

Evil Genius™ Series
Arduino + Android Projects for the Evil Genius
Bike, Scooter, and Chopper Projects for the Evil Genius
Bionics for the Evil Genius: 25 Build-It-Yourself Projects
Electronic Circuits for the Evil Genius, Second Edition: 64 Lessons with Projects
Electronic Gadgets for the Evil Genius: 28 Build-It-Yourself Projects
Electronic Sensors for the Evil Genius: 54 Electrifying Projects
15 Dangerously Mad Projects for the Evil Genius
50 Awesome Auto Projects for the Evil Genius
50 Green Projects for the Evil Genius
50 Model Rocket Projects for the Evil Genius
51 High-Tech Practical Jokes for the Evil Genius
46 Science Fair Projects for the Evil Genius
Fuel Cell Projects for the Evil Genius
Holography Projects for the Evil Genius
Mechatronics for the Evil Genius: 25 Build-It-Yourself Projects
Mind Performance Projects for the Evil Genius: 19 Brain-Bending Bio Hacks
MORE Electronic Gadgets for the Evil Genius: 40 NEW Build-It-Yourself Projects
101 Outer Space Projects for the Evil Genius
101 Spy Gadgets for the Evil Genius, Second Edition
123 PIC® Microcontroller Experiments for the Evil Genius
123 Robotics Experiments for the Evil Genius
125 Physics Projects for the Evil Genius
PC Mods for the Evil Genius: 25 Custom Builds to Turbocharge Your Computer
PICAXE Microcontroller Projects for the Evil Genius
Programming Video Games for the Evil Genius
Raspberry Pi Projects for the Evil Genius
Recycling Projects for the Evil Genius
Solar Energy Projects for the Evil Genius
Telephone Projects for the Evil Genius
30 Arduino Projects for the Evil Genius, Second Edition
tinyAVR Microcontroller Projects for the Evil Genius
22 Radio and Receiver Projects for the Evil Genius

25 Home Automation Projects for the Evil Genius

Copyright © 2013 by McGraw-Hill Education. All rights reserved. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.
ISBN: 978-0-07-181773-8
MHID: 0-07-181773-5
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-181772-1,
MHID: 0-07-181772-7.
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.
McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and
sales promotions, or for use in corporate training programs. To contact a representative please e-mail
us at bulksales@mcgraw-hill.com.
McGraw-Hill Education, the McGraw-Hill Education logo, TAB, Evil Genius, and related trade
dress are trademarks or registered trademarks of McGraw-Hill Education and/or its affiliates in the
United States and other countries and may not be used without written permission. All other
trademarks are the property of their respective owners. McGraw-Hill Education is not associated
with any product or vendor mentioned in this book.
Information contained in this work has been obtained by McGraw-Hill Education from sources
believed to be reliable. However, neither McGraw-Hill Education nor its authors guarantee the
accuracy or completeness of any information published herein, and neither McGraw-Hill Education
nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this
information. This work is published with the understanding that McGraw-Hill Education and its
authors are supplying information but are not attempting to render engineering or other professional
services. If such services are required, the assistance of an appropriate professional should be
sought.

TERMS OF USE
This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of
1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of
the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with
these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS
MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education
and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission,
regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has
no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability
to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

To my late father, Hugh Monk, from whom I inherited a love for electronics. He would have had so
much fun with all this.

About the Author
Simon Monk has a bachelor’s degree in cybernetics and computer science and a doctorate in software
engineering. He has been an active electronics hobbyist since his school days and has written a
number of books in the Evil Genius series, including 15 Dangerously Mad Projects for the Evil
Genius and Arduino + Android Projects for the Evil Genius. His other books include Hacking
Electronics and Programming Arduino: Getting Started with Sketches.

Contents

Acknowledgments

Introduction

1 Quickstart
Powering Up
Installing the Software
Configuring Your Arduino Environment
Downloading the Project Software
Project 1 Flashing LED
Breadboard
Summary

2 A Tour of Arduino
Microcontrollers
What’s on an Arduino Board?
The Arduino Family
The C Language
Summary

3 LED Projects
Project 2 Morse Code S.O.S. Flasher
Loops
Arrays
Project 3 Morse Code Translator
Project 4 High-Brightness Morse Code Translator
Summary

4 More LED Projects
Digital Inputs and Outputs
Project 5 Model Traffic Signal
Project 6 Strobe Light
Project 7 SAD Light
Project 8 High-Powered Strobe Light
Random Number Generation
Project 9 LED Dice
Summary

5 Sensor Projects
Project 10 Keypad Security Code
Rotary Encoders
Project 11 Model Traffic Signal Using a Rotary Encoder
Sensing Light
Project 12 Pulse-Rate Monitor
Measuring Temperature
Project 13 USB Temperature Logger
Summary

6 Light Projects
Project 14 Multicolor Light Display
Seven-Segment LEDs
Project 15 Seven-Segment LED Double Dice
Project 16 LED Array
Project 17 USB Message Board
Summary

7 Sound Projects
Project 18 Oscilloscope
Sound Generation
Project 19 Tune Player
Project 20 Light Harp
Project 21 VU Meter
Summary

8 Power Projects
Project 22 LCD Thermostat
Project 23 Computer-Controlled Fan
H-Bridge Controllers
Project 24 Hypnotizer
Servo Motors
Project 25 Servo-Controlled Laser

9 Miscellaneous Projects
Project 26 Lie Detector
Project 27 Magnetic Door Lock
Project 28 Infrared Remote
Project 29 Lilypad Clock
Project 30 Evil Genius Countdown Timer

Summary

10 USB Projects with the Leonardo
Project 31 Keyboard Prank
Project 32 Automatic Password Typer
Project 33 Accelerometer Mouse
Summary

11 Your Projects
Circuits
Components
Tools
Project Ideas

Appendix: Components and Supplies
Suppliers
Component Sources

Index

Acknowledgments

I WOULD LIKE to thank my sons, Stephen and Matthew Monk, for their interest and encouragement in
the writing of this book, their helpful suggestions, and their field testing of projects. Also, I could not
have written this book without Linda’s patience and support.

Finally, I would like to thank Roger Stewart and everyone at McGraw-Hill, who have been
extremely supportive and enthusiastic and have been a pleasure to work with.

Introduction

ARDUINO INTERFACE BOARDS provide the Evil Genius with a low-cost, easy-to-use technology to
create their evil projects. A whole new breed of projects can now be built that can be controlled from
a computer. Before long, the computer-controlled, servo-driven laser will be complete, and the world
will be at the mercy of the Evil Genius!

This book will show the Evil Genius how to attach an Arduino board to their computer, to program
it, and to connect all manner of electronics to it to create projects, including the computer-controlled,
servo-driven laser mentioned earlier, a USB-controlled fan, a light harp, a USB temperature logger, a
sound oscilloscope, and many more.

Full schematic and construction details are provided for every project, and most can be built
without the need for soldering or special tools. However, the more advanced Evil Genius may wish
to transfer the projects from a plug-in breadboard to something more permanent, and instructions for
this are also provided.

So, What Is Arduino?
Well, Arduino is a small microcontroller board with a USB plug to connect to your computer and a
number of connection sockets that can be wired up to external electronics, such as motors, relays,
light sensors, laser diodes, loudspeakers, microphones, etc. Arduinos can be powered either through
the USB connection from the computer or from a 9V battery. They can be controlled from the
computer or programmed by the computer and then disconnected and allowed to work independently.

This book focuses on the most popular types of Arduino board, the Arduino Uno and the Arduino
Leonardo.

At this point the Evil Genius might be wondering which top-secret government organization they
need to break into in order to acquire an Arduino. Well, disappointingly, no evil deeds at all are
required to obtain one of these devices. The Evil Genius needs to go no further than their favorite
online auction site or search engine. Since the Arduino is an open-source hardware design, anyone is
free to take the designs and create their own clones of the Arduino and sell them, so the market for the
boards is competitive. An official Arduino costs about $30 and a clone often less than $20.

The software for programming your Arduino is easy to use and also freely available for Windows,
Mac, and LINUX computers at no cost.

Arduino
Although Arduino is an open-source design for a microcontroller interface board, it is actually rather
more than that, as it encompasses the software development tools that you need to program an
Arduino board, as well as the board itself. There is a large community of construction, programming,
electronics, and even art enthusiasts willing to share their expertise and experience on the Internet.

To begin using Arduino, first go to the Arduino site (www.arduino.cc) and download the software
for Mac, PC, or LINUX. Chapter 1 provides step-by-step instructions for installing the software on

http://www.arduino.cc

all three platforms.
There are, in fact, several different designs of Arduino board. These are intended for different

types of applications. They can all be programmed from the same Arduino development software, and
in general, programs that work on one board will work on all.

In this book we use the Arduino Uno and Leonardo boards, apart from one project that uses the
Arduino Lilypad. Nearly all the projects will work with both an Arduino Uno and an Arduino
Leonardo, and many will also work with older Arduino boards such as the Duemilanove.

When you are making a project with an Arduino, you will need to download programs onto the
board using a USB lead between your computer and the Arduino. This is one of the most convenient
things about using an Arduino. Many microcontroller boards use separate programming hardware to
get programs into the microcontroller. With Arduino, it’s all contained on the board itself. This also
has the advantage that you can use the USB connection to pass data back and forth between an
Arduino board and your computer. For instance, you could connect a temperature sensor to the
Arduino and have it repeatedly tell your computer the temperature.

You can either let your computer power the Arduino board through your USB cable or supply
external power using a direct-current (DC) adapter. The power supply can be any voltage between 7
and 12 volts. So a small 9V battery will work just fine for portable applications. Typically, while you
are making your project, you will probably power it from USB for convenience. When you are ready
to cut the umbilical cord (disconnect the USB lead), you will want to power the board independently.
This may be with an external power adaptor or simply with a 9V battery connected to a plug to fit the
power socket.

There are two rows of connectors on the edges of the board. The row at the top of the diagram is
mostly digital (on/off) pins, although some can be used as analog outputs. The bottom row of
connectors has useful power connections on the left and analog inputs on the right.

These connectors are arranged like this so that so-called shield boards can be plugged onto the
main board in a piggyback fashion. It is possible to buy ready-made shields for many different
purposes, including

 Connection to Ethernet networks
 LCD displays and touch screens
 WiFi
 Sound
 Motor control
 GPS tracking
 And many more

You can also use prototyping shields to create your own shield designs. We will use these
protoshields in one of our projects. Shields usually have through connectors on their pins, which
means that you can stack them on top of each other. So a design might have three layers: an Arduino
board on the bottom, a GPS shield on it, and then an LCD display shield on top of that.

The Projects
The projects in this book are quite diverse. We begin with some simple examples using standard
LEDs and also the ultra-high-brightness Luxeon LEDs.

In Chapter 5 we look at various sensor projects for logging temperature and measuring light and
pressure. The USB connection to the Arduino makes it possible to take the sensor readings in these
projects and pass them back to the computer, where they can be imported into a spreadsheet and
charts drawn.

We then look at projects using various types of display technology, including an alphanumeric LCD
message board (again using USB to get messages from your computer), as well as seven-segment and
multicolor LEDs.

Chapter 7 contains four projects that use sound as well as a simple oscilloscope. We have a
simple project to play tunes from a loudspeaker and build up to a light harp that changes the pitch and
volume of the sound by waving your hand over light sensors. This produces an effect rather like the
famous Theremin synthesizer. The final project in this chapter uses sound input from a microphone. It
is a VU meter that displays the intensity of the sound on an LED display.

Chapter 10 uses the special USB keyboard and mouse impersonation feature exclusive to the
Arduino Leonardo in some interesting projects.

The final chapters contain a mixture of projects. Among others, there is, as we have already
mentioned, an unfathomable binary clock using an Arduino Lilypad board that indicates the time in an
obscure binary manner only readable by an Evil Genius, a lie detector, a motor-controlled swirling
hypnotizer disk, and, of course, the computer-controlled, servo-guided laser.

Most of the projects in this book can be constructed without the need for soldering; instead, we use
a breadboard. A breadboard is a plastic block with holes in it with sprung metal connections behind.
Electronic components are pushed through the holes at the front. These are not expensive, and a
suitable breadboard is also listed in the Appendix. However, if you wish to make your designs more
permanent, the book shows you how to do that, too, using the prototyping board.

Sources for all the components are listed in the Appendix, along with some useful suppliers. The
only things you will need in addition to these components are an Arduino board, a computer, some
wire, and a piece of breadboard. The software for all the projects is available for download from
www.arduinoevilgenius.com.

Without Further Ado
The Evil Genius is not noted for their patience, so in Chapter 1 we will show you how to get started
with Arduino as quickly as possible. This chapter contains all the instructions for installing the
software and programming your Arduino board, including downloading the software for the projects,
so you will need to read it before you embark on your projects.

In Chapter 2 we take a look at some of the essential theory that will help you build the projects
described in this book and go on to design projects of your own. Most of the theory is contained in
this chapter, so if you are the kind of Evil Genius who prefers to just make the projects and find out
how they work afterwards, you may prefer, after reading Chapter 1, to just to pick a project and start

http://www.arduinoevilgenius.com

building. Then, if you get stuck, you can use the index or read some of the early chapters.

CHAPTER 1

Quickstart

THIS IS A CHAPTER for the impatient Evil Genius. Your new Arduino board has arrived, and you are
eager to have it do something.

So, without further ado…

Powering Up
When you buy an Arduino Uno or Leonardo board, it is usually preinstalled with a sample Blink
program that will make the little built-in LED flash. Figure 1-1 shows a pair of Arduino boards.

Figure 1-1 Arduinos Uno and Leonardo.

The light-emitting diode (LED) marked L is wired up to one of the digital input-output sockets on
the board. It is connected to digital pin 13. This really limits pin 13 to being used as an output, but the
LED only uses a small amount of current, so you can still connect other things to that connector.

All you need to do to get your Arduino up and running is supply it with some power. The easiest

way to do this is to plug in it into the Universal Serial Bus (USB) port on your computer. For an
Arduino Uno, you will need a type A-to-type B USB lead. This is the same type of lead that is
normally used to connect a computer to a printer. For a Leonardo, you will need a micro-USB
connector. You may get some messages from your operating system about finding new devices or
hardware. Ignore these for now.

If everything is working okay, the LED should blink once every two seconds. The reason that new
Arduino boards have this Blink sketch already installed is to verify that the board works. Clicking the
Reset button should cause the LED to flicker momentarily. If this is the case, but the LED does not
flash, then it may just be that the board has not been programmed with the Blink sketch; but do not
despair, as once everything is installed, we are going to modify and install that script anyway as our
first project.

Installing the Software
Now that we have our Arduino working, let’s get the software installed so that we can alter the Blink
program and send it down to the board. The exact procedure depends on what operating system you
use on your computer. But the basic principle is the same for all.

Install the Arduino development environment, which is the program that you run on your computer
that enables you to write sketches and download them to the Arduino board.

Install the USB driver that allows the computer to talk to the Arduino’s USB port. It uses this for
programming and sending messages.

The Arduino website (www.arduino.cc) contains the latest version of the software. In this book
we have used Arduino 1.0.2.

Installation on Windows
The instructions that follow are for installing on Windows 7. The approach is much the same for Vista
and XP. The only part that can be a little difficult is installing the drivers.

Follow the download link on the Arduino home page (www.arduino.cc), and select the download
for Windows. This will start the download of the Zip archive containing the Arduino software, as
shown in Figure 1-2. You may well be downloading a more recent version of the software than the
version 1.0.2 shown (misleadingly, the Arduino team have not got around to renaming the Zip file
yet).

http://www.arduino.cc
http://www.arduino.cc

Figure 1-2 Downloading the Arduino software for Windows.

The Arduino software does not distinguish between different versions of Windows. The download
should work for all versions, from Windows XP onward. The following instructions are for Windows
7.

Select the Save option from the dialog, and save the Zip file onto your desktop. The folder
contained in the Zip file will become your main Arduino directory, so now unzip it onto your
Desktop. You can move it somewhere else later if you wish.

You can do this in Windows by right-clicking the Zip file to show the menu in Figure 1-3 and
selecting the Extract All option. This will open the Extraction Wizard, shown in Figure 1-4.

Figure 1-3 The Extract All menu option in Windows.

Figure 1-4 Extracting the Arduino file in Windows.

Extract the files to your Desktop.
This will create a new directory for this version of Arduino (in this case, 1.0.2) on your Desktop.

You can, if you wish, have multiple versions of Arduino installed at the same time, each in its own
folder. Updates of Arduino are fairly infrequent and historically have always kept pretty good
compatibility with earlier versions of the software. So unless there is a new feature of the software
that you want to use, or you have been having problems, it is by no means essential to keep up with
the latest version.

Now that we have got the Arduino folder in the right place, we need to install the USB drivers. If
you have not already done so, plug your Leonardo or Uno into your computer. Depending on your
version of Windows, there may be some halfhearted attempt by the operating system to install drivers.
Just cancel this at the earliest opportunity; it is unlikely to work. Instead, you need to open the Device
Manager. This is accessed in different ways depending on your version of Windows. In Windows 7,
you first have to open the Control Panel, then select the option to view Icons, and you should find the
Device Manager in the list.

Under the section “Other Devices,” you should see an icon for “Unknown Device” with a little
yellow warning triangle next to it. This is your Arduino (Figure 1-5).

Figure 1-5 The Windows Device Manager.

Right-click on the “Unknown Device” and select the option “Update Driver Software.” You will
then be prompted to either “Search automatically for updated driver software” or “Browse my
computer for driver software.” Select the option to browse and navigate to the “arduino-1.0.2-
windows\arduino1.0.2\drivers” (Figure 1-6). Change the version numbers if you are using a different
version of Arduino.

Figure 1-6 Browsing for the USB drivers.

Click “Next,” and you may get a security warning; if so, allow the software to be installed. Once
the software has been installed, you will get a confirmation message like the one in Figure 1-7.
Although the message will be different for a Leonardo, the procedure is identical.

Figure 1-7 The USB driver Installed successfully.

The Device Manager should now list the right name for the Arduino (Figure 1-8).

Figure 1-8 The Device Manager showing the Arduino.

This is a one-off process; from now on, whenever you plug in your Arduino board, its USB drivers
will automatically be loaded, and the Arduino will be ready for action.

Installation on Mac OS X
The process for installing the Arduino software on the Mac is a lot easier than on the PC.

As before, the first step is to download the file. In the case of the Mac, it is a Zip file. Once
downloaded, double-click on the Zip file, which will extract a single file called “Arduino.app.” This
is the whole Arduino application; just drag it into your Applications folder.

You can now find and launch the Arduino software in your Applications folder. As you are going
to use it frequently, you may wish to right-click its icon in the dock and set it to “Keep in Dock.”

Installation on LINUX
There are many different LINUX distributions, and the instructions for each distribution are a little

different. The Arduino community has done a great job of putting together sets of instructions for each
distribution. So follow the link below and select one of the ten (at the time of writing) distributions on
offer.

Configuring Your Arduino Environment
Whatever type of computer you use, you should now have the Arduino software installed on it. You
now need to make a few settings. You need to specify the serial port that is connected to the Arduino
board, and we need to specify the type of Arduino board that we are using. But first, you need to
connect your Arduino to your computer using the USB lead or you will not be able to select the serial
port.

Next, start the Arduino software. In Windows, this means opening the “Arduino” folder and
clicking on the “Arduino” icon (selected in Figure 1-9). You may prefer to make a shortcut for the
Desktop.

Figure 1-9 Starting Arduino in Windows.

The serial port is set from the Tools menu, as shown in Figure 1-10 for the Mac and in Figure 1-11
for Windows 7—the list of ports for LINUX is similar to the Mac.

Figure 1-10 Setting the serial port on the Mac.

Figure 1-11 Setting the serial port on Windows.

If you use many USB or Bluetooth devices with your Mac, you are likely to have quite a few
options in this list. Select the item in the list that begins with “dev/tty.usbserial.”

On Windows, the serial port can just be set to COM3 or COM4, whichever shows up.
From the Tools menu, we can now select the board that we are going to use, as shown in Figure 1-

12.

Figure 1-12 Setting the board.

Downloading the Project Software
The sketches (as programs are called in the Arduino world) used in the book are available as a single
Zip file download. The whole download is less than a megabyte, so it makes sense to download the
software for all of the projects, even if you only intend to use a few. To download them, browse to
www.arduinoevilgenius.com and follow the download links for the second edition of this book.

Whatever your platform, the Arduino software expects to find all your sketches in your
“Documents” folder, contained within a folder called “Arduino,” which the Arduino software will
create the first time it is run. So place the contents of the Zip file into that folder.

Note that each sketch comes in its own folders, and the sketches are numbered by project.

http://www.arduinoevilgenius.com

Project 1
Flashing LED
Having assumed that we have successfully installed the software, we can now start on our first
exciting project. Actually, it’s not that exciting, but we need to start somewhere, and this will ensure
that we have everything set up correctly to use our Arduino board.

We are going to modify the example Blink sketch that comes with Arduino. We will increase the
frequency of the blinking and then install the modified sketch on our Arduino board. Rather than blink
slowly, our board will flash its LED quickly. We will then take the project a stage further by using a
bigger external LED and resistor rather than the tiny built-in LED.

COMPONENTS AND EQUIPMENT

Software
First, we need to load the Blink sketch into the Arduino software. The Blink sketch is included as an
example when you install the Arduino environment. So we can load it using the File menu, as shown
in Figure 1-13.

Figure 1-13 Loading the example Blink sketch.

The sketch will open in a separate window (Figure 1-14); you can, if you like, now close the
empty window that opened when Arduino started.

Figure 1-14 The Blink sketch.

The majority of the text in this sketch is in the form of comments. Comments are not actually part of
the program but explain what is going on in the program to anyone reading the sketch.

Comments can be single-line comments that start after a // and continue to the end of the line, or
they can be multiline comments that start with a /* and end some lines later with a */.

If all the comments in a sketch were to be removed, it would still work in exactly the same way,
but we use comments because they are useful to anyone reading the sketch trying to work out what it
does.

Before we start, a little word about vocabulary is required. The Arduino community uses the word
“sketch” in place of “program,” so from now on I will refer to our Arduino programs as sketches.
Occasionally I may refer to “code.” Code is programmer speak for a section of a program or even a
generic term for what is written when creating a program. So someone might say, “I wrote a program
to do that,” or they could say, “I wrote some code to do that.”

To modify the rate at which the LED will blink, we need to change the value of the delay so in the
two places in the sketch where we have

change the value in the parentheses to 200 so that it appears as

This is changing the delay between turning the LED on and off from 1000 milliseconds (1 second)
to 200 milliseconds (1/5th of a second). In Chapter 3 we will explore this sketch further, but for now,
we will just change the delay and download the sketch to the Arduino board.

With the board connected to your computer, click the Upload button on the Arduino. This is shown
in Figure 1-15. If everything is okay, there will be a short pause, and then the two red LEDs on the
board will start flashing away furiously as the sketch is uploaded onto the board. This should take
around 5 to 10 seconds.

Figure 1-15 Uploading the sketch to the Arduino board.

If this does not happen, check the serial port and board type settings as described in the previous
sections.

When the completed sketch has been installed, the board will automatically reset, and if everything
has worked, you will see the LED for digital port 13 start to flash much more quickly than before.

Hardware
At the moment, this doesn’t really seem like real electronics because the hardware is all contained on
the Arduino board. In this section we will add an external LED to the board.

LEDs cannot simply have voltage applied to them; they must have a current-limiting resistor
attached. Both parts are readily available from any electronics suppliers. The component order codes
for a number of suppliers are detailed in the Appendix.

The Arduino board connectors are designed to attach “shield” plug-in boards. However, for
experimentation purposes, they also allow wires or component leads to be inserted directly into the
sockets.

Figure 1-16 shows the schematic diagram for attaching the external LED.

Figure 1-16 Schematic diagram for an LED connected to the Arduino board.

This kind of schematic diagram uses special symbols to represent the electronic components. The
LED appears rather like an arrow, which indicates that light-emitting diodes, in common with all
diodes, only allow the current to flow in one direction. The little arrows next to the LED symbol
indicate that it emits light.

The resistor is just depicted as a rectangle. Resistors are also often shown as a zigzag line. The
rest of the lines on the diagram represent electrical connections between the components. These
connections may be lengths of wire or tracks on a circuit board. In this case, they will just be the
wires of the components.

We can connect the components directly to the Arduino sockets between the digital pin 12 and the
GND pin, but first we need to connect one lead of the LED to one lead of the resistor.

It does not matter which lead of the resistor is connected to the LED; however, the LED must be
connected the correct way. The LED will have one lead slightly longer than the other, and it is the
longer lead that must be connected to digital pin 12 and the shorter lead that should be connected to
the resistor. LEDs and some other components have the convention of making the positive lead longer

than the negative one.
To connect the resistor to the short lead of the LED, gently spread the leads apart, and twist the

short lead around one of the resistor leads, as shown in Figure 1-17.

Figure 1-17 An LED connected to a serial resistor.

Then push the LED’s long lead into the digital pin 12 and the free lead of the resistor into one of
the two GND sockets. This is shown in Figure 1-18. Sometimes it helps to bend a slight kink into the
end of the lead so that it fits more tightly into the socket.

Figure 1-18 An LED connected to the Arduino board.

We can now modify our sketch to use the external LED that we have just connected. All we need to
do is change the sketch so that it uses digital pin 12 instead of 13 for the LED. To do this, we change
the line

to read

Now upload the sketch by clicking the Upload to IO Board button in the same way as you did when
modifying the flash rate.

Breadboard
Twisting together a few wires is not practical for anything much more than a single LED. A
breadboard allows us to build complicated circuits without the need for soldering. In fact, it is a good
idea to build all circuits on a breadboard first to get the design right and then commit the design to
solder once everything is working.

A breadboard comprises a plastic block with holes in it, with sprung metal connections behind.
Electronic components are pushed through the holes at the front.

Underneath the breadboard holes, there are strips of connectors, so all the holes in a strip are
connected together. The strips have a gap between them so that integrated circuits in dual-in-line
packaging can be inserted without leads on the same row being shorted together.

We can build this project on a breadboard rather than with twisted wires. Figure 1-19 shows a
photograph of this. Figure 1-20 makes it a little easier to see how the components are positioned and
connected together.

Figure 1-19 Project 1 on breadboard.

Figure 1-20 Project 1 breadboard layout.

You will notice that at the edges of the breadboard (top and bottom) there are two long horizontal
strips. The connections on the back of these long strips run at right angles to the normal strips of
connections and are used to provide power to the components on the breadboard. Normally, there is
one for ground (0V or GND) and one for the positive supply voltage (usually 5V).

In addition to a breadboard, you will need some jumper wires (see the Appendix). These are short
leads of a few inches in length of different colors. They are used to make connections between the
Arduino and the breadboard. Alternatively, you can use solid-core wire and some wire strippers or
pliers to cut and remove the insulation from the ends of the wire. It is a good idea to have at least
three different colors: red for all wires connected to the positive side of the supply, black for
negative, and some other color (orange or yellow) for other connections. This makes it much easier to
understand the layout of the circuit. You can also buy prepared short lengths of solid-core wire in a
variety of colors. Note that it is not advisable to use multicore wire because it will tend to bunch up
when you try to push it into the breadboard holes.

We can straighten out the wires of our LED and resistor and plug them into a breadboard. The
breadboard used is often referred to as a half-size breadboard and has 30 rows of strips, each strip
being five holes, then a gap, then another five holes. We will be using this breadboard a lot in this
book, so if you can find something as similar as possible, it will make life easier. The actual board
used was supplied by AdaFruit (see the Appendix), but it is a very common size and layout.

Summary
We have created our first project, albeit a very simple one. In Chapter 2 we will get a bit more
background on the Arduino before moving on to some more interesting projects.

CHAPTER 2

A Tour of Arduino

IN THIS CHAPTER WE LOOK AT the hardware of an Arduino board and also of the microcontroller at
its heart. In fact, the board basically just provides support to the microcontroller, extending its pins to
the connectors so that you can connect hardware to them and providing a USB link for downloading
sketches, etc.

We also learn a few things about the C language used to program the Arduino, something we will
build on in later chapters as we start on some practical project work.

Although this chapter gets quite theoretical at times, it will help you understand how your projects
work. However, if you would prefer just to get on with your projects, you may wish to skim this
chapter.

Microcontrollers
The heart of our Arduino is a microcontroller. Practically everything else on the board is concerned
with providing the board with power and allowing it to communicate with your computer.

So what exactly do we get when we buy one of these little computers to use in our projects?
The answer is that we really do get a little computer on a chip. It has everything and more than the

first home computers had. It has a processor, 2 or 2.5 kilobytes of random access memory (RAM) for
holding data, 1 kilobyte of erasable programmable read-only memory (EPROM), and kilobytes of
Flash memory for holding our programs. The important thing here is that this is kilobytes (thousands
of bytes) not megabytes (millions of bytes) or gigabytes (billions of bytes). Most smart phones have
upward of 1 gigabyte of memory. That is half a million times more RAM than an Arduino. An
Arduino is a very feeble device indeed in terms of today’s top-end hardware. However, this is not
what the Arduino is for. The Arduino does not need to run a highresolution screen or control complex
networking. The Arduino is intended for much simpler control tasks.

Something that the Arduino has that you will not find on a smart phone is input and output pins.
These input-output pins are what link the microcontroller to the rest of our electronics. This is what
allows the Arduino to control things.

Inputs can read both digital (Is the switch on or off?) and analog (What is the voltage at a pin?).
This enables us to connect many different types of sensors for light, temperature, sound, etc.

Outputs can also be analog or digital. So you can set a pin to be on or off (0V or 5V), and this can
turn LEDs on and off directly, or you can use the output to control higher-power devices such as
motors. They can also provide an analog output voltage. That is, you can set the output of a pin to
some particular voltage, allowing you to control the speed of a motor or the brightness of a light, for
example, rather than simply turning it on or off.

What’s on an Arduino Board?
Figure 2-1 shows our Arduino board—in this case an Arduino Uno. Let us have a quick tour of the
various components on the board.

Figure 2-1 Components of an Arduino Uno.

Starting at the top next to the USB socket in the top left is the Reset button. Clicking this sends a
logic pulse to the Reset pin of the microcontroller, causing the microcontroller to start its program
afresh and clear its memory. Note that any program stored on the device will be retained because this
is kept in nonvolatile Flash memory—that is, memory that remembers even when the device is not
powered.

Power Supply
The Arduino can either be powered through the USB connection or the DC Barrel jack below it.
When powering it from a DC adaptor or batteries, anything between 7.5V and 12V DC can be
supplied through the power socket.

When the Arduino is powered, the power LED on the right of the Uno (left of the Leonard) will be
lit.

Power Connections
Next, let us look at the connectors at the bottom of Figure 2-1. Apart from the first connection, you
can read the connection names next to the connectors.

The first unlabeled connection is reserved for later use. The next pin, “IOREF,” is used to indicate
the voltage at which the Arduino operates. Both the Uno and Leonardo operate at 5V, so this pin will
always be at 5V, and we will not be using it for anything. Its purpose is to allow shields attached to
3V Arduinos such as the Arduino Due to detect the voltage at which the Arduino operates.

The next connection is Reset. This does the same thing as pressing the Reset button on the Arduino.
Rather like rebooting a PC, it resets the microcontroller, beginning its program from the start. The
Reset connector allows you to reset the microcontroller by momentarily setting this pin high
(connecting it to +5V).

The rest of the pins in this section provide different voltages (3.3V, 5V, GND, and 9V), as labeled.
GND, or ground, just means 0V. It is the reference voltage to which all other voltages on the board are
relative.

At this point it would be useful to remind the reader about the difference between voltage and
current. There is no perfect analogy for the behavior of electrons in a wire, but the author finds an
analogy with water in pipes to be helpful, particularly in dealing with voltage, current, and resistance.
The relationship between these three things is called Ohm’s law.

Figure 2-2 summarizes the relationship between voltage, current, and resistance. The left side of
the diagram shows a circuit of pipes, where the top of the diagram is higher up (in elevation) than the
bottom of the diagram. So water will naturally flow from the top of the diagram to the bottom. Two
factors determine how much water passes any point in the circuit in a given time (the current):

Figure 2-2 Ohm’s law.

 The height of the water (or, if you prefer, the pressure generated by the pump). This is like voltage

in electronics.
 The resistance to flow offered by the constriction in the pipe work.

The more powerful the pump, the higher the water can be pumped and the greater the current that
will flow through the system. On the other hand, the greater the resistance offered by the pipe work,
the lower the current.

In the right half of Figure 2-2, we can see the electronic equivalent of our pipe work. In this case,
current is actually a measure of how many electrons flow past a point per second. And yes, resistance
is the resistance to the flow of electrons.

Instead of height or pressure, we have a concept of voltage. The bottom of the diagram is at 0V, or
ground, and we have shown the top of the diagram as being at 5V. So the current that flows (I) will be
the voltage difference (5) divided by the resistance (R).

Ohm’s law is usually written as V = IR. Normally, we know what V is and are trying to calculate
R or I, so we can do a bit of rearranging to have the more convenient I = V/R and R = V/I.

It is very important to do a few calculations using Ohm’s law when connecting things to your
Arduino, or you may damage it if you ask it to supply too much current. Generally, though, the
Arduino boards are remarkably tolerant of accidental abuse.

So going back to our Arduino power pins, we can see that the Arduino board will supply us with
useful voltages of 3.3V and 5V If the Arduino is supplied with a higher voltage through the power
jack, then this voltage will also be available on the Vin pin. We can use any of those supplies to cause
a current to flow, as long as we are careful not to make it a short circuit (no resistance to flow),
which would cause a potentially large current to flow that could cause damage. In other words, we
have to make sure that anything we connect to the supply has enough resistance to prevent too much
current from flowing. As well as supplying a particular voltage, each of those supply connections
will have a maximum current that can be allowed to flow. Those currents are 50 mA (thousandths of
an ampere) for the 3.3V supply, and although it is not stated in the Arduino specification, probably
around 300 mA for the 5V supply.

The two GND connections are identical; it is just useful to have more than one GND pin to connect
things to. In fact, there is another GND socket on the top of the board.

Analog Inputs
The next section of connections is labeled “Analog In 0 to 5.” These six pins can be used to measure
the voltage connected to them so that the value can be used in a sketch. Note that they measure a
voltage and not a current. Only a tiny current will ever flow into them and down to ground because
they have a very large internal resistance.

Although labeled as analog inputs, these connections can also be used as digital inputs or outputs,
but by default, they are analog inputs.

Unlike the Uno, the Leonardo can also use digital pins 4, 6, 8, 9, 10, and 12 as analog inputs.

Digital Connections

We now switch to the top connector and start on the right side (Figure 2-1). We have pins labeled
“Digital 0 to 13.” These can be used as either inputs or outputs. When using them as outputs, they
behave rather like the supply voltages we talked about earlier, except that these are all 5V and can be
turned on or off from our sketch. So, if we turn them on from our sketch, they will be at 5V, and if we
turn them off, they will be at 0V. As with the supply connectors, we have to be careful not to exceed
their maximum current capabilities.

These connections can supply 40 mA at 5V. That is more than enough to light a standard LED but
not enough to drive an electric motor directly.

As an example, let us look at how we would connect an LED to one of these digital connections. In
fact, let’s go back to Project 1 in Chapter 1.

As a reminder, Figure 2-3 shows the schematic diagram for driving the LED that you first used in
Chapter 1. If you were to not use a resistor with our LED but simply connect the LED between pin 12
and GND, then when you turned digital output 12 on (5V), you would burn out the LED, destroying it.

Figure 2-3 LED and series resistor.

This is so because LEDs have a very low resistance and will cause a very high current to flow
unless they are protected from themselves by using a resistor to limit the flow of current.

An LED needs about 10 mA to shine reasonably brightly. The Arduino can supply 40 mA, so there
is no problem there; we just need to choose a sensible value of resistor.

LEDs have the interesting property that no matter how much current flows through them, there will
always be about 2V between their pins. We can use this fact and Ohm’s law to work out the right
value of resistor to use.

We know that (at least when it’s on) the output pin will be supplying 5V. Now we have just said
that 2V will be “dropped” by our LED, leaving 3V (5 - 2) across our current-limiting resistor. We
want the current flowing around the circuit to be 10 mA, so we can see that the value for the resistor
should be

R = V/I
R = 3V/10 mA
R = 3V/0.01 A
R = 300 Ω
Resistors come in standard values, and the closest value to 300 Ω is 270 Ω. This means that

instead of 10 mA, the current will actually be
I = V/R
I = 3/270
I = 11.111 mA
These things are not critical, and the LED probably would be equally happy with anything between

5 and 30 mA, so 270 Ω will work just fine as would 220 Ω or 330 Ω.
We can also set one of these digital connections to be an input, in which case it works rather like

an analog input, except that it will just tell us if the voltage at a pin is above a certain threshold
(roughly 2.5V) or not.

Some of the digital connections (3, 5, 6, 9, 10, and 11) have the letters “PWM” next to them. These
can be used to provide a variable output voltage rather than a simple 5V or nothing.

On the left side of the top connector in Figure 2-1, there is another GND connection and a
connection called “AREF.” AREF can be used to scale the readings for analog inputs. This is not
used in this book.

Digital pin 13 is also connected to an LED known as the “L” LED.

Microcontroller
Getting back to our tour of the Arduino board, the microcontroller chip itself is the black rectangular
device with 28 pins. This is fitted into a dual inline (DIL) socket so that it can be easily replaced. The
28-pin microcontroller chip used on an Arduino Uno is the ATmega328. The biggest difference
between the Uno and the Leonardo (Figure 2-4) is that the Leonardo has a surface-mount chip
permanently soldered into place. This effectively makes it very hard to replace the microcontroller if

it becomes damaged.

Figure 2-4 The Arduino Leonardo.

The Leonardo also uses a different version of the microcontroller board that includes the USB
interface circuitry that is separate in the Uno.

This makes the Leonardo board more sparsely populated with components and is a reason for its
lower cost. Figure 2-5 is a block diagram showing the main features of the ATmega328
microcontroller chip.

Figure 2-5 ATmega328 block diagram.

The heart, or perhaps more appropriately, the brain, of the device is the central processing unit
(CPU). It controls everything that goes on within the device. It fetches program instructions stored in
the Flash memory and executes them. This might involve fetching data from working memory (RAM),
changing it, and then putting it back. Or it may mean changing one of the digital outputs from 0V to 5V.

The electrically erasable programmable readonly memory (EEPROM) memory is a little like the
Flash memory in that it is nonvolatile. That is, you can turn the device off and on, and it will not have
forgotten what is in the EEPROM. Whereas the Flash memory is intended for storing program
instructions (from sketches), the EEPROM is used to store data that you do not want to lose in the
event of a reset or power failure.

The Leonardo’s microcontroller is similar, except that it has 2.5 kilobytes of RAM rather than 2
kilobytes.

Other Components

Above and to the left of the microcontroller there is a small silver rectangular component. This is a
quartz crystal oscillator. It “ticks” 16 million times a second, and on each of those ticks, the
microcontroller can perform one operation—an addition, subtraction, etc.

To the right of the microcontroller chip is the serial programming connector (ICSP header). It
offers another means of programming the Arduino without using the USB port. Since we do have a
USB connection and software that makes it convenient to use, we will not avail ourselves of this
feature.

In the top left of the board next to the USB socket is the USB interface chip. This converts the
signal levels used by the USB standard to levels that can be used directly by the Arduino board.

The Arduino Family
It’s useful to have a little background on the Arduino boards. We will be using the Uno or Leonardo
for most of our projects; however, we will also dabble with the interesting Lilypad Arduino.

The Lilypad (Figure 2-6) is a tiny, thin Arduino board that can be stitched into clothing for
applications that have become known as wearable computing. It does not have a USB connection, and
you must use a separate adaptor to program it. This is an exceptionally beautiful design. Inspired by
its clocklike appearance, we will use this in Project 29 (Unfathomable Binary Clock).

Figure 2-6 Arduino Lilypad.

At the other end of the spectrum is the Arduino Mega. This board has a faster processor with more
memory and a greater number of input-output pins.

Cleverly, the Arduino Mega can still use shields built for the smaller Arduino Uno and Leonardo
boards, which sit at the front of the board, allowing access to the double row of connectors for the
Mega’s additional connections at the rear. Only the most demanding of projects really need an
Arduino Mega.

Taking this to the next stage is the Arduino Due. This Arduino board is the same size as an Arduino
Mega but has a much more powerful processor, 96 kilobytes of RAM, and 512 megabytes of Flash
memory and is clocked at 84 MHz rather than the Uno’s 16 MHz.

The C Language
Many languages are used to program microcontrollers, from hard-core Assembly language to

graphical programming languages such as Flowcode. Arduino sits somewhere in between these two
extremes and uses the C programming language. It does, however, wrap up the C language, hiding
away some of the complexity. This makes it easy to get started.

The C language is, in computing terms, an old and venerable language. It is well suited to
programming the microcontroller because it was invented at a time when compared with today’s
monsters, the typical computer was quite poorly endowed.

C is an easy language to learn, yet it compiles into efficient machine code that only takes a small
amount of room in our limited Arduino memory.

An Example
We are now going to examine the sketch for Project 1 in a bit more detail. The listing for this sketch
to flash an LED on and off is shown here. You can ignore all the lines that begin with // or blocks of
lines that start with /* and end with */ because these are comment lines that have no effect on the
program and are just there for information.

Also, it is a good idea to include comments that describe a tricky bit of code or anything that
requires some explanation.

The Arduino development environment uses something called a compiler that converts the script
into the machine code that will run on the microcontroller.

So, moving onto the first real line of code, we have

This line of code gives a name to the digital output pin that we are going to connect to the LED. If
you look carefully at your Arduino board, you will see the connector for pin 13 between GND and
pin 12 on the Arduino’s top connector. The Arduino board has a small LED already soldered onto the
board and connected to pin 13. We are going to change the voltage of this pin to between 0V and 5V
to make the LED flash.

We are going to use a name for the pin so that it’s easy to change it and use a different one. You can
see that we refer to ledPin later in the sketch. You may prefer to use pin 12 and the external LED that
you used with your breadboard in Chapter 1. But for now we will assume that you are using the built-
in LED attached to pin 13.

You will notice that we did not just write

This is so because compilers are kind of fussy and precise about how we write our programs. Any
name we use in a program cannot use spaces, so it is a convention to use what is called bumpy case.
So we start each word (apart from the first) with an uppercase letter and remove the space; that gives
us

The word ledPin is what is termed a variable. When you want to use a variable for the first time in
a sketch, you have to tell the compiler what type of variable it is. It may be an int, as is the case here,
or a float, or a number of other types that we will describe later in this chapter.

An int is an integer—that is, a whole number—which is just what we need when referring to a
particular pin on the Arduino. There is, after all, no pin 12.5, so it would not be appropriate to use a
floating-point number (float).

The syntax for a variable declaration is

So first we have the type (int), then a space, then a variable name in bumpy case (ledPin), then an
equal sign, then a value, and finally, a semicolon to indicate the end of the line:

As I mentioned, the compiler is fussy, so if you forget the semicolon, you will receive an error
message when you compile the sketch. Try removing the semicolon and clicking the Play button. You
should see a message like this:

It’s not exactly “you forgot a semicolon,” and it is not uncommon for error messages to be
similarly misleading.

The compiler is much less fussy about “whitespace” characters, that is, spaces, tabs, and the return
character. So if you omitted the spaces either side of the = sign, it would still compile. Use of spaces
and tabs makes the code easier to read, and by sticking to a convention and always formatting your
code the same and in a fairly standard way, you will make it much easier for other people to
understand your code.

The next lines of the sketch are

This is what is called a function, and in this case, the function is called setup. Every sketch must
contain a setup function, and the lines of code inside the function surrounded by curly brackets will be
carried out in the order that they are written. In this case, that is just the line starting with pinMode.

A good starting point for any new project is to copy this example project and then alter it to your
needs.

We will not worry too much about functions at this stage, other than to say that the setup function
will be run every time the Arduino is reset, including when the power is first turned on. It will also
be run every time a new sketch is uploaded.

In this case, the only line of code in setup is

The line can be thought of as a command to the Arduino to use the ledPin as a digital output. If we
had a switch connected to ledPin, we could set it as an input using

However, we would call the variable something more appropriate, such as switchPin.
The words INPUT and OUTPUT are what are called constants. They will actually be defined

within C to be a number. INPUT may be defined as 0 and OUPUT as 1, but you never need to actually
see what number is used because you always refer to them as INPUT or OUTPUT. Later in this
chapter we will see two more constants, HIGH and LOW, that are used when setting the output of a
digital pin to +5V or 0V, respectively.

The next section of code is another function that every Arduino sketch must have; it is called loop:

The function loop will be run continuously until the Arduino is powered down. That is, as soon as
it finishes executing the commands it contains, it will begin again. Remember that an Arduino board is
capable of running 16 million commands per second, so things inside the loop will happen frequently
if you let them.

In this case, what we want the Arduino to keep doing continuously is to turn the LED on, wait a
second, turn the LED off, and then wait another second. When it has finished doing this, it will begin
again, turning the LED on. In this way it will go round the loop forever.

By now, the command syntax for digitalWrite and delay will be becoming more familiar. Although
we can think of them as commands that are sent to the Arduino board, they are actually functions just
like setup and loop, but in this case they have what are called parameters. The parameters are
enclosed by parentheses and separated by commas. In the case of digitalWrite, it is said to take two
parameters: the Arduino pin to write to and the value to write.

In our example, we pass the parameters of ledPin and HIGH to turn the LED on and then ledPin
and LOW to turn it off again.

Variables and Data Types

We have already met the variable ledPin and declared it to be of type int. Most of the variables that
you use in your sketches are also likely to be of type int. An int holds an integer number between –
32,768 and +32,767. This uses just 2 bytes of data for each number stored from the 1024 available
bytes of storage on an Arduino. If that range is not enough, you can use a long, which uses 4 bytes for
each number and will give you a range of numbers from –2,147,483,648 to +2,147,483,647.

Most of the time, an int represents a good compromise between precision and use of memory.
If you are new to programming, I would use int for almost everything and gradually expand your

repertoire of data types as your experience grows.
Other data types available to you are summarized in Table 2-1.

TABLE 2-1 Data Types in C

One thing to consider is that if data types exceed their range, strange things happen. So, if you have
a byte variable with 255 in it and you add 1 to it, you get 0. More alarmingly, if you have an int
variable with 32,767 and you add 1 to it, you will end up with –32,768.

Until you are completely happy with these different data types, I would recommend sticking to it
because it works for practically everything.

Arithmetic
It is fairly uncommon to need to do much in the way of arithmetic in a sketch. Occasionally, you will
need to do a bit of scaling of, say, an analog input to turn it into a temperature or, more typically, add
1 to a counter variable.

When you are performing some calculation, you need to be able to assign the result of the
calculation to a variable.

The following lines of code contain two assignments. The first gives the variable y the value 50,
and the second gives the variable x the value of y + 100.

Strings
When programmers talk of strings, they are referring to a string of characters such as the much-used
message “Hello World.” In the world of Arduino, there are a couple of situations where you might
want to use strings: when writing messages to an LCD display or sending back serial text data over
the USB connection.

Strings are created using the following syntax:

The char* word indicates that the variable message is a pointer to a character. For now, we do not
need to worry too much about how this works. We will meet this later in the book when we look at
interfacing with textual LCD displays.

Conditional Statements
Conditional statements are a means of making decisions in a sketch. For instance, your sketch may
turn the LED on if the value of a temperature variable falls below a certain threshold.

The code for this is shown here:

The line or lines of code inside the curly braces will only be executed if the condition after the if
keyword is true.

The condition has to be contained in parentheses and is what programmers call a logical
expression. A logical expression is like a mathematical sentence that must always return one of two
possible values: true or false.

The following expression will return true if the value in the temperature variable is less than 15:

As well as <, you have: >, <=, and >=. To see if two numbers are equal, you can use ==, and to
test if they are not equal, you can use !=.

So the following expression would return true if the temperature variable had a value that was
anything except 15:

You can also make complex conditions using what are called logical operators. The principal
operators being && (and) and || (or).

So an example that turned the LED on if the temperature was less than 15 or greater than 20 might
look like this:

Often, when using an if statement, you want to do one thing if the condition is true and a different
thing if it is false. You can do this by using the else keyword, as shown in the following example.
Note the use of nested parentheses to make it clear what is being or’d with what.

Summary
In this chapter we have explored the hardware provided by the Arduino and refreshed our knowledge
of a little elementary electronics.

We have also started our exploration of the C programming language. Don’t worry if you found
some of this hard to follow. There is a lot to take in if you are not familiar with electronics, and while
the author’s goal is to explain how everything works, you are completely at liberty to simply start on
the projects first and come back to the theory when you are ready.

If you want to learn more about programming the Arduino in C, then the book Programming
Arduino: Getting Started with Sketches by this author is devoted to that topic.

In Chapter 3 we will come to grips with programming our Arduino board and embark on some
more serious projects.

CHAPTER 3

LED Projects

IN THIS CHAPTER WE ARE GOING TO start building some LED-based projects. We will keep the
hardware fairly simple so that we can concentrate on the programming of the Arduino.

Programming microcontrollers can be a tricky business requiring an intimate knowledge of the
inner workings of the device: fuses, registers, etc. This is due, in part, to the fact that modern
microcontrollers are almost infinitely configurable. Arduino standardizes its hardware configuration,
which, in return for a small loss of flexibility, makes the devices a great deal easier to program.

Project 2
Morse Code S.O.S. Flasher
Morse code used to be a vital method of communication in the 19th and 20th centuries. Its coding of
letters as a series of long and short dots meant that it could be sent over telegraph wires, over a radio
link, and using signaling lights. The letters S.O.S. (Save Our Souls) are still recognized as an
international signal of distress.

In this project, we will make our LED flash the sequence S.O.S. over and over again.
For this project you will need just the same components as for Project 1.

COMPONENTS AND EQUIPMENT

Hardware

The hardware is exactly the same as for Project 1. So you can either just plug the resistor and LED
directly into the Arduino connectors or use a breadboard (see Chapter 1).

Software
Rather than start typing this project in from scratch, we will use Project 1 as a starting point. So
please complete Project 1 before you begin this project.

If you have not already done so, download the project code from www.arduinoevilgenius.com;
then you can also just load the completed sketch for Project 1 from your Arduino Sketchbook and
download it to the board (see Chapter 1). However, it will help you to understand Arduino better if
you modify the sketch from Project 1 as suggested next.

Modify the loop function of Project 1 so that it now appears as shown here. Note that copy and
paste are highly recommended in this kind of situation.

http://www.arduinoevilgenius.com

This would all work, and feel free to try it; however, we are not going to leave it there. We are
going to alter our sketch to improve it and at the same time make it a lot shorter.

We can reduce the size of the sketch by creating our own function to replace the four lines of code
involved in any flash of the LED with one line.

After the loop function’s final curly brace, add the following code:

Now modify the loop function so that it looks like this:

The whole final listing is shown in Listing Project 2.

LISTING PROJECT 2

This makes the sketch a lot smaller and a lot easier to read.

Putting It All Together
That concludes Project 2. We will now cover some more background on programming the Arduino
before we go on to look at Project 3, where we will use our same hardware to write a Morse code
translator, with which we can type sentences on our computer and have them flashed as Morse code.
In Project 4 we will improve the brightness of our flashing by replacing our red LED with a high-
power Luxeon-type LED.

But first we need a little more theory in order to understand Projects 3 and 4.

Loops
Loops allow us to repeat a group of commands a certain number of times or until some condition is
met. In Project 2, we only want to flash three dots for an S, so it is no great hardship to repeat the
flash command three times. However, it would be far less convenient if we needed to flash the LED
100 or 1000 times. In that case we can use the for language command in C:

The for loop is a bit like a function that takes three arguments, although here those arguments are
separated by semicolons rather than by the usual commas. This is just a quirk of the C language. The
compiler will soon tell you when you get it wrong.

The first thing in the parentheses after for is a variable declaration. This specifies a variable to be
used as a counter variable and gives it an initial value—in this case 0.

The second part is a condition that must be true for us to stay in the loop. In this case we will stay
in the loop as long as i is less than 100, but as soon as i is 100 or more, we will stop doing the things
inside the loop.

The final part is what to do every time you have done all the things in the loop. In this case, that is
increment i by 1 so that it can, after 100 trips around the loop, cease to be less than 100 and cause the
loop to exit.

Another way of looping in C is to use the while command. The same example shown previously
could be accomplished using a while command, as shown here:

The expression in parentheses after the while must be true to stay in the loop. When it is no longer
true, the sketch will continue running the commands after the final curly brace.

The curly braces are used to bracket together a group of commands. In programming parlance, they
are known as a block.

Arrays
Arrays are a way of containing a list of values. The variables we have met so far have only contained
a single value, usually an int. By contrast, an array contains a list of values, and you can access any
one of those values by its position in the list.

C, like the majority of programming languages, begins its index positions at 0 rather than 1. This
means that the first element is actually element zero.

To illustrate the use of arrays, we could change our Morse code example to use an array of flash
durations. We can then use a for loop to step through each of the items in the array.

First let’s create an array of type int containing the durations:

You indicate that a variable contains an array by placing [] after the variable name. If you are
setting the contents of the array at the same time you are defining it, as in the preceding example, you
do not need to specify the size of the array. If you are not setting its initial contents, then you need to
specify the size of the array inside the square brackets. For example:

Now we can modify our loop method to use the array:

An obvious advantage of this approach is that it is easy to change the message by simply altering
the durations array. In Project 3 we will take the use of arrays a stage further to make a more general-
purpose Morse code flasher.

Project 3
Morse Code Translator
In this project we are going to use the same hardware as for Projects 1 and 2, but we are going to
write a new sketch that will let us type in a sentence on our computer and have our Arduino board
convert that into the appropriate Morse code dots and dashes.

Figure 3-1 shows the Morse code translator in action. The contents of the message box are being
flashed as dots and dashes on the LED.

Figure 3-1 Morse code translator.

To do this, we will make use of what we have learned about arrays and strings and also learn
something about sending messages from our computer to the Arduino board through the USB cable.

For this project, you will need just the same components as for Projects 1 and 2. In fact, the
hardware is exactly the same; we are just going to modify the sketch of Project 1.

COMPONENTS AND EQUIPMENT

Hardware
Please refer back to Project 1 for the hardware construction for this project.

You can either just plug the resistor and LED directly into the Arduino connectors or use the
breadboard (see Chapter 1). You can even just change the ledPin variable in the sketch to be pin 13
so that you use the built-in LED and do not need any external components at all.

Software
The letters in Morse code are shown in Table 3-1.

TABLE 3-1 Morse Code Letters

Some of the rules of Morse code are that a dash is three times as long as a dot, the time between
each dash or dot is equal to the duration of a dot, the space between two letters is the same length as a
dash, and the space between two words is the same duration as seven dots.

For the sake of this project, we will not worry about punctuation, although it would be an
interesting exercise for you to try adding this to the sketch. For a full list of all the Morse characters,
see http://en.wikipedia.org/wiki/Morse_code.

The sketch for this is shown in Listing Project 3. An explanation of how it all works follows.

LISTING PROJECT 3

We keep track of our dots and dashes using arrays of strings. We have two of these, one for letters
and one for numerals. So, to find out what we need to flash for the first letter of the alphabet (A), we
will get the string letters[0]—remember, the first element of an array is element 0, not element 1.

The variable dotDelay is defined, so if we want to make our Morse code flash faster or slower,
we can change this value because all the durations are defined as multiples of the time for a dot.

The setup function is much the same as for our earlier projects; however, this time we are getting
communications from the USB port, so we must add the command

This tells the Arduino board to set the communications speed through the USB to be 9600 baud.
This is not very fast, but fast enough for our Morse code messages. It is also a good speed to set it to
because that is the default speed used by the Arduino software on your computer.

In the loop function we are going to repeatedly see if we have been sent any letters over the USB
connection and if we have to process the letter. The Arduino function Serial.available() will be true if
there is a character to be turned into Morse code, and the Serial.read() function will give us that
character, which we assign to a variable called ch that we defined just inside the loop.

We then have a series of if statements that determine whether the character is an uppercase letter, a
lowercase letter, or a space character separating two words. Looking at the first if statement, we are
testing to see if the character’s value is greater than or equal to a and less than or equal to z. If that is
the case, we can find the sequence of dashes and dots to flash using the letters array that we defined at
the top of the sketch. We determine which sequence from the array to use by subtracting a from the
character in ch.

At first sight, it might look strange to be subtracting one letter from another, but it is perfectly
acceptable to do this in C. So, for example, a - a is 0, whereas d - a will give us the answer 3. So, if
the letter that we read from the USB connections were f, we would calculate f - a, which gives us 5 as
the position of the letters array. Looking up letters[5] will give us the string ..-.. and we pass this
string to a function called flashSequence.

The flashSequence function is going to loop over each of the parts of the sequence and flash it as
either a dash or a dot. Strings in C all have a special code on the end of them that marks the end of the
string, and this is called NULL. So the first thing flashSequence does is to define a variable called i.
This is going to indicate the current position in the string of dots and dashes, starting at position 0.
The while loop will keep going until we reach the NULL on the end of the string.

Inside the while loop, we first flash the current dot or dash using a function that we are going to
discuss in a moment and then add 1 to i and go back round the loop flashing each dot or dash in turn
until we reach the end of the string.

The final function that we have defined is flashDotOrDash; this just turns the LED on and then uses
an if statement to either delay for the duration of a single dot if the character is a dot or for three times
that duration if the character is a dash before it turns the LED off again.

Putting It All Together
Load the completed sketch for Project 3 from your Arduino Sketchbook and download it onto your
board (see Chapter 1).

To use the Morse code translator, we need to use a part of the Arduino software called the Serial
Monitor. This window allows you to type messages that are sent to the Arduino board as well as see
any messages that the Arduino board chooses to reply with.

The Serial Monitor is launched by clicking the rightmost icon shown highlighted in Figure 3-2.

Figure 3-2 Launching the Serial Monitor.

The Serial Monitor (see Figure 3-3) has two parts. At the top, there is a field into which a line of
text can be typed that will be sent to the board when you either click Send or press RETURN.

Figure 3-3 The Serial Monitor window.

Below that is a larger area in which any messages coming from the Arduino board will be
displayed. Right at the bottom of the window is a drop-down list where you can select the speed at
which the data is sent. Whatever you select here must match the baud rate that you specify in your
script’s startup message. We use 9600, which is the default, so there is no need to change anything
here.

So all we need to do is launch the Serial Monitor, type some text into the Send field, and click the
Send button or press RETURN. We should then have our message flashed to us in Morse code.

Project 4
High-Brightness Morse Code Translator
The little LED on Project 3 is unlikely to be visible from the ship on the horizon being lured by our
bogus Evil Genius distress message. So, in this project, we are going to up the power and use a 1 W
Luxeon LED. These LEDs are extremely bright, and all the light comes from a tiny little area in the
center, so to avoid any possibility of retina damage, do not stare directly into it.

We also look at how, with a bit of soldering, we can make this project into a shield that can be
plugged into our Arduino board.

COMPONENTS AND EQUIPMENT

Hardware
The LED we used in Project 3 used about 10 mA at 2V. We can use this to calculate power using the
formula

P = I V
Power equals the voltage across something times the current flowing through it, and the unit of

power is the watt. So that LED would be approximately 20 mW, or a fiftieth of the power of our 1 W
Luxeon LED. While an Arduino will cope just fine driving a 20 mW LED, it will not be able to
directly drive the 1 W LED.

This is a common problem in electronics and can be summed up as getting a small current to
control a bigger current, something that is known as amplification. The most commonly used
electronic component for amplification is the transistor, so that is what we will use to switch our
Luxeon LED on and off.

The basic operation of a transistor is shown in Figure 3-4. There are many different types of
transistors, and probably the most common and the type that we are going to use is called an NPN
bipolar transistor.

Figure 3-4 The operation of an NPN bipolar transistor.

This transistor has three leads: the emitter, the collector, and the base. And the basic principle is
that a small current flowing through the base will allow a much bigger current to flow between the
collector and the emitter.

Just how much bigger the current is depends on the transistor, but it is typically a factor of 100. So
a current of 10 mA flowing through the base could cause up to 1 A to flow through the collector. So, if
we kept the 270 Ω resistor that we used to drive the LED at 10 mA, we could expect it to be more
than enough to allow the transistor to switch the hundreds of milliamps needed by the Luxeon LED.

The schematic diagram for our control circuit is shown in Figure 3-5.

Figure 3-5 Schematic diagram for high-power LED driving.

The 270 Ω resistor (R1) limits the current that flows through the base. We can calculate the current
using the formula I = V/R. V will be 4.4V rather than 5V because transistors normally have a voltage
of 0.6V between the base and emitter, and the highest voltage the Arduino can supply from an output
pin is 5V. So the current will be 4.4/270 = 16 mA.

The datasheet for this LED states that the absolute maximum forward current is 350 mA, and the
forward voltage is 3.4V. So we will aim for around 200 mA, which will make the LED good and
bright without shortening its life.

R2 limits the current flowing through the LED to around 200 mA. We came up with the figure of
4.7 Ω by using the formula R = V/I. V will be roughly 5 – 3.4 – 0.6 = 1.0V. 5V is the supply voltage,
the LED drops roughly 3.4V and the transistor 0.6V, so the resistance should be 1.0V/200 mA = 5 Ω.
Resistors come in standard values, so we will select a 4.7 Ω resistor. We must also use a resistor that
can cope with this relatively high current. The power that the resistor will burn off as heat is equal to
the voltage across it multiplied by the current flowing through it. In this case, that is 200 mA × 1.0V,
which is 200 mW. This means that a regular 0.5 W or even 0.25 W resistor will be just fine.

In the same way, when choosing a transistor, we need to make sure that it can handle the power.
When it is turned on, the transistor will consume power equal to current times voltage. In this case,

the base current is small enough to ignore, so the power will just be 0.6V × 200 mA, or 120 mW. It is
always a good idea to pick a transistor that can easily cope with the power. In this case, we are going
to use a BD139, which has a power rating of over 12 W. In Chapter 10 you can find a table of
commonly used transistors.

Now we need to put our components into the breadboard according to the layout shown in Figure
3-6, with the corresponding photograph of Figure 3-8. It is crucial to correctly identify the leads of
the transistor and the LED. The metallic side of the transistor should be facing the board. The LED
will have a little + symbol next to the positive connection.

Figure 3-6 Project 4 breadboard layout.

Later in this project we are going to show you how you can move the project from the breadboard
to a more permanent design using the Arduino Protoshield. This requires some soldering, so if you
think you might go on to make a shield and have the facilities to solder, I would solder some leads
onto the Luxeon LED. Solder short lengths of solid-core wire to two of the six tags around the edge.
They should be marked + and –. It is a good idea to color-code your leads with red for positive and
blue or black for negative.

If you do not want to solder, that’s fine; you just need to carefully twist the solid-core wire around
the connectors as shown in Figure 3-7.

Figure 3-7 Attaching leads to the Luxeon LED without soldering.

Figure 3-8 shows the fully assembled breadboard.

Figure 3-8 Photograph of complete breadboard for Project 4.

Software
Project 4 uses exactly the same sketch as Project 3.

Putting It All Together
If you do not still have the sketch from Project 3 loaded, then load the sketch for Project 3 from your
Arduino Sketchbook and download it onto your board (see Chapter 1).

Again, testing the project is the same as for Project 3. You will need to open the Serial Monitor
window and just start typing.

The LED actually has a very wide angle of view, so one variation on this project would be to
adapt an LED torch in which the LED has a reflector to focus the beam.

Making a Shield

This is the first project that we have made that has enough components to justify making an Arduino
Shield circuit board to sit on top of the Arduino board itself. We are also going to use this hardware
with minor modifications in Project 6, so perhaps it is time to make ourselves a Luxeon LED Shield.

Making your own circuit boards at home is perfectly possible but requires the use of noxious
chemicals and a fair amount of equipment. But fortunately, there is another great piece of Arduino-
related open-source hardware called the Arduino Protoshield. If you shop around, these can be
obtained for $10 or less and will provide you with a kit of all you need to make a basic shield. That
includes the board itself, the header connector pins that fit into the Arduino, and some LEDs,
switches, and resistors. Please be aware that there are several variations of the Protoshield board, so
you may have to adapt the following design if your board is slightly different.

The components for a Protoshield are shown in Figure 3-9, the most important part being the
Protoshield circuit board (PCB). It is possible to just buy the PCB on its own, which for many
projects will be all you need.

Figure 3-9 Protoshield in kit form.

We are not going to solder all the components that came with our kit onto the board. We are just
going to add the power LED, its resistor, and just the bottom pins that connect to the Arduino board
because this is going to be a top shield and will not have any other shields on top of it.

A good guide for assembling circuit boards is to solder in place the lowest components first. So in
this case we will solder the resistors, the LED, the reset switch, and then the bottom pin connectors.

The 1K resistor, LED, and switch are all pushed through from the top of the board and soldered
underneath (Figure 3-10). The short part of the connector pins will be pushed up from underneath the
board and soldered on top.

Figure 3-10 The underside of the Protoshield.

When soldering the connector pins, make sure that they are lined up correctly because there are
two parallel rows for the connectors: one for the connection to the pins below and one for the
sockets, which we are not using, that are intended to connect to further shields.

A good way to ensure that the headers are in the right place is to fit the sections of header into an
Arduino board and then place the shield on top and solder the pins while it’s still plugged into the
Arduino board. This will also ensure that the pins are straight.

When all the components have been soldered in place, you should have a board that looks like
Figure 3-11.

Figure 3-11 Assembled basic Protoshield.

We can now add our components for this project, which we can take from the breadboard. First,
line up all the components in their intended places according to the layout of Figure 3-12 to make sure
that everything fits in the available space.

Figure 3-12 Project 4 Protoshield layout.

This kind of board is double-sided—that is, you can solder to the top or bottom of the board. As
you can see from the layout in Figure 3-12, some of the connections are in strips like a breadboard.

We are going to mount all the components on the top side, with the leads pushed through and
soldered on the underside where they emerge from the board. The leads of the components underneath
can then be connected up and excess leads snipped off. If necessary, lengths of solid-core wire can be
used where the leads will not reach.

Figure 3-13 shows the completed shield. Power up your board and test it out. If it does not work
as soon as you power it up, disconnect it from the power right away and carefully check the shield for
any short circuits or broken connections using a multimeter.

Figure 3-13 Complete Luxeon shield attached to an Arduino board.

Congratulations! You have created your first Arduino Shield, and it is one that we can reuse in
later projects.

Summary
So we have made a start on some simple LED projects and discovered how to use high-power
Luxeon LEDs. We have also learned a bit more about programming our Arduino board in C.

In Chapter 4 we are going to extend this by looking at some more LED-based projects, including a
model traffic signal and a high-power strobe light.

CHAPTER 4

More LED Projects

IN THIS CHAPTER WE ARE GOING to build on those versatile little components, LEDs, and learn a bit
more about digital inputs and outputs, including how to use push-button switches.

The projects that we are going to build in this chapter are a model traffic signal, two strobe light
projects, and a bright-light module using high-power Luxeon LEDs.

Digital Inputs and Outputs
The digital pins 0 to 12 can all be used as either an input or an output. This is set in your sketch.
Since you are going to be connecting electronics to one of these pins, it is unlikely that you are going
to want to change the mode of a pin. That is, once a pin is set to be an output, you are not going to
change it to be an input midway through a sketch.

For this reason, it is a convention to set the direction of a digital pin in the setup function that must
be defined in every sketch.

For example, the following code sets digital pin 10 to be an output and digital pin 11 to be an
input. Note how we use a variable declaration in our sketch to make it easier to change the pin used
for a particular purpose later on.

In the sketch for Project 5, we will connect pin 5 to a switch that will connect it to GND when it is
pressed. The pinMode of pin 5 is set to be INPUT_PULLUP rather than just INPUT. This sets the
input to be “pulled up” to HIGH. Another way of thinking of this is that the input is by default HIGH
unless pulled LOW.

Project 5
Model Traffic Signal

So now that we know how to set a digital pin to be an input, we can build a project for model traffic
signals using red, yellow, and green LEDs. Every time we press the button, the traffic signal will go
to the next step in the sequence. In the United Kingdom, the sequence of such traffic signals is red, red
and amber together, green, amber, and then back to red.

As a bonus, if we hold the button down, the lights will change in sequence by themselves with a
delay between each step.

The components for Project 5 are listed next. When using LEDs, for best effect, try to pick LEDs
of similar brightness.

COMPONENTS AND EQUIPMENT

Hardware
The schematic diagram for the project is shown in Figure 4-1.

Figure 4-1 Schematic diagram for Project 5.

The LEDs are connected in the same way as our earlier project, each with a current-limiting
resistor. Pressing the push-button switch will connect digital pin 5 to GND.

A photograph of the project is shown in Figure 4-2 and the board layout in Figure 4-3.

Figure 4-2 Project 5: a model traffic signal

Figure 4-3 Breadboard layout for Project 5.

Software
The sketch for Project 5 is shown in Listing Project 5.

The sketch is fairly self-explanatory. We only check to see if the switch is pressed once a second
so that pressing the switch rapidly will not move the light sequence on. However, if we press and
hold the switch, the lights will automatically sequence round.

The delay(1000) command prevents the lights changing so fast that they are a blur.
We use a separate function setLights to set the state of each LED, reducing three lines of code to

one.

Putting It All Together

Load the completed sketch for Project 5 from your Arduino Sketchbook (see Chapter 1).
Test the project by holding down the button and making sure that the LEDs all light in sequence.

Project 6
Strobe Light
This project uses the same high-brightness Luxeon LED as the Morse code translator. It adds to that a
variable resistor, sometimes called a potentiometer. This provides us with a control that we can
rotate to control the flashing rate of the strobe light.

CAUTION This is a strobe light; it flashes brightly. If you have a health condition such as
epilepsy, you may wish to skip this project.

LISTING PROJECT 5

COMPONENTS AND EQUIPMENT

Hardware
The hardware for this project is basically the same as for Project 4 but with the addition of a variable
resistor or potentiometer as they are sometimes known (Figure 4-4).

Figure 4-4 Schematic diagram for Project 6.

The Arduino is equipped with six analog input pins numbered Analog 0 to Analog 5. These
measure the voltage at their input and give a number between 0 (0V) and 1023 (5V).

We can use this to detect the position of a control knob by connecting a variable resistor acting as
a potential divider to our analog pin. Figure 4-5 shows the internal structure of a variable resistor.

Figure 4-5 The internal workings of a variable resistor.

A variable resistor is a component that is typically used for volume control. It is constructed as a
circular conductive track with a gap in it and connections at both ends. A slider provides a movable
third connection.

You can use a variable resistor to provide a variable voltage by connecting one end of the resistor
to 0V and the other end to 5V, and then the voltage at the slider will vary between 0V and 5V as you
turn the knob.

As you would expect, the breadboard layout (Figure 4-6) is similar to Project 4.

Figure 4-6 Breadboard layout for Project 6.

Software
The listing for this project is shown here. The interesting parts are concerned with reading the value
from the analog input and controlling the rate of flashing.

For analog pins, it is not necessary to use the pinMode function, so we do not need to add anything
into the setup function.

LISTING PROJECT 6

Let us say that we are going to vary the rate of flashing between once a second and 20 times a
second; the delays between turning the LED on and off will be 500 milliseconds and 25 milliseconds,
respectively.

So, if our analog input changes from 0 to 1023, the calculation that we need to determine the flash
delay is roughly

So an analog_value of 0 would give a flash_delay of 561 and an analog_value of 1023 would give
a delay of 25. We should actually be dividing by slightly more than 2, but it makes things easier if we
keep everything as integers.

Putting It All Together
Load the completed sketch for Project 6 from your Arduino Sketchbook and download it to the board
(see Chapter 1).

You will find that turning the variable resistor control clockwise will increase the rate of flashing
as the voltage at the analog input increases. Turning it counterclockwise will slow the rate of flashing.

Making a Shield
If you want to make a shield for this project, you can either adapt the shield for Project 4 or create a
new shield from scratch.

The layout of components on the Protoshield is shown in Figure 4-7.

Figure 4-7 Protoshield layout for Project 6.

This is basically the same as for Project 4, except that we have added the variable resistor. The
pins on a variable resistor are too thick to fit into the holes on the Protoshield, so you can either

attach it using wires or, as we have done here, carefully solder the leads to the top surface where they
touch the board. To provide some mechanical strength, the variable resistor can be glued in place first
with a drop of Super Glue. The wiring for the variable resistor to 5V, GND, and Analog 0 can be
made underneath the board out of sight.

Having made a shield, we can make the project independent of our computer by powering it from a
9V battery.

To power the project from a battery, we need to make ourselves a small lead that has a PP3 battery
clip on one end and a 2.1-mm power plug on the other. Figure 4-8 shows the semiassembled lead.
You can also buy such leads ready assembled from Sparkfun and Adafruit.

Figure 4-8 Creating a battery lead.

Project 7
SAD Light
Seasonal affective disorder (SAD) affects a great number of people, and research has shown that
exposure to a bright white light that mimics daylight for 10 or 20 minutes a day has a beneficial effect.
To use this project for such a purpose, I would suggest the use of some kind of diffuser such as frosted
glass because you should not stare directly at the point light sources of the LEDs.

This is another project based on Luxeon high-brightness LEDs. We will use an analog input
connected to a variable resistor to act as a timer control, turning the LED on for a given period set by
the position of the variable resistor’s slider. We will also use an analog output to slowly raise the
brightness of the LEDs as they turn on and then slowly decrease it as they turn off. To make the light

bright enough to be of use as a SAD light, we are going to use not just one Luxeon LED but six.

COMPONENTS AND EQUIPMENT

At this point the caring nature of this project may be causing the Evil Genius something of an
identity crisis. But fear not—in Project 8 we will turn this same hardware into a fearsome high-
powered strobe light.

Hardware
Some of the digital pins, namely, digital pins 5, 6, 9, 10, and 11, on an Uno and a few more on a
Leonardo can provide a variable output rather than just 5V or nothing. These are the pins with

“PWM” next to them on the board.
PWM stands for pulse-width modulation and refers to the means of controlling the amount of

power at the output. It does so by rapidly turning the output on and off.
The pulses are always delivered at the same rate (roughly 500 per second), but the length of the

pulses is varied. If the pulse is long, our LED will be on all the time. If, however, the pulses are
short, the LED is only actually lit for a small portion of the time. This happens too fast for the
observer to even tell that the LED is flickering, and it just appears that the LED is brighter or dimmer.

You will meet PWM again in Project 19, where we use it to generate sounds.
The value of the output can be set using the function analogWrite, which requires an output value

between 0 and 255, where 0 will be off and 255 will be full power.
As you can see from the schematic diagram in Figure 4-9, the LEDs are arranged in two columns

of three. The LEDs are also supplied from an external 15V supply rather than the 5V supply that we
used before. Since each LED consumes about 300 mA, each column will draw about 300 mA, so the
supply must be capable of supplying 0.6 A (1 A to be on the safe side).

Figure 4-9 Schematic diagram for Project 7.

This is the most complex schematic so far in our projects. We are using two integrated-circuit
variable voltage regulators to limit the current flowing to the LEDs. The output of the voltage
regulators will normally be 1.25V above whatever the voltage is at the Ref pin of the chip. This
means that if we drive our LEDs through a 4 W resistor, there will be a current of roughly I = V/R, or
1.25/4 = 312 mA flowing through it (which is about right).

The field-effect transistor (FET) is like our normal bipolar transistor in that it can act as a switch,
but it has a very high off resistance. So, when it is not triggered by a voltage at its gate, it’s as if it
isn’t there in the circuit. However, when it is turned on, it will pull down the voltage at the
regulator’s Ref pin to a low enough voltage to prevent any current flowing into the LEDs, turning them
off. Both the FETs are controlled from the same digital pin 11.

The completed LED module is shown in Figure 4-10 and the perf board layout in Figure 4-11.

Figure 4-10 Project 7: high-power light module.

Figure 4-11 Perf board layout.

The module is built on perf (perforated) board. The perf board is just a board with holes in it. It
has no connections at all. So it acts as a structure on which to fit your components, but you have to
wire them up on the underside of the board, either by connecting their leads together or by adding
wires.

It is easier to solder two wires onto each LED before fitting it onto the board. It is a good idea to
color-code those leads—red for positive and black or blue for negative—so that you get the LEDs in
the correct way round.

The LEDs will get hot, so it is a good idea to leave a gap between them and the perf board using

the insulation on the wire to act as a spacer. The voltage regulator will also get hot but should be okay
without a heat sink. The voltage regulator integrator circuits (ICs) actually have built-in thermal
protection and will automatically reduce the current if they start to get too hot.

The screw terminals on the board are for the power supply GND and 15V and a control input.
When we connect this to the Arduino board, the 15V will come from the Vin pin on the Arduino,
which in turn is supplied from a 15V power supply.

Our high-power LED module will be of use in other projects, so we are going to plug the variable
resistor directly into the “Analog In” strip of connectors on the Arduino board. The spacing of pins on
the variable resistor is 1/5 of an inch, which means that if the middle slider pin is in the socket for
Analog 2, the other two pins will be in the sockets for Analog 0 and Analog 4. You can see this
arrangement in Figure 4-12.

Figure 4-12 Project 7: SAD light.

So, in order to have 5V at one end of our variable resistor and 0V at the other, we are going to set
the outputs of analog pins 0 and to 0V and 5V, respectively.

Software
At the top of the sketch, after the variable used for pins, we have four other variables:
startupSeconds, turnOffSeconds, minOnSeconds, and maxOnSeconds. This is common practice in
programming. By putting these values that we might want to change into variables and making them
visible at the top of the sketch, it makes it easier to change them.

LISTING PROJECT 7

The variable startupSeconds determines how long it will take for the brightness of the LEDs to be
gradually raised until it reaches maximum brightness. Similarly, turnOffSeconds determines the time
period for dimming the LEDs. The variables minOnSeconds and maxOnSeconds determine the range
of times set by the variable resistor.

In this sketch, there is nothing in the loop function. Instead, all the code is in setup. So the light will
automatically start its cycle when it is powered up. Once it has finished, it will stay turned off until
the Reset button is pressed.

The slow turn-on is accomplished by gradually increasing the value of the analog output by 1. This
is carried out in a while loop, where the delay is set to 1/255 of the startup time so that after 255
steps maximum brightness has been achieved. Slow turn-off works in a similar manner.

The time period at full brightness is set by the analog input. Assuming that we want a range of
times from 5 to 30 minutes, we need to convert the value of 0 to 1023 to a number of seconds between
300 and 1800. Fortunately, there is a handy Arduino function that we can use to do this. The function
map takes five arguments: the value you want to convert, the minimum input value (0 in this case), the
maximum input value (1023), the minimum output value (300), and the maximum output value (1800).

Putting It All Together

Load the completed sketch for Project 7 from your Arduino Sketchbook and download it to the board
(see Chapter 1).

You now need to attach wires from the Vin, GND, and digital pin 11 of the Arduino board to the
three screw terminals of the LED module (Figure 4-12). Plug a 15V power supply into the board’s
power socket, and you are ready to try it.

To start the light sequence again, click the Reset button.

Project 8
High-Powered Strobe Light
For this project you can use the six Luxeon LED module of Project 7 or you can use the Luxeon shield
that we created for Project 4. The software will be almost the same in both cases.

In this version of the strobe light, we are going to control the strobe light effect from the computer
with commands. We will send the following commands over the USB connection using the Serial
Monitor:

Hardware
See Project 4 (the Morse code translator using a single Luxeon LED shield) or Project 7 (array of six
Luxeon LEDs) for components and construction details. Note that if you chose to reuse Project 7, you
will need to change ledPin in the sketch below to use pin 11 rather than pin 12.

Software
This sketch uses the sin function to produce a nice, gently increasing brightness effect. Apart from
that, the techniques we use in this sketch have mostly been used in earlier projects.

LISTING PROJECT 8

Putting It All Together
Load the completed sketch for Project 8 from your Arduino Sketchbook and download it to the board
(see Chapter 1).

When you have installed the sketch and fitted the Luxeon shield or connected the bright six Luxeon
panel, initially the lights will be off. Open the Serial Monitor window, type s, and press RETURN. This
will start the light flashing. Try the speed commands 1 to 9. Then try typing the w command to switch
to wave mode.

Random Number Generation
Computers are deterministic. If you ask them the same question twice, you should get the same
answer. However, sometimes you want a chance to take a hand. This is obviously useful for games.

It is also useful in other circumstances—for example, a “random walk,” where a robot makes a
random turn, then moves forward a random distance or until it hits something, and then reverses and
turns again, is much better at ensuring that the robot covers the whole area of a room than a more
fixed algorithm that can result in the robot getting stuck in a pattern.

The Arduino library includes a function for creating random numbers.
There are two flavors of the function random. It can either take two arguments (minimum and

maximum) or one argument (maximum), in which case the minimum is assumed to be 0.
Beware, though, because the maximum argument is misleading because the highest number you can

actually get back is the maximum minus one.
So the following line will give x a value between 1 and 6:

and the following line will give x a value between 0 and 9:

As we pointed out at the start of this section, computers are deterministic, and actually our random
numbers are not random at all, but a long sequence of numbers with a random distribution. You will
actually get the same sequence of numbers every time you run your script.

A second function (randomSeed) allows you to control this. The randomSeed function determines
where in its sequence of pseudorandom numbers the random number generator starts.

A good trick is to use the value of a disconnected analog input because this will float around at a
different value and give at least 1000 different starting points for our random sequence. This wouldn’t
do for the lottery but is acceptable for most applications. Truly random numbers are very hard to
come by and involve special hardware.

Project 9
LED Dice
This project uses what we have just learned about random numbers to create electronic dice with six
LEDs and a button. Every time you press the button, the LEDs “roll” for a while before settling on a
value and then flashing it.

COMPONENTS AND EQUIPMENT

Hardware
The schematic diagram for Project 9 is shown in Figure 4-13. Each LED is driven by a separate
digital output via a current-limiting resistor. The only other components are the switch and its
associated pull-down resistor. All the resistors and LEDs are the same, so they are not labeled
separately.

Figure 4-13 Schematic diagram for Project 9.

Even though a die can only have a maximum of six dots, we still need seven LEDs to have the
normal arrangement of a dot in the middle for odd-numbered rolls.

Figure 4-14 shows the breadboard layout and Figure 4-15 the finished breadboard.

Figure 4-14 Breadboard layout for Project 9.

Figure 4-15 Project 9: LED dice.

Software
This sketch is fairly straightforward; there are a few nice touches that make the dice behave in a
similar way to real dice. For example, as the dice rolls, the number changes but gradually slows.
Also, the length of time that the dice rolls is also random.

LISTING PROJECT 9

We now have seven LEDs to initialize in the setup method, so it is worth putting them in an array
and looping over the array to initialize each pin. We also have a call to randomSeed in the setup
method. If this was not there, every time we reset the board, we would end up with the same sequence
of dice throws. As an experiment, you may wish to try commenting out this line by placing a // in front
of it and verifying this. In fact, as an Evil Genius, you may like to omit that line so that you can cheat
at Snakes and Ladders!

The dicePatterns array determines which LEDs should be on or off for any particular throw. So
each throw element of the array is actually itself an array of seven elements, each one being either
HIGH or LOW (1 or 0). When we come to display a particular result of throwing the dice, we can
just loop over the array for the throw, setting each LED accordingly.

Putting It All Together
Load the completed sketch for Project 9 from your Arduino Sketchbook and download it to the board
(see Chapter 1).

Summary
In this chapter we have used a variety of LEDs and software techniques for lighting them in
interesting ways. In Chapter 5 we will investigate some different types of sensors and use them to
provide inputs to our projects.

CHAPTER 5

Sensor Projects

SENSORS TURN REAL-WORLD measurements into electronic signals that we can then use on our
Arduino boards. The projects in this chapter are all about using light and temperature.

We also look at how to interface with keypads and rotary encoders.

Project 10
Keypad Security Code
This project would not be out of place in the lair of any Evil Genius worth their salt. A secret code
must be entered on the keypad, and if it is correct, a green LED will light; otherwise, a red LED will
stay lit. In Project 27 we will revisit this project and show how it cannot just show the appropriate
light but also control a door lock.

COMPONENTS AND EQUIPMENT

Unfortunately, keypads do not usually have pins attached, so we will have to attach some, and the
only way to do that is to solder them on. So this is another of our projects where you will have to do a
little soldering.

Hardware

The schematic diagram for Project 10 is shown in Figure 5-1. By now, you will be used to LEDs; the
new component is the keypad.

Figure 5-1 Schematic diagram for Project 10.

Keypads are normally arranged in a grid so that when one of the keys is pressed, it connects a row
to a column. Figure 5-2 shows a typical arrangement for a 12-key keypad with numbers from 0 to 9
and * and # keys.

Figure 5-2 A 12-key keypad.

The key switches are arranged at the intersection of row-and-column wires. When a key is
pressed, it connects a particular row to a particular column.

By arranging the keys in a grid like this, it means that we only need to use 7 (4 rows + 3 columns)
of our digital pins rather than 12 (one for each key).

However, it also means that we have to do a bit more work in the software to determine which
keys are pressed. The basic approach we have to take is to connect each row to a digital output and
each column to a digital input. We then put each output high in turn and see which inputs are high.

Figure 5-3 shows how you can solder seven pins from a pin header strip onto the keypad so that
you can then connect it to the breadboard. Pin headers are bought in strips and can be easily snapped
to provide the number of pins required.

Figure 5-3 Soldering pins to the keypad.

Now we just need to find out which pin on the keypad corresponds to which row or column. If we
are lucky, the keypad will come with a datasheet that tells us this. If not, we will have to do some
detective work with a multimeter. Set the multimeter to continuity so that it beeps when you connect
the leads together. Then get some paper, draw a diagram of the keypad connections, and label each
pin with a letter from a to g. Then write a list of all the keys. Then, holding each key down in turn,
find the pair of pins that make the multimeter beep, indicating a connection (Figure 5-4). Release the
key to check that you have indeed found the correct pair. After a while, a pattern will emerge, and you
will be able to see how the pins relate to rows and columns. Figure 5-4 shows the arrangement for the
keypad used by the author.

Figure 5-4 Working out the keypad connections.

The completed breadboard layout is shown in Figure 5-5 and the assembled breadboard in Figure
5-6. Note that your keypad may have a different pinout. If so, you will need to change the jumper
wires connected to it accordingly.

Figure 5-5 Project 10 breadboard layout.

Figure 5-6 Project 10 keypad security code.

You may have noticed that digital pins 0 and 1 have “TX” and “RX” next to them. This is so
because they are also used by the Arduino board for serial communications, including the USB
connection. It is common to avoid using these pins for general-purpose input-output duties so that
serial communications, including programming the Arduino, can take place without the need to
disconnect any wires.

Software
While we could just write a sketch that turns on the output for each row in turn and reads the inputs to
get the coordinates of any key pressed, it is a bit more complex than that because switches do not
always behave in a good way when you press them. Keypads and push switches are likely to bounce.
That is, when you press them, they do not simply go from being opened to closed but may open and
close several times as part of pressing the button.

Fortunately for us, Mark Stanley and Alexander Brevig have created a library that you can use to
connect to keypads that handle such things for us. This is a good opportunity to demonstrate installing
a library into the Arduino software.

In addition to the libraries that come with the Arduino, many people have developed their own
libraries and published them for the benefit of the Arduino community. The Evil Genius is much
amused by such altruism and sees it as a great weakness. However, the Evil Genius is not above using
such libraries for his own devious ends.

To make use of this library, we must first download it from the Arduino website at this address:
www.arduino.cc/playground/Code/Keypad.

Download the file Keypad.zip to your desktop.
Whether using Windows, Mac, or LINUX, you will find that the Arduino software has created a

folder in your “Documents” folder that contains a directory called “Arduino.” Libraries that you
download all should be installed in a folder called “Libraies” within this “Arduino” directory. If this
is the first library you have installed, you will need to create this folder.

Figure 5-7 shows how you can create this folder as you extract the “Library” folder from the Zip
file

http://www.arduino.cc/playground/Code

Figure 5-7 Unzipping the library for Windows.

Once you have installed this library into your “Arduino” directory, you will be able to use it with
any sketches that you write.

You can check that the library is installed correctly by restarting the Arduino IDE and selecting the
“Examples” option from the File menu. You should now find that there is a new category for the
“Keypad” library (Figure 5-8).

Figure 5-8 Checking the installation.

The sketch for the application is shown in Listing Project 10. Note that you may well have to
change your keys’ rowPins and colPins arrays so that they agree with the key layout of your keypad,
as we discussed in the hardware section.

LISTING PROJECT 10

This sketch is quite straightforward. The loop function checks for a key press. If the key pressed is
a # or a *, it sets the position variable back to 0. If, on the other hand, the key pressed is one of the
numerals, it checks to see if the next key expected (secretCode[position]) is the key just pressed, and
if it is, it increments position by one. Finally, the loop checks to see if position is 4, and if it is, it sets
the LEDs to their unlocked state.

Putting It All Together
Load the completed sketch for Project 10 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

If you have trouble getting this to work, it is most likely a problem with the pin layout on your
keypad. So persevere with the multimeter to map out the pin connections.

Rotary Encoders

We have already met variable resistors: As you turn the knob, the resistance changes. These used to
be behind most knobs that you could twiddle on electronic equipment. There is an alternative, the
rotary encoder, and if you own some consumer electronics where you can turn the knob round and
round indefinitely without meeting any kind of end stop, there is probably a rotary encoder behind the
knob.

Some rotary encoders also incorporate a button so that you can turn the knob and then press. This
is a particularly useful way of making a selection from a menu when used with a liquid-crystal
display (LCD) screen.

A rotary encoder is a digital device that has two outputs (A and B), and as you turn the knob, you
get a change in the outputs that can tell you whether the knob has been turned clockwise or
counterclockwise.

Figure 5-9 shows how the signals change on A and B when the encoder is turned. When rotating
clockwise, the pulses will change, as they would moving left to right on the diagram; when moving
counterclockwise, the pulses would be moving right to left on the diagram.

Figure 5-9 Pulses from a rotary encoder.

So, if A is low and B is low and then B becomes high (going from phase 1 to phase 2), that would
indicate that we have turned the knob clockwise. A clockwise turn also would be indicated by A
being low, B being high, and then A becoming high (going from phase 2 to phase 3), etc. However, if
A were high and B were low and then B went high, we have moved from phase 4 to phase 3 and are
therefore turning counterclockwise.

Project 11
Model Traffic Signal Using a Rotary Encoder
This project uses a rotary encoder with a built-in push switch to control the sequence of the traffic
signals and is based on Project 5. It is a much more realistic version of a traffic signal controller and
is really not far off the logic that you would find in a real traffic signal controller.

Rotating the rotary encoder will change the frequency of the light sequencing. Pressing the button
will test the lights, turning them all on at the same time, while the button is pressed.

The components are the same as for Project 5, with the addition of the rotary encoder in place of
the original push switch.

COMPONENTS AND EQUIPMENT

Hardware
The schematic diagram for Project 11 is shown in Figure 5-10. The majority of the circuitry is the
same as for Project 5, except that now we have a rotary encoder.

Figure 5-10 Schematic diagram for Project 11.

The rotary encoder works just as if there were three switches: one each for A and B and one for
the push switch.

Since the schematic is much the same as for Project 5, it will not be much of a surprise to see that
the breadboard layout (Figure 5-11) is also similar to the one for that project.

Figure 5-11 Breadboard layout for Project 11.

Software
The starting point for the sketch is the sketch for Project 5. We have added code to read the encoder
and to respond to the button press by turning all the LEDs on. We also have taken the opportunity to
enhance the logic behind the lights to make them behave in a more realistic way, changing
automatically. In Project 5, when you held down the button, the lights changed sequence roughly once
per second. In a real traffic signal, the lights stay green and red a lot longer than they are yellow. So
our sketch now has two periods: shortPeriod, which does not alter but is used when the lights are
changing, and longPeriod, which determines how long they are illuminated when green or red. This
longPeriod is the period that is changed by turning the rotary encoder.

The key to handling the rotary encoder lies in the function getEncoderTurn. Every time this is
called, it compares the previous state of A and B with their current state, and if something has
changed, it works out whether it was clockwise or counterclockwise and returns a -1 or 1,

respectively. If there is no change (the knob has not been turned), it returns 0. This function must be
called frequently, or turning the rotary controller quickly will result in some changes not being
recognized correctly.

If you want to use a rotary encoder for other projects, you can just copy this function. The function
uses the static modifier for the oldA and oldB variables. This is a useful technique that allows the
function to retain the values between one call of the function and the next, where normally it would
reset the value of the variable every time the function is called.

LISTING PROJECT 11

This sketch illustrates a useful technique that lets you time events (turning an LED on for so many
seconds) while at the same time checking the rotary encoder and button to see if they have been turned
or pressed. If we just used the Arduino delay function with, say, 20,000, for 20 seconds, we would
not be able to check the rotary encoder or switch in that period.

So what we do is use a very short delay (1 millisecond) but maintain a count that is incremented
each time round the loop. Thus, if we want to delay for 20 seconds, we stop when the count has
reached 20,000. This is less accurate than a single call to the delay function because the 1

millisecond is actually 1 millisecond plus the processing time for the other things that are done inside
the loop.

Putting It All Together
Load the completed sketch for Project 11 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

You can press the rotary encoder button to test the LEDs and turn the rotary encoder to change how
long the signal stays green and red.

Sensing Light
A common and easy-to-use device for measuring light intensity is the light-dependent resistor (or
LDR). They are also sometimes called photoresistors.

The brighter the light falling on the surface of the LDR, the lower is the resistance. A typical LDR
will have a dark resistance of up to 2 MΩ and a resistance when illuminated in bright daylight of
perhaps 20 kΩ.

We can convert this change in resistance to a change in voltage by using the LDR, with a fixed
resistor as a voltage divider, connected to one of our analog inputs. The schematic for this is shown in
Figure 5-12.

Figure 5-12 Using an LDR to measure light.

With a fixed resistor of 100K, we can do some rough calculations about the voltage range to
expect at the analog input.

In darkness, the LDR will have a resistance of 2 MΩ, so with a fixed resistor of 100K, there will
be about a 20:1 ratio of voltage, with most of that voltage across the LDR, so this would mean about
4V across the LDR and 1V at the analog pin.

On the other hand, if the LDR is in bright light, its resistance might fall to 20 kΩ. The ratio of
voltages then would be about 4:1 in favor of the fixed resistor, giving a voltage at the analog input of
about 4V.

A more sensitive photo detector is the phototransistor. This functions like an ordinary transistor
except there is not usually a base connection. Instead, the collector current is controlled by the amount

of light falling on the phototransistor.

Project 12
Pulse-Rate Monitor
This project uses an ultrabright infrared (IR) LED and a phototransistor to detect the pulse in your
finger. It then flashes a red LED in time with your pulse.

COMPONENTS AND EQUIPMENT

Hardware
The pulse monitor works as follows: Shine the bright LED onto one side of your finger while the
phototransistor on the other side of your finger picks up the amount of transmitted light. The resistance
of the phototransistor will vary slightly as the blood pulses through your finger.

The schematic for this is shown in Figure 5-13 and the breadboard layout in Figure 5-15. We have
chosen quite a high value of resistance for R1 because most of the light passing through the finger will
be absorbed, and we want the phototransistor to be quite sensitive. You may need to experiment with
the value of the resistor to get the best results.

Figure 5-13 Schematic for Project 12.

It is important to shield the phototransistor from as much stray light as possible. This is
particularly important for domestic lights that actually fluctuate at 50 or 60 Hz and will add a
considerable amount of noise to our weak heart signal.

For this reason, the phototransistor and LED are built into a tube or corrugated cardboard held
together with duct tape. The construction of this is shown in Figure 5-14.

Figure 5-14 Sensor tube for heart monitor.

Two 5-mm holes are drilled opposite each other in the tube, and the LED is inserted into one side
and the phototransistor into the other. Short leads are soldered to the LED and phototransistor, and
then another layer of tape is wrapped over everything to hold it all in place. Be sure to check which
colored wire is connected to which lead of the LED and phototransistor before you tape them up.

It is also a good idea to use screened wire for the phototransistor to reduce interference. It is also
worth noting that a peculiarity of most IR LEDs is that the longer lead is negative rather than positive,
so check the data sheet of the device before you attach it.

The breadboard layout for this project (Figure 5-15) is very straightforward.

Figure 5-15 Breadboard layout for Project 12.

The final “finger tube” can be seen in Figure 5-16.

Figure 5-16 Project 12: pulse-rate monitor.

Software
The software for this project is quite tricky to get right. Indeed, the first step is not to run the entire
final script but rather a test script that will gather data that we can then paste into a spreadsheet and
chart to test out the smoothing algorithm (more on this later).

The test script is provided in Listing Project 12.

LISTING PROJECT 12—TEST SCRIPT

This script reads the raw signal from the analog input, applies the smoothing function, and then
writes both values to the Serial Monitor, where we can capture them and paste them into a
spreadsheet for analysis. Note that the Serial Monitor’s communications is set to its fastest rate to
minimize the effects of the delays caused by sending the data. When you start the Serial Monitor, you
will need to change the serial speed to 115,200 baud.

The smoothing function uses a technique called leaky integration, and you can see in the code
where we do this smoothing using the line

The variable alpha is a number greater than 0 but less than 1 and determines how much smoothing
to do.

Put your finger into the sensor tube, start the Serial Monitor, and leave it running for 3 or 4 seconds
to capture a few pulses.

Then copy and paste the captured text into a spreadsheet. You will probably be asked for the
column delimiter character, which is a comma. The resulting data and a line chart drawn from the two
columns are shown in Figure 5-17.

Figure 5-17 Heart monitor test data pasted into a spreadsheet.

The more jagged trace is from the raw data read from the analog port, and the smoother trace
clearly has most of the noise removed. If the smoothed trace shows significant noise—in particular,
any false peaks that will confuse the monitor—increase the level of smoothing by decreasing the
value of alpha.

Once you have found the right value of alpha for your sensor arrangement, you can transfer this
value into the real sketch and switch over to using the real sketch rather than the test sketch. The real
sketch is provided in the following listing.

LISTING PROJECT 12

There now just remains the problem of detecting the peaks. Looking at Figure 5-17, we can see
that if we keep track of the previous reading, we can see that the readings are gradually increasing
until the change in reading flips over and becomes negative. So, if we lit the LED whenever the old
change was positive but the new change was negative, we would get a brief pulse from the LED at the
peak of each pulse.

Putting It All Together
Both the test and real sketch for Project 12 are in your Arduino Sketchbook. For instructions on
downloading it to the board, see Chapter 1.

As mentioned earlier, getting this project to work is a little tricky. You will probably find that you
have to get your finger in just the right place to start getting a pulse. If you are having trouble, run the
test script as described previously to check that your detector is getting a pulse and the smoothing
factor alpha is low enough.

The author would like to point out that this device should not be used for any kind of real medical
application.

Measuring Temperature
Measuring temperature is a similar problem to measuring light intensity. Instead of an LDR, a device
called a thermistor is used. As the temperature increases, so does the resistance of the thermistor.

When you buy a thermistor, it will have a stated resistance. In this case, the thermistor chosen is 33
kΩ. This will be the resistance of the device at 25°C.

The formula for calculating the resistance at a particular temperature is given by

R = Ro exp(-beta/(T + 273) - beta/(To + 273)

You can do the math if you like, but a much simpler way to measure temperature is to use a
special-purpose thermometer chip such as the TMP36. This three-pinned device has two pins for the
power supply (5V) and a third output pin, whose temperature T in degrees C is related to the output
voltage V by the equation

T = (V - 0.5) × 100

So, if the voltage at its output is 1V, the temperature is 50°C.

Project 13
USB Temperature Logger
This project is controlled by your computer, but once given its logging instructions, the device can be
disconnected and run on batteries to do its logging. While logging, it stores its data, and then when the
logger is reconnected, it will transfer its data back over the USB connection, where it can be

imported into a spreadsheet. By default, the logger will record one sample every 5 minutes and can
record up to 1000 samples.

To instruct the temperature logger from your computer, we have to define some commands that can
be issued from the computer. These are shown in Table 5-1.

TABLE 5-1 Temperature Logger Commands

This project just requires a TMP36 that can fit directly into the sockets on the Arduino.

COMPONENTS AND EQUIPMENT

Hardware
The schematic diagram for Project 13 is shown in Figure 5-18.

Figure 5-18 Schematic diagram for Project 13.

This is so simple that we can simply fit the leads of the TMP36 into the Arduino board, as shown
in Figure 5-19. Note that the curved side of the TMP36 should face outward from the Arduino. Putting
a little kink in the leads with pliers will ensure a better contact.

Figure 5-19 Project 13: temperature logger.

Two of the analog pins (A0 and A2) are going to be used for the GND and 5V power connections
to the TMP36. The TMP36 uses very little current, so the pins can easily supply enough to power it if
we set one pin HIGH and the other LOW.

Software
The software for this project is a little more complex than for some of our other projects (see Listing
Project 13). All the variables that we have used in our sketches so far are forgotten as soon as the
Arduino board is reset or disconnected from the power. Sometimes we want to be able to store data
persistently so that it is there next time we start up the board. This can be done by using the special
type of memory on the Arduino called EEPROM, which stands for electrically erasable
programmable read-only memory. The Arduino Uno and Leonardo both have 1024 bytes of
EEPROM.

For the data logger to be useful, it needs to remember the readings that it has already taken, even
when it is disconnected from the computer and powered from a battery. It also needs to remember the
logging period.

This is the first project where we have used the Arduino’s EEPROM to store values so that they
are not lost if the board is reset or disconnected from the power. This means that once we have set
our data-logging recording, we can disconnect it from the USB lead and leave it running on batteries.
Even if the batteries go dead, our data will still be there the next time we connect it.

LISTING PROJECT 13

You will notice that at the top of this sketch we use the command #define for what in the past we
would have used variables for. This is actually a more efficient way of defining constants—that is,
values that will not change during the running of the sketch. So it is actually ideal for pin settings and
constants such as beta. The command #define is what is called a preprocessor directive, and what
happens is that just before the sketch is compiled, all occurrences of its name anywhere in the sketch
are replaced by its value. It is very much a matter of personal taste whether you use #define or a
variable.

Fortunately, reading and writing EEPROM happens just 1 byte at a time. So, if we want to write a
variable that is a byte or a char, we can just use the functions EEPROM.write and EEPROM.read, as
shown in the example here:

The 0 in the parameters for read and write is the address in the EEPROM to use. This can be any
number between 0 and 1023, with each address being a location where 1 byte is stored.

In this project we want to store both the position of the last reading taken (in the lastReading
variable) and all the readings. So we will record lastReading in the first byte of EEPROM, the
logging period as a character 1 to 9, and then the actual reading data in the bytes that follow.

Each temperature reading is kept in a float, and if you remember from Chapter 2, a float occupies 4
bytes of data. Here we had a choice: We could either store all 4 bytes or find a way to encode the
temperature into a single byte. We decided to take the latter route so that we can store as many
readings as possible in the EEPROM.

The way we encode the temperature into a single byte is to make some assumptions about our
temperatures. First, we assume that any temperature in Centigrade will be between –20 and +40.
Anything higher or lower would likely damage our Arduino board anyway. Second, we assume that
we only need to know the temperature to the nearest quarter of a degree.

With these two assumptions, we can take any temperature value we get from the analog input, add
20 to it, multiply it by 4, and still be sure that we always have a number between 0 and 240. Since a
byte can hold a number between 0 and 255, that just fits nicely.

When we take our numbers out of EEPROM, we need to convert them back to a float, which we
can do by reversing the process, dividing by 4, and then subtracting 20.

Both encoding and decoding the values are wrapped up in the functions storeReading and
getReading. So, if we decided to take a different approach to storing the data, we would only have to
change these two functions.

Putting It All Together
Load the completed sketch for Project 13 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

Now open the Serial Monitor (Figure 5-20), and for test purposes, we will set the temperature
logger to log every minute by typing 1 in the Serial Monitor. The board should respond with the
message “Sample period set to: 1 min.” If we wanted to, we could then change the mode to Fahrenheit
by typing F into the Serial Monitor. Now we can check the status of the logger by typing? (Figure 5-
21).

Figure 5-20 Issuing commands through the Serial Monitor.

Figure 5-21 Displaying the Temperature Logger Status.

In order to unplug the USB cable, we need to have an alternative source of power, such as the
battery lead we made back in Project 6. You need to have this plugged in and powered up at the same
time as the USB connector is connected if you want the logger to keep logging after you disconnect the

USB lead.
Finally, we can type the G command to start logging. We can then unplug the USB lead and leave

our logger running on batteries. After waiting 10 or 15 minutes, we can plug it back in to see what
data we have by opening the Serial Monitor and typing the R command, the results of which are
shown in Figure 5-22. Select all the data, including the “Time” and “Temp” headings at the top.

Figure 5-22 Data to copy and paste into a spreadsheet.

Copy the text to the clipboard (press CTRL-C on Windows and LINUX, ALT-C on Macs), open a
spreadsheet in a program such as Microsoft Excel, and paste it into a new spreadsheet (Figure 5-23).

Figure 5-23 Temperature data imported into a spreadsheet.

Once in the spreadsheet, we can even draw a chart using our data.

Summary
We now know how to handle various types of sensors and input devices to go with our knowledge of
LEDs. In the next section we will look at a number of projects that use light in various ways and get
our hands on some more advanced display technologies, such as LCD text panels and seven-segment
LEDs.

CHAPTER 6

Light Projects

IN THIS CHAPTER WE LOOK AT some more projects based on lights and displays. In particular, we
look at how to use multicolor LEDs, seven-segment LEDs, LED matrix displays, and LCD panels.

Project 14
Multicolor Light Display
This project uses a high-brightness, three-color LED in combination with a rotary encoder. Turning
the rotary encoder changes the color displayed by the LED.

The LED lamp is interesting because it has three LED lights in one four-pin package. The LED has
a common-cathode arrangement, meaning that the negative connections of all three LEDs come out of
one pin.

If you cannot find a four-pin RGB (red, green, blue) LED, you can use a six-pin device instead.
Simply connect the separate anodes together, referring to the datasheet for the component.

Hardware
Figure 6-1 shows the schematic diagram for Project 14 and Figure 6-2 the breadboard layout.

Figure 6-1 Schematic diagram for Project 14.

Figure 6-2 Breadboard layout for Project 14.

Each LED has its own series resistor to limit the current to about 30 mA per LED.
The LED package has a slight flatness to one side. Pin 2 is the common cathode and is the longest

pin.
The completed project is shown in Figure 6-3.

Figure 6-3 Project 14: multicolor light display.

Each of the LEDs (red, green, and blue) is driven from a pulse-width modulation (PWM) output of
the Arduino board so that by varying the output of each LED we can produce a full spectrum of
visible-light colors.

The rotary encoder is connected in the same way as for Project 11. Rotating it changes the color,
and pressing it will turn the LED on and off.

Software
This sketch (Listing Project 14) uses an array to represent the different colors that will be displayed
by the LED. Each of the elements of the array is a long 32-bit number. Three of the bytes of the long
number are used to represent the red, green, and blue components of the color, which correspond to
how brightly each of the red, green, or blue LED elements should be lit. The numbers in the array are
shown in hexadecimal and correspond to the hex number format used to represent 24-bit colors on
web pages. If there is a particular color that you want to try to create, find yourself a web color chart
by typing “web color chart” into your favorite search engine. You can then look up the hex value for
the color that you want.

LISTING PROJECT 14

The 48 colors in the array are chosen from just such a table and are a range of colors more or less
spanning the spectrum from red to violet.

Putting It All Together
Load the completed sketch for Project 14 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

Seven-Segment LEDs
There was a time when the height of fashion was an LED watch. This required the wearer to press a
button on the watch for the time to magically appear as four bright-red digits. After a while, the
inconvenience of having to use both limbs to tell the time overcame the novelty of a digital watch, and
the Evil Genius went out and bought an LCD watch instead. This could only be read in bright sunlight.

Seven-segment LEDs (Figure 6-4) have largely been superseded by backlit LCD displays (see
later in this chapter), but they do find uses from time to time. They also add that Evil Genius feel to a

project.

Figure 6-4 Seven-segment LED display.

Figure 6-5 shows the circuit for driving a single seven-segment display.

Figure 6-5 Arduino board driving a seven-segment LED.

A single seven-segment LED usually does not have a great deal of use. Most projects will want
two or four digits. When this is the case, we will not have enough digital output pins to drive each
display separately, so the arrangement of Figure 6-6 is used.

Figure 6-6 Driving more than one seven-segment LED from an Arduino board.

Rather like our keyboard scanning, we are going to activate each display in turn and set the
segments for that before moving on to the next digit. We do this so fast that the illusion of all displays
being lit is created.

Each display potentially could draw the current for eight LEDs at once, which could amount to 160
mA (at 20 mA per LED)—far more than we can take from a digital output pin. For this reason, we use
a transistor that is switched by a digital output to enable each display in turn.

The type of transistor we are using is called a bipolar transistor. It has three connections: emitter,
base, and collector. When a current flows through the base of the transistor and out through the
emitter, it allows a much greater current to flow through from the collector to the emitter. We have met
this kind of transistor before in Project 4, where we used it to control the current to a high-power
Luxeon LED.

We do not need to limit the current that flows through the collector to the emitter because this is
already limited by the series resistors for the LEDs. However, we do need to limit the current flowing
into the base. Most transistors will multiply the current by a factor of 100 or more, so we only need to
allow about 2 mA to flow through the base to fully turn on the transistor.

Transistors have the interesting property that under normal use the voltage between base and
emitter is a fairly constant 0.6V no matter how much current is flowing. So, if our Arduino pin
supplies 5V, 0.6V of that will be across the base/emitter of the transistor, meaning that our resistor
should have a value of about

R = V/I

R = 4.4/2 mA = 2.2 kΩ

In actual fact it would be just fine if we let 4 mA flow because the digital output can cope with
about 40 mA, so let’s choose the nice standard resistor value of 1 kΩ, which will allow us to be sure
that the transistor will act like a switch and always turn fully on or fully off.

Project 15
Seven-Segment LED Double Dice
In Project 9 we made a single dice using seven separate LEDs. In this project we will use two seven-
segment LED displays to create a double dice.

COMPONENTS AND EQUIPMENT

Hardware
The schematic for this project is shown in Figure 6-7.

Figure 6-7 Schematic diagram for Project 15.

The seven-segment LED module that we are using is described as a common anode, which means
that all the anodes (positive ends) of the segment LEDs are connected together. So, to switch each
display on in turn, we must control the positive supply to each of the two common anodes in turn.

To do this, we use a transistor, but since we want to control the positive supply, each transitor’s
collector is connected to 5V and the emitters to the common anode.

We use 100 Ω resistors to limit the current. This may seem on the low side, but each digit is only
going to be turned on for half the time, which means, on average, that the LED will receive only half
the current.

The breadboard layout and photograph of the project are shown in Figures 6-8 and 6-9.

Figure 6-8 Breadboard layout for Project 15.

Figure 6-9 Double seven-segment LED dice.

Take care that none of the resistor leads touches each other because this could short output pins on
the Arduino, which may damage it.

Software
We use an array to contain the pins that are connected to each of the segments a to g and the decimal
point. We also use an array to determine which segments should be lit to display any particular digit.
This is a two-dimensional array, where each row represents a separate digit (0 to 9) and each column
a segment (see Listing Project 15).

LISTING PROJECT 15

To drive both displays, we have to turn each display on in turn, setting its segments appropriately.
So our loop function must keep the values that are displayed in each display in separate variables:
dicel and dice2.

To throw the dice, we use the random function, and whenever the button is pressed, a new value
will be set for dice1 and dice2. This means that the throw also will depend on how long the button is
pressed, so we do not need to worry about seeding the random-number generator.

Putting It All Together
Load the completed sketch for Project 15 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

Project 16
LED Array
LED arrays are one of those components that just look like they would be useful to the Evil Genius.
They consist of an array of LEDs (in this case 8 by 8). These devices can have just a single LED at
each position; however, in the device that we are going to use, each of these LEDs is actually a pair
of LEDs, one red and one green, positioned under a single lens so that they appear to be one dot. We
can then light either one or both LEDs to make a red, green, or orange color.

The completed project is shown in Figure 6-10.

Figure 6-10 Project 16: LED array.

This project makes use of one of these devices and allows multicolor patterns to be displayed.
This project uses a very convenient module from Adafruit that includes a driver chip, which means

that we need only two pins to control the LED matrix and two to provide power.

COMPONENTS AND EQUIPMENT

Hardware
The LED matrix module is supplied as a kit (Figure 6-11). This is very easy to assemble, and full
instructions are provided on the Adafruit website. You will however need to do a little soldering.

Figure 6-11 The Adafruit bicolor LED matrix module kit.

The most important thing is to make sure that the LED matrix is soldered onto the board with the
correct orientation. Once attached, it will be very difficult to change.

Figure 6-12 shows the schematic diagram for the project. The module uses a type of serial

interface called I2C (pronounced “I squared C”). This uses just two pins located after the GND and
AREF pins. On a Leonardo, theses pins are labeled “SDA” and “SCL”; on a Uno, they are not
labeled. Another difference is that on the Leonardo these pins are dedicated for use as I2C, whereas
on the Uno they are also connected to A4 and A5. Thus, when using I2C on an Arduino Uno, you
cannot also use A4 and A5 as analog inputs.

Figure 6-12 Schematic diagram for Project 16.

If you have an old Arduino board without SDA and SCL sockets, you can use A4 and A5 instead.
With just four pins to connect, the breadboard layout is pretty trivial (Figure 6-13).

Figure 6-13 Breadboard layout for Project 16.

Software
The LED module needs two libraries to be installed. Both are available from the Adafruit website
(http://learn.adafruit.com/adafruit-led-backpack/bi-color-8x8-matrix). The procedure for installing
them is the same as installing the Keypad library back in Project 10.

When following the links to the libraries from the Adafruit website, look for the “Zip” option,
which will download Zip files for the two libraries. The files are

 Adafruit-LED-Backpack-Library-master
 Adafruit-GFX-Library-master

Extract these Zip archives into Documents/Arduino/libraries as you did with the Keypad library.

You also will need to rename the folders to be “Adafruit_LEDBackpack” and “Adafruit_GFX.”
Restart the Arduino IDE to pick up the new libraries and load the sketch Project 16_led_Matrix.

You should see a nice colorful display.
The software for this project is quite short (Listing Project 16) and makes heavy use of the

libraries.

LISTING PROJECT 16

The sketch picks random coordinates and a random color and sets that pixel.
The GFX library allows all sorts of special effects, including scrolling text and commands to draw

squares and circles, etc. Check out the Adafruit documentation on GFX for more ideas.

LCD Displays
If our project needs to display more than a few numeric digits, we likely want to use an LCD display
module. These have the advantage that they come with built-in driver electronics, so a lot of the work
is already done for us, and we do not have to poll round each digit, setting each segment.

There is also something of a standard for these devices, so there are lots of devices from different
manufacturers that we can use in the same way. The devices to look for are the ones that use the
HD44780 driver chip.

LCD panels can be quite expensive from retail electronic component suppliers, but if you look on
the Internet, they often can be bought for a few dollars, particularly if you are willing to buy a few at a
time.

Figure 6-14 shows a module that can display two rows of 16 characters. Each character is made
up of an array of 7 by 5 segments. So it is just as well that we do not have to drive each segment
separately.

Figure 6-14 A 16 by 2 LCD module.

The display module includes a character set so that it knows which segments to turn on for any
character. This means that we just have to tell it which character to display where on the display.

We need just seven digital outputs to drive the display. Four of these are data connections, and
three control the flow of data. The actual details of what is sent to the LCD module can be ignored
because there is a standard library that we can use.

This is illustrated in the next project.

Project 17
USB Message Board
This project will allow us to display a message on an LCD module from our computer. There is no
reason why the LCD module needs to be right next to the computer, so you could use it on the end of a
long USB lead to display messages remotely—next to an intercom at the door to the Evil Genius’s
lair, for example.

Hardware
The schematic diagram for the LCD display is shown in Figure 6-15 and the breadboard layout in
Figure 6-16. As you can see, the only components required are the LCD module itself and the
variable resistor to control the display’s contrast.

Figure 6-15 Schematic diagram for Project 17.

Figure 6-16 Breadboard layout for Project 17.

COMPONENTS AND EQUIPMENT

The LCD module receives data 4 bits at a time through the connections D4-7. The LCD module
also has connectors for D0-3, which are used only for transferring data 8 bits at a time. To reduce the
number of pins required, we do not use these.

The easiest way to attach the LCD module to the breadboard is to solder header pins into the
connector strip, and then the module can be plugged directly into the breadboard. Note that if you line
pin 1 of the display up with row 1 of the breadboard, it makes it much easier to wire the project up.

Software
The software for this project is straightforward (Listing Project 17). All the work of communicating
with the LCD module is taken care of by the LCD library. This library is included as part of the
standard Arduino software installation, so we do not need to download or install anything special.

LISTING PROJECT 17

The loop function reads any input, and if it is a # character, it clears the display. If it is a /
character, it moves to the second row; otherwise, it just displays the character that was sent.

Putting It All Together
Load the completed sketch for Project 17 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

You will probably need to turn the pot until the display contrast is just right.
We can now try out the project by opening the Serial Monitor and entering some text.
Later on in Project 22 we will be using the LCD panel again with a thermistor and rotary encoder

to make a thermostat.

Summary
That’s all for LED- and light-related projects. In Chapter 7 we will look at projects that use sound in
one way or another.

CHAPTER 7

Sound Projects

AN ARDUINO BOARD CAN BE used to both generate sounds as an output and receive sounds as an input
using a microphone. In this chapter we have various “musical instrument-type” projects as well as
projects that process sound inputs.

Although not strictly a “sound” project, our first project is to create a simple oscilloscope so that
we can view the waveform at an analog input.

Project 18
Oscilloscope
An oscilloscope is a device that allows you to see an electronic signal so that it appears as a
waveform. A traditional oscilloscope works by amplifying a signal to control the position of a dot on
the Y axis (vertical axis) of a cathode-ray tube while a time-base mechanism sweeps left to right on
the X axis and then flips back when it reaches the end. The result will look something like Figure 7-1.

Figure 7-1 A 230 Hz sine wave on an oscilloscope.

These days, cathode-ray tubes have largely been replaced by digital oscilloscopes that use LCD
displays, but the principles remain the same.

This project reads values from the analog input and sends them over a USB cable to your
computer. Rather than be received by the Serial Monitor, they are received by a little program that
displays them in an oscilloscope-like manner. As the signal changes, so does the shape of the
waveform.

Note that as oscilloscopes go, this one is not going to win any prizes for accuracy or speed, but it
is kind of fun and will display waveforms up to about 1 kHz.

COMPONENTS AND EQUIPMENT

This is the first time that we have used capacitors. C1 can be connected either way round;
however, C2 and C3 are polarized and must be connected the correct way round or they are likely to
be damaged. As with LEDs, on polarized capacitors, the positive lead (marked as the white rectangle
on the schematic symbol) is longer than the negative lead. The negative lead also often has a minus
sign (-) or a diamond shape next to the negative lead.

Hardware
Figure 7-2 shows the schematic diagram for Project 18 and Figure 7-3 the breadboard layout.

Figure 7-2 Schematic diagram for Project 18.

Figure 7-3 Breadboard layout for Project 18.

There are two parts to the circuit. R1 and R2 are high-value resistors that “bias” the signal going
to the analog input to 2.5V. They are just like a voltage divider. The capacitor C1 allows the signal to
pass without any direct current (DC) component to the signal (alternating current, or AC, mode in a
traditional oscilloscope).

R3, R4, C2, and C3 just provide a stable reference voltage of 2.5V. The reason for this is so that
our oscilloscope can display both positive and negative signals. So one terminal of our test lead is
fixed at 2.5V; any signal on the other lead will be relative to that. A positive voltage will mean a
value at the analog input of greater than 2.5V, and a negative value will mean a value at the analog
input of less than 2.5V.

The diode D1 will protect the analog input from accidental overvoltage.
Figure 7-4 shows the completed oscilloscope.

Figure 7-4 Project 18: oscilloscope.

Software
The sketch is short and simple (Listing Project 18). Its only purpose is to read the analog input and
blast it out to the USB port as fast as possible.

LISTING PROJECT 18

The first thing to note is that we have increased the baud rate to 115,200, the highest available. To
get as much data through the connection as possible without resorting to complex compression
techniques, we are going to shift our raw 10-bit value right 2 bits (>> 2); this has the effect of
dividing it by four and making it fit into a single byte.

We obviously need some corresponding software to run on our computer so that we can see the
data sent by the board (Figure 7-1). This can be downloaded from www.arduinoevilgenius.com.

To install the software, you first need to install some software called Processing. Processing is the
natural partner for writing computer applications that communicate with an Arduino. In fact, the
Arduino IDE is written in Processing.

Like the Arduino IDE, Processing is also available for Windows, Mac, and LINUX and can be
downloaded from www.processing.org.

Once Processing is installed, run it. The similarities with the Arduino IDE will be immediately
apparent. Now open the file scope.pde, and click the Play button to run it.

A window like Figure 7-1 should appear.

http://www.arduinoevilgenius.com
http://www.processing.org

Putting It All Together
Load the completed sketch for Project 18 from your Arduino Sketchbook and download it to the
board (see Chapter 1). Install the software for your computer as described previously, and you are
ready to go.

The easiest way to test the oscilloscope is to use the one readily available signal that permeates
most of our lives, and that is the hum from the electrical service. Home electricity oscillates at 50 or
60 Hz (depending on where you live in the world), and every electrical appliance emits
electromagnetic radiation at this frequency. To pick it up, all you have to do is touch the test lead
connected to the analog input, and you should see a signal similar to that of Figure 7-1. Try waving
your arm around near any electrical equipment and see how the signal changes.

The signal shown in Figure 7-1 is actually a 215 Hz sine wave supplied by a smart phone function
generator application.

Sound Generation
You can generate sounds from an Arduino board just by turning one of its pins on and off at the right
frequency. If you do this, the sound produced is rough and grating. This is called a square wave. To
produce a more pleasing tone, you need a signal that is more like a sine wave (Figure 7-5).

Figure 7-5 Square and sine waves.

Generating a sine wave requires a little bit of thought and effort. A first idea may be to use the

analog output of one of the pins to write out the waveform. However, the problem is that the analog
outputs from an Arduino are not true analog outputs but pulse-width modulated (PWM) outputs that
turn on and off very rapidly. In fact, their switching frequency is at an audio frequency, so without a
lot of care, our signal will sound as bad as a square wave.

A better way is to use a digital-to-analog converter (DAC). A DAC has a number of digital inputs
and produces an output voltage proportional to the digital input value. Fortunately, it is easy to make a
simple DAC—all you need are resistors.

Figure 7-6 shows a DAC made from what is called an R-2R resistor ladder.

Figure 7-6 DAC using an R-2R ladder.

It uses resistors of a value R and twice R, so R might be 5K and 2R 10K. Each of the digital inputs
will be connected to an Arduino digital output. The four digits represent the four bits of the digital
number. So this gives us 16 different analog outputs, as shown in Table 7-1.

TABLE 7-1 Analog Output from Digital Inputs

Another way of generating a particular wave shape is to use the Arduino analogOutput command to
generate the wave shape. This uses the technique of PWM that you first met back in Chapter 4 to
control the brightness of LEDs.

Figure 7-7 shows the signal from a PWM pin on the Arduino.

Figure 7-7 Pulse-width modulation.

The PWM pin is oscillating at about 500 times per second (hertz), with the relative amount of time
that the pin is high varying with the value set in the analogWrite function. So, looking at Figure 7-7, if
the output is only high for 5% of the time, then whatever we are driving will only receive 5% of full
power. If, however, the output is at 5V for 90% of the time, then the load will get 90% of the power
delivered to it.

When driving motors with PWM, the physical inertia of the spinning motor means that the motor
does not start and stop 500 times per second but is just given a kick of varying strengths every five-
hundredths of a second. The net effect of this is smooth control of the motor speed.

LEDs can respond much more quickly than a motor, but the visible effect is the same. We cannot
see the LEDs turning on and off at that speed, so to us it just looks like the brightness is changing.

We can use this same technique to create a sine wave, but to do this, there is one problem. That is
that the default frequency that Arduino uses for its PWM pulses is around 500 Hz, which is well
within the range of audible frequencies. Fortunately, we can change this frequency in our sketch,
making it much higher and outside the range of our hearing.

Figure 7-8 shows two traces from an oscilloscope of a 254 Hz sine wave being generated by
writing out successive values from an array.

Figure 7-8 Oscilloscope trace for sine wave generation.

The array contains a series of values that, when used to set the value of analogWrite, one after the
other produce the effect of a sine wave.

The bottom trace shows the raw PWM signal, with the pulses bunched up for the peaks and troughs
of the sine wave and more spread out for the parts of the sine wave in the middle. The top trace
shows that same signal after it has been passed through a low-pass filter that chops off the high PWM
frequency (63 kHz), leaving us with quite a well-shaped sine wave.

Project 19
Tune Player
This project will play a series of musical notes through a miniature loudspeaker using PWM to
approximate a sine wave.

If you can get a miniature loudspeaker with leads for soldering to a printed circuit board (PCB),
then this can be plugged directly into the breadboard. If not, you will either have to solder short
lengths of solid-core wire to the terminals or, if you do not have access to a soldering iron, carefully
twist some wires round the terminals.

COMPONENTS AND EQUIPMENT

Hardware
To try to keep the number of components to a minimum, we have used an integrated circuit (IC) to
amplify the signal and drive the loudspeaker. The TDA7052 IC provides 1 W of power output in an
easy-to-use little 8-pin chip.

Figure 7-9 shows the schematic diagram for Project 19, and the breadboard layout is shown in
Figure 7-10.

Figure 7-9 Schematic diagram for Project 19.

Figure 7-10 Breadboard layout for Project 19.

R1 and C1 together make a low-pass filter that will filter out the high-frequency PWM noise
before it is passed on to the amplifier chip.

C2 is used as a decoupling capacitor that shunts any noise on the power lines to ground. This
should be positioned as close as possible to IC1.

The variable resistor R2 is a potential divider to reduce the signal from the resistor ladder by at
least a factor of 10, depending on the setting of the variable resistor. This is the volume control.

Software
To generate a sine wave, the sketch steps through a series of values held in the sine array. These
values are plotted on the chart in Figure 7-11. It is not the smoothest sine wave in the world, but it is a
definite improvement over a square wave (see Listing Project 19).

Figure 7-11 A plot of the sine array.

The setup function contains the Evil Genius’s magic incantations for changing the PWM frequency.
The playNote function is the key to generating the note. The pitch of the note generated is

controlled by the delay after each step of the signal within the playSine function that playNote calls.
Tunes are played from an array of characters, each character corresponding to a note and a space

corresponding to the silence between notes. The main loop looks at each letter in the song variable
and plays it. When the whole song is played, there is a pause of 5 seconds, and then the song begins
again.

LISTING PROJECT 19

The Evil Genius will find this project useful for inflicting discomfort on his or her enemies.

Putting It All Together
Load the completed sketch for Project 19 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

You might like to change the tune played from “Jingle Bells.” To do this, just comment out the line
starting with char* song = by putting // in front of it, and then define your own array.

For a longer-duration note, just repeat the note letter without putting a space in between.
You will have noticed that the quality is not great. It is still a lot less nasty than using a square

wave but is a long way from the tunefulness of a real musical instrument, where each note has an
“envelope” in which the amplitude (volume) of the note varies with the note as it is played.

Project 20
Light Harp
This project is really an adaptation of Project 19 that uses two light sensors (LDRs): one that controls
the pitch of the sound the other that controls the volume. This is inspired by the Theremin musical
instrument that is played by mysteriously waving your hands about between two antennas. In actual
fact, this project produces a sound more like a bagpipe than a harp, but it is quite fun.

COMPONENTS AND EQUIPMENT

Hardware
Figures 7-12 and 7-13 show the schematic diagram and breadboard layout for the project, and you
can see the final project in Figure 7-14.

Figure 7-12 Schematic diagram for Project 20.

Figure 7-13 Breadboard layout for Project 20.

Figure 7-14 Project 20: light harp.

The LDRs, R4 and R5, are positioned away from each other to make it easier to play the
instrument with two hands.

Software
The software for this project has a lot in common with Project 19 (see Listing Project 20).

LISTING PROJECT 20

The main differences are that the period passed to playSine is set by the value of the analog input
0. This is then scaled to the right range using the map function. Similarly, the volume voltage is set by
reading the value of analog input 1, scaling it using map, and then using it to scale the values from the
sine array before outputting them.

LDRs have different ranges of resistance. So you may find that you need to tweek the values of the
variables ldrDim and ldrBright to get better ranges of pitch and volume.

Putting It All Together
Load the completed sketch for Project 20 from your Arduino Sketchbook and download it to the

board (see Chapter 1).
To play the “instrument,” use your right hand over one LDR to control the volume of the sound and

your left hand over the other LDR to control the pitch. Interesting effects can be achieved by waving
your hands over the LDRs.

Project 21
VU Meter
This project (shown in Figure 7-15) uses LEDs to display the volume of noise picked up by a
microphone. It uses an array of LEDs built into a dual-in-line (DIL) package.

Figure 7-15 Project 21: VU meter.

The push button toggles the mode of the VU meter. In normal mode, the bar graph just flickers up
and down with the volume of sound. In maximum mode, the bar graph registers the maximum value
and lights that LED, so the sound level gradually pushes it up.

Hardware
The schematic diagram for this project is shown in Figure 7-16. The bar-graph LED package has
separate connections for each LED. These are each driven through a current-limiting resistor.

Figure 7-16 Schematic diagram for Project 21.

COMPONENTS AND EQUIPMENT

The microphone will not produce a strong enough signal on its own to drive the analog input. So,
to boost the signal, we use a simple single-transistor amplifier. We use a standard arrangement called
collector-feedback bias, where a proportion of the voltage at the collector is used to bias the
transistor on so that it amplifies in a loosely linear way rather than just harshly switching on and off.

The breadboard layout is shown in Figure 7-17. With so many LEDs, a lot of wires are required.
Make sure that the bar-graph LED module has the negative LED connections to the left of the
breadboard as it appears in Figure 7-17. If it is not labeled, then test it out using one of the 270 Ω
resistors and the 5V supply from the Arduino.

Figure 7-17 Breadboard layout for Project 21.

Software
The sketch for this project (Listing Project 21) uses an array of LED pins to shorten the setup
function. This is also used in the loop function, where we iterate over each LED, deciding whether to
turn it on or off.

LISTING PROJECT 21

At the top of the loop function, we check to see if the switch is depressed; if it is, we toggle the
mode. The ! command inverts a value, so it will turn true into false and false into true. For this
reason, it is sometimes referred to as the marketing operator. After changing the mode, we reset the
maximum value to 0 and then delay for 200 ms to prevent keyboard bounce from changing the mode
straight back again.

The level of sound is read from analog pin 0, and then we use the map function to convert from a
range of 0 to 1023 down to a number between 0 and 9, which will be the top LED to be lit. This is
adjusted slightly by extending the range up to 0 to 11 and then subtracting 1. This prevents the two

bottom-most LEDs from being permanently lit owing to transistor bias.
We then iterate over the numbers 0 to 9 and use a Boolean expression that returns true (and hence

lights the LED) if i is less than or equal to the top LED. It is actually more complicated than this
because we also should display that LED if we are in peak mode and that LED happens to be the
peakValue.

Putting It All Together
Load the completed sketch for Project 21 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

Summary
This concludes our sound-based projects. In Chapter 8 we go on to look at how we use an Arduino
board to control power—a topic always close to the heart of the Evil Genius.

CHAPTER 8

Power Projects

HAVING LOOKED AT LIGHT and sound, the Evil Genius now turns his or her attention to controlling
power. In essence, this means turning things on and off and controlling their speed. This mostly
applies to motors and lasers and the long-awaited servo-controlled laser project.

Project 22
LCD Thermostat
The temperature in the Evil Genius’ lair must be regulated because the Evil Genius is particularly
susceptible to chills. This project uses an LCD screen and a temperature sensor to display both the
current temperature and the set temperature. It uses a rotary encoder to allow the set temperature to be
changed. The rotary encoder’s button also acts as an override switch.

When the measured temperature is less than the set temperature, a relay is activated. Relays are
old-fashioned electromagnetic components that activate a mechanical switch when a current flows
through a coil of wire. They have a number of advantages. First, they can switch high currents and
voltages, making them suitable for controlling electrical service equipment. They also electrically
isolate the control side (the coil) from the switching side so that the high and low voltages never
meet, which is definitely a good thing.

If the reader decides to use this project to switch electrical service electricity, he or she should do
so only if he or she really knows what to do and exercises extreme caution. Electrical service
electricity is very dangerous and kills about 500 people a year in the United States alone. Many more
suffer painful and damaging burns.

COMPONENTS AND EQUIPMENT

Hardware
The LCD module is connected up in exactly the same way as Project 17. The rotary encoder is also
connected up in the same way as previous projects.

The relay will require about 70 mA, which is a bit too much for an Arduino output to handle
unaided, so we use an NPN transistor to increase the current. You will also notice that a diode is
connected in parallel with the relay coil. This is to prevent something called back EMF
(electromotive force), which occurs when the relay is turned off. The sudden collapse of the magnetic
field in the coil generates a voltage that can be high enough to damage the electronics if the diode is
not there to effectively short it out if it occurs.

Figure 8-1 shows the schematic diagram for the project.

Figure 8-1 Schematic diagram for Project 22.

This project actually requires two half-sized breadboards or one single full-size breadboard. Even
with two breadboards, the breadboard layout for the project is quite cramped because the LCD
module uses a lot of the space.

Check your datasheet for the relay because the connection pins can be quite counterintuitive and
there are several pin layouts, and your layout may not be the same as the relay that the author used.

Figure 8-2 shows the breadboard layout for the project.

Figure 8-2 Breadboard layout for Project 22.

You can also use a multimeter to find the coil connections by putting it on resistance mode. There
will be only a pair of pins with a resistance of 40 to 100 Ω.

Software
The software for this project borrows heavily from several of our previous projects: the LCD
display, the temperature data logger, and the traffic signal project for use of the rotary encoder (see
Listing Project 22).

One thing that requires a bit of consideration when designing a thermostat like this is that you want
to avoid what is called hunting. Hunting occurs when you have a simple on-off control system. When
the temperature falls below the set point, the power is turned on, and the room heats until it is above
the set point. Then the room cools until the temperature is below the set point again, at which point the
heat is turned on again, and so on. This may take a little time to happen, but when the temperature is
just balanced at the switchover temperature, this hunting can be frequent. High-frequency switching
such as this is undesirable because turning things on and off tends to wear them out. This is true of
relays as well.

One way to minimize this effect is to introduce something called hysteresis, and you may have
noticed a variable called hysteresis in the sketch that is set to a value of 0.25°C.

LISTING PROJECT 22

Figure 8-3 shows how we use a hysteresis value to prevent high-frequency hunting.

Figure 8-3 Hysteresis in control systems.

As the temperature rises with the power on, it approaches the set point. However, it does not turn
off the power until it has exceeded the set point plus the hysteresis value. Similarly, as the
temperature falls, the power is not reapplied the moment it falls below the set point but only when it
falls below the set point minus the hysteresis value.

We do not want to update the display continuously because any tiny changes in the reading would
result in the display flickering wildly. So, instead of updating the display every time round the main
loop, we just do it one time in 1000. This still means that it will update three or four times per
second. To do this, we use the technique of having a counter variable that we increment each time
round the loop. When it gets to 1000, we update the display and reset the counter to 0.

Using lcd.clear() each time we change the display also would cause it to flicker. So we simply
write the new temperatures on top of the old temperature. This is why we pad the OVERRIDE ON
message with spaces so that any text that was previously displayed at the edges will be blanked out.

Putting It All Together
Load the completed sketch for Project 22 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

The completed project is shown in Figure 8-4. To test the project, turn the rotary encoder, setting
the set temperature to slightly above the actual temperature. The relay should click on. Then put your
finger onto the TMP36 to warm it up. If all is well, then when the set temperature is exceeded, the

LED should turn off, and you will hear the relay click.

Figure 8-4 Project 22: LCD thermostat.

You also can test the operation of the relay by connecting a multimeter in continuity test (beep)
mode to the switched output leads.

I cannot stress enough that if you intend to use your relay to switch electrical service electricity,
first put this project onto a properly soldered Protoshield because breadboard is not suitable for high
voltages. Second, be very careful, and check and double-check what you are doing. Electrical service
electricity kills.

You must only test the relay with low voltage unless you are going to make a proper soldered
project from this design.

Project 23
Computer-Controlled Fan
One handy part to reclaim from a dead PC is the case fan (Figure 8-5). We are going to use one of
these fans to keep ourselves cool in the summer. Obviously, a simple on-off switch would not be in
keeping with the Evil Genius’ way of doing things, so the speed of the fan will be controllable from

our computer.

Figure 8-5 Project 23: computer-controlled fan.

If you do not happen to have a dead computer lying around, fear not, because you can buy new
cooling fans quite cheaply.

COMPONENTS AND EQUIPMENT

Hardware
We can control the speed of the fan using the analog output (pulse-width modulation) driving a power
transistor to send pulses of power to the motor. Since these computer fans are usually 12V, we will
use an external power supply to provide the drive power for the fan. The fan is likely to have a
positive and a negative lead. The positive lead is often red.

Figure 8-6 shows the schematic diagram for the project and Figure 8-7 the breadboard layout.

Figure 8-6 Schematic diagram for Project 23.

Figure 8-7 Breadboard layout for Project 23.

Software
This is a really simple sketch (Listing Project 23). Essentially, we just need to read a digit 0 to 9
from the USB and do an analogWrite to the motorPin of that value multiplied by 10 with 150 added to
it. This will scale it to a range between 150 and 240. The offset of 150 is necessary because the fan
will not move at all until there is a certain amount of voltage. You may well have to tweek this value
for your fan.

LISTING PROJECT 23

Putting It All Together
Load the completed sketch for Project 23 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

H-Bridge Controllers
To change the direction in which a motor turns, you have to reverse the direction in which the current
flows. To do this requires four switches or transistors. Figure 8-8 shows how this works, using
switches in an arrangement that is, for obvious reasons, called an H-bridge.

Figure 8-8 An H-bridge.

In Figure 8-8, S1 and S4 are closed, and S2 and S3 are open. This allows current to flow through
the motor, with terminal A being positive and terminal B being negative. If we were to reverse the
switches so that S2 and S3 are closed and S1 and S4 are open, then B would be positive and A would
be negative, and the motor would turn in the opposite direction.

However, you may have spotted a danger with this circuit. That is, if by some chance S1 and S2
are both closed, then the positive supply will be connected directly to the negative supply, and we
will have a short-circuit. The same is true if S3 and S4 are both closed at the same time.

Although you can use individual transistors to make an H-bridge, it is simpler to use an H-bridge
integrated circuit (IC) such as the L293D. This chip actually has two H-bridges in it, so you can use it
to control two motors. We will use one of these chips in Project 24.

Project 24
Hypnotizer
Mind control is one of the Evil Genius’ favorite things. This project (see Figure 8-9) takes complete
control of a motor not only to control its speed but also to make it turn clockwise and
counterclockwise. Attached to the motor will be a swirling spiral disk intended to mesmerize
unfortunate victims.

Figure 8-9 Project 24: the hypnotizer.

COMPONENTS AND EQUIPMENT

The motor that we use in this project is a gear motor; that is, it is a DC motor and gearbox
combined into a single unit. The gearing makes the shaft turn more slowly, making it more suitable for
this project.

Hardware
The schematic diagram for the hypnotizer is shown in Figure 8-10. It uses just one of the two channels
available on the L293D chip.

Figure 8-10 Schematic diagram for Project 24.

The L293D has two +V pins (8 and 16). The pin +Vmotor (8) provides the power for the motors,
and +V (16) supplies the chip’s logic. We have connected both of these to the Arduino 5V pin.
However, if you were using a more powerful motor or a higher-voltage motor, you would provide the
motor with a separate power supply using pin 8 of the L293D connected to the positive power supply
and the ground of the second power supply connected to the ground of the Arduino.

Figure 8-11 shows the breadboard layout for the project.

Figure 8-11 Breadboard layout for Project 24.

Our hypnotizer needs a spiral pattern to work. You may decide to photocopy Figure 8-12, cut it
out, and stick it to the fan. Alternatively, a more colorful version of the spiral is available to print out
from www.arduinoevilgenius.com.

http://www.arduinoevilgenius.com

Figure 8-12 Spiral for the hypnotizer.

The spiral was cut out of paper and stuck onto cardboard that was then glued onto the little cog on
the end of the motor.

Software
The sketch uses an array, speeds, to control the disk’s progression in speed. This makes the disk spin
faster and faster in one direction and then slow until it eventually reverses direction and then starts
getting faster and faster in that direction, and so on. You may need to adjust this array for your
particular motor. The speeds you will need to specify in the array will vary from motor to motor, so
you probably will need to adjust these values.

The enable pin of the chip controls the speed of the motor using PWM, and the in1 and in2 pins
control the direction of the motor as shown in the following table:

Putting It All Together
Load the completed sketch for Project 24 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

Take care to check your wiring before applying power on this project. You can test each path
through the H-bridge by connecting the control wires that go to digital pins 5 and 6 to ground. Then
connect one of the leads to 5V, and the motor should turn in one direction. Connect that lead back to
ground, and then connect the other lead to 5V, and the motor should rotate in the other direction.

LISTING PROJECT 24

Servo Motors
Servo motors are great little components that are often used in radio-controlled cars to control
steering and in model aircraft to move the control surfaces. Servo motors come in a variety of sizes
for different types of applications, and their wide use in models makes them relatively inexpensive.

Unlike normal motors, they do not rotate continuously; rather, you set them to a particular angle
using a PWM signal. They contain their own control electronics to do this, so all you have to provide
them with is power (which, for many devices, can be 5V) and a control signal that you can generate
from the Arduino board.

Over the years, the interface to servos has become standardized. The servo must receive a
continuous stream of pulses at least every 20 ms. The angle that the servo maintains is determined by
the pulse width. A pulse width of 1.5 ms will set the servo at its midpoint, or 90 degrees. A pulse of
1.75 ms normally will swing it round to 180 degrees, and a shorter pulse of 1.25 ms will set the angle
to 0 degrees.

Project 25
Servo-Controlled Laser
This project (see Figure 8-13) uses two servo motors to aim a laser diode. It can move the laser quite
quickly so that you can “write” on distant walls using it.

Figure 8-13 Project 25: servo-controlled laser.

COMPONENTS AND EQUIPMENT

This is a real laser. It is not high-powered, only 3 mW, but nonetheless, do not shine the beam in

your own or anybody else’s eyes. To do so could cause retina damage.

Hardware
The schematic diagram for the project is shown in Figure 8-14. It is all quite simple. The servos have
just three leads. For each servo, the brown lead is connected to ground, the red lead to +5V, and the
orange (control) lead to digital outputs 2 and 3. The servos are terminated in sockets designed to fit
over a pin header. Jumper wires are used to connect these to the breadboard.

Figure 8-14 Schematic diagram for Project 25.

The laser module is driven just like an ordinary LED from D4 via a current-limiting resistor.
The servos are usually supplied with a range of “arms” that push onto a cogged drive and are

secured by a retaining screw. One of the servos is glued onto one of these arms (Figure 8-15). Then
the arm is attached to the servo. Do not fit the retaining screw yet because you will need to adjust the
angle. Glue the laser diode to a second arm, and attach that to the servo. It is a good idea to fix some
of the wire from the laser to the arm to prevent strain on the wire where it emerges from the laser.
You can do this by putting a loop of solid-core wire through two holes in the server arm and twisting
it around the lead. You can see this in Figure 8-17.

Figure 8-15 Attaching one servo to an arm.

You now need to attach the bottom servo to the breadboard. Self-adhesive putty will hold it in
place firmly enough. Make sure that you understand how the servo will move before you glue the
bottom servo to anything. If in doubt, wait until you have installed the software, and try the project out
just holding the bottom servo before you glue it in place. Once you are sure that everything is in the
right place, fit the retaining screws onto the servo arms.

You can see how the breadboard is used to anchor the various wires in Figure 8-16. There are no
components except the resistor and capacitor on the breadboard.

Figure 8-16 Breadboard layout for Project 25.

Different servos draw different amounts of current. If you find that your Arduino resets itself
whenever the servos move, then powering the Arduino from an external 9V or 12V adapter should fix
this.

Software
Fortunately for us, a servo library comes with the Arduino library, so all we need to do is tell each
servo what angle to set itself at. There is obviously more to it than this because we want to have a
means of issuing our evil project with coordinates at which to aim the laser.

To do this, we allow commands to be sent over a USB cable. The commands are in the form of
letters. R, L, U, and D direct the laser right, left, up, and down, respectively, by 5 degrees. For finer
movements, r, l, u, and d move the laser by just 1 degree. To pause and allow the laser to finish

moving, you can send the dash (–) character. (See Listing Project 25.)

LISTING PROJECT 25

There are three other commands. The letter c will center the laser back at its resting position, and
the commands 1 and 0 turn the laser on and off, respectively.

Putting It All Together
Load the completed sketch for Project 25 from your Arduino Sketchbook and download it to the

board (see Chapter 1).
Open up the Serial Monitor, and type the following sequence. You should see the laser trace the

letter A, as shown in Figure 8-17:

Figure 8-17 Writing the letter A with the laser.

Summary
In previous chapters we have built up our knowledge of how to use light, sound, and various sensors
on the Arduino. We also have learned how to control the power to motors and to use relays. This

covers nearly everything we are likely to want to do with our Arduino board, so in Chapter 9 we can
put all these things together to create some wider-ranging projects.

CHAPTER 9

Miscellaneous Projects

THIS CHAPTER IS JUST A collection of projects that we can build. They do not illustrate any particular
point except that Arduino projects are great fun to make.

Project 26
Lie Detector
How can an Evil Genius be sure that his or her prisoners are telling the truth? By using a lie detector,
of course. This lie detector (Figure 9-1) uses an effect known as galvanic skin response.

Figure 9-1 Project 26: lie detector.

As a person becomes nervous—for example, when telling a lie—his or her skin resistance decreases.
We can measure this resistance using an analog input and use an LED and buzzer to indicate an
untruth.

WARNING Because this project requires your test subject to touch electrodes on either
side of your heart, then there is a very small risk that something could go wrong with your
computer and output high voltage on the USB port. To avoid any chance of this, power the
Arduino with a battery.

We use a multicolor LED that will display red to indicate a lie, green to indicate a truth, and blue
to show that the lie detector should be adjusted by twiddling the variable resistor.

There are two types of piezo buzzers. Some are just a piezoelectric transducer, whereas some also
include an electronic oscillator to drive them. In this project we want the former, more common type
without the electronics because we are going to generate the necessary frequency from the Arduino
board itself.

Hardware
The subject’s skin resistance is measured by using the subject as one resistor in a potential divider
and a fixed resistor as the other. The lower the subject’s resistance, the more analog input 0 will be
pulled toward 5V The higher the resistance, the closer to GND it will become.

The piezo buzzer, despite the level of noise these things generate, is actually quite low in current
consumption and can be driven directly from an Arduino digital pin.

COMPONENTS AND EQUIPMENT

This project uses the same multicolor LED as Project 14. In this case, however, we are not going
to blend different colors but just turn one of the LEDs on at a time to display red, green, or blue.

Figure 9-2 shows the schematic diagram for the project and Figure 9-3 the breadboard layout.

Figure 9-2 Schematic diagram for Project 26

Figure 9-3 Breadboard layout for Project 26.

The variable resistor is used to adjust the set point of resistance, and the touch pads are just two
metal thumbtacks pushed into the breadboard.

Software
The script for this project (Listing Project 26) just has to compare the voltage at A0 and A1. If they
are about the same, the LED will be set to green. If the voltage from the finger sensor (A0) is
significantly higher than A1, the variable resistor will indicate a fall in skin resistance, the LED will
change to red, and the buzzer will sound. On the other hand, if A0 is significantly lower than A1, the
LED will turn blue, indicating a rise in skin resistance.

The buzzer requires a frequency of about 5 kHz, or 5000 cycles per second, to drive it. We

accomplish this with a simple for loop with commands to turn the appropriate pin on and off with
delays in between.

LISTING PROJECT 26

Putting It All Together
Load the completed sketch for Project 26 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

To test the lie detector, you really need a test subject because you will need one hand free to adjust
the knob.

First, get your subject to place two adjoining fingers on the two metal thumbtacks. Then turn the
knob on the variable resistor until the LED turns green.

You may now interrogate your victim. If the LED changes to either red or blue, you should adjust
the knob until it changes to green again and then continue the interrogation.

Project 27
Magnetic Door Lock
This project (Figure 9-4) is based on Project 10 but extends it so that when the correct code is
entered, it lights a green LED in addition to operating a magnetic door latch. The sketch is also
improved so that the secret code can be changed without having to modify and install a new script.
The secret code is stored in electrically erasable programmable read-only memory (EEPROM), so if
the power is disconnected, the code will not be lost.

Figure 9-4 Project 27: magnetic door lock.

When powered, the electromagnetic latch will release the latch mechanism itself so that the door
can be opened. When no power is applied, the latch stays in a closed position.

The DC adapter needs to be able to supply enough current to activate the latch. So check the
specification for your latch before selecting a power supply. Normally, 2 A will be fine.

COMPONENTS AND EQUIPMENT

Note that these latches are designed to open only for a few seconds to allow the door to be
opened.

Hardware
The schematic diagram (Figure 9-5) and breadboard layout (Figure 9-6) are much the same as for
Project 10, but with additional components. Like relays, the electromagnetic latch is an inductive load
and therefore liable to generate a back electromotive force (EMF), which diode D3 protects against.

Figure 9-5 Schematic diagram for Project 27.

Figure 9-6 Breadboard layout for Project 27.

The latch is controlled by T1 and switched at 12V Because the project will be powered from a
12V adaptor, the Vin connection of the Arduino is connected to one connection of the latch.

Software
The software for this project is, as you would expect, similar to that for Project 10 (see Listing
Project 27).

LISTING PROJECT 27

Although this project is powered from an external adaptor, you can still attach the USB lead to
your computer and issue commands to unlock the door or change the secret code.

The setup function writes some instructions for changing the secret code using the Serial Monitor.
It also shows you the current code (Figure 9-7).

Figure 9-7 Controlling the lock with the Serial Monitor.

The loop function has two parts. First, it looks for any incoming commands from the Serial
Monitor, and then it checks for key presses.

As each key is pressed, if it matches the appropriate character in the secret code, the count
variable is incremented. When the count gets to 4, the latch is unlocked.

Because each character is exactly 1 byte in length, the code can be stored directly in the EEPROM.
We use the first byte of EEPROM to indicate whether the code has been set. If it has not been set, the
code will default to 1234. Once the code has been set, the first EEPROM byte will be given a value
of 1. If we didn’t get this, then the code would become whatever happened to be in the first byte of the
EEPROM.

Putting It All Together
Load the completed sketch for Project 27 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

We can make sure that everything is working by powering up our project and entering the code

1234, at which point the green LED should light and the latch release.

Project 28
Infrared Remote
This project (Figure 9-8) allows the Evil Genius to control any household devices with an infrared
remote control directly from his or her computer. With it, the Evil Genius can record an infrared
message from an existing remote control and then play it back from his or her computer.

Figure 9-8 Project 28: infrared remote.

COMPONENTS AND EQUIPMENT

We use the EEPROM to store the remote-control codes so that they are not lost when the Arduino
board is disconnected.

Hardware
The infrared (IR) remote receiver is a great little module that combines an IR photodiode with all the
amplification filtering and smoothing needed to produce a digital output from the IR message. This
output is fed to digital pin 9. The schematic diagram (Figure 9-9) shows how simple this package is
to use, with just three pins, GND, +V and the output signal.

Figure 9-9 Schematic diagram for Project 28.

The IR transmitter is an IR LED. IR LEDs work just like a regular red LED but in the invisible IR
end of the spectrum. On some devices you can see a slight red glow when they are on, and if you look
at them using a digital camera, you can usually see the glow because digital cameras are normally
slightly sensitive in the IR range.

You can power the IR sender directly from an IO pin using, say, a 270 Ω series resistor to limit the
current; however, these devices are designed to be driven continuously at 100 mA (five times the
current of a normal LED). So it will only have a very short range. For this reason, we are using a
transistor to switch the LED and a much lower series resistor to drive the IR LED to its maximum
current.

Figure 9-10 shows the breadboard layout for this project.

Figure 9-10 Breadboard layout for Project 28.

When building the breadboard, note that most IR LEDs defy the normal convention of LEDs. For
these LEDs, the longer lead is normally the negative lead. Check with the datasheet for your LED
before you wire it up.

Software
The sketch allows you to record signals from an existing remote into one of 10 memories and then
play them back (see Listing Project 28).

LISTING PROJECT 28

Infrared remote controls send a series of pulses at a frequency of between 36 and 40 kHz. Figure
9-11 shows the trace from an oscilloscope.

Figure 9-11 Infrared code from an oscilloscope.

A bit value of 1 is represented by a pulse of square waves at 36 to 40 kHz and a 0 by a pause in
which no square waves are sent.

In the setup function, we start serial communications and write instructions for using the project
back to the Serial Console. It is from the Serial Console that we are going to control the project. We
also set the current code memory to memory 0.

The loop function follows the familiar pattern of checking for any input through the USB port. If it
is a digit between 0 and 9, it makes the corresponding memory the current memory. If an s character is
received from the Serial Monitor, it sends the message in the current message memory, and if the
message is l, then the sketch waits for a message to arrive from a remote.

The function then checks to see if any IR signal has been received; if it has, the function writes it to
EEPROM using the storeCode function. It stores the length of the code in the first byte and then the
number of 50-ms ticks for each subsequent pulse in the bytes that follow.

We also use an interesting technique in storeCode and sendIR when accessing the EEPROM that
lets us use it rather like an array for the message memories. The start point for recording or reading
the data from EEPROM is calculated by multiplying the currentCode by the length of each code (plus
the byte that says how long it is).

Putting It All Together
Load the completed sketch for Project 28 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

To test the project, find yourself a remote and the bit of equipment that it controls. Then power up
the project.

Open the Serial Monitor, and you should be greeted by the following message:

By default, any message we capture will be recorded into memory 0. So enter “1” into the Serial
Monitor, and then aim the remote at the sensor and press a button (turning power on and ejecting the
tray on a DVD player are impressive actions). You then should see a message like this:

Now point the IR LED at the appliance, and type S into the Serial Monitor. You should receive a
message like this:

More important, the appliance should respond to the message from the Arduino board.
You now can try changing the memory slot by entering a different digit into the Serial Monitor and

recording a variety of different IR commands. Note that there is no reason why they need to be for the
same appliance.

Note that this project will not work on all appliances, so if it doesn’t work on one, try it on
another.

Project 29
Lilypad Clock
The Arduino Lilypad works in much the same way as the Uno or Leonardo boards, but instead of a
boring rectangular circuit board, the Lilypad is circular and designed to be stitched into clothing using
conductive thread. Even an Evil Genius appreciates beauty when he or she sees it. So this project is
built into a photo frame to show off the natural beauty of the electronics (see Figure 9-12). A magnetic
reed switch is used to adjust the time.

Figure 9-12 Project 29: Lilypad binary clock.

COMPONENTS AND EQUIPMENT

This is a project where you have to use a soldering iron.

Hardware
We have an LED and series resistor attached to almost every connection of the Lilypad in this project.

The reed switch is a useful little component that is just a pair of switch contacts in a sealed glass
envelope. When a magnet comes near the switch, the contacts are pulled together, and the switch is
closed.

We use a reed switch rather than an ordinary switch so that the whole project can be mounted
behind glass in a photo frame. We will be able to adjust the time by holding a magnet close to the
switch.

Figure 9-13 shows the schematic diagram for the project.

Figure 9-13 Schematic diagram for Project 29.

Each LED has a resistor soldered to the shorter negative lead. The positive lead is then soldered
to the Arduino Lilypad terminal and the lead from the resistor passes under the board, where it is
connected to all the other resistor leads.

Figure 9-14 shows a close-up of the LED and resistor, and the wiring of the leads under the board
is shown in Figure 9-15. Note the rough disk of paper protecting the back of the board from the
soldered resistor leads.

Figure 9-14 Close-up of LED attached to a resistor.

Figure 9-15 Bottom side of Lilypad board.

A 5V power supply is used because a significant amount of power is used when all the LEDs are
lit, so batteries would not last long. The power wires extend from the side of the picture frame, where
they are soldered to a connector.

The author used a redundant cell phone power supply. Be sure to test that any supply you are going
to use provides 5V at a current of at least 500 mA. You can test the polarity of the power supply using
a multimeter.

Software
Programming the Lilypad is a little different from programming an Uno or Leonardo. The Lilypad
does not have a USB port, but rather you program it with a special adaptor.

When you first plug the adaptor into the Lilypad and connect it to your computer, the “Found New
Hardware Wizard” will run if you are using Windows. When it does so, select the option to install

from a specified location, and browse to the folder “FTDI USB Drivers” in the “Drivers” folder
within your Arduino installation folder. This will install the necessary drivers.

Figure 9-16 shows the adaptor connected to the Lilypad.

Figure 9-16 USB adaptor connected to the Lilypad board.

For Mac and LINUX, you will find installers in the “Drivers” folder to install the USB driver. You
may find that your machine will recognize the USB adapter without having to install anything.

This is another project in which we make use of a library. This library makes dealing with time
easy and can be downloaded from http://playground.arduino.cc/Code/Time.

Download the file Time.zip, and unzip it. If you are using Windows, right-click and choose
“Extract All” and then save the whole folder into the “Libraries” folder within your “Arduino
sketches” folder.

Once you have installed this library into your Arduino directory, you will be able to use it with
any sketches that you write (see Listing Project 29.)

LISTING PROJECT 26

Arrays are used to refer to the different sets of LEDs. These are used to simplify installation and
also in the setOutput function. This function sets the binary values of the array of LEDs that is to
display a binary value. The function also receives arguments of the length of that array and the value
to be written to it. This is used in the loop function to successively set the LEDs for hours, minutes,
and seconds. When passing an array into a function such as this, you must prefix the argument in the
function definition with an asterisk (*).

An additional feature of the clock is that every hour, on the hour, it spins the LEDs, lighting each
one in turn. So at 6 o’clock, for example, it will spin six times before resuming the normal pattern.

If the reed relay is activated, the adjust Time function is called with an argument of 1 second.

Because this is in the loop function with a 1-ms delay, the seconds are going to pass quickly.

Putting It All Together
Load the completed sketch for Project 29 from your Arduino Sketchbook and download it to the
board. On a Lilypad, this is slightly different from what we are used to. You will have to select a
different board type (Lilypad 328) and serial port from the Arduino software before downloading.

Assemble the project, but test it connected to the USB programmer before you build it into the
picture frame.

Try to choose a picture frame that has a thick card insert that will allow a sufficient gap into which
the components can fit between the backing board and the glass.

You may wish to design a paper insert to provide labels for your LEDs to make it easier to tell the
time. A suitable design can be found at www.arduinoevilgenius.com.

To read the time from the clock, you look at each section (Hours, Minutes, and Seconds) in turn
and add the values next to the LEDs that are lit. So, if the hour LEDs next to 8 and 2 are lit, then the
hour is 10. Then do the same for the minutes and seconds.

Project 30
Evil Genius Countdown Timer
No book on projects for an Evil Genius should be without the Bond-style countdown timer (Figure 9-
17). This timer also doubles as an egg timer because there is nothing that annoys the Evil Genius more
than an overcooked soft-boiled egg!

http://www.arduinoevilgenius.com

Figure 9-17 Project 30: Evil Genius countdown timer.

COMPONENTS AND EQUIPMENT

Hardware
Like Project 16, this project also uses an I2C module, but in this case it is a four-digit, seven-segment
LED display module.

The schematic diagram for the project is shown in Figure 9-18 and the breadboard layout in Figure
9-19.

Figure 9-18 Schematic diagram for Project 30.

Figure 9-19 Breadboard layout for Project 30.

Software
The sketch for this project (Listing Project 30) uses the same libraries as Project 16. So, if you have
not installed these, please refer back to Chapter 6.

Rather than make the rotary encoder change the time one second per rotation step, we have an

array of standard times that fit with the egg-cooking habits of the Evil Genius. This array can be
edited and extended, but if you change its length, you must alter the num Times variable accordingly.

To keep track of the time, the function update Counting Time checks to see if more than a second
has passed, and if it has, it decrements the number of seconds by one. When the seconds get to zero,
then the minute is decremented in a similar way.

LISTING PROJECT 30

The time to be displayed is formatted into minutes and seconds by making a single decimal number
by multiplying the minutes by 100 and adding the number of seconds.

Putting It All Together
Load the completed sketch for Project 30 from your Arduino Sketchbook and download it to the
board (see Chapter 1).

Summary
In Chapter 10 you will find a selection of projects designed to work with the Arduino Leonardo. This
board differs from the Uno in that it can emulate a USB keyboard and mouse, opening up all sorts of
possibilities.

CHAPTER 10

USB Projects with the Leonardo

THE ARDUINO LEONARDO DIFFERS from the more conventional Arduino in a number of ways. It is a
little cheaper and has a different microcontroller chip. It is the use of this chip that allows the
Leonardo to impersonate a USB keyboard, which is the basis for the projects described in this
chapter.

Project 31
Keyboard Prank
If you are familiar with the 1999 movie, The Matrix—and what Evil Genius isn’t?—you will
remember the scene where the hero, Neo, is in his room, and messages start to appear on his
computer screen.

This project uses an Arduino Leonardo secretly attached to the USB port of someone’s computer to
start sending those messages after a random delay (Figure 10-1).

Figure 10-1 The keyboard prank in action.

COMPONENTS AND EQUIPMENT

Hardware
The only thing that you need for this project is a Leonardo and a USB cable, first to connect it to your
computer to program it and then to connect to the computer of the person you want to prank.

Software
The sketch for Project 31 is shown in Listing Project 31.

LISTING PROJECT 31

The setup function seeds the random-number generator with a value from the analog input A0.
Because this pin is floating, the result should be fairly random. The keyboard emulation library is
also started with the command Keyboard.begin.

The main loop then waits for a random period between 30 and 40 seconds and starts sending the
messages with a sorter delay of between 3 and 6 seconds between each sentence.

The \n characters are newline characters that are equivalent to pressing the ENTER key.
Because this project simulates a keyboard and starts typing all by itself, be aware that it will type

the text wherever it is, and that includes the Arduino sketch if you have it open in the IDE. It is a good
idea to unplug it except when you are programming the board or ready to deploy it as a prank.

If you get stuck trying to program it, a good trick is to hold down the red Reset button on the
Leonardo until the Arduino software says

“Uploading” in the status area, and then let go of the button.

Putting It All Together
This is a fun little project, and obviously, you can change the message text to anything you like.
However, remember that the text will appear only if your victim is actually editing something where
keyboard strokes will show up.

Project 32
Automatic Password Typer
This project (Figure 10-2) uses the Leonardo’s keyboard impersonation features to automate the
generation and typing of passwords. Pressing one key creates a new password and stores it in
electrically erasable programmable read-only memory (EEPROM) so that it is not forgotten, and
pressing the other key types the password using the Leonardo’s ability to impersonate a keyboard.

Figure 10-2 Automatic password typer.

Be warned: It is very easy to press the wrong button and accidentally reset the password. So think
twice before using this project for your passwords. It is also not very secure because all someone
needs to do to discover your password is to position the cursor in a word processor and then press
the button for the password to be printed out in full view.

COMPONENTS AND EQUIPMENT

Hardware
As far as hardware is concerned, this is one of the simplest projects in this book. It has just two push

buttons attached to the breadboard.
Figure 10-3 shows the schematic diagram and Figure 10-4 the breadboard layout.

Figure 10-3 Schematic diagram for the password typer.

Figure 10-4 Breadboard layout for the password typer.

Software
The sketch for Project 32 is shown in Listing Project 32.

In addition to the two button variables, a variable passwordLength is also defined. If you want
longer passwords, then all you need to do is increase this from 8 up to any value less than 1023. The
character array (letters) is used to contain a list of the characters that can be used in the passwords
that will be generated.

LISTING PROJECT 32

For the Leonardo to do the clever keyboard trick, you need to use the command Keyboard.begin()
in setup to start the keyboard emulation.

The loop function just needs to check for key presses and call either generatePassword or
typePassword if the corresponding key is pressed.

The function typePassword simply reads each of the characters from EEPROM and echoes them to
the keyboard using Keyboard.write. When all the letters have been written, it writes a final \n, which
is the end-of-line character and simulates pressing the ENTER key.

To generate a new password, the pseudorandom-number generator is first seeded with a
combination of the current milliseconds since last reboot and the value on the analog pin A0. Because
both are pretty random, this will help to ensure that a nice random sequence of characters is created.
These characters are created by repeatedly picking one of the characters from the array letters and
writing it into EEPROM.

Putting It All Together
The best way to test out the project is to open something like Notepad on Windows or any kind of text
editor. First, press the bottom button to generate a new password, and then press the top button, and
the password should be typed for you into the editor (Figure 10-5).

Figure 10-5 Using the password typer with Notepad on Windows.

Project 33
Accelerometer Mouse
This project turns a Leonardo into an accelerometer-controlled mouse with the help of a
accelerometer module. Tip the Leonardo from side to side to control your mouse, and click on the
push button to simulate a mouse click.

This project does not use breadboard; both the accelerometer module and the switch are attached
directly to the Arduino header socket (Figure 10-6).

Figure 10-6 Accelerometer mouse

When the accelerometer is level, then the acceleration owing to gravity will act equally on both
the X and Y dimensions. However, when you tip the module to one side, the amount of acceleration
force changes in that dimension, and you can use these changes to send commands to alter the position
of the mouse.

COMPONENTS AND EQUIPMENT

Hardware
Figure 10-7 shows the schematic diagram for the project.

Figure 10-7 Schematic diagram for the accelerometer mouse.

The accelerometer module comes as a kit that includes the board and a short strip of headers that
must be soldered to the connector. Follow the instructions for assembling this on the Adafruit website
(http://www.adafruit.com/products/163). You do not need to solder the “Test” connection, but if you
do, this pin can just hang off the right-hand side of the analog input sockets, as shown in Figure 10-6.

The push switch is also just connected on one side, between GND and D12.

Software
The sketch for Project 33 is shown in Listing Project 33.

LISTING PROJECT 33

http://www.adafruit.com/products/163

The Leonardo uses three of the analog pins to measure the acceleration forces of the X, Y, and Z
axes, but it also uses two of the analog pins (A2 and A0) to provide power to the accelerometer
module. These are all set to their appropriate values in the setup function.

Pin A1 is set to be an input because the module actually outputs 3V on this pin, which we do not
want to use, but A1 is one of the connections to which a header pin was attached. So setting it to be an
input makes sure that it cannot conflict with the pin being used by the Arduino as an output and hence
damaging the Arduino or module.

Making a Leonardo behave like a mouse is very similar to the previous two keyboard projects.
You first have to start it impersonating a mouse by issuing the Mouse.begin command.

The loop function measures the acceleration forces of the X and Y axes, and then, if they are
greater than the threshold of 10, it uses a scaled-down value of the acceleration offset to adjust the
mouse position.

The switch is also checked in the loop, and if it is pressed, then the Mouse.click() command is
sent.

Putting It All Together
Install the sketch for this project, and you should find that when you pick up your Leonardo, you will
be able to control your mouse cursor by tilting it back and forth.

Pressing the button will perform the same action as clicking your regular mouse button.

Summary
The Leonardo is a very versatile device, and the projects in this chapter could be expanded in all
sorts of directions. You could, for example, modify Project 32 to add lots of buttons and issue
different keystrokes when the button was pressed to make a controller for musical software such as
Ableton Live.

This is the final chapter containing projects. The author hopes that in trying the projects in this
book, the Evil Genius’ appetite for experimentation and design has been stirred, and he or she will
have the urge to design some projects of his or her own.

Chapter 11 sets out to help you in the process of developing your own projects.

CHAPTER 11

Your Projects

SO YOU HAVE TRIED your hand at some of the author’s projects and hopefully learned something along
the way. Now it’s time to start developing your own projects using what you have learned. You will
be able to borrow bits of design from the projects in this book, but to help you along, this chapter gets
you started with some design and construction techniques.

Circuits
The author likes to start a project with a vague notion of what he wants to achieve and then start
designing from the perspective of the electronics. The software usually comes afterwards.

The way to express an electronic circuit is to use a schematic diagram. The author has included
schematic diagrams for all the projects in this book, so even if you are not very familiar with
electronics, you should now have seen enough schematics to understand roughly how they relate to the
breadboard layout diagrams also included.

Schematic Diagrams
In a schematic diagram, connections between components are shown as lines. These connections will
use the connective strips beneath the surface of the breadboard and the wires connecting one
breadboard strip to another. For the kinds of projects in this book, it does not normally matter how the
connection is made. The arrangement of the actual wires does not matter as long as all the points that
should be connected are connected.

Schematic diagrams have a few conventions that are worth pointing out. For instance, it is common
to place GND lines near the bottom of the diagram and higher voltages near the top of the diagram.
This allows someone reading the schematic to visualize the flow of charge through the system from
higher to lower voltages.

Another convention in schematic diagrams is to use the little bar symbol to indicate a connection to
GND where there is not enough room to draw all the connections.

Figure 11-1, originally from Project 5, shows three resistors, all with one lead connected to the
GND connection of the Arduino board. In the corresponding breadboard layout (Figure 11-2), you can
see that the connections to GND go through three wires and three strips of breadboard connector
block.

Figure 11-1 A schematic diagram example.

Figure 11-2 Example breadboard layout.

There are many different tools for drawing schematic diagrams. Some of them are integrated-
electronics computer-aided design (CAD) products that will go on to lay out the tracks on a printed-
circuit board for you. By and large, these create fairly ugly-looking diagrams, and the author prefers
to use pencil and paper or general-purpose drawing software. All the diagrams for this book were
created using Omni Group’s excellent but strangely named OmniGraffle software, which is only
available for Apple Macs. OmniGraffle templates for drawing breadboard layouts and schematic
diagrams are available for download from www.arduinoevilgenius.com.

Component Symbols
Figure 11-3 shows the circuit symbols for the electronic components that we have used in this book.

http://www.arduinoevilgenius.com

Figure 11-3 Circuit symbols.

There are various different standards for circuit diagrams, but the basic symbols are all
recognizable between standards. The set used in this book does not closely follow any particular
standard. I have just chosen what I consider to be the most easy-to-read approach to the diagrams.

Components
In this section we look at the practical aspects of components: what they do and how to identify,
choose, and use them.

Datasheets
All component manufacturers produce datasheets for their products. These act as a specification for
how the component will behave. They are not of much interest for resistors and capacitors but are
much more useful for semiconductors and transistors and especially integrated circuits. They will
often include application notes that include example schematics for using the components.

These are all available on the Internet. However, if you search for “BC158 datasheet” in your
favorite search engine, you will find that many of the top hits are for organizations cashing in on the
fact that people search for datasheets a lot. These organizations surround the datasheets with pointless
advertising and pretend that they add some value to looking up datasheets by subscribing to their
service. These websites usually just lead to a frustration of clicking and should be ignored in favor of
any manufacturers’ websites. So scan through the search results until you see a URL such as
www.fairchild.com.

Alternatively, many of the component retail suppliers such as Farnell provide free-of-charge
datasheets for practically every component they sell, which is to be much applauded. This also means
that you can compare prices and buy the components while you are finding out about them.

Resistors
Resistors are the most common and cheapest electronic components around. Their most common uses
are

 To prevent excessive current flowing (see any project that uses an LED)
 In a pair or as a variable resistor to divide a voltage

Chapter 2 explained Ohm’s law and used it to decide on a value of a series resistor for an LED.
Similarly, in Project 19 we reduced the signal from our resistor ladder using two resistors as a
potential divider.

Resistors have colored bands around them to indicate their value. However, if you are unsure of a
resistor, you can always find its resistance using a multimeter. Once you get the hang of it, it’s easy to
read the values using the colored bands.

Each band color has a value associated with it, as shown in Table 11-1.

http://www.fairchild.com

TABLE 11-1 Resistor Color Codes

There will generally be three of these bands together starting at one end of the resistor, a gap, and
then a single band at the other end of the resistor. The single band indicates the accuracy of the
resistor value. Since none of the projects in this book require accurate resistors, there is no need to
select your resistors on this basis.

Figure 11-4 shows the arrangement of the colored bands. The resistor value uses just the three
bands. The first band is the first digit, the second the second digit, and the third “multiplier” band is
how many zeros to put after the first two digits.

Figure 11-4 A color-coded resistor.

So a 270 Ω resistor will have a first digit of 2 (red), a second digit of 7 (violet), and a multiplier
of 1 (brown). Similarly, a 10 kft resistor will have bands of brown, black, and orange (1, 0, and 000).

Most of our projects use resistors in a very low-power manner. A quick calculation can be used to

work out the current flowing through the resistor, and multiplying that number by the voltage across
the resistor will tell you the power used by the resistor. The resistor burns off this surplus power as
heat, so resistors will get warm if a significant amount of current flows through them.

You only need to worry about this for low-value resistors of less than 100 Ω or so because higher-
value resistors will have such a small current flowing through them.

As an example, a 100 ft resistor connected directly between 5V and GND will have a current
through it of I = V/R, or 5/100, or 0.05 A. The power it uses will be I × V or 0.05 × 5 = 0.25 W

A standard power rating for resistors is 0.5 or 0.6 W, and unless otherwise stated in projects, 0.5
W metal film resistors will be fine.

Transistors
Browse through any component catalog and you will find literally thousands of different transistor
types. In this book the list has been simplified to what’s shown in Table 11-2.

TABLE 11-2 Transistors Used in This Book

The basic switch circuit for a transistor is shown in Figure 11-5.

Figure 11-5 Basic transistor switch circuit.

The current flowing from base to emitter (b to e) controls the larger current flowing from the
collector to the emitter. If no current flows into the base, then no current will flow through the load. In
most transistors, if the load has zero resistance, the current flowing into the collector would be 50 to
200 times the base current. However, we are going to be switching our transistor fully on or fully off,
so the load resistance will always limit the collector current to the current required by the load. Too
much base current will damage the transistor and also rather defeat the objective of controlling a
bigger current with a smaller one, so the base will have a resistor connected to it.

When switching from an Arduino board, the maximum current of an output is 40 mA, so we could
choose a resistor that allows about 30 mA to flow when the output pin is high at 5V Using Ohm’s law,

R = V/I

R = (5 - 0.6)/30 = 147

The –0.6 is because one characteristic of bipolar transistors is that there is always a voltage of
about 0.6V between base and emitter when a transistor is turned on.

Therefore, using a 150 Ω base resistor, we could control a collector current of 40 to 200 times 30
mA, or 1.2 to 6 A, which is more than enough for most purposes. In practice, we would probably use
a resistor of 1 kΩ or perhaps 270 Ω.

Transistors have a number of maximum parameter values that should not be exceeded or the
transistor may be damaged. You can find these by looking at the datasheet for the transistor. For
example, the datasheet for a 2N2222 will contain many values. The ones of most interest to us are
summarized in Table 11-3.

TABLE 11-3 Transistor Datasheet

Other Semiconductors
The various projects have introduced a number of different types of components, from LEDs to
temperature sensors; Table 11-4 provides some pointers into the various projects. If you want to
develop your own project that senses temperature or whatever, first read about the projects
developed by the author that use these components.

TABLE 10-4 Use of Specialized Components in Projects

It may even be worth building the project and then modifying it to your own purposes.

Modules and Shields
It does not always make sense to make everything from scratch. This is why, after all, we buy an
Arduino board rather than make our own. The same is true of some modules that we may want to use
in our projects.

For instance, the LCD display module that we used in Projects 17 and 22 contains the driver chip
needed to work the LCD itself, reducing both the amount of work we need to do in the sketch and the
number of pins we need to use.

Other types of modules are available that you may wish to use in your projects. Suppliers such as
Sparkfun and Adafruit are a great source of ideas and modules. A sample of the kinds of modules that
you can get from such suppliers includes

 GPS
 Wi-Fi
 Bluetooth
 Zigbee wireless
 GPRS cellular modem

You will need to spend time reading through datasheets, planning, and experimenting, but that is
what being an Evil Genius is all about.

Slightly less challenging than using a module from scratch is to buy an Arduino shield with the
module already installed. This is a good idea when the components that you would like to use will not
go on a breadboard (such as surface-mount devices). A ready-made shield can give you a real leg up
with a project.

New shields become available all the time, but at the time of this writing, you can buy Arduino

shields for

 Ethernet (connect your Arduino to the Internet)
 XBee (a wireless data-connection standard used in home automation, among other things)
 Motor driver
 GPS
 Joystick
 SD card interface
 Graphic LCD touch-screen display
 Wi-Fi

Buying Components
Thirty years ago, the electronics enthusiast living in even a small town would be likely to have the
choice of several radio/TV repair and spare stores where he or she could buy components and
receive friendly advice. These days there are a few retail outlets that still sell components, such as
RadioShack in the United States and Maplins in the United Kingdom, but the Internet has stepped in to
fill the gap, and it is now easier and cheaper than ever to buy components.

With component suppliers such as Digikey, Mouser, Newark, Radio Spares, and Farnell, you can
fill a virtual shopping basket online and have the components arrive in a day or two. Shop around
because prices vary considerably among suppliers for the same components.

You will find eBay to be a great source of components. If you don’t mind waiting a few weeks for
your components to arrive, there are great bargains to be had from China. You often have to buy large
quantities but may find it cheaper to get 50 of a component from China than 5 locally. In this way, you
have some spares for your component box.

Tools
When making your own projects, there are a few tools that you will need at a bare minimum. If you do
not intend to do any soldering, then you will need

 Solid-core wire in a few different colors, something around 0.6 mm (23 SWG) diameter
 Pliers and wire snips, particularly for making jumper wires for the breadboard
 Breadboard
 Multimeter
If you intend to solder, then you will also need
 Soldering iron (duh)
 Lead-free alloy solder

Component Box

When you first start designing your own projects, it will take you some time to gradually build up
your stock of components. Each time you are finished with a project, a few more components will
find their way back to your stock.

It is useful to have a basic stock of components so that you do not have to keep ordering things
when you just need a different-value resistor. You will have noticed that most of the projects in this
book tend to use resistor values such as 100 Ω, 1 kΩ, 10 kΩ, etc. You actually don’t need that many
different components to cover most of the bases for a new project.

A good starting kit of components is listed in the Appendix.
Boxes with compartments that can be labeled save a lot of time in selecting components,

especially resistors that do not have their value written on them.

Snips and Pliers
Snips are for cutting, and pliers are for holding things still (often while you cut them).

Figure 11-6 shows how you strip the insulation off wire. Assuming that you are right-handed, hold
your pliers in your left hand and the snips in the right. Grip the wire with the pliers close to where
you want to start stripping the wire, and then gently pinch round the wire with the snips and pull
sideways to pull the insulation away. Sometimes you will pinch too hard and cut or weaken the wire,
and other times you will not pinch hard enough and the insulation will remain intact. It’s all just a
matter of practice.

Figure 11-6 Snips and pliers.

You also can buy an automatic wire stripper that grips and removes insulation in one action. In
practice, these often only work well for one particular wire type and sometimes just plain don’t work.

Soldering
You do not have to spend a lot of money to get a decent soldering iron. Temperature-controlled solder
stations, such as the one shown in Figure 11-7, are better, but a fixed-temperature electric iron is fine.
Buy one with a fine tip, and make sure that it is intended for electronics and not plumbing use.

Figure 11-7 Soldering iron and solder

Use narrow lead-free solder. Anyone can solder things together and make them work, but some
people just have a talent for neat soldering. Don’t worry if your results do not look as neat as a robot-
made printed circuit. They are never going to.

Soldering is one of those jobs that you really need three hands for: one hand to hold the soldering
iron, one to hold the solder, and one to hold the thing you are soldering. Sometimes the thing you are
soldering is big and heavy enough to stay put while you solder it; on other occasions, you will need to
hold it down. Heavy pliers are good for this, as are minivises and “helping hand” type holders that
use little clips to grip things.

The basic steps for soldering are

1. Wet the sponge in the soldering iron stand.

2. Allow the iron to come up to temperature.

3. Tin the tip of the iron by pressing the solder against it until it melts and covers the tip.

4. Wipe the tip on the wet sponge—this produces a satisfying sizzling sound but also cleans off the
excess solder. You should now have a nice bright silver tip.

5. Touch the iron to the place where you are going to solder to heat it; then after a short pause (a
second or two), touch the solder to the point where the tip of the iron meets the thing you are
soldering. The solder should flow like a liquid, neatly making a joint.

6. Remove the solder and soldering iron, putting the iron back in its stand and being very careful that
nothing moves in the few seconds that the solder will take to solidify. If something does move,
then touch the iron to it again to reflow the solder; otherwise, you can get a bad connection called
a dry-joint.

Above all, try not to heat sensitive (or expensive) components any longer than necessary,
especially if they have short leads.

Practice soldering any old bits of wire together or wires to an old bit of circuit board before
working on the real thing.

Multimeter
A big problem with electrons is that you cannot see the little monkeys. A multimeter allows you to see
what they are up to. It allows you to measure voltage, current, resistance, and often other features too,
such as capacitance and frequency. A cheap $10 multimeter is perfectly adequate for almost any
purpose. The professionals use much more solid and accurate meters, but they’re not necessary for
most purposes.

Multimeters, such as the one shown in Figure 11-8, can be either analog or digital. You can tell
more from an analog meter than you can from a digital meter because you can see how fast a needle
swings over and how it jitters, something that is not possible with a digital meter, where the numbers
just change. However, for a steady voltage, it is much easier to read a digital meter because an analog
meter will have a number of scales, and you have to work out which scale you should be looking at
before you take the reading.

Figure 11-8 A multimeter.

You can also get autoranging meters, which, once you have selected whether you are measuring
current or voltage, will automatically change ranges for you as the voltage or current increases. This
is useful, but some would argue that thinking about the range of voltage before you measure it is
actually a useful step.

To measure voltage using a multimeter:

1. Set the multimeter range to voltage (start at a range that you know will be higher than the voltage
you are about to measure).

2. Connect the black lead to GND. A crocodile clip on the negative lead makes this easier.

3. Touch the red lead to the point whose voltage you want to measure. For instance, to see if an
Arduino digital output is on or off, you can touch the red lead to the pin and read the voltage,
which should be either 5V or 0V.

Measuring current is different from measuring voltage because you want to measure the current
flowing through something and not the voltage at some point. So you put the multimeter in the path of
the current that you are measuring. This means that when the multimeter is set to a current setting,
there will be a very low resistance between the two leads, so be careful not to short anything out with
the leads.

Figure 11-9 shows how you could measure the current flowing through an LED.

Figure 11-9 Measuring current.

To measure current:

1. Set the multimeter range to a current range higher than the expected current. Note that multimeters
often have a separate high-current connector for currents as high as 10 A.

2. Connect the positive lead of the meter to the more positive side from which the current will flow.

3. Connect the negative lead of the meter to the more negative side. Note that if you get this the
wrong way round, a digital meter will just indicate a negative current; however, connecting an
analog meter the wrong way round may damage it.

4. In the case of an LED, the LED should still light as brightly as before you put the meter into the
circuit, and you will be able to read the current consumption.

Another feature of a multimeter that is sometimes useful is the continuity test feature. This will
usually beep when the two test leads are connected together. You can use this to test fuses, etc., as
well as to test for accidental short circuits on a circuit board or broken connections in a wire.

Resistance measurement is occasionally useful, particularly if you want to determine the resistance
of an unmarked resistor.

Some meters also have diode and transistor test connections, which can be useful to find and
discard transistors that have burned out.

Oscilloscope
In Project 18 we built a simple oscilloscope. An oscilloscope is an indispensable tool for any kind of
electronics design or test where you are looking at a signal that changes over time. Oscilloscopes are
relatively expensive, and there are various types. One of the most cost-effective types is similar in
concept to the one in Project 18. That oscilloscope just sends its readings across to a computer that is
responsible for displaying them.

Entire books have been written about using an oscilloscope effectively, and every oscilloscope is
different, so we will just cover the basics here.

As you can see from Figure 11-10, the screen showing the waveform is displayed over the top of a
grid. The vertical grid is in units of some fraction of volts, which on this screen is 2V per division.
So the voltage of the square wave in total is 2.5 × 2 = 5V.

Figure 11-10 An oscilloscope.

The horizontal axis is the time axis, and this is calibrated in seconds—in this case, 500 ms
(microseconds) per division. So the length of one complete cycle of the wave is 1000 ms, that is, 1
ms (millisecond), indicating a frequency of 1 kHz.

Project Ideas
The Arduino Playground on the main Arduino website (www.arduino.cc) is a great source of ideas

for projects. Indeed, it even has a section specifically for project ideas, divided into easy, medium, or
difficult.

If you type “Arduino project” into your favorite search engine or YouTube, you will find no end of
interesting projects that people have embarked on.

Another source of inspiration is the component catalog, either online or on paper. Browsing
through, you might come across an interesting component and wonder what you could do with it.
Thinking up a project is something that should be allowed to gestate in the mind of the Evil Genius.
After exploring all the options and mulling everything over, the Evil Genius’ project will start to take
shape!

If you enjoyed reading this book, you might like to consider some of the author’s other books on
Arduino and other areas of electronics. Please see www.simonmonk.org for a full list.

http://www.simonmonk.org

APPENDIX

Components and Supplies

ALL OF THE PARTS USED in this book are readily available through the Internet. However, sometimes it
is a little difficult to track down exactly what you are looking for. For this reason, this appendix lists
the components along with some order codes for various suppliers.

Suppliers
There are so many component suppliers out there that it feels a little unfair to list the few that the
author knows. So have a look around on the Internet, as prices vary considerably between suppliers.

Some smaller suppliers specialize in providing components for home constructors building
microcontroller projects like ours. They do not have the range of components, but do often have more
exotic and fun components at reasonable prices. Great examples of this kind of supplier are Adafruit
and Sparkfun Electronics, but there are many others out there.

Sometimes, when you find you just need a couple of components, it’s great to be able to go to a
local store and pick them up. RadioShack in the United States and Maplins in the UK stock a range of
components, and are great for this purpose.

CPC (cpc.farnell.com) in the United Kingdom also sells a lot of Arduino related kit and bulk
components such as resistors and capacitors at low cost.

Buying components can be quite daunting and buying something like Adafruit’s Arduino
experimenter kit (product ID 170) or Sparkfun Arduino Inventor’s kit (KIT-11227) is a good way to
get started with a basic selection of components and some breadboard.

The sections that follow list components by type, along with some possible sources and order
codes where available.

Component Sources
The Component boxes for each project list Appendix codes for the components use. This section lists
those codes and offers some sources from which they can be obtained.

The components are grouped into sections, each section being prefixed with a letter, M for module,
R for resistor, etc.

Arduino and Module

http://www.cpc.farnell.com

Resistors
Resistors are low-cost components, and you will often find that suppliers will only sell you them in
quantities of 50 or 100. For common values like 270 Ω, 1 kΩ and 10 kΩ it can be really useful to
have a bit of stock.

You can also buy resistor kits that have a wide range of resistors in a book or component box. If
the kit of resistors does not have exactly the right value, then using the next value up will usually be
fine. So, for instance, this book uses a lot of 270 Ω resistors with LEDs, but if your kit did not have
this value, then using 300 Ω instead would work just fine.

Some resistor kits to check out are:

 Sparkfun: COM-10969
 Maplins: FA08J

Resistors

Capacitors

Semiconductors
This book uses a lot of LEDs, so it is worth looking around for an LED kit, rather than buying the size
and color combinations separately. As well as very cheap LED selections available direct from
China, Maplins and other suppliers sell starter kit of assorted LEDs (product code RS37S).

Semiconductors

Hardware and Miscellaneous
Most of the items in this section will be available on eBay at a low cost.

Hardware and Miscellaneous

Index

Please note that index links point to page beginnings from the print edition. Locations are
approximate in e-readers, and you may need to page down one or more times after clicking a link
to get to the indexed material.
References to figures are in italics.
! command, 122

A
Accelerometer Mouse (Project 33), 176–178
Adafruit, 100–102
amplification, 36
analog inputs, 18
analog meters, 187
analog output from digital inputs, 111, 112
analogOutput command, 111–113
anodes, common, 96
Arduino Due board, 21
Arduino Leonardo board, 2, 20
Accelerometer Mouse (Project 33), 176–178
Automatic Password Typer (Project 32), 172–176
board components, 16–21
Keyboard Prank (Project 31), 171–172
powering up, 1, 6
setting, 7
suppliers, 192

Arduino Lilypad board, 21, 21
Lilypad Clock (Project 29), 159–165
suppliers, 192

Arduino Mega board, 21
Arduino Playground, 190
Arduino Protoshield, 37, 38–40
Arduino Uno board, 2
board components, 16–21
powering up, 1, 6
setting, 7
suppliers, 192

Arduino website, 2–7, 190

arrays, 30–32
ATmega168, 20
ATmega328, 19–20
Automatic Password Typer (Project 32), 172–176
autoranging meters, 188

B
back EMF, 126, 149
bipolar transistors, 94–95
Blink program, 1
Blink sketch, 8–9
modifying, 8–11

board components, 16, 16–21
analog inputs, 18
buying, 185, 191–197
datasheets, 181–182
digital connections, 18–19
microcontrollers, 15–16, 19–21
modules, 184–185
oscillator, 21
power connections, 16–18
power supply, 16
resistors, 182–183
serial programming connector, 21
shields, 184–185
specialized, 184
starter kit, 191
suppliers, 185, 191–197
transistors, 183–184
USB interface chip, 21

breadboards, 11–13
Brevig, Alexander, 66
buying components, 185, 191–197

C
C language, 21–22
arithmetic, 24–25
arrays, 30–32
bumpy case, 22–23
conditional statements, 25–26

constants, 23
data types, 24, 25
example, 22–24
functions, 23
integers, 23
logical expressions, 26
logical operators, 26
loops, 24, 29–30
parameters, 24
semicolon, 23
strings, 25
variables, 22, 24

capacitors, 108
suppliers, 194

central processing unit (CPU), 20
circuits
circuit symbols, 179–181, 181
schematic diagrams, 179–181

clocks, Lilypad Clock (Project 29), 159–165
code, 8–9. See also C language; Morse code
Keypad Security Code (Project 10), 63–68
Magnetic Door Lock (Project 27), 148–153
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73

collector-feedback bias, 120
Comments, 8
common anodes, 96
compiler, 22–23
component box, 185–186
components. See board components
Computer-Controlled Fan (Project 23), 132–134
conditional statements, 25–26
configuring the Arduino environment, 5–7
constants, 23
continuity test, 189
Countdown Timer (Project 30), 165–170
current measurement, 188

D
DAC, 110–111

data types, 24, 25
datasheets, 181–182
Device Manager, 3–4, 5
dice
LED Dice Project (Project 9), 57–61
Seven-Segment LED Double Dice (Project 15), 95–99

digital connections, 18–19
digital inputs and outputs, 43
analog output from digital inputs, 111, 112

digital meters, 187
digital-to-analog converters (DAC), 110–111
downloading project software, 7

E
EEPROM, 20, 80–85, 148–153, 159, 172–173
electromotive force (EMF), 126, 149
EPROM, 15
Evil Genius Countdown Timer (Project 30), 165–170
Extraction Wizard, 2–3

F
fans, Computer-Controlled Fan (Project 23), 132–134
field effect transistors (FETs), 51
MOSFETs, 183
Flashing LED (Project 1), 7–11
breadboard, 12
sketch, 22–24

Found New Hardware Wizard, 162
functions, 23

G
galvanic skin response, 145–148
getEncoderTurn function, 70
gigabytes, 15
GND (ground), 17–19
lines in schematic diagrams, 179

H
H-bridge controllers, 134–135
High-Brightness Morse Code Translator (Project 4), 35–41
High-Powered Strobe Light (Project 8), 55–57

hunting, 127–131
Hypnotizer (Project 24), 135–139
hysteresis, 130, 131

I
ideas for projects, 190
infrared
Infrared Remote (Project 28), 153–159
ultrabrite infrared (IR), 74–79

input-output pins, 15–16
inputs, 15–16
analog, 18
digital, 43, 111, 112

installing software, 1–7
on LINUX, 5, 110, 162
on Mac OS X, 5, 6, 110, 162
on Windows, 2–4, 5, 6, 110, 162

installing USB drivers, 3–4
integers, 23

J
jumper wires, 11–12

K
Keyboard Prank (Project 31), 171–172
Keypad Security Code (Project 10), 63–68
kilobytes, 15

L
lasers, Servo-Controlled Laser (Project 25), 139–144
LCD displays, 93, 102–105
LCD Thermostat (Project 22), 125–132

LDRs, 73–74, 116–120
leaky integration, 77
LED Array (Project 16), 99–102
LED Dice (Project 9), 57–61
ledPin, 22, 23
LEDs
1W Luxeon, 36–38
adding an external LED, 10–11
digital connections, 18–19

Flashing LED (Project 1), 7–11, 12, 22–24
High-Brightness Morse Code Translator (Project 4), 35–41
High-Powered Strobe Light (Project 8), 55–57
Infrared Remote (Project 28), 153–159
LED Array (Project 16), 99–102
LED Dice (Project 9), 57–61
Model Traffic Signal (Project 5), 43–46
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73
Morse Code S.O.S. Flasher (Project 2), 27–30
Morse Code Translator (Project 3), 31–35
SAD Light (Project 7), 50–54
Seven-Segment LED Double Dice (Project 15), 95–99
seven-segment LEDs, 93–99
Strobe Light (Project 6), 46–49
VU Meter (Project 21), 120–123

Leonardo. See Arduino Leonardo board
libraries
Adafruit, 101–102
Arduino software, 66, 67, 162–164

Lie Detector (Project 26), 145–148
Light Harp (Project 20), 116–120
light-dependent resistors (LDRs), 73–74, 116–120
lights
High-Powered Strobe Light (Project 8), 55–57
LED Array (Project 16), 99–102
Model Traffic Signal (Project 5), 43–46
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73
Morse Code S.O.S. Flasher (Project 2), 27–30
Multicolor Light Display (Project 14), 89–93
SAD Light (Project 7), 50–54
Seven-Segment LED Double Dice (Project 15), 95–99
Strobe Light (Project 6), 46–49
USB Message Board (Project 17), 103–105

Lilypad. See Arduino Lilypad
Lilypad Clock (Project 29), 159–165
LINUX, installing software on, 5, 110, 162
locks
Keypad Security Code (Project 10), 63–68

Magnetic Door Lock (Project 27), 148–153
logical expressions, 26
logical operators, 26
loops, 24, 29–30

M
Mac OS X, installing software on, 5, 6, 110, 162
Magnetic Door Lock (Project 27), 148–153
marketing operators, 122
measurement
current, 188
resistance, 189
temperature, 79
voltage, 188

megabytes, 15
memory, 15, 19–21
message board, USB Message Board (Project 17), 103–105
microcontrollers, 15–16, 19–21
Model Traffic Signal (Project 5), 43–46
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73
modules, 184–185
Morse code
High-Brightness Morse Code Translator (Project 4), 35–41
Morse code letters, 32
Morse Code S.O.S. Flasher (Project 2), 27–30

Morse Code Translator (Project 3), 31–35
mouse, Accelerometer Mouse (Project 33), 176–178
Multicolor Light Display (Project 14), 89–93
multimeter, 187–189

N
NPN transistors, 36, 125–126

O
Ohm’s Law, 17–18
OmniGraffle, 179–181
operators
logical operator, 26
marketing operator, 122

oscillator, 21

oscilloscopes, 189–190
Oscilloscope (Project 18), 107–110

outputs, 15–16
analog output from digital inputs, 111, 112
digital, 43

P
parameters, 24
passwords, Automatic Password Typer (Project 32), 172–176
PCBs. See Protoshield circuit boards
perf board, 51
layout, 52

photoresistors, 73–74
phototransistors, 74–79
piezo buzzers, 146–147
playNote function, 114–116
playSine function, 114–116
pliers, 186
power
Computer-Controlled Fan (Project 23), 132–134
Hypnotizer (Project 24), 135–139
LCD Thermostat (Project 22), 125–132
Servo-Controlled Laser (Project 25), 139–144

power connections, 16–18
power jumper, 1
power supply, 16
powering up, 1, 6
preprocessor directive, 84
Processing software, 110
programs, 8–9
projects
Accelerometer Mouse (Project 33), 176–178
Automatic Password Typer (Project 32), 172–176
Computer-Controlled Fan (Project 23), 132–134
Evil Genius Countdown Timer (Project 30), 165–170
Flashing LED (Project 1), 7–11, 12, 22–24
High-Brightness Morse Code Translator (Project 4), 35–41
High-Powered Strobe Light (Project 8), 55–57
Hypnotizer (Project 24), 135–139

ideas, 190
Infrared Remote (Project 28), 153–159
Keyboard Prank (Project 31), 171–172
Keypad Security Code (Project 10), 63–68
LCD Thermostat (Project 22), 125–132
LED Array (Project 16), 99–102
LED Dice (Project 9), 57–61
Lie Detector (Project 26), 145–148
Light Harp (Project 20), 116–120
Lilypad Clock (Project 29), 159–165
Magnetic Door Lock (Project 27), 148–153
Model Traffic Signal (Project 5), 43–46
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73
Morse Code S.O.S. Flasher (Project 2), 27–30
Morse Code Translator (Project 3), 31–35
Multicolor Light Display (Project 14), 89–93
Oscilloscope (Project 18), 107–110
Pulse-Rate Monitor (Project 12), 74–79
SAD Light (Project 7), 50–54
Servo-Controlled Laser (Project 25), 139–144
Seven-Segment LED Double Dice (Project 15), 95–99
Strobe Light (Project 6), 46–49
Tune Player (Project 19), 113–116
USB Message Board (Project 17), 103–105
USB Temperature Logger (Project 13), 79–86
VU Meter (Project 21), 120–123

Protoshield circuit boards, 39
Pulse-Rate Monitor (Project 12), 74–79
PWM (pulse-width modulation), 50, 89, 110–113

R
R-2R resistor ladder, 111, 111, 114
RAM, 15, 20
random function, 57–61, 95–99
random number generation, 57–61, 95–99
randomSeed function, 57–61
reed switches, 160
remotes, Infrared Remote (Project 28), 153–159
Reset button, 1

Reset connector, 16–17
resistance measurement, 189
resistors, 10, 182–183
color codes, 182
light-dependent resistors, 73–74, 116–120
R-2R resistor ladder, 111, 111, 114
suppliers, 192–193
values, 19
variable resistors, 47–48, 147
rotary encoders, 68, 68–73

S
SAD Light (Project 7), 50–54
schematic diagrams, 179–181. See also projects and names of individual projects
semiconductors, suppliers, 194–196
sensors
Keypad Security Code (Project 10), 63–68
Lie Detector (Project 26), 145–148
Light Harp (Project 20), 116–120
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73
Pulse-Rate Monitor (Project 12), 74–79
USB Temperature Logger (Project 13), 79–86

Serial Monitor, 35, 35, 77
serial port, settings, 5–7
serial programming connector, 21
servo motors, 139–144
Servo-Controlled Laser (Project 25), 139–144
seven-segment LEDs, 93–99. See also LEDs
Seven-Segment LED Double Dice (Project 15), 95–99

shields, 184–185
Morse code translator, 38–40
strobe light, 49

sine waves, 110, 111, 112–116
sketches, 8–9
snips, 186
software
Adafruit, 100–102
Blink program, 1, 8–11
downloading project software, 7

installing, 1–7, 110, 162
soldering, 186–187
sound

generation, 110–113
Light Harp (Project 20), 116–120
Oscilloscope (Project 18), 107–110
Tune Player (Project 19), 113–116
VU Meter (Project 21), 120–123

square waves, 110, 111, 114
Stanley, Mark, 66
starter kit of components, 191
strings, 25
strobe lights

High-Powered Strobe Light (Project 8), 55–57
Strobe Light (Project 6), 46–49

suppliers, 185, 191–197

T
temperature

LCD Thermostat (Project 22), 125–132
measurement, 79
USB Temperature Logger (Project 13), 79–86

Theremin, 117
thermistors, 79

USB Temperature Logger (Project 13), 79–86
thermostat, LCD Thermostat (Project 22), 125–132
timers, Evil Genius Countdown Timer (Project 30), 165–170
tools

component box, 185–186
multimeter, 187–189
oscilloscopes, 189–190
pliers, 186
snips, 186
soldering, 186–187

traffic signals
Model Traffic Signal (Project 5), 43–46
Model Traffic Signal Using a Rotary Encoder (Project 11), 69–73

transistors, 183–184
bipolar transistors, 94–95

datasheet, 184
FETs, 51, 183
NPN bipolar transistor, 36, 125–126
phototransistors, 74–79
used in this book, 183

translators
High-Brightness Morse Code Translator (Project 4), 35–41
Morse Code Translator (Project 3), 31–35

Tune Player (Project 19), 113–116

U
ultrabrite infrared (IR), 74–79
Uno. See Arduino Uno board
updates, 3–4
USB drivers, installing, 3–4
USB interface chip, 21
USB lead, type A-to-Type B, 1
USB Message Board (Project 17), 103–105
USB Temperature Logger (Project 13), 79–86

V
variable resistors, 47–48, 147
variables, 22, 24
voltage measurement, 188
voltage regulator, 16–17
VU Meter (Project 21), 120–123

W
web color chart, 91–93
websites
Adafruit, 100–102
Arduino, 2–7, 190
Processing software, 110

Windows, installing software on, 2–4, 5, 6, 110, 162
wire stripper, 186

	30 Arduino™ Projects for the Evil Genius™, Second Edition
	Copyright Page
	Dedication
	About the Author
	Contents
	Acknowledgments
	Introduction
	1 Quickstart
	Powering Up
	Installing the Software
	Configuring Your Arduino Environment
	Downloading the Project Software
	Project 1 Flashing LED
	Breadboard
	Summary

	2 A Tour of Arduino
	Microcontrollers
	What’s on an Arduino Board?
	The Arduino Family
	The C Language
	Summary

	3 LED Projects
	Project 2 Morse Code S.O.S. Flasher
	Loops
	Arrays
	Project 3 Morse Code Translator
	Project 4 High-Brightness Morse Code Translator
	Summary

	4 More LED Projects
	Digital Inputs and Outputs
	Project 5 Model Traffic Signal
	Project 6 Strobe Light
	Project 7 SAD Light
	Project 8 High-Powered Strobe Light
	Random Number Generation
	Project 9 LED Dice
	Summary

	5 Sensor Projects
	Project 10 Keypad Security Code
	Rotary Encoders
	Project 11 Model Traffic Signal Using a Rotary Encoder
	Sensing Light
	Project 12 Pulse-Rate Monitor
	Measuring Temperature
	Project 13 USB Temperature Logger
	Summary

	6 Light Projects
	Project 14 Multicolor Light Display
	Seven-Segment LEDs
	Project 15 Seven-Segment LED Double Dice
	Project 16 LED Array
	Project 17 USB Message Board
	Summary

	7 Sound Projects
	Project 18 Oscilloscope
	Sound Generation
	Project 19 Tune Player
	Project 20 Light Harp
	Project 21 VU Meter
	Summary

	8 Power Projects
	Project 22 LCD Thermostat
	Project 23 Computer-Controlled Fan
	H-Bridge Controllers
	Project 24 Hypnotizer
	Servo Motors
	Project 25 Servo-Controlled Laser

	9 Miscellaneous Projects
	Project 26 Lie Detector
	Project 27 Magnetic Door Lock
	Project 28 Infrared Remote
	Project 29 Lilypad Clock
	Project 30 Evil Genius Countdown Timer
	Summary

	10 USB Projects with the Leonardo
	Project 31 Keyboard Prank
	Project 32 Automatic Password Typer
	Project 33 Accelerometer Mouse
	Summary

	11 Your Projects
	Circuits
	Components
	Tools
	Project Ideas

	Appendix: Components and Supplies
	Suppliers
	Component Sources
	Index

