Note that the individual signal lines for the I2C, SPI,
and DIO and AIN functions are not shown. Instead, bus notation consisting of a
slash with a number is used to indicate how many discrete signals are involved. Also
not shown in the schematics are things like terminal blocks for DC power and
ground.

A point of interest in Figure 13-9 is the use of one of the relays on the second relay
module as an ignition safety interlock. Unless this relay is energized the igniters can‐
not be powered. Also note that there are four perfboard modules used to hold the
igniter continuity sense circuits and pull-up resistors for various LEDs and switches.
The use of 0.1 inch (2.54 mm) pitch terminal blocks makes wiring these into the sys‐
tem much easier than soldering, and they can be removed and replaced if necessary
in the future.

Final Design | 525

Fi
gu

re
 1

3-
9.

 C
ha

ssi
s w

iri
ng

 d
ia

gr
am

526 | Chapter 13: Model Rocket Launcher: A Design Study

With schematics in hand we can now create a detailed parts list like the one in
Table 13-5.

Table 13-5. Final launcher parts list

Quantity Description Quantity Description
1 Arduino Mega2560 1 Large pushbutton switch

1 Mega screw terminal shield 8 Binding posts, red

1 LCD display shield 8 Binding posts, black

1 Real-time clock module 1 3.5 mm jack (single-circuit)

2 Quad relay modules 1 Battery holder, six D cells

1 2-digit 7-segment LED display 1 Sloped-top metal console

1 4-digit 7-segment LED time display 1 Keyed switch

Physical
I would recommend that the launcher be built into a sloped metal chassis. Although
it appears that this particular enclosure is no longer available, something like the one
shown in the drawing in Figure 13-10 would do nicely. This is a drawing of an old
chassis that has been lying around my workshop not doing much, and I stripped out
the electronics that used to be inside long ago. The chassis is a two-piece design that
is 14 inches (35.6 cm) wide, 10 inches (25.4 cm) deep, and 1.5 inches (3.8 cm) at the
front and 2.75 inches (7 cm) at the rear. It also has a 3.5 inch (8.9 cm) flat “shelf ”
along the top at the rear of the cover. It is currently too ugly to photograph, so a
drawing will have to suffice.

This isn’t the final word on a chassis, by any means; it’s just something that I hap‐
pened to have on hand. You may have something equally suitable, or access to a sur‐
plus electronics outlet. If it comes down to it, a nice chassis similar to this can be
purchased from multiple distributors. You can expect to pay between $30 and $50 for
a new sloped-front chassis.

After deciding on the enclosure, the next step is to lay out the front panel and decide
where the boards and connectors will be located. With a chassis like the one shown in
Figure 13-10, I recommend mounting as much as possible to the inside of the top
panel. The main reason is to avoid running wires between boards and controls on the
top panel. Since the rear of the chassis is just a continuation of the top panel, you
won’t have to worry about disconnecting things if you need to remove the top panel
piece to get at something inside.

Figure 13-11 shows a layout for the panel. This is just one way of doing it, and you
might want a different arrangement. The I/O expansion shield has lots of I/O points
(64 total), so there is plenty of room to grow.

Final Design | 527

Figure 13-10. Candidate chassis for the launcher

Figure 13-11. Launcher control panel layout example

Again, I recommend mounting all of the components to the inside of the cover piece,
except perhaps any batteries. This makes it easy to assemble and test the launcher

528 | Chapter 13: Model Rocket Launcher: A Design Study

without also dragging along the base piece and a requisite bundle of wires to connect
top and bottom components. The downside is that you will end up with screw heads
on the front panel, but you can always paint over them or use flat-head screws (if the
panel metal is thick enough).

If I were to actually build this (and I might, since I’ve already put this much work into
it), I would mount the Mega2560 and the I/O shield under the flat section of the top
of the chassis. This is a 3.5-inch-wide (8.9 cm) space that is more than wide enough
to accommodate an Arduino (or two) without interfering with the controls and dis‐
plays on the front panel.

One way to get everything arranged where you want it is to create a mockup using
footprint models for the various boards and modules made from cardboard or foam-
core material and some adhesive labels. Cut out shapes with the same dimensions as
the actual parts, and some round adhesive stickers will work as stand-ins for switches
and LEDs. Then arrange the mockup models on a piece of paper with a rectangular
outline of the panel to get an optimal arrangement. I would do this as if I had X-ray
vision and I was looking through the panel. That way I don’t have to flip things over
mentally to visualize where the LED and LCD displays will go, or where the LEDs and
switches will be located. You can take measurements directly from your mockup and
create a fabrication drawing like the one shown in Chapter 11. (Of course, if you hap‐
pen to be adept with a CAD tool then you can just go straight to the fabrication draw‐
ing and skip the mockup step.)

You might also want to consider bringing out the USB connector on the Mega2560 to
a panel-mounted B-type connector on the rear panel. This can be used to update the
software, capture operational data during launch, or even provide a real-time display
that can be sent back to a classroom for everyone to watch.

Software
For a design study like this, the software is largely just some suggestions and a few
block diagrams. The main intent is to determine the overall level of effort in relation
to the number of functions supported by the software. If it’s designed and imple‐
mented in accordance with the functional requirements, then we should be able to
map the software functionality directly to the requirements. Furthermore, we
shouldn’t have functionality that isn’t defined in the requirements. In industry, and
the aerospace industry in particular, that’s considered is a bad thing, because software
functionality without a driving requirement is functionality that won’t be tested com‐
pletely, if at all. Untested software is a risk.

Since this is a typical Arduino-type design, the setup() and loop() functions will be
there in a main module. We will also need to have a selection of global variables to
hold various state and time data. The loop() function will need to perform a series of
continuous operations such as monitoring the system arm and launch start switches,

Final Design | 529

turn on or turn off LEDs as necessary, and manage the countdown while monitoring
the range safety switch during the count. Figure 13-12 shows the actions encom‐
passed by the main loop.

At reference 1 in the diagram the loop starts by reading the rotary switches (igniter
select and count time select). If the count time has changed since the last time the
switch was read and the count is active (i.e., a launch is in progress), then the
launcher will stop the count, disarm the system, and enter an abort state.

At reference 2 the software looks at the arm switch. If the switch was off in the previ‐
ous iteration of the loop but is now on, then the system arm flag is set and the master
launch power relay (see Figure 13-9) is energized. If the system arm flag is true, then
we check to see if a count is in progress. If it is, then we don’t read the launch start
switch (reference 3); otherwise, we see if the user has pressed the launch button. If so,
then we set the launch state to true (on) and start the count.

The righthand side of Figure 13-12 is only active if the system is in the launch state
and a count is in progress. At reference 4 a check is made to verify that the range
safety switch is depressed (on). If not, then we abort the system and place it into a
safe state.

Reference 5 is where the real action occurs. When the count reaches zero the launch
relays corresponding to the select ignition circuits are energized. The relays are held
in an on state for 2 seconds, and then released. This is likely not the optimal way to
do this. It would be better to look at the igniter status and de-energize the relays once
all the igniters are open. The time delay would be a maximum permissible time
before declaring a fault.

At reference 6, either the launch has been a success or the rocket is still (hopefully)
sitting on the pad. In any case, the system is restored to a standby state, the relays are
powered off, and the master power relay is de-energized. I would also suggest disarm‐
ing the system, so that the user must set the arm switch to off and then back to on to
rearm the launcher.

Reading switch inputs, setting LED states, reading the RTC, and controlling the relays
can take place very rapidly. It doesn’t look like interrupts will be necessary for this
design. That being said, you might want to consider an interrupt for the range safety
switch. This is why it was connected directly to the Mega2560 instead of through the
I/O expander.

The range safety switch can be used to trigger an interrupt that will disengage the
igniter power relay (relay 3, relay module 2) the instant that the switch is released. So
even if the MCU takes a few tens of milliseconds to read the state of the switch and
respond by putting the system into an abort state, the power will have already been
cut to the rocket motor igniters.

530 | Chapter 13: Model Rocket Launcher: A Design Study

Figure 13-12. Main loop operations

Final Design | 531

The LCD can be used to display messages during the loop. It would be good to see the
current state and get messages if a fault should occur. It would not be particularly use‐
ful to repeat the time or the count with the LCD. That would just add latency (i.e.,
execution delay) to the main loop.

When writing the software, the primary guide is the functional requirements. These
are the things the software must support in order to meet the requirements, and con‐
sequently fulfill the objectives for the project. For examples of ways to arrange the
software into modules, refer to Chapters Chapters 10, 11, and 12.

From Figure 13-12 we can see that there are multiple possibilities for additional mod‐
ules. The igniter status read and update is one, as is the RTC and the time display
update. The launch section of the loop (everything between reference 4 and reference
6) is another possible candidate for its own module. The RTC module, the LCD, the
LED displays, and the I/O expander will most likely have classes defined, but there
may not be much need to use classes for the main loop functions. They aren’t that
complex, really.

Since this is a design analysis, not a full-on design, I will leave the software here. If
you want to pursue this and create your own rocket launcher, then I would suggest
that you look at the examples provided in the previous three chapters. With this
design analysis as a starting point, you should not have too much difficulty working
out the remaining details.

We can’t really define a time estimate because there’s no way to know who will be
writing the software. Different people work at different rates; what might take one
person an hour or so to code up could take another person half a day. So, to get some
idea of how much effort the software may require, I recommend that you try writing
some test code with a breadboard or undedicated prototype fixture (as seen in earlier
chapters) to do something with the RTC or the LCD. Once you have a general idea of
how long this takes, then you can multiply that by the number of unique functions in
the software design, and then multiply that number by two. That might end up being
close to how long it will really take, and if the software gets done before that, then all
the better.

Testing and Operation
A test plan is always a good idea. Fortunately the launcher is relatively easy to test, as
it is basically just switch inputs and relay outputs. You can simulate igniter continuity
by simply connecting a jumper between the pairs of igniter output binding posts, and
an open circuit is just the lack of a jumper.

If you look over the functional requirements you can see that they are all verifiable. In
other words, if you rotate the igniter circuit select knob you should see the active
LEDs light up in succession from 1 to 6. If the binding posts are connected to simu‐

532 | Chapter 13: Model Rocket Launcher: A Design Study

late igniters, the “ICC GO” light should also be active. Arm the system and then press
and hold the range safety switch, and you should see the “Safety GO” light come on.
If you start the count and then disconnect any of the active igniters, change the num‐
ber of igniter circuits or the count time in mid-count, or release the range safety
switch, the system should halt the count and go into an abort state.

Be careful not to let the count reach zero if you are using jumpers on the binding
posts to simulate igniters. When the relays close, full current from the battery will
flow through the jumpers. This could melt the jumper wires or damage the relays, or
both. A better testing approach would be to use replaceable fuses or even actual ignit‐
ers mounted on a wood base. You might also be able to use small incandescent bulbs
with a correct voltage rating, provided that they have a sufficiently low cold (unlit)
resistance. A typical igniter is about 0.5 ohms.

Cost Analysis
The final cost of the launcher depends on where you get the parts, and if you can find
bargains. A major cost item is the chassis, which can run upwards of $30. You could
elect to build a console from 1 by 1 inch (2.5 by 2.5 cm) hardwood and 1/4 inch (0.6
cm) fiberboard, but that is assuming that you have the necessary woodworking tools.
After purchasing the materials and adding in your time, you may find that it’s more
cost-effective to just buy the chassis.

Based on the final parts list in Table 13-5, the total cost for the Phase I version will
likely be somewhere around $125, give or take $25. The Phase II features could easily
drive the cost up to well over $300, but you could likely hold this down by doing
some smart shopping and bargain hunting.

Cost Analysis | 533

APPENDIX A

Tools and Accessories

For many Arduino projects you don’t need any tools, just some jumper wires, shield
and sensor PCBs, and of course an Arduino. But after graduating to more advanced
projects you will find that a selection of basic tools and accessories becomes essential.
A set of hand tools, a soldering iron, and a few other items are usually sufficient for
all but the most complex projects. If I may be so bold, I would recommend my book
Practical Electronics: Components and Techniques (O’Reilly) as a reference for things
like screw and bolt sizes, electronic components, and PCB fabrication.

In this chapter I will describe the basic tools you might want to consider having on
hand for your own projects. Everything presented here can easily fit into a medium-
sized toolbox when it’s not needed.

Hand Tools
A good selection of hand tools is essential. With patience and some effort you can
accomplish just about any task with good hand tools. Before the introduction of elec‐
tricity, hand tools were really the only way for most people to build anything, and
they built a lot of amazing things. So can you, as long as you are willing to take the
time to do it correctly. We won’t look at techniques here, as there are other books that
cover that, but I will describe some tools you might want to consider, and where to
find them.

Screwdrivers
For most projects involving an Arduino all you need in the way of screwdrivers is a
good set of the miniature types or a combination kit, such as the one shown in
Figure A-1, and a set of larger screwdrivers. You can find various sets of miniature

535

http://bit.ly/practical-electronics

screwdrivers at most well-stocked hardware stores, some big-box home improvement
stores, and just about any electronics store that specializes in components and tools.

Figure A-1. A set of miniature screwdrivers

Full-size screwdrivers, like those shown in Figure A-2, can be found in numerous
places, including the home repair aisle of a large grocery store. Avoid the very large
tools, and look for a kit that has smaller tip sizes. You will need those, but the large
tools not so much (unless you also need to do residential power wiring or work on an
automobile).

Figure A-2. A set of standard full-size screwdrivers

Pliers and Cutters
Needle-nosed pliers, diagonal cutters, and a pair of good flush cutters are essential.
You might also want to consider a pair of standard pliers and perhaps even lineman’s
pliers, but these aren’t absolutely necessary. Figure A-3 shows a selection of basic pli‐

536 | Appendix A: Tools and Accessories

ers and cutters that can be purchased as a set. You can also pick and choose from
individual tools to suit your needs.

Figure A-3. A set of basic pliers and cutters

Resist the temptation to try to use the wire cutters that come with the bundled selec‐
tions from some hardware and home improvement stores for doing PCB-level elec‐
tronics work. Flush cutters are made specifically for trimming component leads and
cutting small-gauge wire, and they do a fine job of it. Figure A-4 shows a typical flush
cutter tool.

Figure A-4. Typical flush cutters for electronics work

Wire Strippers
Another essential tool is a wire stripper. Although you may be tempted to use a pair
of cutters to do this, it’s generally not a good idea. It’s very easy to cut one or more of
the fine wires that make up a strand, and a nick on a solid conductor is where it will
usually break if it is flexed. I keep two types on hand, and which one I pick up
depends largely on how many wires I need to strip and which tool happens to be the
easiest to reach.

Tools and Accessories | 537

The simplest wire stripper consists of a pair of blades with an adjustable stop, like the
tool shown in Figure A-5. The downside to this tool is that you have to adjust the stop
each time you use a different gauge of wire. But if you always use the same wire, then
it’s really not a problem (I use #24 gauge insulated twisted strand wire for almost
everything, so I seldom need to adjust my tool).

Figure A-5. Basic wire strippers

My favorite wire strippers are sold by Klein, and they not only handle different wire
gauges but also pull off the cut insulation, all in one motion. Figure A-6 shows an
example of this type of tool. These are surprisingly affordable, and you can purchase
an additional cutter blade for even more wire gauges. The downside is that they are
big and somewhat bulky, so they won’t fit into tight spaces.

Figure A-6. Fancy wire strippers

538 | Appendix A: Tools and Accessories

Connector Crimping Tools
One of the main annoyances encountered when working with Arduino boards,
shields, and the various available modules is connecting everything. Jumper wires
with pins and sockets are fine for assembling something on the bench (or kitchen
table) to see how it works, but this can present some long-term reliability issues. A
better approach is to use an I/O extension shield (like those described in Chapter 9)
that provides multiconductor connectors. Figure A-7 shows such a shield with cables
attached.

Figure A-7. I/O extension shield with connectors attached

The metallic connectors attach to wires by crimping, and that means you will need a
special tool (and the correct connector bodies and inserts). Fortunately the price of
these tools has dropped dramatically over the past few years. You can now buy a tool
for about $30 that does the same basic job as a tool that used to cost $200. Figure A-8
shows a selection of crimping tools.

Once the contacts (either pins or sockets) have been crimped onto the wires, the next
step is to insert them into a connector housing, also called a shell or a body. These are
available in 0.1 inch (2.54 mm) pitch (spacing), which is a de facto industry standard
and is what is commonly found on Arduino components. Figure A-9 shows 1-, 2-, 3-,
and 4-position connector housings. The pin or socket connectors lock into the plastic
housings and can be easily removed by gently lifting a small locking tab using a mini‐
ature screwdriver.

Some Arduino shields and modules use connectors similar to those found on the
ends of telephone or network cables. These can be assembled with tools available at
most big-box home improvement stores, electronics distributors, and of course from
online suppliers. Figure A-10 shows a shield that uses these types of connectors.

Tools and Accessories | 539

Figure A-8. Various types of low-cost crimping tools

Figure A-9. 0.1 inch (2.54 mm) connector housings

Lastly, there are the so-called lug connectors used in electrical systems and vehicles,
like the part shown in Figure A-11. These are readily available, but not very com‐
monly used with Arduino projects (although they are used in the signal generator in
Chapter 11). The connectors come in a variety of styles and types, and the crimping
tools are available from many different sources.

Figure A-12 shows one type of tool used with lug connectors. Do not attempt to use
this type of crimping tool with the small connectors used for the pins and sockets on
a PCB like an Arduino—the end result will just be a smashed and useless connector.

540 | Appendix A: Tools and Accessories

Figure A-10. I/O extension shield with RJ45 (8P8C) connectors

Figure A-11. A spade lug-type connector

Figure A-12. A common spade lug crimping tool

Crimped connectors are easy to install, reliable (if done correctly—it can take some
practice), and cheap. The downside is the initial investment in the tools. If you are

Tools and Accessories | 541

willing to make that investment, then your soldering iron will spend most of its time
in your toolbox and your projects will have a polished and professional look.

Saws
A couple of types of small saws are handy to have on hand when you need to trim a
circuit board, cut out a small section of a plastic enclosure, or cut a section of plastic
tubing. Nothing else can do those things as quickly and easily as a saw.

A jeweler’s saw like the one shown in Figure A-13 is useful for doing very fine preci‐
sion cuts, but it’s not very good at cutting large items. The trick to using a jeweler’s
saw is to let the saw do the work without forcing it into the cut (this can generally be
said of any saw, by the way). The thin blades won’t take much in the way of stress, but
they will cut through almost anything with enough care and patience.

Figure A-13. Jeweler’s saw

For larger jobs, particularly those involving metal, a hacksaw is the way to go. A typi‐
cal generic hacksaw is shown in Figure A-14. Newer models may have a more stream‐
lined look, but the basic idea is the same. You can also buy hacksaws that are little
more than a blade with a handle at one end.

Figure A-14. Common hacksaw design

542 | Appendix A: Tools and Accessories

When using a hacksaw remember that the saw will only cut in one direction, either
push or pull. It depends on how the blade is installed. I prefer to mount the blade so
that the saw cuts when pulled, but some people like to do it the other way.

Power Tools
For many tasks some good hand tools will get the job done and, if used correctly, do it
nicely as well. But other tasks might need more power than a hand tool can deliver
without causing muscle cramps. Drilling and grinding are two examples.

Drills
An electric hand drill is great for many things. Drilling precise holes is generally not
one of those things, but when you need just one 1/8 inch hole in a panel, and it
doesn’t have to be super-precise, then a hand drill is very useful. I recommend a cord‐
less drill, like the one shown in Figure A-15, if for no other reason than that it is less
of a hassle without a power cord. Although a battery-operated cordless drill might
not have the same amount of torque as a drill that plugs into a wall outlet, most small
projects involve plastic, thin wood or wood-like materials, and thin metal, and a
cordless drill will work just fine.

Figure A-15. Cordless drill with interchangeable battery pack

Miniature Grinder
Although a grinder isn’t actually an essential tool, it is a very useful and handy tool to
have around. A miniature grinder, like the one shown in Figure A-16, can be used to
sharpen screwdrivers, take the rough edges and burrs off of the end of a metal rod
after it is cut, clean up the edges of plastic pieces, and even trim up a PCB.

Tools and Accessories | 543

Figure A-16. Miniature grinder

This particular grinder is from Harbor Freight, and it includes a rotary tool attach‐
ment. It might not do everything a standalone rotary tool will do, but it does come in
handy for lightweight jobs.

Miniature Drill Press
If you need some precisely sized holes, in precise locations, then you really need a
drill press. Although a full-sized drill press can be used for jobs like this, they tend to
be large things that don’t easily tuck away into a closet when you don’t need them.
The solution is a miniature drill press like the one shown in Figure A-17.

In addition to drilling holes for switches and LEDs in a small plastic enclosure, you
can also drill holes in a PCB. Accessories such as a miniature vise are available to hold
the work steady while drilling.

Figure A-17. Miniature drill press

544 | Appendix A: Tools and Accessories

Soldering
If any one activity could be said to characterize electronics, it would have to be sol‐
dering. Soldering is not really necessary if you are using ready-made PCBs and mod‐
ules with an Arduino, but if you want to integrate an Arduino into a larger system,
then soldering may be required. And if you happen to purchase a shield with a packet
of pin and socket connectors and empty holes on the PCB, then soldering is no
longer optional.

Soldering Irons
Soldering irons come in a range of prices, from ultra-low-cost tools with no tempera‐
ture control and tips of dubious quality, to soldering stations with interchangeable
tips and integrated temperature control costing hundreds of dollars. Avoid the cheap
tools, as they can do some serious damage to a circuit board and the components sol‐
dered onto it. Spend as much as you can afford, but at least consider something like
the iron shown in Figure A-18, which sells for about $15.

Figure A-18. Inexpensive soldering iron

If you can afford it, consider a soldering station like the one shown in Figure A-19.
These tools range in price from about $50 to somewhere around $300. A good solder‐
ing station is a good investment, but you really need to have some serious soldering
work to do in order to justify a pricey model.

Soldering Accessories
A soldering iron or soldering station is nice to have, but without some basic accesso‐
ries it won’t be very useful. At a minimum you’ll need some solder. Don’t buy solder
for electronics at the local hardware store unless it specifically states that it is for elec‐
tronics work. A good electronics-grade solder will have a flux core (usually rosin),
and most are on the thin side. I like to purchase solder in one-pound (454 g) spools,
like the one shown in Figure A-20.

Tools and Accessories | 545

Figure A-19. Soldering station

Figure A-20. Spool of rosin-core solder

Other useful accessories include solder wick (copper braid for removing solder), liq‐
uid or paste flux, and solder paste. You can learn more about the tools and accesso‐
ries, and find soldering tutorials, in numerous texts and in online videos.

546 | Appendix A: Tools and Accessories

Tool Sources
Table A-1 lists some sources for the tools covered in this appendix. This is a very
short list, as there are a large number of suppliers selling tools of all kinds.

Table A-1. Tool suppliers

Distributor/vendor URL Distributor/vendor URL
Adafruit www.adafruit.com Maker Shed www.makershed.com

Apex Tool Group www.apexhandtools.com MCM Electronics www.mcmelectronics.com

CKB Products www.ckbproducts.com SainSmart www.sainsmart.com

Circuit Specialists www.circuitspecialists.com SparkFun www.sparkfun.com

Electronic Goldmine www.goldmine-elec-products.com Stanley www.stanleysupplyservices.com

Harbor Freight Tools www.harborfreight.com Velleman www.vellemanusa.com

Don’t overlook your local used tool shop. Many cities have one or more shops that
specialize in used tools, with selections that include everything from buckets full of
used screwdrivers to used machine shop tools like vertical mills. Other places to look
include organizations that accept donations, such as Goodwill (here in the US). They
may not have much of a selection when it comes to tools, but if you have a moment to
spare they can sometimes yield up some amazingly good deals.

Tools and Accessories | 547

http://www.adafruit.com
http://www.makershed.com
http://www.apexhandtools.com
http://www.mcmelectronics.com
http://www.ckbproducts.com
http://www.sainsmart.com
http://www.circuitspecialists.com
http://www.sparkfun.com
http://www.goldmine-elec-products.com
http://www.stanleysupplyservices.com
http://www.harborfreight.com
http://www.vellemanusa.com

APPENDIX B

AVR ATmega Control Registers

The register summaries in this appendix are intended as a quick reference. This
appendix is not a comprehensive description of each control register. For detailed
descriptions of each control register for a particular MCU type, see the Atmel docu‐
mentation. Pay special attention to the notes included with the control register sum‐
maries in the Atmel documents. Each MCU has a slightly different set of things to
watch out for.

In general, reserved bits (marked with a “–”) should not be accessed. Registers in the
range of 0x00 to 0x1F are directly bit-accessible with the SBI and CBI instructions
(set I/O bit and clear I/O bit, respectively). Register addresses in parentheses are the
SRAM addresses of the control registers, whereas the addresses not in parentheses
reside in the 64-byte address space reserved for I/O control registers. The reserved
locations can be used with the IN and OUT instructions, and the SRAM addresses
must be accessed with the ST/STS/STD and LD/LDS/LDD instructions.

The information in this appendix was derived from the following Atmel technical
documents, all of which are available from Atmel.com:

Document number Title
Atmel-8271I-AVR- ATmega-Datasheet_10/2014 Atmel ATmega48A/PA/88A/PA/168A/PA/328/P

2549Q–AVR–02/2014 Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V

7766F–AVR–11/10 Atmel ATmega16U4/ATmega32U4

549

http://www.atmel.com

ATmega168/328
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

550 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O Data Register

(0xC5) UBRR0H USART Baud Rate Register High

(0xC4) UBRR0L USART Baud Rate Register Low

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01/
UDORD0

UCSZ00/
UCPHA0

UCPOL0

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 –

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

AVR ATmega Control Registers | 551

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xB7) Reserved – – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B

(0xB3) OCR2A Timer/Counter2 Output Compare Register A

(0xB2) TCNT2 Timer/Counter2 (8-bit)

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

552 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1: Output Compare Register B High Byte

(0x8A) OCR1BL Timer/Counter1: Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counter1: Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counter1: Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counter1: Input Capture Register High Byte

(0x86) ICR1L Timer/Counter1: Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counter1: Counter Register High Byte

(0x84) TCNT1L Timer/Counter1: Counter Register Low Byte

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – –

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10

(0x7F) DIDR1 – – – – – – AIN1D AIN0D

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D

(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

(0x79) ADCH ADC Data Register High Byte

(0x78) ADCL ADC Data Register Low Byte

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0

AVR ATmega Control Registers | 553

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0

0x3F
(0x5F)

SREG I T H S V N Z C

0x3E
(0x5E)

SPH – – – – – (SP10) SP9 SP8

0x3D
(0x5D)

SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0x3C
(0x5C)

Reserved – – – – – – – –

0x3B
(0x5B)

Reserved – – – – – – – –

0x3A
(0x5A)

Reserved – – – – – – – –

0x39
(0x59)

Reserved – – – – – – – –

0x38
(0x58)

Reserved – – – – – – – –

0x37
(0x57)

SPMCSR SPMIE (RWWSB) – (RWWSRE)BLBSET PGWRT PGERS SELFPRGEN

0x36
(0x56)

Reserved – – – – – – – –

0x35
(0x55)

MCUCR – BODS BODSE PUD – – IVSEL IVCE

0x34
(0x54)

MCUSR – – – – WDRF BORF EXTRF PORF

0x33
(0x53)

SMCR – – – – SM2 SM1 SM0 SE

554 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x32
(0x52)

Reserved – – – – – – – –

0x31
(0x51)

Reserved – – – – – – – –

0x30
(0x50)

ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

0x2F
(0x4F)

Reserved – – – – – – – –

0x2E
(0x4E)

SPDR SPI Data Register

0x2D
(0x4D)

SPSR SPIF WCOL – – – – – SPI2X

0x2C
(0x4C)

SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

0x2B
(0x4B)

GPIOR2 General Purpose I/O Register 2

0x2A
(0x4A)

GPIOR1 General Purpose I/O Register 1

0x29
(0x49)

Reserved – – – – – – – –

0x28
(0x48)

OCR0B Timer/Counter0 Output Compare Register B

0x27
(0x47)

OCR0A Timer/Counter0 Output Compare Register A

0x26
(0x46)

TCNT0 Timer/Counter0 (8-bit)

0x25
(0x45)

TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24
(0x44)

TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23
(0x43)

GTCCR TSM – – – – – PSRASY PSRSYNC

0x22
(0x42)

EEARH EEPROM Address Register High Byte

0x21
(0x41)

EEARL EEPROM Address Register Low Byte

0x20
(0x40)

EEDR EEPROM Data Register

0x1F
(0x3F)

EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE

0x1E
(0x3E)

GPIOR0 General Purpose I/O Register 0

0x1D
(0x3D)

EIMSK – – – – – – INT1 INT0

AVR ATmega Control Registers | 555

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x1C
(0x3C)

EIFR – – – – – – INTF1 INTF0

0x1B
(0x3B)

PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A
(0x3A)

Reserved – – – – – – – –

0x19
(0x39)

Reserved – – – – – – – –

0x18
(0x38)

Reserved – – – – – – – –

0x17
(0x37)

TIFR2 – – – – – OCF2B OCF2A TOV2

0x16
(0x36)

TIFR1 – – ICF1 – – OCF1B OCF1A TOV1

0x15
(0x35)

TIFR0 – – – – – OCF0B OCF0A TOV0

0x14
(0x34)

Reserved – – – – – – – –

0x13
(0x33)

Reserved – – – – – – – –

0x12
(0x32)

Reserved – – – – – – – –

0x11
(0x31)

Reserved – – – – – – – –

0x10
(0x30)

Reserved – – – – – – – –

0x0F
(0x2F)

Reserved – – – – – – – –

0x0E
(0x2E)

Reserved – – – – – – – –

0x0D
(0x2D)

Reserved – – – – – – – –

0x0C
(0x2C)

Reserved – – – – – – – –

0x0B
(0x2B)

PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

0x0A
(0x2A)

DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

0x09
(0x29)

PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

0x08
(0x28)

PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

0x07
(0x27)

DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

556 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x06
(0x26)

PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

0x05
(0x25)

PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

0x04
(0x24)

DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x03
(0x23)

PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

0x02
(0x22)

Reserved – – – – – – – –

0x01
(0x21)

Reserved – – – – – – – –

0x00
(0x20)

Reserved – – – – – – – –

ATmega1280/2560
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x1FF) Reserved – – – – – – – –

. . . Reserved – – – – – – – –

(0x137) Reserved – – – – – – – –

(0x136) UDR3 USART3 I/O Data Register

(0x135) UBRR3H – – – – USART3 Baud Rate Register High Byte

(0x134) UBRR3L USART3 Baud Rate Register Low Byte

(0x133) Reserved – – – – – – – –

(0x132) UCSR3C UMSEL31 UMSEL30 UPM31 UPM30 USBS3 UCSZ31 UCSZ30 UCPOL3

(0x131) UCSR3B RXCIE3 TXCIE3 UDRIE3 RXEN3 TXEN3 UCSZ32 RXB83 TXB83

(0x130) UCSR3A RXC3 TXC3 UDRE3 FE3 DOR3 UPE3 U2X3 MPCM3

(0x12F) Reserved – – – – – – – –

(0x12E) Reserved – – – – – – – –

(0x12D) OCR5CH Timer/Counter5: Output Compare Register C High Byte

(0x12C) OCR5CL Timer/Counter5: Output Compare Register C Low Byte

(0x12B) OCR5BH Timer/Counter5: Output Compare Register B High Byte

(0x12A) OCR5BL Timer/Counter5: Output Compare Register B Low Byte

(0x129) OCR5AH Timer/Counter5: Output Compare Register A High Byte

(0x128) OCR5AL Timer/Counter5: Output Compare Register A Low Byte

(0x127) ICR5H Timer/Counter5: Input Capture Register High Byte

(0x126) ICR5L Timer/Counter5: Input Capture Register Low Byte

(0x125) TCNT5H Timer/Counter5: Counter Register High Byte

AVR ATmega Control Registers | 557

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x124) TCNT5L Timer/Counter5: Counter Register Low Byte

(0x123) Reserved – – – – – – – –

(0x122) TCCR5C FOC5A FOC5B FOC5C – – – – –

(0x121) TCCR5B ICNC5 ICES5 – WGM53 WGM52 CS52 CS51 CS50

(0x120) TCCR5A COM5A1 COM5A0 COM5B1 COM5B0 COM5C1 COM5C0 WGM51 WGM50

(0x11F) Reserved – – – – – – – –

(0x11E) Reserved – – – – – – – –

(0x11D) Reserved – – – – – – – –

(0x11C) Reserved – – – – – – – –

(0x11B) Reserved – – – – – – – –

(0x11A) Reserved – – – – – – – –

(0x119) Reserved – – – – – – – –

(0x118) Reserved – – – – – – – –

(0x117) Reserved – – – – – – – –

(0x116) Reserved – – – – – – – –

(0x115) Reserved – – – – – – – –

(0x114) Reserved – – – – – – – –

(0x113) Reserved – – – – – – – –

(0x112) Reserved – – – – – – – –

(0x111) Reserved – – – – – – – –

(0x110) Reserved – – – – – – – –

(0x10F) Reserved – – – – – – – –

(0x10E) Reserved – – – – – – – –

(0x10D) Reserved – – – – – – – –

(0x10C) Reserved – – – – – – – –

(0x10B) PORTL PORTL7 PORTL6 PORTL5 PORTL4 PORTL3 PORTL2 PORTL1 PORTL0

(0x10A) DDRL DDL7 DDL6 DDL5 DDL4 DDL3 DDL2 DDL1 DDL0

(0x109) PINL PINL7 PINL6 PINL5 PINL4 PINL3 PINL2 PINL1 PINL0

(0x108) PORTK PORTK7 PORTK6 PORTK5 PORTK4 PORTK3 PORTK2 PORTK1 PORTK0

(0x107) DDRK DDK7 DDK6 DDK5 DDK4 DDK3 DDK2 DDK1 DDK0

(0x106) PINK PINK7 PINK6 PINK5 PINK4 PINK3 PINK2 PINK1 PINK0

(0x105) PORTJ PORTJ7 PORTJ6 PORTJ5 PORTJ4 PORTJ3 PORTJ2 PORTJ1 PORTJ0

(0x104) DDRJ DDJ7 DDJ6 DDJ5 DDJ4 DDJ3 DDJ2 DDJ1 DDJ0

(0x103) PINJ PINJ7 PINJ6 PINJ5 PINJ4 PINJ3 PINJ2 PINJ1 PINJ0

(0x102) PORTH PORTH7 PORTH6 PORTH5 PORTH4 PORTH3 PORTH2 PORTH1 PORTH0

(0x101) DDRH DDH7 DDH6 DDH5 DDH4 DDH3 DDH2 DDH1 DDH0

(0x100) PINH PINH7 PINH6 PINH5 PINH4 PINH3 PINH2 PINH1 PINH0

558 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

AVR ATmega Control Registers | 559

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) UDR2 USART2 I/O Data Register

(0xD5) UBRR2H – – – – USART2 Baud Rate Register High Byte

(0xD4) UBRR2L USART2 Baud Rate Register Low Byte

(0xD3) Reserved – – – – – – – –

(0xD2) UCSR2C UMSEL21 UMSEL20 UPM21 UPM20 USBS2 UCSZ21 UCSZ20 UCPOL2

(0xD1) UCSR2B RXCIE2 TXCIE2 UDRIE2 RXEN2 TXEN2 UCSZ22 RXB82 TXB82

(0xD0) UCSR2A RXC2 TXC2 UDRE2 FE2 DOR2 UPE2 U2X2 MPCM2

(0xCF) Reserved – – – – – – – –

(0xCE) UDR1 USART1 I/O Data Register

(0xCD) UBRR1H – – – – USART1 Baud Rate Register High Byte

(0xCC) UBRR1L USART1 Baud Rate Register Low Byte

(0xCB) Reserved – – – – – – – –

(0xCA) UCSR1C UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART0 I/O Data Register

(0xC5) UBRR0H – – – – USART0 Baud Rate Register High Byte

(0xC4) UBRR0L USART0 Baud Rate Register Low Byte

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 -

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

(0xB7) Reserved – – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB

560 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B

(0xB3) OCR2A Timer/Counter2 Output Compare Register A

(0xB2) TCNT2 Timer/Counter2 (8 Bit)

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) OCR4CH Timer/Counter4: Output Compare Register C High Byte

(0xAC) OCR4CL Timer/Counter4: Output Compare Register C Low Byte

(0xAB) OCR4BH Timer/Counter4: Output Compare Register B High Byte

(0xAA) OCR4BL Timer/Counter4: Output Compare Register B Low Byte

(0xA9) OCR4AH Timer/Counter4: Output Compare Register A High Byte

(0xA8) OCR4AL Timer/Counter4: Output Compare Register A Low Byte

(0xA7) ICR4H Timer/Counter4: Input Capture Register High Byte

(0xA6) ICR4L Timer/Counter4: Input Capture Register Low Byte

(0xA5) TCNT4H Timer/Counter4: Counter Register High Byte

(0xA4) TCNT4L Timer/Counter4: Counter Register Low Byte

(0xA3) Reserved – – – – – – – –

(0xA2) TCCR4C FOC4A FOC4B FOC4C – – – – –

(0xA1) TCCR4B ICNC4 ICES4 – WGM43 WGM42 CS42 CS41 CS40

(0xA0) TCCR4A COM4A1 COM4A0 COM4B1 COM4B0 COM4C1 COM4C0 WGM41 WGM40

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) OCR3CH Timer/Counter3: Output Compare Register C High Byte

(0x9C) OCR3CL Timer/Counter3: Output Compare Register C Low Byte

(0x9B) OCR3BH Timer/Counter3: Output Compare Register B High Byte

(0x9A) OCR3BL Timer/Counter3: Output Compare Register B Low Byte

(0x99) OCR3AH Timer/Counter3: Output Compare Register A High Byte

(0x98) OCR3AL Timer/Counter3: Output Compare Register A Low Byte

(0x97) ICR3H Timer/Counter3: Input Capture Register High Byte

(0x96) ICR3L Timer/Counter3: Input Capture Register Low Byte

(0x95) TCNT3H Timer/Counter3: Counter Register High Byte

(0x94) TCNT3L Timer/Counter3: Counter Register Low Byte

(0x93) Reserved – – – – – – – –

(0x92) TCCR3C FOC3A FOC3B FOC3C – – – – –

(0x91) TCCR3B ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30

AVR ATmega Control Registers | 561

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) OCR1CH Timer/Counter1: Output Compare Register C High Byte

(0x8C) OCR1CL Timer/Counter1: Output Compare Register C Low Byte

(0x8B) OCR1BH Timer/Counter1: Output Compare Register B High Byte

(0x8A) OCR1BL Timer/Counter1: Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counter1: Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counter1: Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counter1: Input Capture Register High Byte

(0x86) ICR1L Timer/Counter1: Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counter1: Counter Register High Byte

(0x84) TCNT1L Timer/Counter1: Counter Register Low Byte

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B FOC1C – – – – –

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10

(0x7F) DIDR1 – – – – – – AIN1D AIN0D

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D

(0x7D) DIDR2 ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

(0x7B) ADCSRB - ACME – – MUX5 ADTS2 ADTS1 ADTS0

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

(0x79) ADCH ADC Data Register High Byte

(0x78) ADCL ADC Data Register Low Byte

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) XMCRB XMBK – – – – XMM2 XMM1 XMM0

(0x74) XMCRA SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00

(0x73) TIMSK5 – – ICIE5 – OCIE5C OCIE5B OCIE5A TOIE5

(0x72) TIMSK4 – – ICIE4 – OCIE4C OCIE4B OCIE4A TOIE4

(0x71) TIMSK3 – – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2

(0x6F) TIMSK1 – – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8

562 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0

(0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register

(0x65) PRR1 – – PRTIM5 PRTIM4 PRTIM3 PRUSART3 PRUSART2PRUSART1

(0x64) PRR0 PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0PRADC

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0

0x3F
(0x5F)

SREG I T H S V N Z C

0x3E
(0x5E)

SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

0x3D
(0x5D)

SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0x3C
(0x5C)

EIND – – – – – – – EIND0

0x3B
(0x5B)

RAMPZ – – – – – – RAMPZ1 RAMPZ0

0x3A
(0x5A)

Reserved – – – – – – – –

0x39
(0x59)

Reserved – – – – – – – –

0x38
(0x58)

Reserved – – – – – – – –

0x37
(0x57)

SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN

0x36
(0x56)

Reserved – – – – – – – –

0x35
(0x55)

MCUCR JTD – – PUD – – IVSEL IVCE

0x34
(0x54)

MCUSR – – – JTRF WDRF BORF EXTRF PORF

0x33
(0x53)

SMCR – – – – SM2 SM1 SM0 SE

0x32
(0x52)

Reserved – – – – – – – –

0x31
(0x51)

OCDR OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0

AVR ATmega Control Registers | 563

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x30
(0x50)

ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

0x2F
(0x4F)

Reserved – – – – – – – –

0x2E
(0x4E)

SPDR SPI Data Register

0x2D
(0x4D)

SPSR SPIF WCOL – – – – – SPI2X

0x2C
(0x4C)

SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

0x2B
(0x4B)

GPIOR2 General Purpose I/O Register 2

0x2A
(0x4A)

GPIOR1 General Purpose I/O Register 1

0x29
(0x49)

Reserved – – – – – – – –

0x28
(0x48)

OCR0B Timer/Counter0 Output Compare Register B

0x27
(0x47)

OCR0A Timer/Counter0 Output Compare Register A

0x26
(0x46)

TCNT0 Timer/Counter0 (8 Bit)

0x25
(0x45)

TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24
(0x44)

TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23
(0x43)

GTCCR TSM – – – – – PSRASY PSRSYNC

0x22
(0x42)

EEARH – – – – EEPROM Address Register High Byte

0x21
(0x41)

EEARL EEPROM Address Register Low Byte

0x20
(0x40)

EEDR EEPROM Data Register

0x1F
(0x3F)

EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE

0x1E
(0x3E)

GPIOR0 General Purpose I/O Register 0

0x1D
(0x3D)

EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

0x1C
(0x3C)

EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0

0x1B
(0x3B)

PCIFR – – – – – PCIF2 PCIF1 PCIF0

564 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x1A
(0x3A)

TIFR5 – – ICF5 – OCF5C OCF5B OCF5A TOV5

0x19
(0x39)

TIFR4 – – ICF4 – OCF4C OCF4B OCF4A TOV4

0x18
(0x38)

TIFR3 – – ICF3 – OCF3C OCF3B OCF3A TOV3

0x17
(0x37)

TIFR2 – – – – – OCF2B OCF2A TOV2

0x16
(0x36)

TIFR1 – – ICF1 – OCF1C OCF1B OCF1A TOV1

0x15
(0x35)

TIFR0 – – – – – OCF0B OCF0A TOV0

0x14
(0x34)

PORTG – – PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0

0x13
(0x33)

DDRG – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0

0x12
(0x32)

PING – – PING5 PING4 PING3 PING2 PING1 PING0

0x11
(0x31)

PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0

0x10
(0x30)

DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0

0x0F
(0x2F)

PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0

0x0E
(0x2E)

PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0

0x0D
(0x2D)

DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0

0x0C
(0x2C)

PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0

0x0B
(0x2B)

PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

0x0A
(0x2A)

DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

0x09
(0x29)

PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

0x08
(0x28)

PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

0x07
(0x27)

DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

0x06
(0x26)

PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

0x05
(0x25)

PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

AVR ATmega Control Registers | 565

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x04
(0x24)

DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x03
(0x23)

PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

0x02
(0x22)

PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

0x01
(0x21)

DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

0x00
(0x20)

PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

ATmega32U4
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) UEINT – EPINT6:0

(0xF3) UEBCHX – – – – – BYCT10:8

(0xF2) UEBCLX BYCT7:0

(0xF1) UEDATX DAT7:0

(0xF0) UEIENX FLERRE NAKINE – NAKOUTE RXSTPE RXOUTE STALLEDE TXINE

(0xEF) UESTA1X – – – – – CTRLDIR CURRBK1:0

(0xEE) UESTA0X CFGOK OVERFI UNDERFI – DTSEQ1:0 NBUSYBK1:0

(0xED) UECFG1X – EPSIZE2:0 EPBK1:0 ALLOC –

(0xEC) UECFG0X EPTYPE1:0 – – – – – EPDIR

(0xEB) UECONX – – STALLRQ STALLRQC RSTDT – – EPEN

(0xEA) UERST – EPRST6:0

(0xE9) UENUM – – – – – EPNUM2:0

(0xE8) UEINTX FIFOCON NAKINI RWAL NAKOUTI RXSTPI RXOUTI STALLEDI TXINI

(0xE7) Reserved – – – – – – – –

566 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xE6) UDMFN – – – FNCERR – – – –

(0xE5) UDFNUMH – – – – – FNUM10:8

(0xE4) UDFNUML FNUM7:0

(0xE3) UDADDR ADDEN UADD6:0

(0xE2) UDIEN – UPRSME EORSME WAKEUPE EORSTE SOFE MSOFE SUSPE

(0xE1) UDINT – UPRSMI EORSMI WAKEUPI EORSTI SOFI MSOFI SUSPI

(0xE0) UDCON – – – – RSTCPU LSM RMWKUP DETACH

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) USBINT – – – – – – – VBUSTI

(0xD9) USBSTA – – – – – – ID VBUS

(0xD8) USBCON USBE – FRZCLK OTGPADE – – – VBUSTE

(0xD7) UHWCON – – – – – – – UVREGE

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) DT4 DT4H3 DT4H2 DT4H1 DT4H0 DT4L3 DT4L2 DT4L1 DT4L0

(0xD3) Reserved – – – – – – – –

(0xD2) OCR4D Timer/Counter4: Output Compare Register D

(0xD1) OCR4C Timer/Counter4: Output Compare Register C

(0xD0) OCR4B Timer/Counter4: Output Compare Register B

(0xCF) OCR4A Timer/Counter4: Output Compare Register A

(0xCE) UDR1 USART1 I/O Data Register

(0xCD) UBRR1H – – – – USART1 Baud Rate Register High Byte

(0xCC) UBRR1L USART1 Baud Rate Register Low Byte

(0xCB) UCSR1D – – – – – – CTSEN RTSEN

(0xCA) UCSR1C UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 PE1 U2X1 MPCM1

(0xC7) CLKSTA – – – – – – RCON EXTON

(0xC6) CLKSEL1 RCCKSEL3 RCCKSEL2 RCCKSEL1 RCCKSEL0 EXCKSEL3 EXCKSEL2 EXCKSEL1 EXCKSEL0

(0xC5) CLKSEL0 RCSUT1 RCSUT0 EXSUT1 EXSUT0 RCE EXTE – CLKS

(0xC4) TCCR4E TLOCK4 ENHC4 OC4OE5 OC4OE4 OC4OE3 OC4OE2 OC4OE1 OC4OE0

(0xC3) TCCR4D FPIE4 FPEN4 FPNC4 FPES4 FPAC4 FPF4 WGM41 WGM40

(0xC2) TCCR4C COM4A1S COM4A0S COM4B1S COM4B0S COM4D1S COM4D0S FOC4D PWM4D

AVR ATmega Control Registers | 567

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0xC1) TCCR4B PWM4X PSR4 DTPS41 DTPS40 CS43 CS42 CS41 CS40

(0xC0) TCCR4A COM4A1 COM4A0 COM4B1 COM4B0 FOC4A FOC4B PWM4A PWM4B

(0xBF) TC4H – – – – – Timer/Counter4 High Byte

(0xBE) TCNT4 Timer/Counter4: Counter Register Low Byte

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 –

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

(0xB6) Reserved – – – – – – – –

(0xB5) Reserved – – – – – – – –

(0xB4) Reserved – – – – – – – –

(0xB3) Reserved – – – – – – – –

(0xB2) Reserved – – – – – – – –

(0xB1) Reserved – – – – – – – –

(0xB0) Reserved – – – – – – – –

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xB7) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) OCR3CH Timer/Counter3: Output Compare Register C High Byte

568 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x9C) OCR3CL Timer/Counter3: Output Compare Register C Low Byte

(0x9B) OCR3BH Timer/Counter3: Output Compare Register B High Byte

(0x9A) OCR3BL Timer/Counter3: Output Compare Register B Low Byte

(0x99) OCR3AH Timer/Counter3: Output Compare Register A High Byte

(0x98) OCR3AL Timer/Counter3: Output Compare Register A Low Byte

(0x97) ICR3H Timer/Counter3: Input Capture Register High Byte

(0x96) ICR3L Timer/Counter3: Input Capture Register Low Byte

(0x95) TCNT3H Timer/Counter3: Counter Register High Byte

(0x94) TCNT3L Timer/Counter3: Counter Register Low Byte

(0x93) Reserved – – – – – – – –

(0x92) TCCR3C FOC3A – – – – – – –

(0x91) TCCR3B ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30

(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) OCR1CH Timer/Counter1: Output Compare Register C High Byte

(0x8C) OCR1CL Timer/Counter1: Output Compare Register C Low Byte

(0x8B) OCR1BH Timer/Counter1: Output Compare Register B High Byte

(0x8A) OCR1BL Timer/Counter1: Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counter1: Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counter1: Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counter1: Input Capture Register High Byte

(0x86) ICR1L Timer/Counter1: Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counter1: Counter Register High Byte

(0x84) TCNT1L Timer/Counter1: Counter Register Low Byte

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B FOC1C – – – – –

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10

(0x7F) DIDR1 – – – – – – – AIN0D

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D – – ADC1D ADC0D

(0x7D) DIDR2 – – ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

(0x7B) ADCSRB ADHSM ACME MUX5 – ADTS3 ADTS2 ADTS1 ADTS0

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

(0x79) ADCH ADC Data Register High byte

(0x78) ADCL ADC Data Register Low byte

AVR ATmega Control Registers | 569

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) TIMSK4 OCIE4D OCIE4A OCIE4B – – TOIE4 – –

(0x71) TIMSK3 – – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3

(0x70) Reserved – – – – – – – –

(0x6F) TIMSK1 – – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0

(0x6D) Reserved – – – – – – – –

(0x6C) Reserved – – – – – – – –

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0

(0x6A) EICRB – – ISC61 ISC60 – – – –

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00

(0x68) PCICR – – – – – – – PCIE0

(0x67) RCCTRL – – – – – – – RCFREQ

(0x66) OSCCAL RC Oscillator Calibration Register

(0x65) PRR1 PRUSB – – PRTIM4 PRTIM3 – – PRUSART1

(0x64) PRR0 PRTWI – PRTIM0 – PRTIM1 PRSPI – PRADC

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0

0x3F
(0x5F)

SREG I T H S V N Z C

0x3E
(0x5E)

SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

0x3D
(0x5D)

SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0x3C
(0x5C)

Reserved – – – – – – – –

0x3B
(0x5B)

RAMPZ – – – – – – RAMPZ1 RAMPZ0

0x3A
(0x5A)

Reserved – – – – – – – –

0x39
(0x59)

Reserved – – – – – – – –

0x38
(0x58)

Reserved – – – – – – – –

570 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x37
(0x57)

SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN

0x36
(0x56)

Reserved – – – – – – – –

0x35
(0x55)

MCUCR JTD – – PUD – – IVSEL IVCE

0x34
(0x54)

MCUSR – – USBRF JTRF WDRF BORF EXTRF PORF

0x33
(0x53)

SMCR – – – – SM2 SM1 SM0 SE

0x32
(0x52)

PLLFRQ PINMUX PLLUSB PLLTM1 PLLTM0 PDIV3 PDIV2 PDIV1 PDIV0

0x31
(0x51)

OCDR/
MONDR

OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0

Monitor Data Register

0x30
(0x50)

ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

0x2F
(0x4F)

Reserved – – – – – – – –

0x2E
(0x4E)

SPDR SPI Data Register

0x2D
(0x4D)

SPSR SPIF WCOL – – – – – SPI2X

0x2C
(0x4C)

SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

0x2B
(0x4B)

GPIOR2 General Purpose I/O Register 2

0x2A
(0x4A)

GPIOR1 General Purpose I/O Register 1

0x29
(0x49)

PLLCSR – – – PINDIV – – PLLE PLOCK

0x28
(0x48)

OCR0B Timer/Counter0 Output Compare Register B

0x27
(0x47)

OCR0A Timer/Counter0 Output Compare Register A

0x26
(0x46)

TCNT0 Timer/Counter0 (8 Bit)

0x25
(0x45)

TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24
(0x44)

TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23
(0x43)

GTCCR TSM – – – – – PSRASY PSRSYNC

AVR ATmega Control Registers | 571

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x22
(0x42)

EEARH – – – – EEPROM Address Register High Byte

0x21
(0x41)

EEARL EEPROM Address Register Low Byte

0x20
(0x40)

EEDR EEPROM Data Register

0x1F
(0x3F)

EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE

0x1E
(0x3E)

GPIOR0 General Purpose I/O Register 0

0x1D
(0x3D)

EIMSK – INT6 – – INT3 INT2 INT1 INT0

0x1C
(0x3C)

EIFR – INTF6 – – INTF3 INTF2 INTF1 INTF0

0x1B
(0x3B)

PCIFR – – – – – – – PCIF0

0x1A
(0x3A)

Reserved – – – – – – – –

0x19
(0x39)

TIFR4 OCF4D OCF4A OCF4B – – TOV4 – –

0x18
(0x38)

TIFR3 – – ICF3 – OCF3C OCF3B OCF3A TOV3

0x17
(0x37)

Reserved – – – – – – – –

0x16
(0x36)

TIFR1 – – ICF1 – OCF1C OCF1B OCF1A TOV1

0x15
(0x35)

TIFR0 – – – – – OCF0B OCF0A TOV0

0x14
(0x34)

Reserved – – – – – – – –

0x13
(0x33)

Reserved – – – – – – – –

0x12
(0x32)

Reserved – – – – – – – –

0x11
(0x31)

PORTF PORTF7 PORTF6 PORTF5 PORTF4 – – PORTF1 PORTF0

0x10
(0x30)

DDRF DDF7 DDF6 DDF5 DDF4 – – DDF1 DDF0

0x0F
(0x2F)

PINF PINF7 PINF6 PINF5 PINF4 – – PINF1 PINF0

0x0E
(0x2E)

PORTE – PORTE6 – – – PORTE2 – –

0x0D
(0x2D)

DDRE – DDE6 – – – DDE2 – –

572 | Appendix B: AVR ATmega Control Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x0C
(0x2C)

PINE – PINE6 – – – PINE2 – –

0x0B
(0x2B)

PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

0x0A
(0x2A)

DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

0x09
(0x29)

PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

0x08
(0x28)

PORTC PORTC7 PORTC6 – – – – – –

0x07
(0x27)

DDRC DDC7 DDC6 – – – – – –

0x06
(0x26)

PINC PINC7 PINC6 – – – – – –

0x05
(0x25)

PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

0x04
(0x24)

DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x03
(0x23)

PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

0x02
(0x22)

Reserved – – – – – – – –

0x01
(0x21)

Reserved – – – – – – – –

0x00
(0x20)

Reserved – – – – – – – –

AVR ATmega Control Registers | 573

APPENDIX C

Arduino and Compatible Products Vendors

Note that the inclusion of any particular company in this appendix does not consti‐
tute an endorsement (except for the Arduino folks, of course). It is provided as a
resource only.

Arduino Products
The main source of official Arduino products is, of course, Arduino. You can find out
what is available at the official website, Arduino.cc. There are also distributors that
carry Arduino boards, shields, and add-on accessories.

Hardware-Compatible Boards and Shields

Name URL Name URL
Adafruit www.adafruit.com ITEAD Studio store.iteadstudio.com

Arduino store.arduino.cc Macetech www.macetech.com/store/

Arduino Lab www.arduinolab.us Mayhew Labs mayhewlabs.com

Circuit@tHome www.circuitsathome.com Nootropic Design nootropicdesign.com

CuteDigi store.cutedigi.com Numato numato.com

DFRobot www.dfrobot.com RobotShop www.robotshop.com

DealeXtreme (DX) www.dx.com Rugged Circuits www.ruggedcircuits.com

Elecfreaks www.elecfreaks.com SainSmart www.sainsmart.com

Elechouse www.elechouse.com Seeed Studio www.seeedstudio.com

excamera www.excamera.com SparkFun www.sparkfun.com

Iowa Scaled Engineering www.iascaled.com Tindie www.tindie.com

iMall imall.itead.cc Tronixlabs tronixlabs.com

575

http://www.adafruit.com
http://store.iteadstudio.com
http://store.arduino.cc
http://macetech.com/store/
http://www.arduinolab.us
http://mayhewlabs.com
http://www.circuitsathome.com
http://nootropicdesign.com
http://store.cutedigi.com
http://numato.com
http://www.dfrobot.com
http://www.robotshop.com
http://www.dx.com
http://www.ruggedcircuits.com
http://www.elecfreaks.com
http://www.sainsmart.com
http://www.elechouse.com
http://www.seeedstudio.com
http://excamera.com
http://www.sparkfun.com
http://www.iascaled.com
http://www.tindie.com
http://imall.itead.cc
http://tronixlabs.com

Software-Compatible Boards

Name URL
Adafruit www.adafruit.com

Circuit Monkey www.circuitmonkey.com

BitWizard www.bitwizard.nl

Sensors, Add-on Boards, and Modules

Name URL Name URL
Adafruit www.adafruit.com Seeed Studio www.seeedstudio.com

CuteDigi store.cutedigi.com TinyCircuits www.tiny-circuits.com

DealExtreme (DX) www.dx.com Trossen Robotics www.trossenrobotics.com

KEYES en.keyes-robot.com Vetco www.vetco.net

Electronics Software
Open Source Schematic Capture Tools

Name URL
ITECAD http://www.itecad.it/en/index.html

Oregano https://github.com/marc-lorber/oregano

Open Schematic Capture (OSC) http://openschcapt.sourceforge.net

TinyCAD http://sourceforge.net/apps/mediawiki/tinycad

XCircuit http://opencircuitdesign.com/xcircuit

CAE Software Tools

Name Description URL
DesignSpark Free, not open source http://www.rs-online.com/designspark/electronics/

Eagle Free, not open source http://www.cadsoftusa.com

Fritzing Free CAE tool http://fritzing.org/home

gEDA Open source CAE tools http://www.geda-project.org

KiCad Open source CAE tool http://www.kicad-pcb.org

576 | Appendix C: Arduino and Compatible Products Vendors

http://www.adafruit.com
http://www.circuitmonkey.com
http://www.bitwizard.nl
http://www.adafruit.com
http://www.seeedstudio.com
http://store.cutedigi.com
http://www.tiny-circuits.com
http://www.dx.com
http://www.trossenrobotics.com
http://en.keyes-robot.com
http://www.vetco.net
http://www.itecad.it/en/index.html
https://github.com/marc-lorber/oregano
http://openschcapt.sourceforge.net
http://sourceforge.net/apps/mediawiki/tinycad
http://opencircuitdesign.com/xcircuit
http://www.rs-online.com/designspark/electronics/
http://www.cadsoftusa.com
http://fritzing.org/home
http://www.geda-project.org
http://www.kicad-pcb.org

PCB Layout Tools

Name Description URL
FreePCB Windows (only) PCB layout http://www.freepcb.com

FreeRouting Web-based PCB autorouter http://www.freerouting.net

PCB Linux open source layout http://sourceforge.net/projects/pcb/

Hardware, Components, and Tools
Electronic Component Manufacturers

Name URL Name URL
Allegro http://www.allegromicro.com Micrel http://www.micrel.com

Analog Devices http://www.analog.com Microchip http://www.microchip.com

ASIX http://www.asix.com.tw NXP http://www.nxp.com

Atmel http://www.atmel.com ON Semiconductor http://www.onsemi.com

Bluegiga http://www.bluegiga.com Panasonic http://www.panasonic.com

Cypress http://www.cypress.com Silicon Labs http://www.silabs.com

Digi International http://www.digi.com STMicrotechnology http://www.st.com

Fairchild http://www.fairchildsemi.com Texas Instruments http://www.ti.com

FTDI http://www.ftdichip.com WIZnet http://www.wiznet.co.kr

Linear Technology http://www.linear.com Zilog http://www.zilog.com

Electronics Distributors (USA)

Name URL
Allied http://www.alliedelec.com

Digi-Key http://www.digikey.com

Jameco http://www.jameco.com

Mouser http://www.mouser.com

Newark/Element14 http://www.newark.com

Parts Express http://www.parts-express.com

State http://www.potentiometer.com

Arduino and Compatible Products Vendors | 577

http://www.freepcb.com
http://www.freerouting.net
http://sourceforge.net/projects/pcb/
http://www.allegromicro.com
http://www.micrel.com
http://www.analog.com
http://www.microchip.com
http://www.asix.com.tw
http://www.nxp.com
http://www.atmel.com
http://www.onsemi.com
http://www.bluegiga.com
http://www.panasonic.com
http://www.cypress.com
http://www.silabs.com
http://www.digi.com
http://www.st.com
http://www.fairchildsemi.com
http://www.ti.com
http://www.ftdichip.com
http://www.wiznet.co.kr
http://www.linear.com
http://www.zilog.com
http://www.alliedelec.com
http://www.digikey.com
http://www.jameco.com
http://www.mouser.com
http://www.newark.com
http://www.parts-express.com
http://www.potentiometer.com

Discount and Surplus Electronics

Name URL
All Electronics http://www.allelectronics.com

Alltronics http://www.alltronics.com

American Science & Surplus http://www.sciplus.com

BGMicro http://www.bgmicro.com

Electronic Surplus http://www.electronicsurplus.com

Electronic Goldmine http://www.goldmine-elec-products.com

Mechanical Parts and Hardware (Screws, Nuts, Bolts)

Name URL Name URL
All Electronics http://www.allelectronics.com McMaster-Carr http://www.mcmaster.com

Alltronics http://www.alltronics.com Micro Fasteners http://www.microfasteners.com

Bolt Depot http://www.boltdepot.com SDP/SI http://www.sdp-si.com

Fastenal http://www.fastenal.com WM Berg http://www.wmberg.com

Electronic Enclosures and Chassis

Name URL Name URL
Bud Industries http://www.budind.com LMB Heeger http://www.lmbheeger.com

Context
Engineering

http://contextengineering.com/index.html METCASE/OKW
Enclosures

http://www.metcaseusa.com

ELMA http://www.elma.com Polycase http://www.polycase.com

Hammond
Manufacturing

http://www.hammondmfg.com/index.htm Serpac http://www.serpac.com

iProjectBox http://www.iprojectbox.com TEKO Enclosures http://www.tekoenclosures.com/en/home

Tools

Name URL Name URL
Adafruit http://www.adafruit.com Maker Shed http://www.makershed.com

Apex Tool Group http://www.apexhandtools.com MCM Electronics http://www.mcmelectronics.com

CKB Products http://www.ckbproducts.com SainSmart http://www.sainsmart.com

Circuit Specialists http://www.circuitspecialists.com SparkFun http://www.sparkfun.com

Electronic Goldmine http://www.goldmine-elec-products.com Stanley http://www.stanleysupplyservices.com

Harbor Freight Tools http://www.harborfreight.com Velleman http://www.vellemanusa.com

578 | Appendix C: Arduino and Compatible Products Vendors

http://www.allelectronics.com
http://www.alltronics.com
http://www.sciplus.com
http://www.bgmicro.com
http://www.electronicsurplus.com
http://www.goldmine-elec-products.com
http://www.allelectronics.com
http://www.mcmaster.com
http://www.alltronics.com
http://www.microfasteners.com
http://www.boltdepot.com
http://www.sdp-si.com
http://www.fastenal.com
http://www.wmberg.com
http://www.budind.com
http://www.lmbheeger.com
http://contextengineering.com/index.html
http://www.metcaseusa.com
http://www.elma.com
http://www.polycase.com
http://www.hammondmfg.com/index.htm
http://www.serpac.com
http://www.iprojectbox.com
http://www.tekoenclosures.com/en/home
http://www.adafruit.com
http://www.makershed.com
http://www.apexhandtools.com
http://www.mcmelectronics.com
http://www.ckbproducts.com
http://www.sainsmart.com
http://www.circuitspecialists.com
http://www.sparkfun.com
http://www.goldmine-elec-products.com
http://www.stanleysupplyservices.com
http://www.harborfreight.com
http://www.vellemanusa.com

Test Equipment

Name URL Name URL
Adafruit http://www.adafruit.com SparkFun http://www.sparkfun.com

Electronic Goldmine http://www.goldmine-elec-products.com Surplus Shed http://www.surplusshed.com

MCM Electronics http://www.mcmelectronics.com Velleman http://www.vellemanusa.com

Printed Circuit Board Supplies and Fabricators
Most major electronics distributors sell things like etchant and single- and double-
sided copper clad PCB blanks with photoresist applied. If you aren’t comfortable with
the chemicals and procedures, consider using a commercial prototype PCB house.

Prototype and Fast-Turnaround Fabricators

Name URL
Advanced Circuits http://www.4pcb.com

ExpressPCB http://www.expresspcb.com

Gold Phoenix PCB Co. http://www.goldphoenixpcb.com

Sunstone Circuits http://www.sunstone.com/

Sierra Circuits https://www.protoexpress.com

PCB Kit Sources

Vendor name URL Products
Jameco Electronics http://www.jameco.com Conventional acid etch and supplies

Think & Tinker, Ltd. http://www.thinktink.com Various supplies for making PCBs

Vetco Electronics http://www.vetco.net Conventional acid etch kit

Other Sources
The companies in this appendix are just a sampling of what you can find with a little
bit of searching. Distributors like Amazon and Mouser carry various Arduino and
Arduino-compatible products. eBay is always a good place to look for bargains from
Asian vendors (be sure to check the vendor ratings, but they are almost always good).
And last but not least, there is Google. A search for “Arduino” on Google returned
nearly 40 million results at the time of writing.

Arduino and Compatible Products Vendors | 579

http://www.adafruit.com
http://www.sparkfun.com
http://www.goldmine-elec-products.com
http://www.surplusshed.com
http://www.mcmelectronics.com
http://www.vellemanusa.com
http://www.4pcb.com
http://www.expresspcb.com
http://www.goldphoenixpcb.com
http://www.sunstone.com/
https://www.protoexpress.com
http://www.jameco.com
http://www.thinktink.com
http://www.vetco.net

APPENDIX D

Recommended Reading

The Arduino is a popular subject for technical authors (myself included), and there
are numerous books available. Some describe a specific range of applications, and
others are more along the lines of a collection of projects. In addition to some titles
that specifically deal with the Arduino, I have also included books on the AVR micro‐
controller, C and C++ programming, general electronics, interfaces, instrumentation,
and printed circuit boards.

Arduino
• Massimo Banzi. Getting Started with Arduino. O’Reilly. 2009. ISBN

978-0596155513
• Patrick Di Justo and Emily Gertz. Atmospheric Monitoring with Arduino. (Maker

Media). 2013. ISBN 978-1449338145
• Emily Gertz and Patrick Di Justo. Environmental Monitoring with Arduino.

(Maker Media). 2012. ISBN 978-1449310561
• Simon Monk. Programming Arduino: Getting Started with Sketches. McGraw-Hill.

2011. ISBN 978-0071784221
• Jonathan Oxer and Hugh Blemings. Practical Arduino. Apress. 2009. ISBN

978-1430224778

AVR
• Timothy Margush. Some Assembly Required. CRC Press. 2011. ISBN

978-1439820643

581

• Elliot Williams. Make: AVR Programming. Maker Media. 2014. ISBN
978-1449355784

C and C++ Programming
• Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice

Hall. 1988. ISBN 978-0131103627
• K. N. King. C Programming: A Modern Approach. Norton. 1996. ISBN

978-0393969450
• Stanley Lippman. C++ Primer. Addison-Wesley. 2012. ISBN 978-0321714114
• Stephen Prata. C++ Primer Plus. Addison-Wesley. 2011. ISBN 978-0321776402

General Electronics
• Analog Devices. Data Conversion Handbook. Newnes. 2004. ISBN

978-0750678414
• Howard Berlin. The 555 Timer Applications Sourcebook. Howard W. Sams. 1976.

ISBN 978-0672215381
• Richard Dorf (Ed.) The Electrical Engineering Handbook. CRC Press LLC. 1997.

ISBN 978-0849385741
• Allan Hambley. Electronics, 2nd Edition. Prentice Hall, 1999. ISBN

978-0136919827
• Paul Horowitz and Winfield Hill. The Art of Electronics, 2nd Edition. Cambridge

University Press. 1989. ISBN 978-0521370950
• J. M. Hughes. Practical Electronics: Components and Techniques. O’Reilly. 2015.

ISBN 978-1449373078
• Walter G. Jung. IC Op-Amp Cookbook. Howard W. Sams. 1986. ISBN

978-0672224534
• Randy Katz. Contemporary Logic Design, 2nd Edition. Prentice Hall. 2004. ISBN

978-0201308570
• William Kleitz. Digital Electronics: A Practical Approach. Regents/Prentice Hall.

1993. ISBN 978-0132102870
• Charles Platt. Make: Electronics. Maker Media. 2009. 978-0596153748
• Arthur Williams and Fred Taylor. Electronic Filter Design Handbook, 4th Edition.

McGraw-Hill. 2006. ISBN 978-0071471718

582 | Appendix D: Recommended Reading

Interfaces
• Jan Axelson. Parallel Port Complete. Lakeview Research LLC. 2000. ISBN

978-0965081917
• Jan Axelson. Serial Port Complete. Lakeview Research LLC. 2007. ISBN

978-1931448062
• Jan Axelson. USB Complete. Lakeview Research LLC. 2007. ISBN

978-1931448086
• Nick Hunn. Essentials of Short-Range Wireless. Cambridge University Press. 2010.

ISBN 978-0521760690
• Benjamin Lunt. USB: The Universal Serial Bus. CreateSpace. 2012. ISBN

978-1468151985
• Charles E. Spurgeon and Joann Zimmerman. Ethernet: The Definitive Guide, 2nd

Edition. O’Reilly Media, Inc. 2014. ISBN 978-1449361846

Instrumentation
• J. M. Hughes. Real World Instrumentation with Python. O’Reilly. 2010. ISBN

978-0596809560

Printed Circuit Boards
• Jan Axelson. Making Printed Circuit Boards. Tab Books. 1993. ISBN

978-0830639519
• Simon Monk. Fritzing for Inventors. McGraw-Hill. 2016. ISBN 978-0071844635
• Simon Monk. Make Your Own PCBs with Eagle. McGraw-Hill. 2014. ISBN

978-0071819251
• Matthew Scarpino. Designing Circuit Boards with EAGLE. Prentice Hall. 2014.

ISBN 978-0133819991

Recommended Reading | 583

APPENDIX E

Arduino and AVR Software
Development Tools

This book has focused primarily on the Arduino IDE and the AVR-GCC toolchain,
but those aren’t the only tools available, by any means. There are many different tools
for assembling, compiling, linking, and loading executable code into an AVR MCU.
Some are open source, others are commercial, and some are more capable and pol‐
ished than others.

Compilers/Assemblers
Atmel AVR Toolchain for Windows

An open source suite of tools, including an assembler, ported to Windows.
Includes both GNU-licensed software and tools developed by Atmel.

AVR-GCC
A full suite of toolchain components for cross-compiling AVR executable code
from C or C++ sources. See Chapter 6 for an overview.

SDCC
An open source ANSI C compiler targeted for a variety of microcontrollers.

WinAVR
An open source ports of components from the AVR-GCC toolchain to the Win‐
dows environment. See Chapter 6 for an overview.

585

http://bit.ly/atmel-avr
http://www.nongnu.org/avr-libc
http://sdcc.sourceforge.net
http://winavr.sourceforge.net

Integrated Development Environments (IDEs)
Arduino IDE

The official IDE for Arduino hardware from the Arduino.cc team. Runs on Win‐
dows, Linux, and Mac OS X. Open source and free to download. See Chapter 5
for an overview.

Atmel Studio 7
Integrated C/C++ compiler and IDE. Free to download; for Windows 7 or later
only. See Chapter 6 for an overview.

Eclipse Plugin
An open source AVR-oriented plug-in for the popular Eclipse open source IDE.
Eclipse is Java-based and runs on Windows, Linux, and Mac OS X.

IAR Embedded Workbench
Highly integrated suite of proprietary tools. License pricing by quotation, trial
version available (30 days). Windows only.

MikroElektronika mikroC
Commercial ANSI C compiler with IDE. Single-user license is $249; for Win‐
dows XP and later.

ImageCraft JumpStart
Commercial ANSI C compiler. Based partly on GPL open source software. $249
for a “standard” license for Windows. License dongle available.

Rowley CrossWorks
Commercial multiplatform ANSI C compiler with IDE. License cost varies from
$150 to $2,250, depending on use of the product. Will run on Windows, Mac OS
X, and Linux.

Programming Tools
PlatformIO

Command line–based AVR-GCC toolchain interface for Windows, Linux, and
Mac OS X. See Chapter 6 for a brief description.

Ino
Command line–based AVR-GCC toolchain interface for Linux and Mac OS X.
See Chapter 6 for a brief description.

586 | Appendix E: Arduino and AVR Software Development Tools

https://www.arduino.cc
http://bit.ly/atmel-studio-7
http://bit.ly/avr-eclipse
https://eclipse.org
http://bit.ly/iar-workbench
http://www.mikroe.com/mikroc/avr
https://www.imagecraft.com/devtools_AVR.html
http://www.rowley.co.uk/avr
http://platformio.org
http://inotool.org

Simulators
AMC VMLAB

Freeware graphical AVR simulator for Windows.

GNU AVR Simulator
Open source AVR simulator with Motif-based graphical interface. Runs on
Linux/Unix.

Labcenter Proteus
Novel schematic capture–based AVR simulator. Full graphical interface. Licenses
start at $248. Windows only.

OshonSoft AVR Simulator
Graphical AVR simulator with optional add-on modules. Personal license is $32.

SimulAVR
Open source command line–based AVR simulator for Linux/Unix systems.

Arduino and AVR Software Development Tools | 587

http://www.amctools.com/vmlab.htm
http://sourceforge.net/projects/avr
http://www.labcenter.com/products/vsm/avr.cfm
http://www.oshonsoft.com/avr.html
http://www.nongnu.org/simulavr

Index

Symbols
(hash symbol), indicating comments, 117
16-bit timer/counters, 21
315/433 MHz RF modules, 332
32-bit AVR processors, 17
3D printers

SainSmart RAMPS 1.4 RepRap shield for,
272

555 timers, 350
8-bit RISC microcontrollers, 14

(see also AVR family of microcontrollers)
8-bit timer/counters, 19

A
AC (alternating current)

high-voltage AC control circuits, 478
ratings for relay shields, 230

accelerometers, 327
acceptance testing, 364

GreenShield custom shield, 397
in Switchinator project, 427

access point names (APNs), 180
actions

in makefiles, 139
mapping to relays, 377

actuators, 2
on Esplora board, 207

AD9850 DDS chip, 433
AD9850-based DDS module, 343

for programmable signal generator, 439
output frequency, 457
passing calibration coefficient to, 456

Adafruit
Arduino-compatible GSM shields, 174

WiFi shield, 202
Adafruit 16-Channel 12-bit PWM/Servo

Shield, 255
Adafruit 2.8" TFT Touch Shield, 263
Adafruit Data Logging Shield, 264
Adafruit DIY Shield Kit, 253
Adafruit LCD Shield Kit, 261
Adafruit Mega Proto Shield, 251
Adafruit Patch Shield, 232
Adafruit Proto-ScrewShield (Wingshield), 268
Adafruit Stackable R3 Proto Shield, 250
Adafruit Ultimate GPS Logger Shield, 264
adapter shields, 266
ADCs (see analog-to-digital converters)
add-on boards, vendors of, 576
air conditioning (A/C), 473

(see also HVAC systems)
humidity and, 475

Amazon, 579
analog comparator (AVR microcontrollers), 21

ATmega1280/2560 inputs, 42
ATmega168/328 inputs, 34
ATmega32U4 inputs, 53

analog inputs
ATmega1280/2560 microcontrollers, 43
ATmega168/328 microcontrollers, 34
ATmega32U4 microcontrollers, 53
GreenShield project, 375

reading data from, 383
testing, 398

on AVR MCU, using as digital I/O pins, 482
Switchinator project, 402, 403, 405, 411

analog joysticks, 344
analog signal outputs, 342

589

analog-to-digital converters (ADCs), 13, 264
in AVR microcontrollers, 22

APC220 wireless modules, 332
APNs (access point names), 180
app directory, 119
applications for Arduino, 11
Arduino

applications of, 10
Arduino-compatible devices, 7

hardware, 7
software, 8

AVR microcontrollers specific to, 31-62
books about, 581
brief history, 1
custom Arduino-compatible designs, 400

programming, 401
devices, types of, 2
naming convention, 10
official website, 12
various types of boards, past and present, 4

Arduino and compatible products vendors,
575-579
Arduino products, 575
CAE software tools, 576
electronics software, 576
hardware, components, and tools

discount and surplus electronics, 577
electronic component manufacturers,

577
electronic enclosures and chassis, 578
electronics distibutors (USA), 577
mechanical parts and hardware, 578
test equipment, 578
tools, 578

hardware-compatible boards and shields,
575

other sources, 579
PCB layout tools, 576
printed circuit board supplies and fabrica‐

tors, 579
sensors, add-on boards, and modules, 576

Arduino boards, 4-7
Arduino IDE versions and, 94
baseline layout, 5
bootloaders, 92
designing a custom shield for, physical con‐

siderations, 366
features and capabilities, 63
inverted, 365

Mega layout, 6
mounting a shield on, 217
physical dimensions, 66-73

comparison of Arduino and clone
boards, 66

full-size baseline PCB types, 67
mega form-factor PCB types, 68
small form-factor PCB types, 69
special-purpose PCB types, 73

pinout configurations, 73-87
extended baseline pin layout, 76
Mega pin layout, 81
nonstandard layouts, 83-87

runtime support code specific to, 106
shields employing TWI or I2C interface,

216
small form factor, 6
smart thermostat prototype, 489
TWI pins, 205
USB interfaces, 64-66
using an Arduino as a programmer for

another Arduino, 154
Arduino Ethernet Shield R3 with microSD

Connector, 240
Arduino IDE, 2, 89, 94-98

alternatives to, 121-125
configuring, 96
cross-compiling with, 98-112

Arduino executable image, 101
Arduino software architecture, 104
Arduino software build process, 101
constants, 110
global variables, 111
runtime support, main() function, 106
sketch tabs, 103

installation package, installing AVR-GCC
toolchain, 125

installing, 95
latest version (1.6.4), 94
libraries, 112

adding, 116-118
custom, creating for use with, 118
included with the IDE, 112, 158-211

Arduino Motor Shield, 254
Arduino Nano I/O Expansion Board, 267
Arduino Playground

DC adapters, information on, 466
DHT11 library, 383
DS1302 RTC module, library for, 493

590 | Index

libraries for smart thermostat, 495
Arduino Robot, 3
Arduino USB Host Shield, 243
Arduino Wireless SD Shield, 244
arduino-mk utility, 138
Arduino.cc (main website), 12

latest Arduino IDE version, 95
Yún board, information on, 3

Arduinoese, 98
ASCII hex files, 133
assemblers, 585
assembly (final)

signal generator, 460-466
chassis components, 462
DC power input, 465
input protection, 461
pull-up resistor array, 460

smart thermostat, 498
assembly language (AVR), 140-146

creating programs, 143
information resources, 146

ATmega microcontrollers, 31
and Arduino boards timeline, 3
electrical characteristics, 29
internal architecture, 14
use of external memory, 10

ATmega1280/2560 microcontrollers, 39-49, 68
analog comparator inputs, 42
analog inputs, 43
Arduino pin assignments, 46
control registers, 557-566
electrical characteristics, 49
external interrupts, 46
features, 41
memory, 39
packages, 41
pin functions, 42
ports, 42
serial interfaces, 44
timer/clock I/O, 45

ATmega168/328 microcontrollers, 3, 32-38
analog comparator inputs, 34
analog inputs, 34
Arduino pin assignments, 38
ATmega168 ADC input channels, 23
ATmega168 interrupts, 27
ATmega168 peripheral functions, 18
ATmega168 serial I/O, 24
ATmega328 AVR MCU, 403

ATmega328 on Arduino boards, 3
ATmega328 on Arduino Ethernet boards, 78
ATmega328 with Arduino booloader

included, 401
control registers, 549-557
electrical characteristics), 38
external interrupts, 37
features, 32
memory, 32
packages, 34
pin functions, 34
ports, 34
serial interfaces, 35
timer/counter I/O, 36

ATmega16U2 processors
ICSP interface, 67
USB interface, 65

ATmega32U4 microcontrollers, 3, 3, 49-60
analog comparator inputs, 53
analog inputs, 53
Arduino pin assignments, 59, 81
control registers, 566-573
electrical characteristics, 58
external interrupts, 56
features, 51
memory, 49
packages, 51
pin functions, 52
ports, 51
serial interfaces, 54
timer/clock I/O, 55
uploading program code, 92
USB 2.0 interface, 57, 64

ATmega649 AVR parts, 17
Atmel, 2

(see also AVR family of microcontrollers)
AVR-GCC toolchain for Windows, 129

Atmel documentation site
documentation for AVR MCUs, 13
technical documents on AVR ATmega con‐

trol registers, 549
atoi() (ASCII-to-integer) function, 133
audio sensors, 319
auto-changeover (heating/cooling systems), 476
automobiles, bells and whistles in, 518
AVR CPU, 13

on 8-bit AVR devices, block diagram, 15
AVR emulators, 91
AVR family of 8-bit microcontroller devices, 1

Index | 591

AVR family of microcontrollers, 13-29
analog comparator, 21
analog-to-digital converter, 22
Arduino bootloader pre-installed, 401
Arduino-specific, 31-62

Arduino pin assignments, 38
ATmega1280/2560, 39-49
ATmega168/328, 32-38
ATmega32U4, 49-60
fuse bits, 60-62
more information on, 62

assembly language programming, 140-146
Atmega control registers, 549-573
Atmel documentation site, 13
background, 14
books on, 581
bootloaders, 92
electrical characteristics, 29
internal architecture, 14
internal memory, 17
interrupts, 26
loading executable code directly into, 103
peripheral functions, 17

16-bit timer/counters, 21
8-bit timer-counters, 19
control registers, 18
digital I/O ports, 18
timer/counter prescaler, 21

serial I/O, 24
SPI, 25
TWI, 25
USART, 24

speed and capabilities of, 10
watchdog timer (WDT), 29

avr-ar, 133
avr-as (assembler), 131, 133, 146
avr-g++ compiler, 126, 131

compiling with, 137
avr-gcc compiler, 98, 126, 131

compiling with, 137
AVR-GCC library, 2
AVR-GCC toolchain, 98, 125-137

avr-gcc, 131
avr-libc, 135
binutils, 132
compilation of object files, 102
installing, 127-130

on Linux, 129
on Mac OS X, 129

on Windows, 128
with Arduino IDE installation package,

125
make, 130

avr-ld linker, 126, 133
avr-libc, 99, 106, 127, 135, 146

AVR-specific inlude files provided, 135
home page, 137
include files available with, 135
utility and compatibility include files, 136

avr-objcopy, 103, 133
conversion of executable binary image to

ASCII hex file, 148
avr-ranlib, 132, 134
AVR32 series of parts, 17
AVRDUDE utility, 103, 125, 152

command-line switches, 153

B
bang-bang controllers, 474
Banzi, Massimo (blog), 10
barometric pressure sensors, 317
baseline Arduino form factor, 67

boards with shields that employ TWI or I2C
interface, 216

pin layouts, custom shields and, 365
baseline Arduino pin layout, 73
bells and whistles, 518
bicolor LEDs, 335
binary files (executable), 103
binding posts, 524
binutils programs

for AVR-GCC toolchain, 128
GNU, 132

binutils-avr package, 132
bit state buffer (Switchinator outpput), 423
Bluetooth shields, 241

use of UART, 216
boards, 1

(see also Arduino boards; PCBs)
Arduino family of, 2
Arduino hardware-compatible, 7
Arduino software-compatible, 8
Arduino-compatible, creating, 359
hardware-compatible boards and shields,

575
past and present, types of, 4

baseline layout, 4
PCBs, creating, 359

592 | Index

supported by PlatformIO, 122
timeline of Arduino products, 3
types of Arduino boards, 2

Boarduino (Adafruit), 9
BODLEVEL fuse bit, 62
bolts, 578
books, 581-11

on Arduino, 581
on AVR, 581
on C and C++ programming, 582
on general electronics, 582
on instrumentation, 583
on interfaces, 583
on printed circuit boards, 583

bootloaders, 7, 8, 92
installing in AVR MCU, 401
operating, 154
programming with, 148
replacing, 156

breadboards
Arduino Nano on solderless breadboard, 4
origin of term, 521

brown-out detection (BODLEVEL fuse bit), 62
Bud Industries IP-6130 enclosure, 437
build directory, 119
build or buy decisions, 517
burglar alarm example, 107-110
buzzers, 342

C
C and C++, 89

++ functions in Libc for AVR, 135
.h (header) files, 102
avr-gcc and avr-g++ compilers for, 126
building programs from scratch, 137-140
C runtime libraries, avr-libc, 127
C++ classes, 118
C++ source files, 157
const statement in C++, 449
exceptions and templates in C++, 100
GCC as translator for C-like languages, 131
new and delete operators in C++, 99
new operator in C++, 448
programming, books on, 582
runtime libraries on Windows, 106
source code, 91
support by AVR-GCC compiler suite, 103
use in AVR-GCC toolchain and Arduino

IDE, 98

C and C++;
.c and .cpp file extensions, 101

auxilary files, 103
source module for libraries, 118
support by Ino, 124

CAE software tools, 576
calibration coefficient, passing to AD9850-

based DDS module, 456
CAN (Controller Area Network) shields, 246
changes during development, 363
chassis components (signal generator), assem‐

bling, 462
chassis, vendors of, 578
Circuits@Home USB Host Shield, 243
classes

Arduino IDE support for, 100
C++, 118

Clear Timer on Compare (CTC) mode (timer/
counters), 20

Client class, 166
WiFiClient class, 204

clock inputs (external), 8-bit AVR timer/coun‐
ters, 21

clocks, 348
AVR Clock Control Unit, 60
clock source selections using CKSEL fuse

bits, 61
configuring Switchinator MCU to use 16

MHz crystal, 418
DS1302 RTC module, 348
DS1307 RTC module, 348
DS3231 RTC module, 349
PCF8563 RTC module, 350
Switchinator MCU, 410

command-line switches, 131
command-response protocol

GreenShield custom shield, 375
Switchinator project, 413

comments
in AVR assembly language, 143
indicated by # (hash symbol), 117

commercial off-the-shelf (COTS) components
or modules, 517

communication modules, 332-334
315/433 MHz RF modules, 332
APC220 wireless module, 332
ESP8266 transceiver module, 333
NRF24L01 RF transceiver module, 334
RS-232 adapter, 334

Index | 593

communication shields, 237
Bluetooth, 241
CAN (Controller Area Network), 246
Ethernet, 239
serial I/O and MIDI, 237
USB host, 243
ZigBee, 244

compasses, 324
magnetometer compass module, 324

compilation
compiling with avr-gcc or avr-g++, 137
cross-compiling for microcontrollers, 90-91
source code in Arduino IDE, 102
steps in process, 131

compiler switches, 103
compilers, 585

avr-gcc and avr-g++, 126
gcc, 126

components, 275
(see also modules and I/O components)
commercial-off-the-shelf (COTS), 517
custom, creating, 357-429

custom Arduino-compatible designs,
400

custom shields, 365-369
getting started, 360-365
GreenShield custom shield, 369-400
information resources, 359, 428
Switchinator project, 401-428

electronic component manufacturers, 577
sources for, 429

computer mouse (old-style), use of ball and
rotary encoders, 330

conditional preprocessor statements, 131
configuration files

AVRDUDE -C switch, 153
PlatformIO, 122

connections, 351-355
building custom connectors, 352
choosing a connection method, 354
module connection systems, 351
naked jumper wires, working with, 351

connectors
building custom connectors, 352
crimping tools for, 539
no standardization across manufacturers,

352
const statements, 449
constants

defined in GreenShield source code, 389
defining in Arduino sketches, 110

contact and position sensors, 327-331
contact switches, 328
digital rotary encoders, 329
laser transmitter/receivers, 331

continuity test circuits for model rockets, 524
control inputs and modes (signal generator),

441
changing current control mode, 455
control voltage (CV), 442
debounce code for switch inputs, 453
frequency mode, 442
gate mode, 442
pull-up resistor array for control switch

input, 460
scanning pushbutton switches for input, 455
testing the software, 459

control interface (Switchinator), 402
control output (smart thermostat), 488
control output to DDS module (signal genera‐

tor), 453
control panel layout (rocket launcher), 528
control registers, 18, 549

(see also individual listings for ATmega
microcontrollers)

interrupt responses and, 27
Controller Area Network (CAN or CAN bus),

246
controllers

heat/cool/fan control in smart thermostat,
484

hysteresis, 474
conversion, binary file into Intel hex format,

103
correct, safe, and reliable, differences between,

364
cost

cost analysis for model rocket launcher, 533
in meeting objectives, 511
simpler components versus bells and whis‐

tles, 518
counters, 20

(see also timer/counters)
CPUs (AVR), 13, 14
crimped terminals, 353
crimping tools, 353, 539
cross-compiling, 90-91

AVR cross-compilation tools, 125

594 | Index

with Arduino IDE, 98-112
CrossPack development environment, 130
current

exceeding safe voltage for AVR MCUs, 11
for power-hungry output devices, 279

CuteDigi 16-channel I/O expander shield, 227
CuteDigi Assembled Protoshield for Arduino,

251
CuteDigi Assembled Protoshield for Arduino

MEGA, 251
CuteDigi Protoshield for Arduino with Mini

Breadboard, 251
CuteDigi RS-485 Shield, 238
CuteDigi RS232 Shield, 237
CuteDigi Sensor Expansion Shield, 226
cutters, 536
CV (control voltage) mode (signal generator

input), 442
testing, 459

cycles (HVAC system), 475
adjustable cycle times, 476
factors affecting cycling frequency, 475

D
DAC modules, 342
DACs (digital-to-analog converters), 24, 265,

432
dates and time

DateTime library, 212
setting in smart thermostat RTC, 497

daytime profile, 488
DB-9 connectors, 417
DC adapters, running Arduino without USB

connected, 466
DC motor controls, 340
DC motors

controller shields, 254
DC power input (signal generator), 465
DC-barrel type connector, 405
DDS (direct digital synthesis)

AD9850 chip, 433
AD9850-based DDS module, 343
DDS data in signal generator code, 453
DDS module for signal generator

library for, 456
pinout, 439
prototype, 444
prototype shield, 444
prototype shield, connecting, 460

DDS class, 456
DealeXtreme Bluetooth Shield, 241
DealeXtreme DIY Multifunction Shield, 268
debounce() function, 455
debugging AVR MCUs, JTAG tool, 151
#define statements, 102

for constants in Arduino sketches, 110
in GreenShield source code, 389
using to reference numeric values, 449

defining functional requirements for projects,
360

definition and planning phase in projects
GreenShield custom shield, 370
programmable signal generator, 434
smart thermostat project, 477
Switchinator project, 402

delete operator, 99
design cycle, 506
design phase in projects, 362

programmable signal generator, 435-437
enclosure, 437
functionality, 436
schematic, 438

smart thermostat project, 478
control output, 488
functionality, 478
schematic, 482
software, 482
user input/output, 485

Switchinator, 403-416
functionality, 403
hardware, 404-411
software, 412-416

design study (see model rocket launcher, design
study)

development host, 90
development tools, 585

compilers/assemblers, 585
IDEs (integrated development environ‐

ments), 586
programming tools, 586
simulators, 587

DFRobot Gravity:IO Expansion Shield, 241
DFRobot LCD Keypad Shield, 260
DFRobot Relay Shield, 230
DFRobot Screw ProtoShield, 268
DHT11 and DHT22 temperature and humidity

sensors, 313, 379
DHT11 open source library, 383

Index | 595

DHT22 sensor in smart thermostat, 491
functionality for, 494
second sensor, 502

Diecimila boards, 2
baseline pin layout, 74
physical layout, 67

diff utility, 128
digital input and output

digital outputs, Switchinator, 404
MCP23017 digital I/O expander, 407

digital joysticks, 344
digital multimeter (DMM), 277
digital outputs

analog inputs, using as digital I/O pins, 428
Switchinator project, 402, 403, 405

digital rotary encoders (see rotary encoders)
digital signal processing (see DSP)
digital-to-analog converters (see DACs)
diodes, 320
DIP (dual in-line pin) surface-mount package,

17
direct digital synthesis (see DDS)
directives (AVR assembler), 145
directories

Arduino source directory structure, 119
directory structure for add-on libraries, 117

display shields, 257
7-segment LED displays, 258
LCD displays, 259
LED arrays, 257
TFT displays, 262

displays
display module in smart thermostat code,

494
graphical, 347
signal generator, 443
smart thermostat, 486

Doxygen utility, 119
Dragonfly board (Circuit Monkey), 9
drill press (miniature), 544
drills, 543
DS1302 RTC module, 348, 493
DS1307 RTC module, 348
DS18B20 temperature sensors, 312
DS3231 RTC module, 349
DSP (digital signal processing), 17
dual-axis tilt sensors, 318
Duemilanove boards, 3

baseline pin layout, 74

microcontrollers for different versions, 3
physical considerations for custom shields,

366
physical layout, 67

Duinokit, 379, 490
dynamic memory allocation, 99

problems with, 100

E
Eagle schematic capture and PCB layout tool,

359, 372, 576
GreenShield schematic, 393
PCB layout, 394

eBay, 579
Eclipse IDE, 129
editors, IDE-like, 122
EEPROM (electrically erasable programmable

read-only memory), 14, 93
EEPROM library, 159

EEPROM class, instantiating, 160
example program, 161
functions to access AVR MCU

EEPROM, 160
internal EEPROM in AVR microcontrollers,

17
EEPROM[] operator, 161
EICRA control register, 27
electrical characteristics

ATmega1280/2560 microcontrollers, 49
ATmega168/328 microcontrollers, 38
ATmega32U4 microcontrollers, 58
AVR microcontrollers, 29
of Arduino boards, 31
shields, 216

electrical considerations in custom shield
design, 369

electrical power constraints on Arduino, 11
electrical system, model rocket launcher design,

522-527
electronic component manufacturers, 577
electronics

books on general electronics, 582
discount and surplus, 577

electronics distributors (USA), 577
electronics software, vendors of, 576
#else statements, 131
emulators, 90

in-circuit emulator (ICE), 93
enclosures

596 | Index

final closing of signal generator, 466
for model rocket launcher, 527
for smart thermostat, 480, 499

mounting components in and on, 498
for thermostats, 477
mounting chassis components of signal gen‐

erator, 462
portable instrument enclosure, 434
signal generator enclosure, 437
vendors of, 578

#endif statements, 131
EPROM (erasable programmable read-only

memory), 14
UV-erasable, 93

ERC240128SBS-1 display, 347
ESP8266 transceiver module, 333
Esplora boards, 3

ATmega32U4 microcontroller, 64
physical dimensions, 73
pin functions, 86
TFT library, 198

Esplora library, 207
Ethernet

Ethernet library, 162
C++ classes, 162
EthernetClass, 163
EthernetClient class, 166
EthernetServer class, 165
EthernetUDP class, 168
GSM library compatibility with, 174
IPAddress class, 164

Ethernet boards, 78
extended baseline pin layout, 76
pin functions, 78

Ethernet shields, 239
event loops, 104
excamera Gameduino shield, 272
executable code, uploading to AVR MCUs,

146-156
executable image, 91, 101

conversion to ASCII hex file, 148
integration of external libraries with, 105

expansion shields, 226
export statements, 450
extended baseline pin layout, 76, 365
extended fuse byte, 60
extended pin connector sockets, 368
extern, declaring global objects as, 99
external interrupts (see interrupts)

F
fabrication phase in projects, 364

GreenShield custom shield, 393
Switchinator, 423

fabricators
printed circuit board, 429, 579
use of Gerber files, 395

fans
heat/cool/fan control in smart thermostat,

484
testing the fan in smart thermostat, 497
wiring in old-style thermostats, 480

Fast PWM mode (timer/counters), 21
feasibility (design), 517-519

criteria for, 518
relative assessment, 518

fgrep utility, 128
File class (SD library), 190
Fio boards, 71

pin functions, 86
Firmata library, 170

base methods, 171
callback functions, 172
message types, 173
methods, 170
receiving messages, methods for, 172
sending messages, methods for, 172

firmware, 92
present definition of, 93

555 timers, 350
flash memory, 235

in microcontrollers, 93
internal, in AVR microcontrollers, 17
lifetime, 147

FPGA (field-programmable gate array) chips,
272, 272

free() function, 100
frequencies

DDS module for signal generator, output
frequency, 457

frequency input control for signal generator,
455

signal generator output, 442, 453
Fritzing tool, 359, 576

advantages and limitations of, 423
Switchinator schematics, 405

FTDI interface chip (FT232RL), 64
full-size baseline Arduino PCB boards, 67
functional requirements, 506

Index | 597

selecting and refining in rocket launcher
design study, 510

functional requirements definition phase, 360
functions

AVR runtime library functions, 91
predefined, use by Arduino IDE, 100
prototypes for, created by Arduino IDE, 102

fuse, 92
fuse bits, 60-62, 92

low, high, and extended fuse bytes, 60
setting in Switchinator project, 418

G
Gameduino shield, 272, 272
gang programmers, 93
Gantt charts, 361
gate mode (signal generator control), 442
GCC (GNU Compiler Collection), 131

online documentation, 132
GCC compiler, 102, 126
Gemma boards

Arduino IDE support for, 94
Gerber files, 395, 425
git clone command, 119
GitHub

Arduino source code, 119
code for examples and projects, 90
libraries for smart thermostat, 495

global definitions file
in GreenShield source code, 389
in Switchinator source code, 420

global objects
creating using new operator or pointers, 450
declaring as extern, 99
instantiating with new, 99

global pointers, assigning objects to, 100, 450
global variables

in Arduino sketches, 111
in GreenShield source code files, 387
in signal generator source code, 447
putting into separate source files, 104

GNU AVR Simulator, 91
GNU Compiler Collection (see AVR-GCC tool‐

chain; GCC)
GnuWin32, 129
goals (project), 433
Google, 12, 579
GPRS class, 180
GPS, Adafruit GPS data logging shield, 264

graphical displays, 347
ERC240128SBS-1 display, 347
ST7735R, 347

GreenShield custom shield, 357, 369-400
definition and planning, 370
design, 371

functionality, 372
hardware, 373
software, 375

fabrication, 393
final acceptance testing, 397
final software, 385-393

description of, 387
source code organization, 386

further development of, 400
operation, 399
project objectives, 370
prototype, 379

grep utility, 128
grinders (miniature), 543
GSM library, 174-185

Ehernet library compatibility, 174
primary classes and their functions, 174

GPRS class, 180
GSM class, 177
GSMBand class, 185
GSMClient class, 180
GSMModem class, 183
GSMPIN class, 184
GSMScanner class, 183
GSMServer class, 182
GSMVoiceCall class, 177
GSM_SMS class, 179

GT commands, 377
GUIs (graphical user interfaces)

software complexity and interface bloat, 446
gyroscopes, 326

H
.h (header) files, 102

#include statements and, 131
include files for libraries, 118
tab files, 103

H-bridges, 254, 340
hacksaws, 542
hadware directory, 119
Hall effect sensors, 324
hand tools (see tools and accessories)
hardware

598 | Index

Arduino hardware-compatible devices, 7
assessing to fill functional requirements, 506
core hardware, Switchinator, 402
GreenShield custom shield, 373
hardware-compatible boards and shields,

vendors of, 575
Switchinator project, 404-411

MCP23S17 digital I/O expander,
407-410

parts list, 411
Harvard architecture 8-bit RISC microcontrol‐

lers, 14
HD44780 display, 346
headers (connection), 353

pin socket headers on Nano interface
adapter PCB, 366

heating, ventilation, and air conditioning sys‐
tems (see HVAC systems)

hex files (ASCII), 133
hexadecimal numbers, 414

math with, 415
special values or magic numbers, 414

high fuse byte, 60
HobbyLab Logic Analyzer and Signal Genera‐

tor Shield, 264
humidity sensors

DHT11 and DHT22 sensors, 313
testing humidity readings, GreenShield pro‐

totype, 384
humidity, and heat retention of air, 475
HVAC systems

closed-loop circulation systems, 473
cycles, 475
high-voltage AC control circuits, 478
overview, 472
smart temperature control, 476
temperature control, 473

hysteresis, 474
altering to adjust cycle time, 476
effect of, 475
effect on control system response, 484

hysteresis band, 474
setting for smart thermostat, 497

hysteresis controllers, 474
in smart thermostat project, 484

I
I2C standard, 24

Adafruit LCD shield kit using I2C interface,
261

AVR TWI (I2C), 26
communications with I2C-type devices, 205
PWM/servo shield using I2C interface, 255
shields that employ, 216
TWI/I2C interface, shields using, 216
use in I/O expansion shields, 226
Wire library, supporting TWI/I2C, 159

ICSP (In-Circuit Serial Programming) inter‐
face, 67

IDEs (integrated development environments),
1, 586

#if, #ifdef, #ifndef, and #define statements in
Arduino source code, 119

#ifdef statements, 131
igniters for model rockets, 522

connecting to launch controller, 524
igniter continuity check circuits, 524

impact sensors, 325
in-circuit emulator (ICE), 93
In-System Programming interface (AVR

MCUs), 147
ISP (ICSP) programmers, 401
using Arduino as an ISP, 154

include files, 103
for libraries, 118, 118

#include statements, 101, 131
for library incorporated into a sketch, 113
in GreenShield source code, 389
new operator and, 448
sketch tab files with .h extension, 103

inertial management units (IMUs), 325
init() function, 106
initVariant() function, 106
Ino, 124
.ino file extension, 100

support by Ino, 124
input protection module (signal generator), 461
input/output (I/O)

digital I/O ports in AVR microcontrollers,
18

I/O components, 275
I/O expanders, 519
I/O functions of AVR microcontrollers, 14
I/O modules, 275
output devices and components, 334-343
programmable signal generator, 434
shields, 221

Index | 599

I/O expansion shields, 226
I/O extension shields, 222

Switchinator inputs and outputs, 402, 404
system I/O clock, taps, 21

input/output (i/O)
discrete digital I/O ports on tinyAVR parts,

17
instruction processing (AVR MCUs), 142
instrumentation shields, 263
instrumentation, book about, 583
integers, int declarations for constant values,

110
Intel hex format, 103, 133
interfaces

modules, 277
interfaces, books on, 583
internal architecture (AVR MCUs), 14
interrupts, 26

16-bit timer/counters, 21
ATmega1280/2560 microcontrollers, 46
ATmega168 microcontroller, 27
ATmega168/328 microcontrollers, 37
ATmega32U4 inputs, 56
AVR interrupt vectors (ATmega168/328), 27
in model rocket launcher design, 530
occurring while loop() executes, 107

Iowa Scaled Engineering 16-Channel 24-Bit
ADC Shield, 265

IPAddress class
in Ethernet library, 164
in WiFi library, 203

ITEAD 2.4" TFT LCD Touch Shield, 262
ITEAD Bluetooth Wireless BT Module Shield

Kit, 241
ITEAD USB Host Shield, 243

J
jack screws, 219
jeweler's saw, 542
joysticks, 344
JTAG (Joint Test Action Group), 151
jump instruction (RJMP), 27
jumper wires

connectors versus, 352
using naked jumper wires for connections,

351

K
Keyboard library, 210

Keyboard class functions, 210
keyboard modifier keys, 210
KEYES modules

commonly available I/O modules, 285
descriptions of, 288-298
kits, 503
KY-040 module, 491

keypads, 343
keywords (AVR assembler), 145
keywords.txt file, 117
kits, PCB kit sources, 579

L
labels, printing and applying to signal generator

components, 464
laser transmitter/receivers, 331
lasers, 338
LCDs

ERC240128SBS-1 display, 347
ERM1601SBS-2 display, 345
LCD display handling functions, smart ther‐

mostat, 494
LCD module, model rocket launcher, 532
LCD module, programmable signal genera‐

tor
mounting of, 464
pinout, 439

LCD shield in smart thermostat, 478, 486
prototype, 493

LCD shields, 259
LCD shields with pushbuttons, 467
other types of graphical/nongraphical dis‐

plays, 346
programmable signal generator

operation display layout, 443
ST7066 (HD44780), 346
TFT LCD displays, 262

LED arrays, 257
LED object sensors, 331
LEDs, 335

7-segment LED displays, 258, 337
bicolor, 335
igniter continuity indicators and igniter

select indicators, 525
LED matrix, 337
single-color, 335
tricolor (RGB), 335

Leonardo boards, 3
ATmega32U4 microcontroller, 64

600 | Index

Atmega32U4 pins, 79
extended baseline pin layout, 76
physical layout, 67
pin functions, 79

libraries, 112-119, 157-213
adding to Arduino IDE, 116-118

automatic method, 116
manual method, 116

contributed, 211-213
custom, creating, 118
DDS library, signal generator code, 456
DS1302 RTC module, 493
Ethernet, 162
external libraries used with smart thermo‐

stat, 494
external, integration with final executable

image, 105
Libraries directory, 119
linking library modules and object files, 103
supplied by Arduino IDE, 158-211

EEPROM library, 159
Ethernet library, 162
Firmata library, 170
GSM library, 174-185
LiquidCrystal, 185
SD library, 189
Servo library, 192
SoftwareSerial library, 194
SPI library, 193
Stepper library, 196
TFT library, 197
USB libraries, 210
WiFi library, 200
Wire library, 205

tabs versus, 105
using in sketches, 112-115

light sensors, 320-324
photocells, 320
photodiodes, 320
phototransistors, 322
PIR (passive infrared), 323

light sources, output devices and components,
335-338

light-dependent resistor (LDR) sensors, 370
GreenShield custom shield

calibrating light level, 399
testing LDR photocell in GreenShield pro‐

totype, 385
light-dependent resistors (LDRs), 320

LilyPad boards, 2
physical dimensions, 73
pin functions, 84

linkers, 91
avr-ld, 126

linking, 103
LinkSprite 27-Channel PWM Servo Shield, 256
LinkSprite CAN-BUS Shield, 247
Linux

Arduino definitions of new and delete oper‐
ators, 99

AVR cross-compilation tools, 125
AVR emulators, 91
Eagle tool, 372
installing Arduino IDE on, 95
installing AVR-GCC toolchain, 129
installing PlatformIO on, 122
keywords.txt files in library subdirectories,

118
OpenWrt operating system, 3
runtime libraries, 106
USBtinyISP

running Arduino IDE with, 419
LiquidCrystal library, 185
LM358 dual op amps, 379
logic analyzer shield, 264
loop() function, 102, 104

global variables and, 111
GreenShield custom shield, 387
GreenShield prototype, 383
in Arduino program structure, 104
in model rocket launcher design study, 529
in signal generator source code, 452
main activity of program sketch, 107
sketch using SoftwareSerial library, 115
smart thermostat project, 496
Switchinator project, 423

loops
for application software execution, 101
never-ending main() loop (event loop), 104

low fuse byte, 60
ls utility, 128

M
Mac OS X

installing Arduino IDE on, 96
installing AVR-GCC toolchain, 129
installing PlatformIO on, 122
runtime libraries, 106

Index | 601

Macetech Centipede Shield, 226
machine language, 91, 140
macros, predefined, use by Arduino IDE, 100
magnetic sensors, 324-324

Hall effect sensors, 324
magnetometer sensors, 324

main() function, 91, 102, 104
in Arduino program structure, 104
supplied by Arduino IDE, 106

main.cxx file, 102
make, 130

working with multiple source files, 138
makefiles, 130

creating, 138
rules, 139

malloc() function, 99, 100
manufacturers and vendors (see vendors and

manufacturers)
mapping functions

GreenShield function map scanner, 391
in GreenShield final software, 390
in GreenShield source code

relay action mapping commands, 377
relay setpoint function mapping, final

GreenShield software, 385
mask programming, 92
Massimo Banzi (blog), 10, 12
Mayhew Labs Go-Between shield, 233
Mayhew Labs Mux Shield, 235
Mayhew Labs Mux Shield II, 234
MCP23017 digital I/O expander, 407-410

accessing IODIRA and GPIOA registers,
409

writing data to output port, 410
MCP23S17 digital I/O expander, 407

SPI interface, 410
mechanical parts and hardware, vendors of, 578
Mega form-factor Arduino PCB types, 68

Mega ADK board, 69
Mega and Mega2560 boards, 68

Mega series boards
Adafruit Mega Proto shield, 251
CuteDigi prototyping shields for, 251
I/O expansion shields, 224
pin layout, 81, 365

memory
ATmega1280/2560 microcontrollers, 39
ATmega168/328 microcontrollers, 32
ATmega32U4 microcontrollers, 49

AVR MCUs, constraints, 10
dynamic allocation of, 99, 100
internal memory in AVR microcontrollers,

17
on-board flash storage, AVR microcontrol‐

lers, 14, 14
organization in Atmel AVR MCU, 142

memory shields, 235
message types (Firmata library), 173
Micro boards, 3, 72

ATmega32U4 microcontroller, 64
pin functions, 87

microcontrollers, xvii
AVR family of 8-bit microcontrollers, 1
AVR microcontrollers used in Arduino

products, 31
cross-compiling for, 90
flash memory in, 93
for board types, 3
microprocessors versus, 101
signal generation, 432

microphones, 319
microprocessors, xvii

microcontrollers versus, 101
microSD flash memory, 235

Arduino Ethernet Shield R3 with microSD
Connector, 240

Vetco Ethernet Shield with microSD Card
Reader, 240

MIDI (serial protocol), 238
Mini boards, 70

pin functions, 85
miniature boards, 70
MISO (master in, slave out), 25
mockup (model rocket launcher), 529
model rocket launcher, design study, 505-533

cost analysis, 533
creating the preliminary design, 514

feasibility assessment, 517-519
preliminary parts list, 520

design cycle, 506
final design, 522-533

electrical, 522-527
testing and operation, 532

objectives, 508
optional, 509
primary, 508
secondary, 509

overview, 505

602 | Index

physical characteristics, 527
prototype, 521
selecting and refining functional require‐

ments, 510
software, 529

modifier keys, 210
modular connectors, 276
module connection systems, 351
modules and I/O components, 275-356

commercial-off-the-shelf (COTS), 517
communication modules, 332-334
connecting, 276
connections, 351-355
descriptions of, 282-311

KEYES modules, 288-298
SainSmart modules, 299-303
TinkerKit modules, 303-308

GreenShield source code modules, 386
I/O components, 275
I/O expanders, 519
I/O modules, 275
modules, 276-311

interfaces, 277
physical form factors, 277
sensor module types and sizes, 276
shields versus, 216
vendors and manufacturers, 280
vendors of, 576

output devices and components, 334-343
sensors, 312-332
sensors and modules index, 310
sources for, 355
support functions, 347-350

clocks, 348
timers, 350

user input, 343-345
user output, 345-347

Molex-type connectors, 9
MOSI (master out, slave in), 25
motion control shields, 253

DC and stepper motor control, 254
PWM and servo control, 255

motion sensors, 325-327
accelerometers, 327
gyroscopes, 326

motor controller shields, 254
motor driver modules, 272
motors, 339

DC motor control, 340

stepper motor control, 341
Mouse library, 210
Mouser, 286, 579
multifunction shields, 268

N
naming convention, Arduino and trademarked

logo, 10
Nano boards, 2, 71

adapter shields, 266
in smart thermostat project, 478, 499
interface adapter PCB, 366
pin functions, 84
size and applications for, 4

negative temperature coefficient (NTC) ther‐
mistors, 314

new operator, 99, 448
executables and compiled build size, 100
instantiating global objects, 99, 450
instanting class objects, 99

Newark/Element14, 286
night time profile, 488
Nokia LCD5110 Module with SD, 262
nonstandard pin layout boards, 83-87
Normal mode (timer/counters), 20
normal operation screens (smart thermostat),

486
NRF24L01 module, 334
Numato Digital and Analog IO Expander

Shield, 228
Numato Relay Shield, 231
nuts, 578

O
.o and .obj file extensions, 91
OBD-II on-board diagnostics, 246
object code, 91
object files, 102

linking, 103
produced by AVR-GCC toolchain, 127

object libraries, 91
objectives, 433, 506

in model rocket launcher design study, 508
optional objectives, 509
primary objectives, 508
secondary objectives, 509
using to define functional requirements,

510
objects

Index | 603

instantiating class objects with new, 99
instantiating global objects with new, 99

octal numbers, 413
math with, 415
special values or magic numbers, 414

on-board bootloader firmware, 2
one-time programmable (OTP) parts, 93
OpenWrt operating system, 3
operating systems

installing AVR-GCC toolchain, 128
oscilloscopes, 457
output devices and components, 334-343

analog signal outputs, 342
buzzers, 342
DAC modules, 342
DC motor control, 340
light sources, 335-338

7-segment LED displays, 337
bicolor LEDs, 335
lasers, 338
LED matrix, 337
single-color LEDs, 335
tricolor (RGB) LEDs, 335

relays, 339
servo control, 339
stepper motor control, 341
waveform generators, 343

P
package types

ATmega1280/2560 microcontrollers, 41
ATmega168/328 microcontrollers, 34
ATmega32U4 microcontrollers, 51

ParseCmd() function (GreenShield), 392
passive infrared sensors (see PIR sensors)
PCBs (printed circuit boards)

books on, 583
creating, tools for, 359
fabricators, 429
GreenSheld PCB, fully populated, 396
layout tools, 576
PCB layout for GreenShield, 394
supplies and fabricators, 579

kit sources, 579
prototype fast-turnaround fabricators,

579
PCF8563 RTC module, 350
PCI0 interrupts, 27
.pde files, 124

peripheral functions (AVR microcontrollers),
13, 14, 17
8-bit timer/counters, 19
Atmel documentation, 62
control registers, 18
digital I/O ports, 18
timer/counter prescaler, 21

Phase Correct PWM mode (timer/counters), 21
photocells, 320
photodiodes, 320
phototransistors, 322
PImage class, 199
pin change interrupts, 27, 194
pin connector sockets, extended, 368
PIN diodes, 320
pin functions

analog inputs, using as digital I/O pins, 482
Arduino Ethernet board, 78
Arduino labels for Atmega168/328 pins, 38
Arduino Mega series boards, 81
Arduino pin usage and custom shield

design, 369
ATmega1280/2560 microcontrollers, 42

analog comparator inputs, 42
analog inputs, 43
Arduino pin assignments, 46
interrupts, 46
serial interfaces, 44
timer/clock I/O, 45

ATmega168 peripheral functions, 18
ATmega168/328 microcontrollers

ADC input pins, 34
analog comparator input, 34
Arduino pin assignments, 75
ATmega168 peripheral functions, 18
DIP package, 34
interrupt input pins, 37
serial I/O, 35
timer/counter, 36

ATmega32U4 microcontrollers, 52
analog comparator inputs, 53
Arduino pin assignments, 59
timer/clock I/O, 55
USB 2.0 interface, 57

CuteDigi 16-channel I/O expander shield,
228

GreenShield Arduino pin usage, 374
Leonardo boards, 79
multifunction shield, 271

604 | Index

shields using SPI interface, 216
shields using TWI or I2C interface, 216
shields using UART, 216
signal generator Arduino pin usage, 438
standard baseline Arduino boards, 74
Switchinator MCU pin usage, 411
TWI pins on Arduino boards, 205
Uno R3 boards, 76

pin socket headers
added to Nano interface adapter PCB, 366
nomenclature for, 38

pin sockets, 63
pinout configurations

baseline Arduino pin layout, 74
baseline, extended, and Mega pin layouts,

365
DDS AD9850 module, 439
extended baseline pin layout, 76
for modules, 277
LCD module, programmable signal genera‐

tor, 439
Mega pin layout boards, 81
nonstandard pin layout boards, 83-87
signal generator, 457

pins, 63
pip tool

using to install Ino, 124
using to install PlatformIO, 122

PIR (passive infrared) sensors, 323
planning phase in projects, 361
PlatformIO, 121
pliers, 536
Pocket AVR Programmer, 150
pointers, 99

global, assigning objects to, 100, 450
executable build size and, 100

port-change interrupts, 27
ports

ATmega1280/2560 microcontrollers, 42
ATmega168/328 microcontrollers, 34
ATmega32U4 microcontrollers, 51
port argument, EthernetServer(), 165

position sensors, 327
positive temperature coefficient (PTC) thermis‐

tors, 314
potentiometers, 345

on DDS module PCB in signal generator,
460

power consumption, 49

(see also electrical characteristics)
ATmega168/328 microcontrollers, 38

power supply, refinements in Duemilanove
board, 3

power tools, 543
Preferences dialog (Arduino IDE), 96
preferences.txt file, 96
preliminary design (rocket launcher), 514-520

build or buy decisions, 517
design feasibility, 517-519
preliminary parts list, 520

preprocessing (in compilation), 131
prescaler (timer/counter), 21
print() method (SoftwareSerial library), 115
printf() function

enabling in Arduino functions, 115
println() method (SoftwareSerial library), 115
Pro Mini boards, 70

pin functions, 85
processors, xvii

core Arduino, 8
profile scheduling, 476

in smart thermostat project, 483
displaying information on, 486
profile editing screen, 487

testing for smart thermostat, 498
programmable signal generator (see signal gen‐

erator, programmable)
programming Arduino and AVR microcontrol‐

lers, 89-119
Arduino IDE, 94
Arduino source code, 119
bootloaders, 92
cross-compiling for microcontrollers, 90
libraries, 112-119
without Arduino IDE, 121-156

AVR assembly language, 140-146
AVR toolchain, 125-137
building C and C++ programs from

scratch, 137-140
IDE alternatives, 121-125
uploading executable code to AVR,

146-156
programming tools, 586
prototypes, 508

building for projects, 363
fast-turnaround PCB fabricators, 579
GreenShield custom shield, 379

software, 379

Index | 605

testing, 383
in design studies, 521
programmable signal generator, 441-445

control inputs and modes, 441
DDS module, 444

reasons for building, 508
smart thermostat project, 482, 489

DHT22 sensor, 491
LCD shield, 493
parts list, 491

Switchinator project, 416-420
testing, 420

prototyping platforms, 508
prototyping shields, 249

custom shield, creating, 253
pull-up resistor array (signal generator), 460
pulse width modulation (PWM)

Fast PWM mode, timer/counters, 21
Phase Correct PWM mode, timer/counters,

21
variable PWM, 16-bit timer/counters, 21

pushbuttons
for programmable signal generator inputs,

435, 438
LCD shields with, 467
on rotary encoder, smart thermostat project,

483
long and short presses, 488

PWM/servo shields, 255
Python, 583

Ino tool, 121
pip tool, 122
PlatformIO command-line tool, 122

Q
Qunqi CNC Shield for Arduino V3 Engraver,

272

R
radio frequency (RF) transceiver, NRF24L01

module, 334
range sensors, 331-332

LED object sensors, 331
ultrasonic range finders, 331

Raspduino, 9
readAnalog() function, 383
readDHT() function (GreenShield), 383
reading, recommended, 581-11
real-time clock (RTC) chips, 264

real-time clock (RTC) modules, 348-350
in smart thermostat project, 478, 493

realtime operating system (RTOS), 106
register-controlled I/O devices

MCP23017 and MCP23S17, 407
registers (AVR MCUs), 142
relay shields, 230
relays, 2, 339

GreenShield project
action mapping commands, 377
override commands, 377
setpoint commands, 377

in model rocket launcher design study
ignition safety interlock, 525

launch control, in model rocket launcher,
519

relay module in smart thermostat, 478, 488
reliable, safe, and correct, differences between,

364
RepRap 3D fabricator, 272
resistors

10K pull-up resistors, rotary encoder in
smart thermostat, 492

pull-up resistor array in signal generator,
460

reverse biased, 321
RGB LEDs, 335
RISC architecture, AVR microcontrollers, 14
RJMP (jump instruction), 27
rocket launcher (see model rocket launcher,

design study)
rotary encoders, 329, 345

in smart thermostat project, 478
rotary encoder module in prototype, 491
user input via pushbutton switch, 483

routing
with Eagle tool, 394
with Fritzing tool, 424

RS-232 adapters, 334
RS-232 and RS-485 standards (serial I/O), 237

RS-232 interface in Switchinator, 405
RS-232 interface module in Switchinator,

416
RS-232 modules, 401
RTOS (realtime operating system), 106
Rugged Motor Driver shield, 254
runtime code, 101

Arduino main() function and runtime sup‐
port, 106

606 | Index

for AVR-GCC toolchain, 127
runtime libraries, 106

avr-libc, 127

S
safe, reliable, and correct, differences between,

364
SainSmart LCD Keypad Shield, 259
SainSmart modules, 285

descriptions of, 299-303
SainSmart Motor Drive Shield, 254
SainSmart RepRap Arduino Mega Pololu

Shield, 272
SainSmart Sensor Shield, 222
SainSmart XBee Shield, 245
saws, 542
ScanMap() function (GreenShield), 390
SCK (serial clock), 25
screens and fields, navigating (smart thermo‐

stat), 488
changing between display screens, 493

Screw Terminal Shield, 267
screwdrivers, 535
screws, nuts, and bolts, vendors of, 578
SD and microSD flash memory formats, 235
SD library, 189

File class, 190
SD class, 189

Seeed Studio Bluetooth Shield, 241
Seeed Studio CAN-BUS Shield, 246
Seeed Studio Relay Shield, 232
Seeed Studio SD Card Shield, 236
Seeed Studio XBee Shield, 245
Seeed Studio, Grove modules and base interface

shields, 351
sensors, 2, 312-332

audio, 319
buying for an Arduino project, points to

consider, 356
contact and position, 327-331
GreenShield custom shield

testing prototype software for, 384
index of, 310
light, 320-324
magnetic, 324-324
motion, 325-327
on Esplora board, 207
range, 331-332
sensor modules

SainSmart, 285
types and sizes, 276

temperature, humidity, and pressure,
312-318

tilt, 318-319
vendors of, 576
vibration and shock, 324-325

serial communications
DHT11 and DHT22 sensors, 314
Firmata library, 170
SoftwareSerial library, 194

serial I/O
AVR microcontrollers, 24

SPI, 25
TWI, 25
USART, 24

shields, 237
serial interfaces

ATmega1280/2560 microcontrollers, 44
ATmega168/328 microcontrollers, 35
ATmega32U4 microcontrollers, 54

Serial library, 457
Serial Peripheral Interface (see SPI)
serial-to-USB interface chip (FTDI FT232RL),

65
Server class

EthernetServer class, 165, 165
GSMServer class, 182
WiFiServer class, 203

servo controls, 339
Servo library, 192
servos, 255, 339

PWM/servo shields, 255
setpoint (HVAC), 473
setpoint (ST) commands, 377
settings screen (smart thermostat), 487
setup() function, 102, 104

global variables and, 111
GreenShield custom shield, 387
GreenShield prototype software, 383
in Arduino program structure, 104
in signal generator code, 451
sketch using SoftwareSerial library, 115
smart thermostat project, 496
Switchinator project, 423
tasks performed by, 107

7-segment LED displays, 258, 337
7-segment LED modules, 338

shields, 2, 4, 215-274

Index | 607

adapter, 266
applications, 215
common Arduino shields

input/output (I/O), 221
common categories of Arduino shields, 220
communication, 237

Bluetooth, 241
CAN (Controller Area Network), 246
Ethernet, 239
serial I/O and MIDI, 237
USB host shields, 243
ZigBee, 244

custom, creating, 357
electrical considerations, 369
form factor considerations, 365
GreenShield, 357
keeping a notebook on, 359
physical considerations, 366
stacking shields, 367

DDS module prototype shield (in signal
generator), 444, 460

display, 257
7-segment LED displays, 258
LCD displays, 259
LED arrays, 257
TFT displays, 262

DIY multifunction shield, 268
electrical characteristics, 216
hardware-compatible, vendors of, 575
I/O expansion shields, 519
input/output (I/O)

I/O expansion shields, 226
I/O extension shields, 222

instrumentation, 263
manufacturers and vendors of, 215
memory, 235
modules versus, 216
motion control, 253

DC and stepper motor control, 254
PWM and servo control, 255

physical characteristics of, 217-219
mounting on Arduino board, 217

pin-to-pin compatibility between modules
and, 279

prototyping, 249
custom shield, creating, 253
screw terminal prototype, 499

relay, 230
signal routing, 232

stacking, 219
uncommon, 272
using UART, pins for, 216
vendors and manufacturers of, 274
wing shields, 268

shock sensors, 325
signal generator, programmable, 431-470

cost breakdown for parts, 468
definition and planning, 434

initial parts list, 435
design, 435

enclosure, 437
functionality, 436
schematic, 438

final assembly, 460-466
chassis components, 462
DC power input, 465
input protector, 461
pull-up resistor array, 460

final testing and closing, 466-466
parts sources, 469
project objectives, 433
prototype, 441-445

control inputs and modes, 441
DDS module, 444

reducing the cost, 466
signal generator kits, 431
software, 446-460

DDS library, 456
description of, 448
source code organization, 447
testing, 457

signal routing shields, 232
adapter shields versus, 266

signals
DDS prototype shield signals (in signal gen‐

erator), 445
output of programmable signal generator,

434
simavr, 91
simulators, 587
sine waves, 343

signal generator output, 458
single-axis tilt sensors, 318
single-color LEDs, 335
single-level pipelines, 142
sketch tabs, 103
/sketchbook/Libraries directory, 116
sketches, 100, 101

608 | Index

constants in, 110
global variables in, 111
intrusion alarm example, 107-110
multifile, 103
structure of, 104
using libraries in, 112-115

small form-factor boards, 3, 69
adding a shield to, 366
hardware compatibility and, 9
nonstandard pin layout, 83

SMS (Short Message Service), GSM_SMS class,
179

snap-action switches, 328
software

Arduino and AVR, development tools, 585
Arduino build process, 101
Arduino software architecure, 104
Arduino software organization, 101
Arduino-compatible devices, 8
assessing to fill functional requirements, 506
elecronics software vendors, 576
GreenShield custom shield, 375
GreenShield final software, 385-393

description of, 387
source code organization, 386

GreenShield prototype, 379
LCD module, programmable signal genera‐

tor
source code organization, 447

model rocket launcher design study, 529
main loop operations, 529
source code organization, 532

programmable signal generator, 446-460
complexity and interface bloat, 446
DDS library, 456
description of, 448
testing, 457

programming Arduino-compatible custom
designs, 401

smart thermostat project, 482, 493-498
block diagram of, 482
source code organization, 494
testing, 497

Switchinator project, 412-416, 420-423
description of, 421
prototype software, 419
source code organization, 421

SoftwareSerial library, 194
incorporation into a sketch, 113

SOIC (small-outline IC) surface-mount pack‐
age, 17

soil moisture sensors, 316, 370
GreenShield custom shield

calibrating, 399
testing GreenShield prototype, 384

solder, 545
soldering

modules and, 355
tools and accessories for, 545

accessories, 545
soldering irons, 545

source code, 91
additional files included in a sketch, 104
Arduino, 119
GreenShield project, organization of, 386
source files for libraries, 117, 118, 118
Switchinator project, organization of, 421

source files
managing with make, 130
working with multiple source files, using

make, 138
spacers, 218

sources of, 219
types of, 219

SparkFun CAN-BUS Shield, 247
SparkFun microSD Shield, 237
SparkFun MIDI Shield, 238
SparkFun PWM Shield, 256
SparkFun, Eagle tool and tutorial, 372
special-purpose Arduino PCB types, 73
speed, Arduino and AVR MCUs, 11
SPI (Serial Peripheral Interface), 25, 189

ATmega1280/2560 microcontrollers, 44
ATmega32U4 microcontrollers, 54
in MCP23S17 digital I/O expander, 410
shields using SPI interface, 216
SPI library, 193
USART in SPI mode, 24
use by Ethernet shields to interface with

Arduino, 239
SPI library, 193

SPISettings class, 193
spools of rosin-core solder, 545
spring and whisker contact sensors, 328
square waves, 343

signal generator output, 458
SRAM (static random-access memory), 15

internal SRAM in AVR microcontrollers, 17

Index | 609

SREG status bits in AVR, 142
ST (setpoint) commands, 377
ST7066 (HD44780) display, 346
stacking shields, 367
staggered shields, 368
standoffs, 218

sources of, 219
types of, 219

status query commands (GreenShield), 375
Stepper library, 196
stepper motor controls, 341
stepper motors

controller shields, 254
support function modules and components,

347-350
surface-mount packages, tinyAVR parts, 17
switches

debouncing switch input, 455
switches (compiler), 103, 131
Switchinator project, 357, 401-428

acceptance testing, 427
definition and planning, 402
design, 403-416

functionality, 403
hardware, 404-411
software, 412-416

fabrication, 423
further development of, 428
prototype, 416-420

software for, 419
testing, 420

software, 420-423
description of, 421
source code organization, 421

systems (module connection), 351

T
tabs (source files), 101, 103, 104
taps, 21
target, 90
temperature

relationships with time, and hysteresis range
in A/C system, 484

setting target temperature for smart ther‐
mostat, 497

temperature control
basics of, 473
smart, 476

temperature sensor/controller shield (proto‐
type), 249

temperature, humidity, and pressure sensors,
312-318
barometric sensors, 317
DHT11 and DHT22 sensors, 313, 379
DS18B20 temperature sensors, 312
soil moisture sensors, 316
temperature/humidity sensor, GreenShield,

370
testing prototype software, 384

temperature/humidity sensor, smart ther‐
mostat, 494
second DHT22 sensor, 502

thermistors, 314
using a three-position header to connect,

354
water sensors, 315

terminal block adapters, 267
terminal emulators, 371
terminology

pins and pin sockets, 63
processors, microprocessors, and microcon‐

trollers, xvii
test equipment, vendors of, 578
testing

acceptance testing, 364
GreenShield custom shield, 397
Switchinator project, 427

continuity test circuits for model rockets,
524

final testing of signal generator, 466-466
functional testing of prototype, 363
GreenShield prototype, 383
model rocket launcher final design, 532
signal generator software, 457
smart thermostat software, 497
smart thermostat, final version, 501
Switchinator prototype, 420

text displays, 345
ERM1601SBS-2 LCD display, 345
ST7066 (HD44780), 346

TFT (thin-film transistor) display library, 197
PImage class, 199
SD class, 197

TFT displays, 262
ST7735R, 347

thermistors, 314
thermostat, smart (project), 471-504

610 | Index

background, 471
HVAC overview, 472
smart temperature control, 476
temperatue control basics, 473

caveat, 471
cost breakdown for parts, 502
definition and planning, 477
design, 478

control output, 488
enclosure, 480
functionality, 478
schematic, 482
software, 482
user input/output, 485

developing further, 503
final version, 498-502

assembly, 498
parts list, 498
testing and operation, 501

objectives of the project, 477
parts sources, 503
prototype, 489

DHT22 sensor, 491
LCD shield, 493

software, 493-498
source code organization, 494

thermostats
effect of conventional thermostat on resi‐

dence's temperature, 474
functions provided by conventional four-

wire thermostat, 477
typical old-style thermostat internal circuit,

479
315/433 MHz RF modules, 332
tilt sensors, 318-319, 472

dual-axis, 318
single-axis, 318

time estimates, writing model rocket launcher
software, 532

timeline charts, 361
timer/counters

16-bit, in AVR microcontrollers, 21
8-bit, in AVR microcontrollers, 19
ATmega1280/2560 microcontrollers, 45
ATmega168/328 microcontrollers, 36
ATmega32U4 microcontrollers, 55
prescaler, 21
watchdog timer (WDT), 29

timers, 350

TinkerKit Mega Sensor Shield, 224
TinkerKit modules, 286

dfescriptions of, 303-308
module connection system, 351
summary listing of, 286

TinkerKit Sensor Shield, 223
tinyAVR parts, surface-mount packages, 17
TinyCircuits, modules from, 352
toolchain, 98
tools and accessories, 535-547

for soldering, 545
hand tools, 535-543

connector crimping tools, 539
pliers and cutters, 536
saws, 542
screwdrivers, 535
wire strippers, 537

power tools, 543
drills, 543
miniature drill press, 544
miniature grinders, 543

tool sources, 547
tools, vendors of, 578
tricolor (RGB) LEDs, 335
Tronixlabs Australia Expansion Shield for

Arduino Nano, 266
tutorial videos, 359
TWI (two-wire interface), 25

ATmega1280/2560 microcontrollers, 44
ATmega32U4 microcontrollers, 54
shields that employ, pins for, 216
Wire library, 205

TwoWire class, 205

U
UART (universal asynchronous receiver-

transmitter), 24
shields using UART, pins for, 216

udev (Linux), 419
UDP datagram protocol

EthernetUDP class, 168
WiFiUDP class, 204

ultrasonic range finders, 331
Unix/Linux-compatible tools, installing on

Windows, 128
Uno boards

physical layout of Uno R2, Uno R3, and Uno
SMD, 67

SainSmart version, 7

Index | 611

smart thermostat prototype, 489
type B USB jack, shields and, 367
Uno SMD board, baseline pin layout, 74

Uno R2 boards
baseline pin layout, 74
pinout for primary ICSP connector, 147

Uno R3 boards
ATmega16U2 USB interface, 76
pin functions, 76

uploading executable code, 103
to AVR MCUs, 146-156

AVRDUDE utility, 152
bootloader operation, 154
In-System Programming, 147
JTAG, 151
programming with bootloader, 148
replacing the bootloader, 156
without the bootloader, 149

using Arduino as an ISP, 154
USART (universal synchronous/asynchronous

receiver-transmitter), 24
ATmega1280/2560 microcontrollers, 44
ATmega32U4 microcontrollers, 54

USB
type B jacks on Duemilanove and Uno

boards, 367
USB host shields, 243
USB-to-RS232 adapter, 417

USB interfaces, 64, 66
ATmega16U2, 65
ATmega32U4 microcontroller, 64
FTDI interface chip (FT232RL), 64
USB 2.0 interface, ATmega32U4 microcon‐

trollers, 57
USB libraries, 210

Keyboard class functions, 210
keyboard modifier keys, 210
Mouse, functions, 210

USB-to-serial adapters, 148, 401
USB-to-serial interface component,

ATmega32U4-based boards, 3
USBDevice.attach() function, 106
USBtinyISP, 150

running with Arduino IDE on Linux, 419
user input, 343-345

joysticks, 344
keypads, 343
potentiometers and rotary encoders, 345

user input/output, smart thermostat, 485

user interface (UI), smart thermostat, 494
user interface and controls, programmable sig‐

nal generator, 434
complexity and interface bloat, 446
control inputs and modes, 441

user output, 345-347
graphical displays, 347
text displays, 345

V
vendors and manufacturers

Arduino and compatible products vendors,
575-579

for smart thermostat parts, 503
module and IO component sources, 355
of modules, 280
of shields, 215, 220, 274
of signal generator parts, 469
tools suppliers, 547

ventilation, HVAC systems and, 473
Vetco Ethernet Shield with microSD Card

Reader, 240
vias, 394, 425
vibration and shock sensors, 324-325
Visgence Power DAC Shield, 265
voltage

AVR family of microcontrollers, 11
AVR microcontrollers, 14
CV input for signal generator, 460
for heating and cooling equipment, 471
high-voltage AC control circuits, 478
limitations of AVR microcontrollers, 217
limiting with signal generator input protec‐

tor, 461

W
watchdog timer (WDT), 29

fuse bits and, 62
water sensors, 315
waveform generators, 343
WDT (watchdog timer), 29
WDTON and BODLEVEL fuse bits, 62
wearable applications, 73
website (Arduino), 12
weekend profile, 488
WiFi library, 200

classes and their functions, 200
IPAddress class, 203
WiFi class, 202

612 | Index

WiFiClient class, 204
WiFiServer class, 203
WiFiUDP class, 204

WiFi module, ESP8266 transceiver, 333
WinAVR package, installing, 129
Windows systems

Arduino definitions of new and delete oper‐
ators, 99

Arduino IDE, tools, and libraries on, 125
compilers/assemblers for, 585
installing Arduino IDE on, 95
installing AVR-GCC toolchain, 128
keywords.txt files in library subdirectories,

118
runtime libraries, 106
terminal emulators, 371

wing shields, 268
Wire library, 205

TwoWire class, 205

wire strippers, 537
wireless applications, Fio boards for, 71

X
XBee, 71

XBee modules in ZigBee shields, 244
XMEGA microcontrollers

current consumption, 29
XMega microcontrollers, 49

Y
Yún board, 3
Yún boards

ATmega32U4 microcontroller, 64

Z
ZigBee shields, 244
ZigBee wireless protocol, 244

Index | 613

About the Author
John M. Hughes is an embedded systems engineer with over 30 years of experience
in electronics, embedded systems and software, aerospace systems, and scientific
applications programming. He was responsible for the surface imaging software on
the Phoenix Mars Lander and was part of the team that developed a novel synthetic
heterodyne laser interferometer for calibrating the position control of the mirrors on
the James Webb Space Telescope. Over the years he has worked on digital engine con‐
trol systems for commercial and military aircraft, automated test systems, radio tele‐
scope data acquisition, 50+ gigapixel imaging systems, and real-time adaptive optics
controls for astronomy. On his own time (when he has any) he likes to do cabinetry
and furniture design; build microcontroller-based gadgets for use with greenhouses,
bees, and backyard urban chickens; and write books.

Colophon
The animal on the cover of Arduino: A Technical Reference is a toy duck. This kind of
pull-along wooden toy was one of the first ever manufactured by the LEGO Group.
Released in 1935, the duck was originally constructed by the company’s founder,
Danish carpenter Ole Kirk Christiansen, who began producing wooden toys in the
1930s at the onset of Denmark’s Great Depression.

The LEGO duck sat on a rectangular platform with wheels, and its beak opened and
closed as it was pulled along on a string. The original duck was painted red, with a
black head, tail, and wings, though later models varied in color.

LEGO ceased production of the wooden toy sets in the 1960s, making the iconic duck
exceptionally rare. In 2011, the company released a modern version of the duck,
made of the plastic bricks we know today.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from The Great American Antique Toy Bazaar by Ronald Barlow.
The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dal‐
ton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Intended Audience
	What This Book Is
	What This Book Is Not
	About Terminology
	What’s in This Book
	Endorsements
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Arduino Family
	A Brief History
	Types of Arduino Devices
	Arduino Galleries
	Arduino-Compatible Devices
	Hardware-Compatible Devices
	Software-Compatible Devices

	The Arduino Naming Convention
	What Can You Do with an Arduino?
	For More Information

	Chapter 2. The AVR Microcontroller
	Background
	Internal Architecture
	Internal Memory
	Peripheral Functions
	Control Registers
	Digital I/O Ports
	8-Bit Timer/Counters
	16-Bit Timer/Counters
	Timer/Counter Prescaler

	Analog Comparator
	Analog-to-Digital Converter
	Serial I/O
	USART
	SPI
	TWI

	Interrupts
	Watchdog Timer
	Electrical Characteristics
	For More Information

	Chapter 3. Arduino-Specific AVR Microcontrollers
	ATmega168/328
	Memory
	Features
	Packages
	Ports
	Pin Functions
	Analog Comparator Inputs
	Analog Inputs
	Serial Interfaces
	Timer/Clock I/O
	External Interrupts
	Arduino Pin Assignments
	Basic Electrical Characteristics

	ATmega1280/ATmega2560
	Memory
	Features
	Packages
	Ports
	Pin Functions
	Analog Comparator Inputs
	Analog Inputs
	Serial Interfaces
	Timer/Clock I/O
	External Interrupts
	Arduino Pin Assignments
	Electrical Characteristics

	ATmega32U4
	Memory
	Features
	Packages
	Ports
	Pin Functions
	Analog Comparator Inputs
	Analog Inputs
	Serial Interfaces
	Timer/Clock I/O
	External Interrupts
	USB 2.0 Interface
	Electrical Characteristics
	Arduino Pin Assignments

	Fuse Bits
	For More Information

	Chapter 4. Arduino Technical Details
	Arduino Features and Capabilities
	Arduino USB Interfaces
	Arduino Physical Dimensions
	Full-Size Baseline Arduino PCB Types
	Mega Form-Factor Arduino PCB Types
	Small Form-Factor Arduino PCB Types
	Special-Purpose PCB Types

	Arduino Pinout Configurations
	The Baseline Arduino Pin Layout
	The Extended Baseline Pin Layout
	The Mega Pin Layout
	Nonstandard Layouts

	For More Information

	Chapter 5. Programming the Arduino and AVR Microcontrollers
	Cross-Compiling for Microcontrollers
	Bootloaders
	The Arduino IDE Environment
	Installing the Arduino IDE
	Configuring the Arduino IDE

	Cross-Compiling with the Arduino IDE
	The Arduino Executable Image
	The Arduino Software Build Process
	Sketch Tabs
	Arduino Software Architecture
	Runtime Support: The main() Function
	An Example Sketch
	Constants
	Global Variables

	Libraries
	Using Libraries in Sketches
	Adding a Library to the Arduino IDE
	Creating Custom Libraries

	Arduino Source Code

	Chapter 6. Life Without the Arduino IDE
	IDE Alternatives
	PlatformIO
	Ino

	The AVR Toolchain
	Installing the Toolchain
	make
	avr-gcc
	binutils
	avr-libc

	Building C or C++ Programs from Scratch
	Compiling with avr-gcc or avr-g++
	Multiple Source Files and make

	AVR Assembly Language
	The AVR Programming Model
	Creating AVR Assembly Language Programs
	AVR Assembly Language Resources

	Uploading AVR Executable Code
	In-System Programming
	Programming with the Bootloader
	Uploading Without the Bootloader
	JTAG
	AVRDUDE
	Using an Arduino as an ISP
	Bootloader Operation
	Replacing the Bootloader

	Summary

	Chapter 7. Arduino Libraries
	Library Components
	Contributed Libraries

	Chapter 8. Shields
	Electrical Characteristics of Shields
	Physical Characteristics of Shields
	Stacking Shields
	Common Arduino Shields
	Input/Output
	I/O Extension Shields
	I/O Expansion Shields
	Relay Shields
	Signal Routing Shields
	Memory
	Communication
	Serial I/O and MIDI
	Ethernet
	Bluetooth
	USB
	ZigBee
	CAN
	Prototyping
	Creating a Custom Prototype Shield
	Motion Control
	DC and Stepper Motor Control
	PWM and Servo Control
	Displays
	Instrumentation Shields
	Adapter Shields
	Miscellaneous Shields

	Uncommon Arduino Shields
	Sources

	Chapter 9. Modules and I/O Components
	Modules
	Physical Form Factors
	Interfaces
	Module Sources
	Module Descriptions

	Grove Modules
	Sensor and Module Descriptions
	Sensors
	Temperature, Humidity, and Pressure Sensors
	Tilt Sensors
	Audio Sensors
	Light Sensors
	Magnetic Sensors
	Vibration and Shock Sensors
	Motion Sensors
	Contact and Position Sensors
	Range Sensors

	Communications
	APC220 Wireless Modules
	315/433 MHz RF Modules
	ESP8266 Transceiver

	Output Devices and Components
	Light Sources
	Relays, Motors, and Servos
	Analog Signal Outputs

	User Input
	Keypads
	Joysticks
	Potentiometers and Rotary Encoders

	User Output
	Text Displays
	Graphical Displays

	Support Functions
	Clocks
	Timers

	Connections
	Working with Naked Jumper Wires
	Module Connection Systems
	Building Custom Connectors
	Choosing a Connection Method

	Sources
	Summary

	Chapter 10. Creating Custom Components
	Getting Started
	Custom Shields
	Physical Considerations
	Stacking Shields
	Electrical Considerations

	The GreenShield Custom Shield
	Objectives
	Definition and Planning
	Design
	Prototype
	Final Software
	Fabrication
	Final Acceptance Testing
	Operation
	Next Steps

	Custom Arduino-Compatible Designs
	Programming a Custom Design

	The Switchinator
	Definition and Planning
	Design
	Prototype
	Software
	Fabrication
	Acceptance Testing
	Next Steps

	Resources

	Chapter 11. Project: A Programmable Signal Generator
	Project Objectives
	Definition and Planning
	Design
	Functionality
	Enclosure
	Schematic

	Prototype
	Control Inputs and Modes
	Display Output
	DDS Module

	Software
	Source Code Organization
	Software Description
	The DDS Library
	Testing

	Final Assembly
	Pull-up Resistor Array
	Input Protection
	Chassis Components
	DC Power

	Final Testing and Closing
	Reducing the Cost
	Cost Breakdown
	Resources

	Chapter 12. Project: Smart Thermostat
	Background
	HVAC Overview
	Temperature Control Basics
	Smart Temperature Control

	Project Objectives
	Definition and Planning
	Design
	Functionality
	Enclosure
	Schematic
	Software
	User Input/Output
	Control Output

	Prototype
	DHT22 Sensor
	Rotary Encoder
	Real-Time Clock Module
	LCD Shield

	Software
	Source Code Organization
	Software Description
	Testing

	Final Version
	Assembly
	Testing and Operation

	Cost Breakdown
	Next Steps
	Resources

	Chapter 13. Model Rocket Launcher: A Design Study
	Overview
	The Design Cycle
	Objectives
	Selecting and Defining Functional Requirements
	Creating the Preliminary Design
	Design Feasibility
	Preliminary Parts List

	Prototype
	Final Design
	Electrical
	Physical
	Software
	Testing and Operation

	Cost Analysis

	Appendix A. Tools and Accessories
	Hand Tools
	Screwdrivers
	Pliers and Cutters
	Wire Strippers
	Connector Crimping Tools
	Saws

	Power Tools
	Drills
	Miniature Grinder
	Miniature Drill Press

	Soldering
	Soldering Irons
	Soldering Accessories

	Tool Sources

	Appendix B. AVR ATmega Control Registers
	ATmega168/328
	ATmega1280/2560
	ATmega32U4

	Appendix C. Arduino and Compatible Products Vendors
	Arduino Products
	Hardware-Compatible Boards and Shields
	Software-Compatible Boards
	Sensors, Add-on Boards, and Modules

	Electronics Software
	Open Source Schematic Capture Tools
	CAE Software Tools
	PCB Layout Tools

	Hardware, Components, and Tools
	Electronic Component Manufacturers
	Electronics Distributors (USA)
	Discount and Surplus Electronics
	Mechanical Parts and Hardware (Screws, Nuts, Bolts)
	Electronic Enclosures and Chassis
	Tools
	Test Equipment

	Printed Circuit Board Supplies and Fabricators
	Prototype and Fast-Turnaround Fabricators
	PCB Kit Sources

	Other Sources

	Appendix D. Recommended Reading
	Arduino
	AVR
	C and C++ Programming
	General Electronics
	Interfaces
	Instrumentation
	Printed Circuit Boards

	Appendix E. Arduino and AVR Software Development Tools
	Compilers/Assemblers
	Integrated Development Environments (IDEs)
	Programming Tools
	Simulators

	Index
	About the Author
	Colophon

